Summary of Seabird Bycatch in Alaskan Groundfish Fisheries, 1993 through 2004.

Updated 13 April 2006

Introduction

This document provides a summary of seabird bycatch in federal groundfish fisheries in Alaskan waters from 1993 through 2004. Information that describes fisheries, vessel operations, observer sampling methodology, or analytical processes for estimation are available elsewhere. The purpose of this report is to make the estimates of seabird bycatch in federal groundfish fisheries available annually to the public.

Estimates of seabird bycatch from Alaskan groundfish fisheries are completed by NOAA Fisheries' Alaska Fisheries Science Center staff each year using two sources of information. The first is data obtained from the North Pacific Groundfish Observer Program. These data are composed of, among other information, total catch and species composition from direct monitoring of fishing operations by NMFS-certified groundfish observers. The second source of information is from the Alaska Regional Office catch accounting system that reports total catch. Observer methods are detailed in the <u>North Pacific Groundfish Observer Program Documents</u> while a description of the catch accounting database is available at <u>Alaska Groundfish Catch Accounting System</u>.

Groundfish fisheries include fixed gear (pot and demersal longline) and trawl gear in federal waters of the Alaskan EEZ. Fishing takes place in three areas defined in North Pacific Fisheries Management Council Fishery Management Plans – the Aleutian Islands (AI), Bering Sea (BS), and the Gulf of Alaska (GOA) (Figure 1). The Alaskan Groundfish fishery is described in detail in the Alaska Groundfish Fisheries Final Programmatic SEIS (2004).

Fishery Interactions

Seabird bycatch summarized here is reported by the species or reporting groups developed in consultation with the U.S. Fish and Wildlife Service Region 7 (Anchorage, Alaska) (Table 1). At least 23 individual species, represented as a species or unidentified category, have been taken in the groundfish fisheries, including Laysan albatross (*Diomedea immutabilis*), black-footed albatross (*Diomedea nigripes*), short-tailed albatross (*Phoebastria albatrus*), Northern fulmar (*Fulmarus glacialis*), sooty shearwater (*Puffinus griseus*), short-tailed shearwater (*Puffinus tenuirostris*), unidentified storm petrel (*Oceanitidea*), herring gull (*Larus argentatus*), glaucus gull (*Larus hyperboreus*), glaucus-winged gull (*Larus glaucescens*), black-legged kittiwake (*Larus tridactyla*), red-legged kittiwake (*Larus brevirostris*), thick-billed murre (*Uria lomvia*), common murre (*Uria aalge*), tufted puffin (*Fratercula cirrhata*), king eider (*Somateria spectabilis*), loon unidentified (*Gaviidae*), grebe unidentified (*Stercorarius spp.*), tern unidentified (*Sternidae*), guillomot unidentified (*Cepphus spp.*), auklet/murrelet unidentified (*Alcidae:* several genera).

Bycatch in Longline Fisheries: Longline, or hook and line, fisheries in Alaskan waters are demersal sets that target groundfish or halibut. Observer coverage is not required in the halibut fishery, so information reported here are for demersal groundfish longline fisheries only, although that information does include some operations where halibut was retained due to individual fishing quota shares being available while fishing for groundfish. Longline fisheries in the BS and AI Regions are typically undertaken by vessels that are larger, stay at sea longer (up to 30 days), have onboard processing abilities, target Pacific cod (*Gadus macrocephalus*) and Greenland turbot (*Reinhardtius hippoglossoides*), use auto-bait systems, and deploy up to 55,000 hooks per day (Melvin et al. 2001). Conversely, longline vessels in the GOA typically are smaller, have shorter trip lengths (6 days), deliver bled fish on ice to shoreside processing plants, target sablefish (*Anoplopoma fimbria*), use tub or hand bait gear, and deploy up to 10,500 hooks per day (Melvin et al., 2001).

Between 1993 and 2004 the average annual bycatch in the combined Alaskan longline fisheries was 13,144 birds (Table 2). Over this period the average annual bycatch rates (birds per 1,000 hooks) were 0.065 in the AI and BS areas and 0.021 in the GOA (Table 2). Those rates have dropped in the last few years, with the running 5-year average now (2000-2004) at 0.035, 0.036, and 0.010 for the AI, BS, and GOA Regions respectively. Large inter-annual variation in seabird bycatch has been common, even after the implementation of the first generation of seabird avoidance regulations in 1997 (Figure 2). Recently, seabird bycatch has trended downward. In 2002 many freezer-longliners fishing in the BSAI adopted the recommendations from studies completed by Melvin et al. (2001). Paired streamer lines meeting specific performance standards had proven to be very effective in reducing seabird bycatch during this study. NMFS completed the revisions to seabird avoidance regulations that made seabird avoidance measures mandatory for all longline vessels in February 2004. Among other requirements, vessels larger than 55 feet length over all must use paired streamer lines except in certain weather conditions. Total seabird by catch is the result of overall fishing effort and catch rate. These factors tend to track each other in the AI Area, while catch rates are declining and effort is tending upward in the BS. In the GOA effort was low and bycatch rates were their highest in 1998. Since then, effort has nearly doubled while bycatch rates have dropped 17-fold (Table 2, Figures 3-5).

Seabird bycatch is highest in the BS Area, where fishing is predominantly cod freezer longliners (Melvin 2001) and lower in the AI and GOA Areas (Tables 2-5, Figure 6). In each area Northern fulmar is the predominant seabird taken (Figure 7 - 9). To date, the lowest bycatch of seabirds occurred in 2002 (Figures 2 and 6). Bycatch rates in all three Regions have been decreasing since highs in the 1998-1999 period.

Seabird bycatch in the AI Region is composed primarily of Northern fulmar (54%; Figure 7) followed by 20% Laysan albatross. Few black-footed albatross are taken in the AI Region. Unidentified birds comprise the next largest component of the species composition (11%), with gulls and shearwaters accounting for another 10%. While the BS Region has the highest bycatch of seabirds, it is composed primarily of Northern fulmar (60%) and has overall low numbers of albatross (about 2%; Figure 8). Gulls comprise about 22%, followed by unidentified birds (11%) and shearwaters (4%). The GOA Region is similar to the AI in that the species composition is still primarily Northern fulmar (46%) and albatross make up more of the species composition (Figure 9). Laysan albatross are about 12% and black-footed albatross are about 20% of the

seabirds taken. Given bycatch rates, total effort, and species composition of albatross (Laysan and black-footed) in each Region, the overall estimated bycatch of albatross is very similar among Regions with 287, 211, and 300 albatross taken in the AI, BS, and GOA regions respectively (Figure 10). The 1993 through 2004 averages for Northern fulmar by region (AI, BS, and GOA) are 644, 6,546, and 384.

Pot: Seabird bycatch from groundfish pot fishing has traditionally been very limited. The overall average bycatch in this fishery, 1993 through 2004, is 55 seabirds (Table 6). That trend continues, with only 5 birds observed taken in 2004, extrapolating up to an estimated 60 total mortalities. No albatross have been taken in pot gear. Northern fulmars account for 37 of the 60 estimated birds in 2004. These birds obviously did not enter the pot while it was actively fishing on the bottom and are more likely the result of striking the vessel and gear before the pot is set.

Trawl: On trawl vessels only, observers use whole haul, partial haul, or basket sampling to record prohibited species bycatch and determine the species composition of the haul (AFSC 2004). With rarer species, such as salmon or halibut, it is important to maximize the sample size when possible. Conversely, when sampling for species composition the observer is limited by the amount of fish that can be sorted, weighed, and counted. Observers are often required to use two of these three sample types in a single haul in order to best accommodate the goals of prohibited species and species composition sampling (prohibited species are those that are not allowed to be retained and processed by groundfish operations and include salmon, herring, crab, and halibut – CFR 50 Section 679.21) (AFSC 2004).

Observers have been instructed to use the largest sample available when monitoring for seabird bycatch. Sample size was recorded when seabirds were found in the observer's sample. When no birds were found the actual sample size used while monitoring for seabirds was not recorded due to the direction to use the largest sample size available. Unfortunately, not all observers used their largest monitored sample when looking for seabirds, which has complicated the analysis. Starting in 2004, observers were directed to record the sample size used when monitoring for seabirds regardless if any were found. However, for 1993 through 2003 it is not known with certainty which sample size was used to monitor for seabird bycatch in groundfish trawl operations. Because we know of a few cases where the largest sample available was not used, seabird bycatch has been calculated using two alternative methods based on the largest (alternative1) and smallest (alternative2) sizes of sampling effort recorded for fish species (Tables 7-9, Figure 11). In each of these two alternative calculation methods, a separate ratio estimator was used to bind the results of the catch ratios and variances of data from the three different sample sizes into arbitrary equal samples which were then inflated upwards to the total catch effort of the NMFS blend program. This provides two sets of estimates of seabird bycatch for trawlers.

While we cannot state with certainty which of the 2 estimates is more accurate, it is highly unlikely that all observers did the opposite of what they were instructed to do. It is much more likely that a few of the many observers deployed each year simply made a mistake. Therefore, while seabird bycatch on trawl vessels lies somewhere between the two estimates provided, alternative 1 (largest available sample size) probably provides the best estimate of seabird bycatch in the trawl fleet based on direct observer sampling (see caveat below).

As noted above, this issue was resolved for data collections beginning in the 2004 season. The sample size used to monitor for seabirds in all hauls is now recorded whether a bird was taken or not. The 2004 estimates were run as alternatives 1 and 2 (sample sizes for hauls with no seabird takes were ignored: alt 1 defaults to the largest sample size available whereas alt 2 defaults to the smallest) and method 2 (estimation procedure used the recorded sample size for all hauls). Method 2 aligns closely with the estimates from alternative 1 (Tables 7 – 9). Seabird bycatch is lowest in the GOA Region and generally higher in the BS, with the AI being intermediate but highest in 1996, 2001, and 2003 (Figure 12). Northern fulmars are again the most common species taken, constituting about 45% of the overall seabird bycatch in the combined groundfish trawl fleet when using the 1993-2004 average annual estimates (Figure 13). That composition changes to about 76% when the 2000 through 2004 average annual estimates are used (Tables 7 – 9).

Another source of mortality for seabirds on trawl vessels are the trawl door cables (warps) and the cable that run between the net monitoring device and the vessel (trawl sonar cable or third wire). To date, only anecdotal information is available from North Pacific groundfish fisheries, so the extent of the mortality from this cause is uncertain. A special project for observers was implemented in 2004 and expanded for the 2005 and 2006 fishing seasons. We are currently developing estimates on total trawl and trawl sonar effort and will use the 2004 through 2006 observer data to better characterize interaction rates and mortalities. A collaborative project was started in 2004 between the Alaska Fisheries Science Center and the Pollock Conservation Cooperative to promote development of seabird mitigation measures for groundfish catcher processor vessels. Funds were obtained from the NOAA Fisheries National Cooperative Research Program to assist with the development of these measures. Parallel to that, the Pollock Conservation Cooperative had been collaborating with Washington Sea Grant to conduct some preliminary work on interaction rates and further develop protocols drafted by Sea Grant, AFSC and University of Washington staff to be able to develop a rigorous field test of these measures. Washington Sea Grant coordinated with the Pollock Conservation Cooperative (with support from the AFSC and USFWS) to conduct such a rigorous test of these gear under commercial fishing conditions in the summer of 2005.

Acknowledgements

Reporting of seabird bycatch numbers would not be possible without the dedication and hard work of the many North Pacific Groundfish Observers deployed each year. Their efforts are here gratefully acknowledged. Staff of the North Pacific Groundfish Obsever Program work to support observers in the field, and to ensure proper quality control measures are integrated into every step of the program, working to ensure that these data are of the highest quality possible. They too deserve credit for their diligence. Mike Perez of the National Marine Mammal Lab conducts the analysis of seabird bycatch each year, with partial financial support from the Alaska Region Protected Resources Division.

Citations

- AFSC (Alaska Fisheries Science Center). 2004. North Pacific Groundfish Observer Manual. Available from: North Pacific Groundfish Observer Program. AFSC, 7600 Sand Point Way N.E., Seattle, Washington, 98115.
- NMFS. 2004. Alaskan Groundfish Fisheries Final Programmatic Supplemental Environmental Impact Statement. U.S.DOC, NOAA, NMFS, Alaska Region, P.O. Box 21668, Juneau AK 99802-1668
- Melvin, E.F., J.K. Parrish, K.S. Dietrich, and O.S. Hamel. 2001. Solutions to seabird bycatch in Alaska's demersal longline fisheries. Washington Sea Grant Program. Project A/FP-7. Available on loan from the National Sea Grant Library, and from publisher. WSG-AS-01-01.

Web links

For additional information on seabird regulations, biological opinions, and other related matters, refer to the Alaska Region Protected Resources Division <u>Alaska Seabird Incidental Take</u> Reduction Program and Longline Gear Seabird Avoidance Measures.

For information on North Pacific Groundfish Observer Program protocols see <u>http://www.afsc.noaa.gov/refm/observers</u>

For general fisheries management information also see the North Pacific Fisheries Management Council website at <u>http://www.fakr.noaa.gov/npfmc</u>

For research on seabird avoidance measures and seabird distribution refer to the Washington Sea Grant website at <u>http://www.wsg.washington.edu/research/living/seabirds.html</u>

group heading not listed i	n a table means that there was no bycate	ch in that category ¹ .
Species/species Group	Includes	Scientific Name
Short-tailed Albatross	n/a	Phoebastria albatrus
Laysan Albatross	n/a	Diomedea immutabilis
Black-footed Albatross	n/a	Diomedea nigripes
Unidentified Albatross	Short-tailed, Laysan, or black- footed.	n/a
Northern Fulmar	n/a	Fulmarus glacialis
	Unidentified Shearwater	Puffinus spp
Shearwaters	Sooty Shearwater	Puffinus griseus
	Short-tailed shearwater	Puffinus tenuirostris
Unidentified Procellarid	All of the above	Procellariiformes
	Unidentified gulls	Laridae
Call	Herring gulls	Larus argentatus
Gull	Glaucous gulls	Larus hyperboreus
	Glaucous-winged gulls	Larus glaucescens
	Unidentified alcids,	Alcidae
	Guillemots	Cepphus spp.
Alcid	Murres	Uria spp.
	Puffins	Fraturcula spp.
	Murrelets and auklets	Several genera
	Miscellaneous birds – could include:	
	Loons	Gaviidae
	Grebes	Podicipededae
	Cormorants	Phalocrocoracidae
Other Seabird	Seaducks	Anatidae
	Jaeger/skuas	Stercorariidae
	Kittiwakes	L. tridactyla, L. brevirostris
	Terns	Sternidae
	Storm petrels	Oceanitidae
Unidentifid Seabird	All of the above	
1 A complete list of the a	necies and species group categories use	d has North Desifie Crossedfich

Table 1. Species and species group categories used in tables 3 through 9. Any species or species group heading not listed in a table means that there was no bycatch in that category¹.

¹ A complete list of the species and species group categories used by North Pacific Groundfish Observers while monitoring is available in the Groundfish Observer Manaual (AFSC 2004).

	Effort	eu, 1995 ili	U	Incidental actob	Dorcont of
Area and	Effort (No. of hooks	Number	95% Confidence	Incidental catch rate (Birds per	Percent of hooks
Area and Year	•			` 1	
Aleutian Islan	in 1,000s)	of Birds	Bounds	1,000 hooks)	observed
1993	as 37,009.6	2,485	1,927-3,204	0.067	21.1
1993	37,009.0 17,171.1	2,483	1,927-3,204	0.084	21.1 25.2
1994	11,846.7	,	1,170-2,004	0.084	23.2
1995	11,840.7	1,531 791	573-1,088	0.129	25.2 25.8
1990	13,177.2	91 958	698-1,318	0.000	23.8 18.9
1997	20,388.2	1,770	1,472-2,129	0.087	25.8
1998	14,444.4	1,770	1,266-2,854	0.132	23.8 19.8
2000	28,366.2	1,901	1,144-2,087	0.054	20.8
2000	34,066.4	1,343	894-1,547	0.035	20.8
2001	8,646.9	1,177	41-107	0.008	20.8 31.2
2002 2003	8,040.9 11,294.7	372	236-586	0.008	11.5
2003	10,700.0	124	81-193	0.012	16.9
	land Average A			0.012	10.9
1993-2004	18,249.7	1,180	1,071-1,300	0.065	21.6
2000-2004	18,249.7	656	548-788	0.005	21.0
Bering Sea	10,014.0	050	340-700	0.033	20.2
1993	85,605.4	5,364	4,683-6,142	0.063	26.2
1993	118,840.4	9,393	8,446-10,448	0.079	20.2
1994	131,313.3	9,393 17,944	16,664-19,323	0.137	24.2
1995	131,832.2	7,814	7,004-19,323	0.060	24.1
1990	176,756.6	20,187	18,404-22,145	0.114	23.3
1997	156,154.2	20,187	21,185-24,780	0.147	23.0
1998	145,818.6	10,817	9,610-12,175	0.074	25.0 25.0
2000	165,450.9	16,775	15,288-18,408	0.101	23.0
2000	192,878.7	8,860	7,993-9,818	0.046	20.9
2001	208,784.3	3,800	3,324-4,348	0.018	20.9
2002	268,874.0	3,802 4,794	4,325-5,314	0.018	22.1
2003	259,288.4	4,794	4,284-5,141	0.018	19.8
	Average Annua			0.018	19.0
1993-2004	170,133.8	11,113	, 10,781-11,455	0.065	22.6
2000-2004	219,055.8	7,785	7,397-8,192	0.036	22.0
Gulf of Alaska	,	7,705	7,377-0,172	0.030	21.0
1993	a 56,431.2	1,322	1,090-1,606	0.023	10.2
1993	49,464.6	531	419-676	0.023	4.9
1994	49,404.0	1,544	1,341-1,779	0.011	4.9
1993	42,775.5 33,416.5	1,544 1,649	1,273-2,137	0.038	12.6
1996 1997	28,756.6	474	339-663	0.049	10.7 9.7
1997	28,750.0 30,039.7	474 1,587	1,016-2,480	0.018	9.7 7.9
1998	30,039.7	1,387 964	765-1,216	0.033	7.9 8.5
1777	52,211.5	904	/03-1,210	0.030	0.5

Table 2. Annual estimates of fishery effort, total birds taken, catch rates, and percent hooks observed in Alaskan groundfish demersal longline fisheries by fishery management region and for all Alaskan waters combined, 1993 through 2004.

	Effort		050/	In aidental ast -1-	Dansant of
A	Effort	NT1	95% Confidence	Incidental catch	Percent of
Area and	(No. of hooks	Number	Confidence	rate (Birds per	hooks
Year	in 1,000s)	of Birds	Bounds	1,000 hooks)	observed
2000	35,806.0	782	484-1,262	0.022	6.4
2001	34,505.2	475	318-710	0.014	7.7
2002	37,472.5	238	143-396	0.006	9.2
2003	53,190.3	482	297-783	0.009	6.5
2004	56,099.1	161	84-307	0.003	5.0
Gulf of A	laska average ani	nual estima	tes		
1993-2004	40,852.6	851	766-946	0.021	8.1
2000-2004	43,414.6	428	337-544	0.010	6.8
All Alaska fi	ishery manageme	nt regions c	combined		
1993	179,046.2	9,171	8,225-10,226	0.051	20.1
1994	185,473.0	11,364	10,361-12,467	0.061	19.2
1995	185,935.5	21,019	19,657-22,477	0.113	21.4
1996	177,134.0	10,254	9,309-11,291	0.058	21.1
1997	218,699.3	21,619	19,803-23,607	0.099	19.5
1998	206,582.1	26,269	24,380-28,306	0.127	21.1
1999	192,540.3	13,682	12,248-15,285	0.071	21.8
2000	229,623.0	19,102	17,504-20,849	0.083	20.1
2001	261,450.3	10,512	9,569-11,544	0.040	19.1
2002	254,903.7	4,106	3,612-4,667	0.016	20.5
2003	333,359.0	5,648	5,102-6,252	0.017	19.8
2004	326,087.5	4,979	4,554-5,444	0.015	17.2
All Alask	,	· ·		age annual estimat	es
1993-2004	229,236.2	13,144	12,782-13,516	0.057	19.9
2000-2004	281,085.2	8,869	8,452-9,307	0.032	19.3

		1	Albatrosse	s			Unid.			Other		
	No.		Black-		Northern	Shear-	Procel			Sea-	Unid.	
Year	Obs.	Laysan	footed	Unid.	Fulmar	waters	-larids	Gulls	Alcids	birds	Seabirds	Totals
1993	550	571	12	355	1,017	0	0	184	3	0	343	2,485
1995	550	(437-746)	(5-29)	(228-555)	(611-1,695)			(133-253)	(1-13)		(157-746)	(1,927-3,204)
1994	388	307	37	76	434	27	0	24	0	0	535	1,440
1774	300	(228-414)	(17-78)	(50-116)	(300-628)	(8-94)		(21-30)			(348-823)	(1,170-1,771)
1995	390	316	23	26	1,006	22	10	99	0	0	29	1,531
1995	390	(176-567)	(11-50)	(16-43)	(689-1,469)	(10-48)	(2-42)	(62-156)			(14-61)	(1,170-2,004)
1996	222	106	20	34	160	304	2	23	0	0	142	791
1990	222	(72-155)	(6-70)	(18-64)	(100-254)	(148-623)	(1-7)	(13-42)			(78-258)	(573-1,088)
1997	179	270	8	10	599	20	9	10	0	0	32	958
1997	179	(185-394)	(2-36)	(3-32)	(373-963)	(5-73)	(3-28)	(3-32)			(16-64)	(698-1,318)
1998	460	449	4	0	638	125	4	167	0	4	379	1,770
1990	400	(295-683)	(1-18)		(474-859)	(83-188)	(1-18)	(109-257)		(1-15)	(243-591)	(1,472-2,129)
1999	399	231	17	0	1,535	9	4	100	0	0	5	1,901
1999	377	(177-300)	(7-40)		(933-2,527)	(2-41)	(1-18)	(48-210)			(1-23)	(1,266-2,854)
2000	325	196	11	5	1,149	27	0	110	0	0	47	1,545
2000	525	(144-268)	(3-35)	(1-23)	(772-1,712)	(13-56)		(71-171)			(24-92)	(1,144-2,087)
2001	245	126	0	0	938	65	0	43	0	0	5	1,177
2001	243	(76-209)			(671-1,311)	(40-103)		(24-76)			(1-22)	(894-1,547)
2002	66	47	0	0	10	5	0	4	0	0	0	66
2002	00	(25-86)			(4-25)	(1-23)		(1-15)				(41-107)
2003	74	135	0	0	216	0	0	0	0	21	0	372
2003	/+	(63-290)			(118-394)					(6-74)		(236-586)
2004	24	52	0	0	28	16	0	10	0	0	18	124
2004	24	(27-100)			(13-61)	(3-78)		(3-32)			(8-40)	(81-193)
Averag	e Annua	al Estimates										
1993-		234	11	42	644	52	2	65	0	2	128	1,180
2004	na	(205-267)	(7-16)	(31-59)	(550-755)	(35-76)	(1-5)	(54-78)	(0-1)	(1-6)	(98-167)	(1,071-1,300)
2000-		111	2	1	468	23	0	33	0	4	14	656
2004	na	(86-145)	(1-7)	(0-5)	(366-598)	(15-35)		(24-47)		(1-15)	(8-23)	(548-788)

Table 3. Estimated incidental take and actual number of seabirds observed taken in the Aleutian Islands fishery management region groundfish demersal longline fishery, 1993 through 2004. Numbers in parenthesis (shaded rows) are the 95% confidence intervals.

			Albatr	osses			~~~	Unid.			Other		
	No.	Short-		Black-		Northern	Shear-	Procel-			Sea-	Unid.	
Yr	Obs.	tailed	Laysan	footed	Unid.	Fulmar	waters	larids	Gulls	Alcids	birds	Seabirds	Totals
		0	49	0	0	3,153	65	0	647	11	4	1,435	5,364
1993	1,392		(29-83)			(2,582-3,849)	(34-123)		(430-974)	(4-36)	(1-16)	(1,200- 1,716)	(4,683-6,142)
		0	4	0	0	4,555	656	351	1,718	4	4	2,101	9,393
1994	2,312		(1-20)			(3,954-5,247)	(495-870)	(247-499)	(1,333-2,214)	(1-20)	(1-18)	(1,568- 2,814)	(8,446- 10,448)
		0	148	43	12	8,811	308	474	3,892	4	45	4,207	17,944
1995	4,442		(104-210)	(19-96)	(5-31)	(7,884-9,847)	(221-429)	(295-760)	(3,268-4,635)	(1-17)	(24-84)	(3,538- 5,003)	(16,664- 19,323)
		4	130	0	27	5,571	185	14	1,484	46	50	303	7,814
1996	1,780	(1-19)	(79-216)		(13-53)	(4,806-6,457)	(118-288)	(6-37)	(1,250-1,762)	(14- 144)	(25- 103)	(235-389)	(7,004-8,716)
		0	125	4	3	15,187	354	169	3,429	0	9	907	20,187
1997	3,944		(86-183)	(1-19)	(1-15)	(13,505- 17,079)	(206-609)	(112-257)	(2,667-4,408)		(3-28)	(606-1,356)	(18,404- 22,145)
		8	982	5	4	14,955	1,018	17	4,252	53	45	1,573	22,912
1998	5,390	(3-24)	(720- 1,339)	(1-23)	(1-17)	(13,391- 16,701)	(846-1,226)	(8-39)	(3,626-4,985)	(31-90)	(23-89)	(1,288- 1,926)	(21,185- 24,780)
		0	313	0	0	6,466	492	418	2,172	4	47	905	10,817
1999	2,894		(253-387)			(5,412-7,725)	(398-609)	(224-778)	(1,802-2,613)	(1-15)	(22- 101)	(628-1,305)	(9,610- 12,175)
		0	260	5	10	9,879	533	86	4,454	5	16	1,527	16,775
2000	3,543		(172-391)	(2-21)	(3-29)	(8,573-11,384)	(411-693)	(54-137)	(3,852-5,150)	(1-22)	(8-35)	(1,171- 1,992)	(15,288- 18,408)
2001	1,742	0	281	5	5	4,595	394	96	2,431	2	33	1,018	8,860
2001	1,742		(197-400)	(1-21)	(1-21)	(3,901-5,412)	(293-528)	(61-153)	(2,049-2,884)	(1-8)	(15-74)	(758-1,367)	(7,993-9,818)
2002	859	0	5	0	5	695	149	20	2,536	10	17	365	3,802
		0	(1-24)	10	(1-22)	(585-826)	(102-219)	(7-53)	(2,095-3,071)	(3-32)	(7-40)	(276-482)	(3,324-4,348)
2003	1,049	0	47 (23-94)	10 (3-32)	0	2,748 (2,408-3,137)	289 (220-379)	14 (4-46)	1,373 (1,088-1,734)	11 (4-29)	45 (26-76)	257 (192-343)	4,794 (4,325-5,314)
		0	(23-94)	(3-32)	3	(2,408-3,137) 1,934	(220-379) 710	(4-40) 97	1,260	(4-29)	23	(192-343)	4,694
2004	894	U	(18-74)	(4-36)	(1-10)	(1,661-2,253)	(558-904)	(59-160)	(1,055-1,505)	(20-76)	(11-51)	(448-750)	(4,284-5,141)
Averag	ge Annua	l Estimat	. ,	(100)	()	(-,,_,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	(-,)	(=•••)	()	(110 100)	(,,,_,_,_,_,_)
`	<u> </u>	1	198	7	6	6,546	429	146	2,471	16	28	1,265	11,113
1993-	na	(0,2)		(4, 12)	(4,0)							(1,163-	(10,781-
2004		(0-3)	(170-231)	(4-12)	(4-9)	(6,258-6,847)	(393-470)	(117-187)	(2,327-2,623)	(11-23)	(22-36)	1,376)	11,455)
2000-		0	126	6	4	3,970	415	63	2,411	14	27	749	7,785
2004			(99-160)	(3-13)	(2-9)	(3,651-4,317)	(365-472)	(48-81)	(2,221-2,618)	(8-22)	(19-38)	(648-866)	(7,397-8,192)

Table 4. Estimated incidental take and actual number of seabirds observed taken in the Bering Sea fishery management region groundfish demersal longline fishery, 1993 through 2004. Numbers in parenthesis (shaded rows) are the 95% confidence intervals.

	No.		Albatrosses		Northern	Shear-	Unid. Procel			Other Sea-	Unid. Sea-	
Year	Obs.	Loucon	Black- footed	Unid.	Fulmar	waters	-larids	Gulls	Alcids	birds	birds	Totals
1 Cai	003.	Laysan	29	3		59	0	45				
1993	318	128		e	842		0		0	3	213	1,322
		(78-211)	(15-57)	(1-14)	(648-1,094)	(31-114)	0	(23-90)	0	(1-11)	(131-346)	(1,090-1,606)
1994	126	169	7	8	258	26	0	30	0	0	33	531
		(106-269)	(2-22)	(3-24)	(181-368)	(10-70)	í.	(7-127)	0	4	(13-84)	(419-676)
1995	374	68	239	378	529	40	6	105	0	4	175	1,544
		(42-109)	(181-317)	(290-493)	(381-733)	(20-81)	(1-25)	(67-166)	0	(2-11)	(120-256)	(1,341-1,779)
1996	250	155	665	0	674	15	0	121	0	0	19	1,649
		(104-233)	(490-903)	0	(424-1,071)	(4-52)	0	(30-498)	0	0	(6-57)	(1,273-2,137)
1997	74	31	97	0	281	8	0	47	0	0	10	474
		(7-127)	(51-187)		(177-449)	(2-24)	0	(24-93)	0	0	(3-33)	(339-663)
1998	184	241	321	4	951	13	0	57	0	0	0	1,587
1770		(117-495)	(125-825)	(1-18)	(506-1,788)	(4-42)	0	(29-116)	0	0		(1,016-2,480)
1999	159	214	184	0	242	50	0	249	0	9	16	964
		(147-312)	(91-370)	_	(165-354)	(21-118)	_	(145-430)	-	(2-43)	(5-55)	(765-1,216)
2000	72	96	155	0	317	0	0	180	0	0	34	782
2000	· =	(47-195)	(89-271)		(140-716)			(55-592)			(7-174)	(484-1,262)
2001	45	69	73	17	191	20	0	96	6	0	3	475
2001	10	(29-165)	(36-146)	(4-86)	(116-314)	(4-99)		(25-365)	(1-29)		(1-14)	(318-710)
2002	51	0	33	0	107	0	0	81	0	0	17	238
2002	51		(17-65)		(52-219)			(27-237)			(6-44)	(143-396)
2003	37	12	156	0	216	0	0	41	41	0	16	482
2003	51	(5-30)	(58-418)		(113-410)			(13-128)	(7-230)		(3-80)	(297-783)
2004	17	31	24	0	0	0	0	93	0	0	13	161
2004	17	(11-88)	(10-58)					(35-244)			(3-62)	(84-307)
Averag	e Annua	al Estimates										
1993-		101	165	34	384	19	1	96	4	1	46	851
2004	na	(82-125)	(131-208)	(26-44)	(320-460)	(13-28)	(0-2)	(67-136)	(1-19)	(1-4)	(35-61)	(766-946)
		42	88	4	166	4	0	98	9	0	17	428
2000-	na					-	U			U		
2004		(26-67)	(57-137)	(1-17)	(112-246)	(1-20)		(53-182)	(2-45)		(7-41)	(337-544)

Table 5. Estimated incidental take and number of seabirds observed taken in the Gulf of Alaska fishery management region groundfish demersal longline fishery, 1993 through 2004. Numbers in parenthesis (shaded rows) are the 95% confidence intervals.

	NT	NT 41	C1	Unid.			TT ' 1	
• 7	No.	Northern	Shear-	Procel-		41.1	Unid.	T (1
Year	Obs.	Fulmar	waters	larids	Gulls	Alcids	Seabirds	Totals
1993	0	0	0	0	0	0	0	0
1775	0							
1994	0	0	0	0	0	0	0	0
1774	0							
1995	6	9	7	0	3	19	0	38
1775	0	(3-33)	(1-33)		(1-15)	(4-92)		(15-103)
1996	9	80	0	2	0	0	7	89
1990	9	(27-235)		(1-8)			(2-30)	(33-238)
1997	4	16	0	0	0	11	0	27
1997	4	(6-43)				(2-52)		(10-68)
1000	2	18	0	0	15	0	0	33
1998	Z	(4-92)			(3-73)			(10-114)
1000	17	166	9	14	0	0	0	189
1999	47	(95-290)	(2-43)	(5-35)				(114-313)
2000	1	0	0	0	0	0	42	42
2000	1						(9-207)	(9-207)
2001	2	14	0	0	3	0	0	17
2001	3	(4-52)			(1-12)			(6-53)
2002	6	18	0	0	0	0	3	21
2002	6	(8-42)					(1-13)	(10-44)
2002	10	91	4	0	0	59	0	154
2003	10	(36-230)	(1-16)			(12-290)		(63-372)
2004	_	60	0	0	0	0	0	60
2004	5	(20-183)						(20-183)
Averag	ge Anni	ual Estimates	5					
1993-		39	2	1	2	7	4	55
2004	na	(27-58)	(1-5)	(1-3)	(1-6)	(2-25)	(1-17)	(40-79)
2000-		37	1	0	1	12	9	60
2004	na	(20-69)	(0-3)		(0-2)	(2-58)	(2-41)	(32-107)
		()	(/		<u> </u>	()	(-/	(· /

Table 6. Estimated incidental take and actual number of seabirds observed taken in the demersal pot fishery in Alaskan waters, 1993 through 2004, all fishery management regions combined. Numbers in parentheses (shaded rows) are the 95% confidence intervals.

Table 7. Estimated incidental take and actual number of seabirds observed taken in the Aleutian Islands fishery management region groundfish trawl fleet, 1993 through 2004. Alternate methods of take estimation are based on largest (Alt 1^1) or smallest sample size (Alt 2 – shaded area) available during seabird monitoring. Sample size used for monitoring seabirds was recorded in 2004 for all samples regardless of birds taken (Meth 2).

	No.	Est.	Laysan	Northern	Shear-			Unid.	
Year	Obs.	Type	Albatross	Fulmar	waters	Gulls	Alcids	Seabirds	Totals
1993	3	Alt 1	0	0	219	0	0	0	219
1995	3	Alt 2	0	0	486	0	0	0	486
1994	0	Alt 1	0	0	0	0	0	0	0
1994	0	Alt 2	0	0	0	0	0	0	0
1995	0	Alt 1	0	0	0	0	0	0	0
1995	0	Alt 2	0	0	0	0	0	0	0
1996	1	Alt 1	0	0	0	0	0	115	115
1990	1	Alt 2	0	0	0	0	0	229	229
1997	4	Alt 1	99	0	0	0	0	42	141
1997	4	Alt 2	193	0	0	0	0	1,692	1,885
1998	9	Alt 1	285	14	0	5	0	0	304
1770)	Alt 2	371	36	0	9	0	0	416
1999	21	Alt 1	8	223	6	0	0	0	237
1777	21	Alt 2	22	258	158	0	0	0	438
2000	7	Alt 1	0	72	0	0	0	0	72
2000	/	Alt 2	0	428	0	0	0	0	428
2001	11	Alt 1	7	254	360	0	0	0	621
2001	11	Alt 2	119	499	488	0	0	0	1,106
2002	8	Alt 1	2	171	0	0	0	0	173
2002	0	Alt 2	30	518	0	0	0	0	548
2003	6	Alt 1	121	202	0	44	44	0	411
2003	0	Alt 2	230	202	0	86	86	0	604
		Alt 1	0	287	0	0	0	0	287
2004	3	Alt 2	0	344	0	0	0	0	344
		Meth 2	0	287	0	0	0	0	287
	e Annua	l Estimate							
1993 –	n/a	Alt 1	44	102	49	4	4	13	216
2004	11/ a	Alt 2	81	190	94	8	7	160	540
2000-	n/a	Alt 1	26	197	72	9	9	0	313
2004	II/a	Alt 2	76	398	98	17	17	0	606

¹ Observers were instructed to use the largest sample size available when monitoring for seabirds. Alt 1 likely represents a closer approximation of estimated incidental takes.

			Albatr	2000			Unid.					
	No.	Estimate -	Albau	055	Northern	Shear-	Procel-			Other	Unid.	
Year	Obs.	Type	Laysan	Unid.	Fulmar	waters	larids	Gulls	Alcids	Seabirds	Seabirds	Totals
1993	20	Alt 1	0	176	0	126	2	0	1	0	49	354
1995	20	Alt 2	0	516	0	323	769	0	2	0	1,381	2,991
1994	45	Alt 1	0	0	36	88	0	4	0	0	6	134
1994	43	Alt 2	0	0	3,832	3,083	0	414	0	0	285	7,614
1995	19	Alt 1	0	40	28	0	0	0	11	0	53	132
1995	19	Alt 2	0	60	1,495	0	0	0	10,963	0	779	13,297
1996	18	Alt 1	0	0	49	2	6	3	3	0	11	74
1990	10	Alt 2	0	0	1,139	88	1,102	268	43	0	178	2,818
1997	50	Alt 1	0	0	5	101	0	0	120	0	156	382
1997	50	Alt 2	0	0	319	799	0	0	120	0	678	1,916
1998	35	Alt 1	0	0	67	344	1	1,967	109	3	10	2,501
1990	33	Alt 2	0	0	3,922	1,353	163	781	543	2,489	1,108	10,359
1999	131	Alt 1	0	0	395	125	0	0	313	3	10	846
1999	131	Alt 2	0	0	8,687	1,198	0	0	528	79	970	11,462
2000	93	Alt 1	0	0	219	16	3	42	2	0	63	345
2000	95	Alt 2	0	0	10,101	3,075	156	117	333	0	599	14,381
2001	129	Alt 1	2	0	283	14	13	7	2	4	161	486
2001	129	Alt 2	26	0	10,847	406	1,077	288	68	297	721	13,730
2002	58	Alt 1	0	0	1,687	7	0	8	8	13	113	1,836
2002	30	Alt 2	0	0	5,876	597	0	72	879	123	474	8,021
2003	69	Alt 1	0	0	190	2	2	27	7	0	2	230
2005	09	Alt 2	0	0	24,988	128	173	0	481	0	527	26,297
		Alt 1	0	0	145	46	0	2	128	5	13	339
2004	65	Alt 2	0	0	7,476	2,961	0	485	1,116	1,226	1,708	14,972
		Meth 2	0	0	147	46	0	2	128	5	13	341
Averag	e Annu	al Estimates										
1993-	m /a	Alt 1	0	18	259	73	2	172	59	2	54	639
2004	n/a	Alt 2	2	48	6,557	1,168	287	202	1,256	351	784	10,655
2000-		Alt 1	0	0	505	17	4	17	29	4	71	647
2004	n/a	Alt 2	5	0	11,858	1,433	281	193	575	329	806	15,480

Table 8. Estimated incidental take and actual number of seabirds observed taken in the Bering Sea fishery management region groundfish trawl fleet, 1993 through 2004. Alternate methods of take estimation are based on largest (Alt 1^1) or smallest sample size (Alt 2 – shaded area) available during seabird monitoring. Sample size used for monitoring seabirds was recorded in 2004 for all samples regardless of birds taken (Meth 2).

¹ Observers were instructed to use the largest sample size available when monitoring for seabirds. Alt 1 likely represents a closer approximation of estimated incidental takes.

		101 uli 5uli	ipies regurate	55 01 01145 4	Unid.	,		
	Total	Est.	Northern	Shear-	Procel-		Unid.	
Year	Catch	Туре	Fulmar	waters	larids	Alcids	Seabirds	Totals
1002	1	Alt 1	0	19	0	0	0	19
1993	1	Alt 2	0	56	0	0	0	56
1994	0	Alt 1	0	0	0	0	0	0
1994	0	Alt 2	0	0	0	0	0	0
1995	2	Alt 1	0	14	0	0	1	15
1995	L	Alt 2	0	27	0	0	3	30
1996	1	Alt 1	0	0	2	0	0	2
1990	1	Alt 2	0	0	2	0	0	2
1997	1	Alt 1	73	0	0	0	0	73
1997	1	Alt 2	73	0	0	0	0	73
1998	1	Alt 1	98	0	0	0	0	98
1990	1	Alt 2	98	0	0	0	0	98
1999	2	Alt 1	0	0	0	67	0	67
1)))	2	Alt 2	0	0	0	268	0	268
2000	1	Alt 1	62	0	0	0	0	62
2000	1	Alt 2	121	0	0	0	0	121
2001	1	Alt 1	25	0	0	0	0	25
2001	1	Alt 2	48	0	0	0	0	48
2002	3	Alt 1	206	0	0	0	0	206
2002	5	Alt 2	246	0	0	0	0	246
2003	2	Alt 1	186	0	0	0	0	186
2003	2	Alt 2	186	0	0	0	0	186
		Alt 1	0	0	0	4	0	4
2004	1	Alt 2	0	0	0	43	0	43
		Meth 2	0	0	0	3	0	3
	Annual	Estimates						
1993-	n/a	Alt 1	54	3	0	6	0	63
2004	11/ U	Alt 2	64	7	0	26	0	97
2000-	n/a	Alt 1	96	0	0	1	0	97
2004	11/ u	Alt 2	120	0	0	9	0	129

Table 9. Estimated incidental take and actual number of seabirds observed taken in the Gulf of Alaska fishery management region groundfish trawl fleet, 1993 through 2004. Alternate methods of take estimation are based on largest (Alt 1^1) or smallest sample size (Alt 2 – shaded area) available during seabird monitoring. Sample size used for monitoring seabirds was recorded in 2004 for all samples regardless of birds taken (Meth 2).

¹ Observers were instructed to use the largest sample size available when monitoring for seabirds. Alt 1 likely represents a closer approximation of estimated incidental takes.

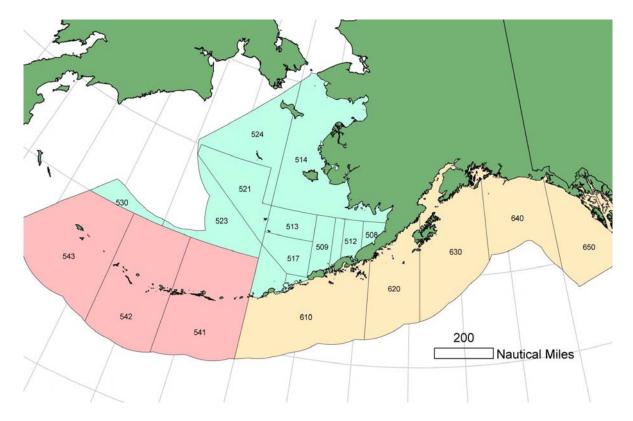


Figure 1. NMFS Statistical Areas and Fishery Management Regions for the Groundfish Fisheries in Alaskan Waters showing the Aleutian Islands Region (541 - 543), Bering Sea Region (508 - 530), and the Gulf of Alaska Region (610 - 650).

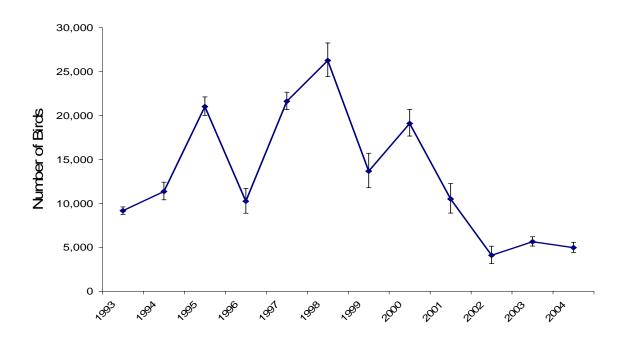


Figure 2. Total incidental take of seabirds in Alaskan combined demersal longline groundfish fisheries.

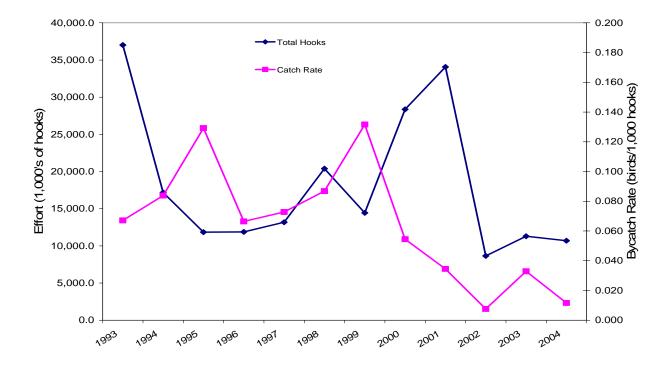


Figure 3. Total estimated hooks (in thousands) and bycatch rate of birds (birds per 1,000 hooks) in the Aleutian Islands Region demersal groundfish longline fishery.

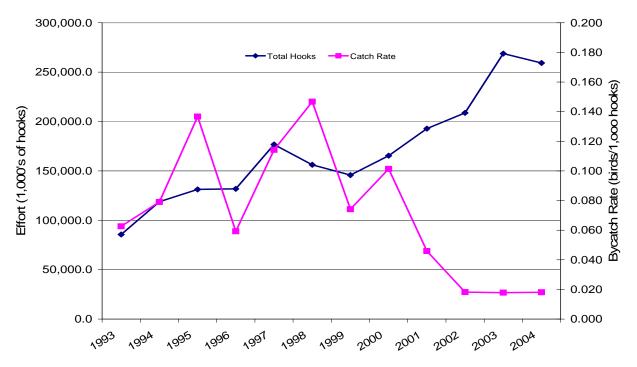


Figure 4. Total estimated hooks (in thousands) and bycatch rate of birds (birds per 1,000 hooks) in the Bering Sea Region demersal groundfish longline fishery.

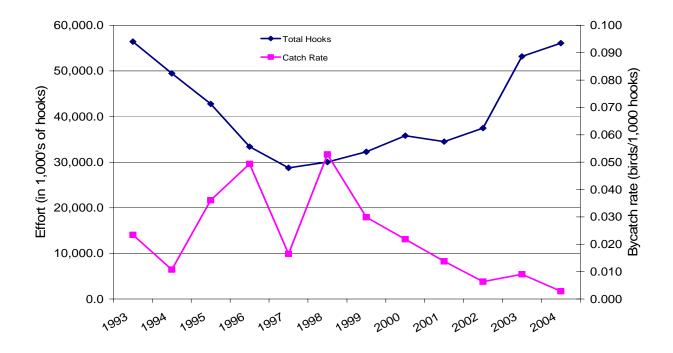


Figure 5. Total estimated hooks (in thousands) and bycatch rate of birds (birds per 1,000 hooks) in the Gulf of Alaska Region demersal groundfish longline fishery.

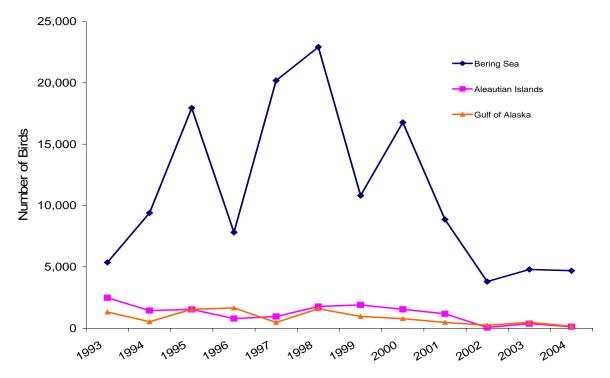


Figure 6. Seabird bycatch in the demersal groundfish longline fisheries by Fishery Management Region.

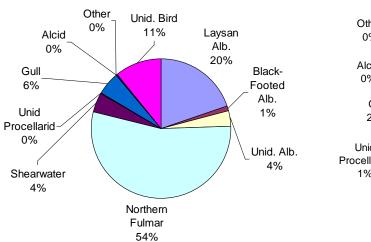


Figure 7. Species composition of seabird bycatch in the Aleutian Island Area demersal groundfish longline fishery using the average annual estimates, 1993 through 2004.

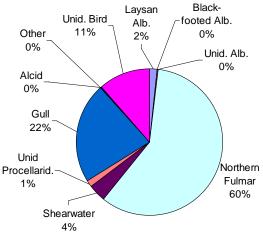


Figure 8. Species composition of seabird bycatch in the Bering Sea Area demersal groundfish longline fishery using the average annual estimates, 1993 through 2004.

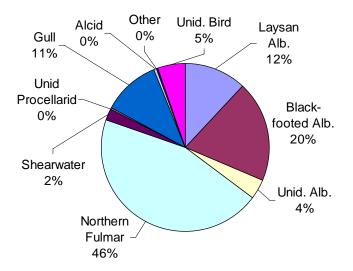


Figure 9. Species composition of seabird bycatch in the Gulf of Alaska Area demersal groundfish longline fishery using the average annual estimates, 1993 through 2004.

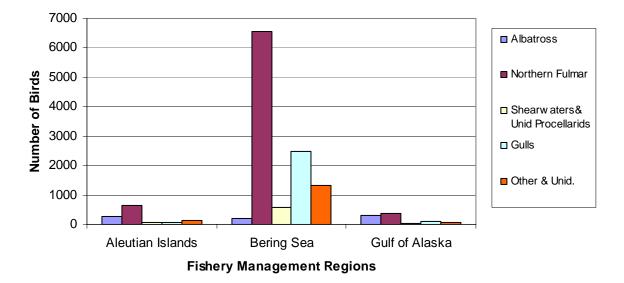


Figure 10. Estimated seabird bycatch summarized by species or species group for Alaskan demersal longline groundfish fisheries by fishery management regions.

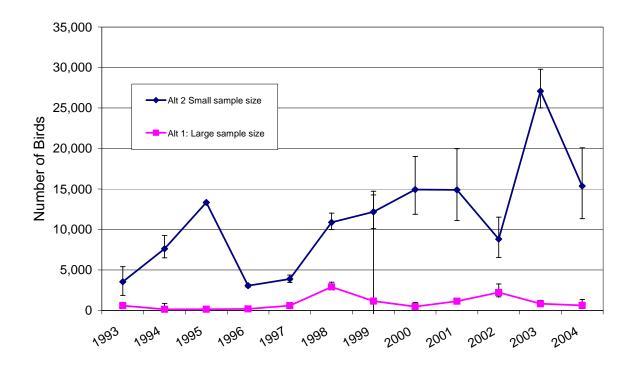


Figure 11. Seabird bycatch estimates for the Alaskan Groundfish Trawl fleet using two estimation procedures based on available sample sizes when no birds were observed. Data from 2004, when all sample sizes were recorded, closely approximates the Alternative 1 estimate.

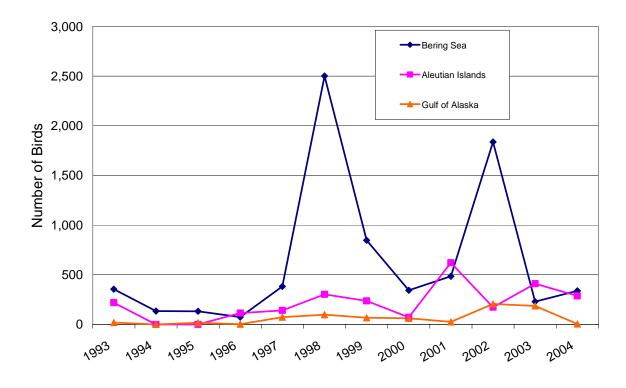


Figure 12. Seabird bycatch in groundfish trawl fisheries by area, using alternative 1 estimates.

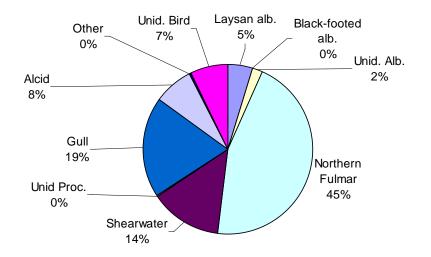


Figure 13. Species composition of seabird bycatch in the combined Alaskan groundfish trawl fisheries using the average annual estimates, 1993 through 2004.