Nonlinear Regression Analysis of FMRI Time Series
Data

B. Douglas Ward
Biophysics Research Institute
Medical College of Wisconsin

email: ward@mcw.edu

May 18, 2000

Abstract

The cross-correlation coefficient (1),(2) has been used extensively for the detection
of a given “signal” (usually a periodic waveform) in FMRI time series data. This
works well when the signal is completely known, or known up to a scaling constant.
However, if only the functional form of the signal is known, with the signal itself
being a nonlinear function of several unknown parameters, then a different approach
is required to detect the presence of the signal buried in noise.

Section 1 describes Program 3dNLfim, which was developed to provide nonlinear
regression analysis of AFNI 3d+time data sets. The nonlinear regression is accom-
plished by calculating a least squares fit of the time series data to a user specified
model of the data. Program 3dNLfim makes a separate least squares estimate of the
model parameters for each voxel in the input time series data set. Program output op-
tions include an AFNI ‘bucket’ dataset containing the estimated model parameters,
various other parameters related to the signal waveform, and the R? and F-statistics
for significance of the nonlinear model at each voxel location.

Section 2 describes Program plug nlfit, an AFNI “plug-in”, which displays the
nonlinear least squares fit of the user specified signal waveform on top of the actual
time series data for voxels of interest. Program plug_nlfit is the interactive version of
the batch command program 3dNLfim.

Program 3dTSgen, which is decribed in Section 3, provides a means of generating
artificial time series data, and storing such data into an AFNI 3d+time dataset. The
time series data is generated using the operator specified signal and noise models.
Such artificial time series data is useful in several ways: 1) Testing of statistical
analysis programs for significance of the results. 2) Calculation of the statistical
power of a test. 3) Design of experiments.

The above programs have access to a variety of separately compiled signal and
noise models, which may be selected by the user. Alternatively, the user may define
his own signal model, and add that model to those already accessible by the programs.
Section 4 describes how the user may add models to the system.

1 Program 3dNLfim

1.1 Purpose

Program 3dNLfim was developed to provide nonlinear regression analysis of AFNI 3d+time
data sets. The nonlinear regression is accomplished by calculating a least squares fit of
the time series data to a user specified model of the data. The program comes with a
selection of separately compiled signal and noise models, which may be chosen by the user.
Alternatively, the user may define his own signal model, and add that model to those
already accessible by the program (see the section on model definition). Program 3dNLfim
makes a separate least squares estimate of the model parameters for each voxel in the input
time series data set. Program output options include an AFNI ‘bucket’ dataset containing
the estimated model parameters, various other parameters related to the signal waveform,
and the R? and F-statistics for significance of the nonlinear model at each voxel location.

This program is intended for use in a “batch” processing mode. See program plug_nlfit
for description of an interactive version of this program. Programs 3dNLfim and plug_nlfit
are complementary in nature; they may be used in combination for model building, data
exploration, and data analysis. Also, the associated program 3dTSGen may be useful for
experimental design and model validation.

1.2 Theory

The cross-correlation coefficient (1),(2) has been used extensively for the detection of a
given “signal” (usually a periodic waveform) in FMRI time series data. This works well
when the signal is completely known, or known up to a scaling constant. However, if
only the functional form of the signal is known, with the signal itself being a nonlinear
function of several unknown parameters, then a different approach is required to detect
the presence of the signal buried in noise. Program 3dNLfim was developed to detect
an arbitrary signal waveform, where the user specifies the signal as a function of certain
parameters. A nonlinear optimization algorithm is used to find the least squares estimate
of these parameters. Before describing the nonlinear regression analysis, we first recall the
linear regression approach.

1.2.1 Linear Regression Models

A linear regression model is a linear function of its parameters. For example,

}/;:ﬁo—i_ﬁlti—i_gia i:]-a"'ana

is a linear function of the (unknown) parameters 3, and 3, (here, &; is additive noise).
Since we are considering time series data, the independent variable ¢; corresponds to time.
Of course, this could be generalized to a function of r independent variables X;;, X, ...,
X;r—1 (and the constant X;p =1) :

Yi= 08¢+ B, X1 + B Xig+ -+ 8,1 Xip 1 + &5

Using matrix notation

Y, 1 Xy - Xl,rfl ﬂo €1
Y — Y2 X -= 1 X.21 : : X2,.'r71 . B= 5.1 e= 6.2
Yn 1 an Tt Xn,r—l ﬁr—l En

the above equation can be written:
Y =X3+e.

The linear regression problem is then to find an estimate b of the vector of unknown
parameters

b=,
which provides a good “fit” to the data. The time series data is then estimated by:
Y =Xb

The usual criterion for estimating b is to minimize the error sum of squares:

SSE = Q)= (vi- 7))’

It is easy to show that
-1
b=(X'X) X'Y
is the least squares estimate of 3. Thus, solving the linear regression problem reduces to
simple linear algebra.

1.2.2 Nonlinear Regression Models

A nonlinear regression model is a nonlinear function of its parameters. These models arise
frequently. For example, a nonlinear model that is used to represent drug response is given
by the difference of two exponentials (3):

Y, =k [e—al(ti—to) _ e_a2(ti—t0) .

where Y; is the response at time ¢;, and the model parameters k, ¢y, a1, and ay are unknown
(and so must be estimated). Note that this model applies only for t; > ;. Also, if it is
assumed that the above signal is measured in the presence of noise, including a constant
offset plus linear trend, then those terms must be added to the model as well. Therefore,
the full model would be:

Yi= o+ it + b [em i) — emealimtol] gyt — 1) + ¢

where

Y; = measured time series data (i = 1,...,n);
7o, = constant offset term;

v, = coefficient of linear trend;

k = multiplicative constant;

to = time delay;

o1 = elimination rate constant;

o = absorption rate constant;

g; = Gaussian noise, i.i.d. N(0,0?);

and u(t) is the unit step function:

0, for t < 0,
u(t) _{ 1, for ¢ > 0.

Thus, the full model has six unknown parameters: v,, v, k, to, @1, and as.
Another drug response model uses the gamma-variate function (4):

Y; = k(tz — to)re_ﬁ;ﬁ

or, more completely:

t;—

Yi =0+ 7t + k(ti — to)"e™ 7

to
u(ti - t()) + E;

with the six unknown parameters: v,, vy, k, %o, 7, and b.
More generally, we can write a nonlinear time series model as

Y= f(ti7707717 <. 7/Yp—1) +&i

where the measurement at time ¢; is a nonlinear function of ¢; and the p unknown parameters
Yor V1» - - -» Vp—1, With additive noise ;. As in the linear case, this can also be written using
matrix notation:

Y =1£(X,7)+e
The objective is to find the least squares estimate of the vector of parameters ~:
g=%

and the corresponding time series estimate:

A,

Y =f(X,g)

However, unlike the linear regression case, there is no “closed-form” expression for g which
minimizes the error sum of squares.

1.2.3 Least Squares Estimation

Since there is no analytical expression for the least squares estimate of the model param-
eters, one alternative is to do a direct search to find the combination of parameters which
minimizes the error sum-of-squares.

In general, this is a difficult problem. There are numerous algorithms for performing
nonlinear optimization, but each method has its limitations. There is no guarantee that
an algorithm will converge to the global minimum (i.e., global “least squares”) instead of a
local minimum. Indeed, some algorithms may not converge at all. Also, many algorithms
require that the function being minimized be differentiable everywhere; however, this is not
true for many cases of practical interest. Some algorithms may be suitable for an interactive
mode, where the operator can terminate program execution if the algorithm seems to be
diverging. This is obviously not acceptable for analysis of an FMRI data set containing
many thousands of voxels (time series).

Moreover, it is desirable to be able to incorporate constraints into the optimization
process, i.e., the parameter estimates are restricted to a finite range of values. This is
desirable for two reasons: 1) There are usually physical limitations on realistic values for
certain parameters (e.g., if a certain parameter represents time delay of a response to an ex-
ternal stimulus, then a negative value would represent a non-causal solution). An “optimal
solution” which is not physically realizable has little value. 2) Restricting the parameter
space that must be searched helps to reduce the search time, while reducing the likelihood
of finding a local rather than a global minimum. However, imposing constraints (essen-
tially, an infinitely high barrier) presents a formidable problem for the search algorithm,
particularly those algorithms which rely upon the existence of derivatives of the function
being minimized.

The method used (presently) by program 3dNLfim consists of 2 parts: a random search,
followed by the nonlinear simplex algorithm (5). The present implementation of the algo-
rithm was adapted from (6). For the random search phase, parameter values are selected
at random over the user specified range of constraints for each parameter. A total of nrand
(which number may be user specified) random vector parameters are created by the pro-
gram. For each random vector, the corresponding time series model is generated, and the
error sum of squares is obtained (by comparing with the actual time series for that voxel).
The nbest best parameter vectors (“best” meaning lowest SSE) are retained, and each is
used as the initial starting point for the simplex optimization algorithm.

1.2.4 F-test for Significance of the Nonlinear Regression

Determining whether the time series for a particular voxel corresponds to a given signal
waveform can be expressed in terms of a statistical hypothesis test. The null hypothesis is:

H, : time series is “noise”
and the alternative hypothesis is:
H, : time series is “signal + noise” .

Suppose that “noise” is modeled by a polynomial in ¢; of degree r — 1, plus independent
Gaussian random variates. And suppose the “signal” waveform is represented by some

function h, which is a function of time and of certain parameters. The observed “signal”
is then represented by the sum of the signal and the noise. The hypotheses can then be
expressed as:

Hy : Yi=Bg+Biti+-+B,it] "+
Ha : sz = ’Yn,O + ’yn,lti + e+ ’Vn,r—lt;-il + f(t’w 73,0’ cee 773,1)—1) + &

Here, the alternative hypothesis includes the noise model in addition to the “pure” signal
waveform. Note that we explicitly use different symbols for the coefficients of the same
terms in the noise model as compared with the signal+noise model, i.e., 3, and 7, ¢, .-,
B,_y and 7,, .. This is to emphasize the fact that it is not (in general) true that 8, = 7, ,
cooy Br_1 = Vnr_1- A test of the null hypothesis is made by first determining the parameters
which yield the least squares fit for the noise model (also called the “reduced” model) and
the parameters which yield the least squares fit for the signal plus noise model (also called
the “full” model). We have reason to reject the null hypothesis if the error sum of squares
from fitting the full model (SSE(F)) is much less than the error sum of squares from fitting
the reduced model (SSE(R)). However, if SSE(F) is only slightly smaller than SSE(R),
then we do not have reason to reject the null hypothesis. Consider the test statistic F™** :

SSE(R) — SSE(F)

[M S(Regression) dfp — df e
~ MS(Error) SSE(F)
dfr

where dfg is the number of degrees of freedom for the reduced model, and dfr is the number
of degrees of freedom for the full model. Specifically, we have:

dfr = n—r,
dfr = n—(r+p),
so dfr —dfr = p.

By the above reasoning, we see that a large value for F** indicates that signal is present,
whereas a small value for F** suggests that only noise is present. For large sample size n, the
statistic F** has an approximate F(dfg — dfr,dfr) distribution under the null hypothesis
(7).

Program 3dNLfim calculates the F™** statistic for each voxel, and appends these values
as one of the sub-bricks of an AFNI “bucket” dataset (if so requested by the user).

1.2.5 Coefficient of Multiple Determination

The coefficient of multiple determination, R?, can be used as an indicator for how well the
full model fits the data. We define R?:
SSE(F)

2212227
R SSE(R)

Roughly speaking, R? is the proportion of the variation in the data (about the baseline)
that is explained by the full model. Note that, for every voxel, 0 < R? < 1. (R? is a
generalization of the square of the correlation coefficient computed in the fim programs).

Program 3dNLfim calculates R? for each voxel, and appends these values as one of the
sub-bricks of an AFNI “bucket” dataset (if so requested by the user).

1.2.6 t-test for Significance of Individual Parameters

When developing linear regression models, it is useful to know the significance of the indi-
vidual parameters that constitute the model. This may help identify terms in the model
that may be safely discarded in order to simplify the model. Therefore, linear regression
programs often provide the t-statistics for the individual parameters in the model.

For the linear regression model, the variance-covariance matrix for the regression coef-
ficients is given by:

s*(b) = MSE - (X'X) "

For the nonlinear regression case, we do not have a linear relation between the observation
vector Y = f(X,) + € and the vector of parameters «v. However, we can make a linear
approximation in the neighborhood of the vector parameter estimate g = 4 :

s’(g) = MSE - (D'D)™*
where D is the matrix of partial derivatives evaluated at v =g :

' o0l v=g

These partial derivatives can be estimated numerically by:

y(ti,’Yo, T 5: tee ”Yr-i—p—l) - y(tia’YO: TN ST ’77‘—|—p—1)

Dik ~

)
Then, for large sample size n, the statistic ¢** :
glk]
s(glk])

has an approximate ¢(n — p) distribution under the null hypothesis (7).

Program 3dNLfim calculates the t** statistic for each voxel, and appends these values
as sub-bricks of an AFNI “bucket” dataset (if so requested by the user).
1.2.7 Summary

The overall procedure is summarized below.

—t

. Calculate linear regression fit of the reduced model:
b= (X'X) XY

Y = Xb

[\

. Calculate error sum of squares for the reduced model:

SSB(R) = Q(b) = - (v~ 1))’

=1

w

. If SSE(R) is very small, then stop. There is no need to fit the full model.

W

. Generate random parameter vectors in the (constrained) parameter space :

g€ i=1,...,nrand.

5. Evaluate each of these random parameter vectors, and keep the best (lowest SSFE)
of these parameter vectors: g;, j =1,...,nbest.

6. For j =1,...,nbest do:

A. Use g; as the initial guess for the parameter vector.
B. Perform nonlinear optimization:

a. Obtain new estimate gJ;.

b. If g’ violates constraints, set SSE = oo.

c. Otherwise, calculate SSE = Q(g}).

d. Repeat step (B) until vector parameter estimate converges.

C. Save best parameter estimate g and SSE(F) = Q(g). This is the least squares
estimate of the full model.

7. Calculate statistics for the nonlinear regression:

s SSE(F)
o ssEm
SSE(R) — SSE(F)
[M S(Regression) dfr — dfp
~ MS(Error) SSE(F)
dfp
ez — 9]
= S

The above procedure is repeated for each voxel in the data set.

8

1.3 Usage

The syntax for execution of program 3dNLfim is as follows:

3dNLfim -input fname [-mask mset] -noise nlabel -signal slabel
[-ignore num] [-inTR]| [-time fname)|

[-nconstr 0 ay by] --- [-nconstr r-1 a,_; b, 4]

[-sconstr 0 ¢y dg| --- [-sconstr p-1c,_; d,]

[-nabs| [-nrand n] [-nbest b] [-rmsmin r| [-fdisp fval]

[-freg prefix] [-frsqr prefix| [-ftmax prefix] [-fsmax prefix]

[-fpsmax prefix| [-farea prefix] [-fparea prefix]

[-tncoef k prefix| [-tscoef k prefix] [-fncoef k prefix| [-fscoef k prefix|
[-bucket n prefix] [-brick m; options] ... [-brick m, options]

[-sfit prefix] [-snfit prefix]

The different command line options are explained below.

1.4 Option

-input fname
The mandatory -input command specifies that fname is the filename of the AFNI 3d +
time data set to be used as input for the program.

-mask mset

The optional -mask command specifies that the 0 sub-brick of dataset mset is to be used
as a mask (a sub-brick selector is allowed). This mask indicates which voxels are to be
analyzed. That is, voxels having value 0 in the mset dataset are ignored. The default is
to use all voxels.

-noise nlabel

The mandatory -noise command tells program 3dNLfim which noise model to use. During
initialization, program 3dNLfim attempts to locate all noise models that have been compiled
and stored on disk. Each noise model has an associated name or label. If program 3dNLfim
finds nlabel among the noise model names, then that noise model will be used in the
analysis. Otherwise, the program prints an error message and halts.

-signal slabel

The mandatory -signal command tells program 3dNLfim which signal model to use. Dur-
ing initialization, program 3dNLfim attempts to locate all signal models that have been
compiled and stored on disk. Each signal model has an associated name or label. If pro-
gram 3dNLfim finds slabel among the signal model names, then that signal model will be
used in the analysis. Otherwise, the program prints an error message and halts.

-ignore num
The optional -ignore command specifies that the first num time series images are not to

be used in the regression analysis. The default value is num = 3.

9

-inTR

The model functions are calculated on a time grid of: 0, delt, 2*delt, 3*delt,The
optional -inTR command specifies that delt = TR of the input 3d+time dataset. The
default value is delt = 1 (i.e., the default time sequence is: 0, 1, ..., n — 1).

-time fname

The optional -time command specifies that fname is the filename of the ASCII file
containing the sequence of time coordinates for each volume in the time series. The default
time sequence is: 0, 1, ..., n — 1.

-scnstr k ¢, dg
The optional -scnstr command specifies the constraints on the signal model parameter
values. Note that the constraints for the signal parameters are absolute, i.e., for the kth
signal parameter, we require:
Cp <= gs[k] <= dy.

The default values for the signal parameter constraints are specified in the file which
contains the signal model. The values for ¢; and dj must satisfy: ¢, <= d.

-ncnstr k ¢, d;

The optional -ncnstr command specifies the constraints on the noise model parameter
values. Note that the constraints for the noise parameters are relative to the linear re-
gression estimates for these same parameters (but see option -nabs below), i.e., for the kth
noise parameter, we require:

¢k + b[k] <= gnlk] <= di + b[k],

where b[k] is the linear regression coefficient for the kth noise parameter.
The default values for the noise parameter constraints are specified in the file which
contains the noise model. The values for ¢; and d; must satisfy: ¢, <= d.

-nabs
The optional -nabs command specifies that constraints for all noise parameters are abso-
lute, i.e., for the kth noise parameter, we require:

cr <=gnlk] <=dy; 0<k<r.

The default is that all noise constraints are relative.

-nrand n

The optional -nrand command specifies that n is the number of random test points (from
the constrained parameter space) to be evaluated (prior to nonlinear optimization). The
default value is n = 100.

10

-nbest b

The optional -nbest command indicates that the b best of the n random test points is to
be used as the starting point (parameter vector) for nonlinear optimization. Of course, it
is required that b < n. The default value is b = 5.

-rmsmin r

The optional -rmsmin command is used to set the minimum rms error r required in order
to reject the reduced (noise) model. In other words, the full model will not be calculated
for those voxels whose time series, when fitted with the reduced model, has error rms < r.
This is used primarily to speed program execution by screening out voxels which lie outside
the brain. The user should choose a value for r which is much smaller than the natural
measurement error. The default value is r = 0.

-fdisp f

The optional -fdisp command is used to control output to the user’s terminal during
program execution. For each voxel in the data set, if the estimated F** is greater than or
equal to f, then the estimated noise and signal model parameters are written to the screen;
otherwise, nothing is written to the screen for that particular voxel. Note that the -fdisp
command effects screen output only, and has absolutely no effect upon the data file output
generated by the program.

-freg prefix

The optional -freg command tells program 3dNLfim to calculate an F-test for significance
of the nonlinear regression for each voxel. The output is written to the file with the user
specified prefir filename. This output consists of a 2 sub-brick AFNI dataset of type
“fift”. The first sub-brick consists of the square root of the mean sum of squares due to
error (/M S(Error)) for each voxel, and the second sub-brick contains the corresponding
F-statistics F**. The F-statistics are calculated by dividing the mean sum of squares due
to regression by the mean sum of squares due to error.

’

I = \/MS(Error)

AFNI “fift” dataset $ SSE(R) — SSE(F)
M S(Error) SSE(F)
\ afr

When this data file is used as input to program AFNI, the second sub-brick can be used
as a “threshold” for determining which voxels “light-up”; the intensity is then determined
by the first sub-brick. The “HEAD” file for this dataset tells AFNI that the second sub-
brick contains F-statistics; also, the “.HEAD” file contains the numbers for the numerator
degrees of freedom (dfg — dfr = (n —7) — (n — (p+ 7)) = p) and the denominator degrees
of freedom (dfp =n— (p+7)). So, by setting the appropriate threshold, only those voxels
having the user-specified p-values for significance of the nonlinear regression will “light-up”.

11

-frsqr prefix

The optional -frsqr command tells program 3dNLfim to calculate the coefficient of multiple
determination R%. The output, consisting of a 2 sub-brick AFNI dataset of type “fift”,
is written to the file with the user specified prefiz filename. The first sub-brick consists
of the estimated R? for each voxel, and the second sub-brick contains the corresponding
F-statistics F™*:

' SSE(F)
2 =17
R SSE(R)
AFNI “fift” dataset {
o _ _MS(Reg)
= OVE)
| M S (Error)

-ftmax prefix

The optional -ftmax command tells program 3dNLfim to calculate the time at which the
maximum absolute value of the estimated signal occurs. Suppose that the signal + noise
model is given by:

Y= Tn,0 + r)/n,lti et 7n,r—1t§_1 + f(tl’ Vs,00 - ’r)/s,pfl) +&;
The signal alone is estimated by:
si = h(ti, gs0s- -, 9sp-1), fori=1,... N,

where g, - .., gsp—1 are the nonlinear least squares estimates of 7, ¢, ..., 7,,_1-Then the
time of the maximum absolute value is defined by:

Tmax = j’
where |[s;| = Z:IrllaxN|s,|

Thus, Tax is the time at which the signal is greatest in magnitude. The output, consisting
of a 2 sub-brick AFNI dataset of type “fift”, is written to the file with the user specified
prefiz filename. The first sub-brick consists of the estimated T, for each voxel, and the
second sub-brick contains the corresponding F-statistics F**:

AFN] fift” dataset F** — w

~ MS(Error)

-fsmax prefix
The optional -fsmax command tells program 3dNLfim to calculate the signed maximum
absolute value of the estimated signal. As above, suppose the signal alone is estimated by:

si = f(ti, 95055 9sp-1), fori=1,... N.

12

Then the signed maximum absolute value is defined by:

Smax = Sy
where |s;| = Jnax, |si]
Roughly speaking, Spmax is the “magnitude” of the signal. The output, consisting of a 2
sub-brick AFNI dataset of type “fift”, is written to the file with the user specified prefiz
filename. The first sub-brick consists of the estimated Sy, for each voxel, and the second
sub-brick contains the corresponding F-statistics F™**:

AFNI “fift” dataset o _ M S(Reg)

~ MS(Error)

-fpsmax prefirname

The optional -fpsmax command tells program 3dNLfim to calculate the signed maximum
absolute value of the estimated signal as a percentage of the baseline. Suppose that the
signal + noise model is given by:

Y= Tn,0 + fyn,lti +ee ’Yn,rflt:jil + f(tla V5,00 - a’ys,pfl) té&i

The signal alone is estimated by:

Si:f(tiags,o,"':gs,pfl)a fOI‘Z':]_,...,N,

and the baseline is estimated by:

Ni = Gno+ Gnati+ -+ gnpati H, fori=1,...,N,

where g; 0, ..., gsp1 are the nonlinear least squares estimates of 7, ¢, ..., V5,1, and g0,
-+ Ynr—1 are the nonlinear least squares estimates of 7, ¢, ..., 7, ,_1- Then the percentage
signed maximum absolute value is defined by:
Sj
PSna.x = 100 x —,
n;
where j is s.t. |s;| = max |s;
J 1541 i:l,...,N| il

The output, consisting of a 2 sub-brick AFNI dataset of type “fift”, is written to the file
with the user specified prefiz filename. The first sub-brick consists of the estimated PSpax
for each voxel, and the second sub-brick contains the corresponding F-statistics F™**:

PSma,x

AFNI “fift” dataset e M S(Reg)

~ MS(Error)

13

-farea prefix
The optional -farea command tells program 3dNLfim to calculate the area under the
signal. Suppose that the signal + noise model is given by:

Y, = Yn,0 + f)/n,lti oot ’Yn,rfltzril + f(tu Vs,00 - a’ys,pfl) té&i

The signal alone is estimated by:

Si:f(tiags,o,"':gs,pfl)a fOI‘Z':]_,...,N,

where g, ..., gsp1 are the nonlinear least squares estimates of 7, g, ..., 7,,_1- Then the
area under the signal is defined by:

N
Surea = /1 1s(t)] dt

where the integral is numerically approximated using trapezoidal integration. Note that the
calculated area is always positive. The output, consisting of a 2 sub-brick AFNI dataset
of type “fift”, is written to the file with the user specified prefiz filename. The first sub-
brick consists of the estimated Sg,., for each voxel, and the second sub-brick contains the
corresponding F-statistics F™**:

e M S(Reg)
~ MS(Error)

AFNI “fift” dataset

-fparea prefix

The optional -fparea command tells program 3dNLfim to calculate the signed area under
the signal as a percentage of the baseline area. Suppose that the signal + noise model is
given by:

Yi=Ypo + Yaati+ -+ Ynpoati -+ FEiVs0r -5 Vopo1) + €
The signal alone is estimated by:
si = f(ti, 9s05---s9sp-1), fori=1... N,
and the baseline is estimated by:
Ni = gno+ Gnati + -+ gny1t] ', fori=1,...,N,

where g; 0, ..., gsp1 are the nonlinear least squares estimates of 7, ¢, ..., V5,1, and g0,
.+ gns—1 are the nonlinear least squares estimates of 7,4, ..., V,,_1- The signed area
under the signal is defined by:

N
Surea = /1 s(t)dt

14

and the baseline area is defined by:

N
Bypey = /1 In(t)| dt

where the integral is numerically approximated using trapezoidal integration. Note that
Sarea May be either positive or negative. Now the signed area under the signal as a per-
centage of the baseline area is defined by:

Sarea
PSyrea = 100 x 2272

area

The output, consisting of a 2 sub-brick AFNI dataset of type “fift”, is written to the file
with the user specified prefiz filename. The first sub-brick consists of the estimated PS,;eq
for each voxel, and the second sub-brick contains the corresponding F-statistics F™**:

PS(L’I"G(L

AFNI “fift” dataset e M S(Reg)

~ MS(Error)

-tncoef k prefix

The optional -tncoef command is used to save the estimated value of the kth noise pa-
rameter. Program 3dNLfim calculates the least squares estimate of the kth noise parameter
and the corresponding t-statistic of the estimate for each voxel. The result is stored as a
2 sub-brick AFNI data set of type “fitt” in the file with the user specified prefiz filename.
The first sub-brick consists of the noise parameter estimate g,[k], and the second sub-brick
contains the corresponding t-statistic ¢** for each voxel.

gnlk] = non-linear L.S. est. of 7, [k]

AFNI “fitt” dataset

~ 5(galk])

When this is used as an input file to program AFNI, the second sub-brick can be used
to set the threshold for determining which voxels have an estimated parameter value which
is significantly different from zero. The “HEAD?” file informs AFNI that the second sub-
brick contains t-statistics, and that df = n — (r + p) should be used for the degrees of
freedom.

It is the author’s experience that the ¢** statistic can be misleading, and its significance
difficult to interpret, in the context of a nonlinear model. Therefore, unless the “nonlinear”
model is actually a “linear” model, use of the ¢** statistic is not recommended. A better
choice for display of noise parameters is the -fncoef command discussed below.

15

-tscoef k prefix

The optional -tscoef command is used to save the estimated value of the kth signal
parameter. Program 3dNLfim then calculates the least squares estimate of the kth signal
parameter and the corresponding t-statistic of the estimate for each voxel. The result is
stored as a 2 sub-brick AFNI data set of type “fitt” in the file with the user specified prefiz
filename. The first sub-brick consists of the signal parameter estimate g;[k], and the second
sub-brick contains the corresponding t-statistic ¢** for each voxel.

gs|k] = non-linear L.S. est. of ,[k]

AFNI “fitt” dataset

o s[K]
P Sk

When this is used as an input file to program AFNI, the second sub-brick can be used
to set the threshold for determining which voxels have an estimated parameter value which
is significantly different from zero. The “HEAD?” file informs AFNI that the second sub-
brick contains t-statistics, and that df = n — (p + r) should be used for the degrees of
freedom.

It is the author’s experience that the ¢** statistic can be misleading, and its significance
difficult to interpret, in the context of a nonlinear model. Therefore, unless the “nonlinear”
model is actually a “linear” model, use of the ¢** statistic is not recommended. A better
choice for display of signal parameters is the -fscoef command discussed below.

-fncoef k prefix

The optional -fncoef command tells program 3dNLfim to save the non-linear least squares
estimated value of the kth noise parameter in an AFNI “fift” data set, along with the F-
statistics for significance of the regression. The output is then written to the file with
the user specified prefiz filename. This output consists of a 2 sub-brick AFNI dataset
of type “fift”. The first sub-brick consists of the noise parameter estimate g,[k], and the
second sub-brick contains the corresponding F-statistics F**. It must be emphasized that
the F-statistics pertain to significance of the overall regression, and do not indicate the
significance of the individual parameter.

gn|k] = non-linear L.S. est. of v, [k]

AFNI “fift” dataset
atase o MS(Reg)

~ MS(Error)

When this data file is used as input to program AFNI, the second sub-brick can be used
as a “threshold” for determining which voxels “light-up”; the intensity is then determined
by the first sub-brick. So, by setting the appropriate threshold, only those voxels having
the user-specified p-values for significance of the nonlinear regression will “light-up”. The
color coding of the voxels which light-up indicates the sign and magnitude of the estimated
noise parameters.

16

-fscoef k prefix

The optional -fscoef command tells program 3dNLfim to save the non-linear least squares
estimated value of the kth signal parameter in an AFNI “fift” data set, along with the F-
statistics for significance of the regression. The output is then written to the file with
the user specified prefiz filename. This output consists of a 2 sub-brick AFNI dataset of
type “fift”. The first sub-brick consists of the signal parameter estimate gs[k|, and the
second sub-brick contains the corresponding F-statistics F**. It must be emphasized that
the F-statistics pertain to significance of the overall regression, and do not indicate the
significance of the individual parameter.

gs|k] = non-linear L.S. est. of v,[k]

AFNI “fift” dataset
atase o VS (Reg)

~ MS(Error)

When this data file is used as input to program AFNI, the second sub-brick can be used
as a “threshold” for determining which voxels “light-up”; the intensity is then determined
by the first sub-brick. So, by setting the appropriate threshold, only those voxels having
the user-specified p-values for significance of the nonlinear regression will “light-up”. The
color coding of the voxels which light-up indicates the sign and magnitude of the estimated
signal parameters.

-bucket n prefix

The -bucket command is used to create a single AFNI “bucket” type dataset having n
sub-bricks. The output is written to the file with the user specified prefiz filename. Each
of the individual sub-bricks can then be accessed for display within program afni. The
purpose of this command is to simplify file management, since all of the output results for
a particular problem can now be contained within a single AFNI bucket dataset.

If n = 0, then the default output bucket dataset is created. (See Example 2.) The
labels for the individual signal and noise parameters come from the model definition source
code. The default dataset has p + r + 8 sub-bricks, as illustrated below.

If n > 0, then the contents and labels for the individual sub-bricks within the bucket
dataset are specified by the user, by means of the -brick command described below. Note
that the -bucket command must precede the -brick commands.

17

Structure of default bucket dataset:

Brick Label Contents
#0 (Label for noise par. #0) gn[0] = non-linear L.S. est. of 7,[0]
#r-1 (Label for noise par. #r-1) | g,[r — 1] = non-linear L.S. est. of 7, [r — 1]
#r (Label for signal par. #0) | ¢5[0] = non-linear L.S. est. of ~,[0]
#p+r-1 | (Label for signal par. #p-1) | gs[p — 1] = non-linear L.S. est. of v,[p — 1]
#p+r Signal TMax Time of signed maximum of signal
#p+r+1 | Signal SMax Signed maximum of signal
#p+r+2 | Signal % SMax Signed maximum of signal as a % of baseline
#p+r+3 | Signal Area Area under signal (always positive)
#p+r+4 | Signal % Area Signed area under signal as a % of baseline
#p+r+5 | Sigma Resid o= \/MS(Error)
SSE(F)
6| R2 RP=1—-—"—"—"°
#PTE SSE(R)
: o _ MS(Reg)
#p+r+7 | F-stat Regression P = m

-brick m options

The -brick command is used to specify the contents and labels for the mth sub-brick
(0 < m < n) within the bucket dataset. There must be one -brick command for each
of the n sub-bricks in the dataset (where n has been previously specified by the -bucket
command). (See Example 3).

There are 12 versions of the -brick command:

-brick m ncoef k label
-brick m scoef k label
-brick m tmaz label
-brick m smaz label
-brick m psmazx label
-brick m area label

-brick m parea label

The mth sub-brick is to contain the non-linear L.S. est.
of the kth parameter in the noise model
The mth sub-brick is to contain the non-linear L.S. est.
of the kth parameter in the signal model.
The mth sub-brick is to contain the time of the
maximum absolute value of the signal.
The mth sub-brick is to contain the signed maximum value
of the signal.
The mth sub-brick is to contain the signed maximum value
of the signal as a percentage relative to the baseline.
The mth sub-brick is to contain the area between the signal
and the baseline. Note: Area is always positive.
The mth sub-brick is to contain the signed area between the
signal and the baseline as a percentage of the baseline area.

18

-brick m tncoef k label The mth sub-brick is to contain the ¢-statistic for the kth
parameter in the noise model.

-brick m tscoef k label The mth sub-brick is to contain the ¢-statistic for the kth
parameter in the signal model.

-brick m resid label The mth sub-brick is to contain standard deviation of the
error from fitting the full model.
-brick m rsqr label The mth sub-brick is to contain the coefficient of multiple

determination R2.
-brick m fstat label The mth sub-brick is to contain the F'-statistic for
significance of the non-linear regression.
In each case, the label for the sub-brick is specified by label.

The following commands write the time series fit for each voxel to an AFNI 3d+time
dataset:

-sfit prefix
The optional -sfit command tells program 3dNLfim to write the signal model fit

§i = f(tia gs,0y - -+ gs,p—l)
to the AFNI 3d+time dataset file with the user specified prefiz filename.

-snfit prefix
The optional -snfit command tells program 3dNLfim to write the signal+noise model fit

~

}/; = Ggn,0 + gn,lti +oeee gn,”'—lt;_l + f(tza gs,05 - - - ags,p—l)
to the AFNI 3d+time dataset file with the user specified prefiz filename.

1.5 Notes: Future Improvements

e Nonlinear Optimization Algorithm

The nonlinear optimization algorithm used here (the “simplex” algorithm) is not
very efficient. This algorithm requires a large number of function evaluations, and
so consumes a great deal of time in searching for the least squares estimate of the
model parameters. Other nonlinear optimization algorithms are available, and, if
implemented, may decrease the time required for program execution.

e Additional Independent Variables

In addition to the constant and linear trend, program 3dfim allows the operator to
specify ‘ort’ time series files, to which the data is orthogonalized. Similarly, program
3dNLfim could be extended to incorporate additional independent variables in both
the linear and the nonlinear models. For example, if X is a time series, then the above
hypothesis test could be modified to include X; as another independent variable:

H,: Y= 0+ Biti+ By Xi+ i
Ha : Y; = fYn,o + f)/n,lti + fYn,QXi + f(tza Xi, 75,0’ s a73,p—1) + &

19

1.6 Examples

Example 1. Drug Response (Differential Exponential Model)

A researcher is using FMRI to study neural response to an injected drug. It is decided
to use the difference-of-exponentials function to model the drug response as a function of
time. Program 3dNLfim can be executed with the following batch commands:

3dNLfim \
-input fred+orig \
-ignore 3 \
-noise Linear \
-signal DiffExp \

Batch Command File for Example 1

-nconstr 0 -100.0 100.0 \
-nconstr 1 -1.0 1.0 \
-sconstr 0 45.0 75.0 \
-sconstr 1 -500.0 500.0 \
-sconstr 2 0.00 0.15 \
-sconstr 3 0.15 0.50 \
-nrand 500 \

-nbest 5 \

-rmsmin 1.0 \
~fdisp 100.0 \
-fsmax fred.smax \
-ftmax fred.tmax \

-fncoef
-fncoef
-fscoef
-fscoef
-fscoef
-fscoef

0

W N = O =

fred.const \
fred.linear \
fred.t0 \
fred.k \
fred.alphal \
fred.alpha2
B

The first batch command specifies that the input 3d+time dataset is to be read from
file fred+orig (.HEAD and .BRIK). The command -ignore specifies that the 4th image is the
first to be used in the analysis, i.e., the first three data points in each time series are to
be discarded. The -noise command specifies that “Linear” noise model is to be used (i.e.,
the noise model includes a linear trend). The -signal command is used to specify signal
model “DiffExp” (i.e., the differential - exponential drug response model). The full (signal
+ noise) model therefore has the form:

Yi = gn[0] + gn[1] * i + gs[1] * (exp(—9gs[2] * (: — s[0])) — exp(—gs[3] * (t: — g[0])))

for t; > ¢,[0], and

20

for ¢; < g5[0].
The -nconstr and -sconstr commands are used to specify the noise and signal parameter
constraints:

—100.0 +5[0] < ga[0] < 100.0 + b[0]
—1.04+0[1] < gu[1] < 1.0+0[1]
45.0 < glf0] < 75.0
—500.0 < gfl] < 500.0
0.00 < gf2] < 0.15
0.15 < g3 < 0.50

where b[0] and b[1] are the linear regression estimates for the noise parameters.

The command -nrand indicates that 500 random parameter vectors are to be generated,
and the command -nbest specifies that the 5 best of these random vectors are to be used as
the initial values for the nonlinear optimization. Command -rmsmin indicates that the full
model should be calculated only if the rms error from fitting the reduced model exceeds 1.0.
The -fdisp command indicates that the reduced model and full model parameter estimates
should be written to the screen only for those voxels whose F-statistic is equal to or greater
than 100.

The remaining commands specify that 8 output AFNI “fift” data sets are to be created.
Each of these commands writes the F-statistics for significance of the nonlinear regression
to the second sub-brick of the AFNI “fift” dataset. The -fsmax and -ftmax commands
write the signed maximum absolute value of the estimated signal, and the time of the
signed maximum, to files fred.smax and fred.tmax, respectively. The two -fncoef commands
write the estimates of the constant and linear trend noise parameters to files fred.const
and fred.linear, respectively. Finally, the four -fscoef commands write estimates of signal
parameters tg, k, aq, and aq, to files fred.t0, fred .k, fred.alphal, and fred.alpha2, respectively.

During execution of the program, screen output is generated for voxels whose F-statistic
exceeds 100, such as:

Screen Output for Example 1

Program: 3dNLfim

Author: B. Douglas Ward
Date: 10 May 2000
Voxel #413

Reduced (Linear) Model:
b[0] = 766.668518 constant
b[l]= 0.380208 linear

21

Full (Linear + DiffExp) Model:
gn[0] = 739.128052 constant

gn[l]= 0.172320 linear
gs[0] = 54.229733 t0
gs[l] = 141.777496 k
gs[2]= 0.010696 alphal
gs[3]= 0.153561 alpha2
Signal Tmax = 73.000
Signal Smax = 108.049
Signal PSmax = 14.374
Signal Area = 9422.469
Signal PArea = 6.359
RMSE Rded = 38.342
RMSE Full = 16.360
R"2 = 0.822
F[4,191] = 220.002
p-value = 2.475459e-70
Voxel #476
etc.

After program 3dNLfim has finished execution, program afni can be used to view the 8
datasets (16 output files).

Example 2. Drug Response (continued)
In order to reduce the number of output files and simplify file management, the above
example was repeated using the -bucket command.

Batch Command File for Example 2

3dNLfim \

-input fred+orig \
-ignore 3 '\

-noise Linear \

-signal DiffExp \
-nconstr 0 -100.0 100.0 \
-nconstr 1 -1.0 1.0 '\
-sconstr 0 45.0 75.0 \

22

-sconstr 1 -500.0 500.0 \
-sconstr 2 0.00 0.15 \
-sconstr 3 0.15 0.50 \
-nrand 500 \
-nbest 5 \
-rmsmin 1.0 \
~fdisp 100.0 \
-bucket 0 fred.bucket
|

The batch command file is that same as for Example 1, except that the last 8 lines (8
output commands) have been replaced by the single -bucket command. The ‘0’ following
-bucket indicates that the default bucket dataset should be created, and that the output
should be written to file fred.bucket+orig (.HEAD and .BRIK). The bucket dataset has the
structure:

Brick | Label Contents
#0 constant 9n]0] = non-linear L.S. est. of 7,,[0]
#1 linear gn[1] = non-linear L.S. est. of 7,,[1]
#2 t0 9s|0] = non-linear L.S. est. of 7,[0]
#3 k gs[1] = non-linear L.S. est. of y,[1]
#4 alphal gs[2] = non-linear L.S. est. of v,[2]
#5 | alpha2 gs[3] = non-linear L.S. est. of 7,[3]
#6 Signal TMax Time of signed maximum of signal
#7 Signal SMax Signed maximum of signal
#8 Signal % SMax Signed maximum of signal as a % of baseline
#9 Signal Area Area under signal (always positive)
#10 | Signal % Area (Signed) area under signal as a % of baseline
#11 | Sigma Resid o = /MS(Error)

. 5 SSE(F)
#12 | R"2 R2=1 ng(l){)

] o MS(Reg

#13 | F-stat Regression | F** = M35 (Error)

Note that the labels for the six parameters in the model are taken directly from the
model definition shared-object files. These labels are used within afni to identify the indi-
vidual sub-bricks.

Example 3. Drug Response (continued)

The previous example used the default specification for the bucket dataset output. If
this is not acceptable, it is possible to explicitly define the labels and contents for each of
the sub-bricks in the bucket dataset, as shown below.

23

3dNLfim \
-input fred+orig \
-ignore 3 \
-noise Linear \
-signal DiffExp \

Batch Command File for Example 3

-nconstr 0 -100.0 100.0 \
-nconstr 1 -1.0 1.0 \
-sconstr 0 45.0 75.0 \
-sconstr 1 -500.0 500.0 \
-sconstr 2 0.00 0.15 \
-sconstr 3 0.15 0.50 \
-nrand 500 \

-nbest 5 \

-rmsmin 1.0 \

-fdisp 100.0 \

-bucket 8 fred.bucket \
scoef 0 ‘‘Response Time’’ \
scoef 1 ‘‘Mult.
scoef 2 ‘‘Elimin.
scoef 3 ‘‘Absorp.
tmax ‘‘Signal TMax’’ \
psmax ‘‘Signal % SMax’’ \
parea ‘‘Signal % Area’’ \
fstat ‘‘F-stat Regression’’

-brick
-brick
-brick
-brick
-brick
-brick
-brick
-brick

0
1
2
3
4
5
6
7

Constant’’ \
Rate’’ \
Rate’’ \

The ‘8 following -bucket indicates that the bucket dataset will contain 8 sub-bricks,
and that the output should be written to file fred.bucket+orig (.HEAD and .BRIK). This
is followed by 8 -brick commands, which specify the contents and labels for each of the 8

sub-bricks in the bucket dataset. The bucket dataset has the structure:

Brick | Label Contents
#0 | Response Time | g,[0] = non-linear L.S. est. of 7,[0]
#1 Mult. Constant | g;[1] = non-linear L.S. est. of v,[1]
#2 Elimin. Rate gs[2] = non-linear L.S. est. of v,[2]
#3 | Absorp. Rate gs[3] = non-linear L.S. est. of 7,[3]
#4 Signal TMax Time of signed maximum of signal
#5 Signal % SMax Signed maximum of signal as a % of baseline
#6 Signal % Area Signed area under signal as a % of baseline
: o _ MS(Reg)
#7 F-stat Regression | F™** = m

In this way, the structure of the bucket dataset can be tailored to the needs of the user.

24

2 Program plug_nlfit

2.1 Purpose

Program plug_nlfit is an AFNI “plug-in” which displays the nonlinear least squares fit of
the user specified signal (+ noise) waveform on top of the actual time series data for voxels
of interest. Program plug_nlfit is the interactive version of the batch command program
3dNLfim. The reader is strongly advised to consult the documentation for program 3dNLfim
first.

2.2 Usage

To use plug_nlfit, first one must be running afni. Display the Image and Graph for Axial,
Sagittal, or Coronal views. Choose Define Datamode. This will popup the datamode menu.
From the last line of the menu, choose Plugins. This presents a menu of the different AFNI
plugins that are available. Choose NLfit & NLerr.

This displays the NLfit & NLerr popup control box. At the top are four control buttons:
Quit, to close the popup without using the plugin; Run + Keep, to run the plugin and
keep the popup window open; Run + Close, to run the plugin and close the popup window;
and Help, to popup a help window. Below this, there are five option lines, labeled Control,
Models, Noise, Signal, and Time Scale.

On the Control option line, there are three number choosers: Ignore, NRandom, and
NBest. The Ignore box allows the user to specify how many of the initial time series data
points to ignore when performing the non-linear least squares fit. The default value is
to ignore the first 3 data points in each time series. The second number chooser on the
Control option line is labeled NRandom. This option allows the user to specify the number
of parameter vectors to be randomly chosen from the parameter space for evaluation. The
default value for NRandom is 100. The next number chooser, NBest, specifies how many
of these random vectors will be used as the initial point for the nonlinear optimization
algorithm. The default value is 5.

Below the Control option line is the Models option line, which, as the name implies,
allows the user to select the model to be used in performing the non-linear least squares fit
of the time series data. The Noise Model and Signal Model options allow the user to choose
among previously defined noise and signal models. During initialization, program plug_nlfit
attempts to locate all signal and noise models that have been compiled and stored on disk.
Each signal model and each noise model has an associated name or label (see documentation
for Signal and Noise Models). The third option on this line is Noise Constr. The user can
choose between Relative (default) and Absolute constraints for the noise parameters (see
documentation for program 3dNLfim for a description of the difference between absolute
and relative noise constraints).

The next option line is labeled Noise. This option line allows the user to manually set
the minimum and maximum constraints for each noise parameter. The parameters are
identified by number, from 0 to » — 1, where r is the number of parameters in the noise
model. The default values for the noise parameter constraints are contained in the file
which defines the specific noise model.

25

The fourth option line is labeled Signal. This option line allows the user to manually
set the minimum and maximum constraints for each signal parameter. The parameters are
identified by number, from 0 to p — 1, where p is the number of parameters in the signal
model. The default values for the signal parameter constraints are contained in the file
which defines the specific signal model.

The final option line is labeled Time Scale. Here, the user can choose between Internal
time reference (default), External time reference, and -inTR. For Internal time reference, the
time increment (used in calculating the model time series) is set equal to 1.0. If External
time reference is chosen, the user must enter the name of the file containing the sequence
of time coordinates for successive volumes in the time series data. Selecting -inTR means
that the time increment is equal to the value for TR which is stored with the input 3d+time
dataset.

2.3 Examples

Example 1. Drug Response (Differential Exponential Model)

We will assume that the current subdirectory contains the AFNI 3d+time dataset of
interest, which we will take to be fred+orig, plus statistical parameter output files, such as
fred.k. To start the program, type afni. From the main menu, click on Axial (or Sagittal, or
Coronal) Image. Once the image is displayed, it can be resized or moved to another (more
convenient) location. Next, click on Switch Functions. From the pop-up menu, choose fred.k
[fift], which contains the AFNI F-statistic map which was generated by program 3dNLfim.
Click on Set to select this option. Next, click on Define Function. Adjust the F-statistic
probability threshold using the vertical bar. Now, click on See Function. In the axial (or
sagittal, or coronal) image view, those voxels whose nonlinear regression model is significant
at the specified probability threshold will light up. The color coding for those voxels which
light up indicates the sign and magnitude of the least squares estimate for parameter £ (in
this case). (Note that other parameters may be viewed by clicking the Switch Function box,
and then choosing the appropriate file name corresponding to the parameter in question).

To view the observed time series at a particular location, use the mouse to change the
placement of the crosshairs within the image. To see the corresponding time series for
voxels indicated by the crosshairs, click on Axial (or Sagittal, or Coronal) Graph. The time
series plots for a 3x3 grid of voxels pops up. The time series can be vertically rescaled by
using the ‘+’ and ‘-’ keys.

To initialize the nonlinear regression analysis program, first click on Define Datamode.
From the popup box, click on Plugins. This pops up a list of the different plugin programs
that are available. From this list, choose NLfit & NLerr. This pops up the NLfit & NLerr
Function control box. For the Noise Model, choose Linear, and for the Signal Model, choose
DiffExp (for the differential - exponential drug response model). Then, press Run + Keep.
The program will then write to the text window the following information:

Program: plug_nlfit
Author: B. Douglas Ward
Date: 10 May 2000

26

Controls:

Ignore = 3

Num Random = 500
Num Best = 95

Noise Constr = Relative

Noise Model = Linear
gn[0] : min = —100.000 max = 100.000 constant
gn[l] : min =—1.000 min = 1.000 linear

Signal Model = DiffExp
gs[0] : min = 45.000 max = 75.000 t0
gs[1] : min = —500.000 max = 500.000 k
gs[2] : min = 0.000 max = 0.150 alphal
gs[3] : min = 0.150 max = 0.500 alpha2

Internal Time Reference
|
To overlay a plot of the nonlinear estimate of the signal + noise time series on top of
the observed time series, do the following: Click on Opt, and select Double Plot. Then,
click on Opt again, and select Tran 1D, and select NLfit. For each voxel whose time series
is displayed, the program writes relevant information into the text window, such as shown
below:

Voxel Results:

Reduced (Linear) Model:
b[0] = 4250.861328 constant
b[l]= —0.256537 linear

Full (Linear + DiffExp) Model:
gn[0] = 4203.534180 constant

gn[l] = —0.194454 linear
gs[0] = 57.528519 £0
gs[l] = 230.609360 k
gs[2] = 0.026249 alphal
gs[3] = 0.457229 alpha2
Signal Tmax = 64.000
Signal Smax = 182.620
Signal PSmax = 4.357
Signal Area = 8053.441
Signal PArea = 0.982
RMSE Rded = 60.225
RMSE Full = 31.341

27

R"2 = 0.735
F[4,191] = 132.268

p-value = 6.479387e-54
[|

To view the reduced and full model parameter estimates, rms error, and F-statistic
corresponding to a particular voxel, move the cursor into the box containing the time series
for that voxel, and press the right-most button on the mouse (i.e., Button 3). This pops-up
a display window with the information corresponding to that voxel.

28

3 Program 3dTSgen

3.1 Purpose

Program 3dTSgen provides a means of generating artificial time series data, and storing
such data into an AFNI 3d+time dataset. The time series data is generated using the
operator specified signal and noise models. Such artificial time series data is useful in
several ways:

1) Testing of statistical analysis programs for significance of the results. Artificial time
series can be generated corresponding to the null hypothesis under consideration. Then,
when input to a statistical analysis program, one can determine how often a false positive
occurs; i.e., the probability of rejecting the null hypothesis, when it is, in fact, true.

2) Calculation of the statistical power of a test. Artificial time series can be generated
corresponding to the alternative hypothesis under consideration. Then, when input to a
statistical analysis program, one can determine how often the signal is detected; i.e., the
probability of rejecting the null hypothesis, when it is, in fact, false. This enables one to
estimate the power of the test.

3) Design of experiments. Various parameters of an experiment are under the re-
searcher’s control. Program 3dTSgen can be used to determine the importance of the
parameters. For example, the researcher may wish to change the length of the time se-
ries data. Using previous experience to specify the signal and noise models, the researcher
could use program 3dTSgen to determine the effect of time series length upon the statistical
power of the test.

3.2 Usage

The syntax for execution of program 3dTSgen is as follows:

3dTSgen -input fname -noise nlabel -signal slabel \

[-nconstr 0 ag by| --- [-nconstr r-1 a,_; b, 4] \

[-sconstr 0 ¢y dg] --- [-sconstr p-1 c,_; dp_1] \

-sigma s [-voxel num] -output prefixname \

[-ncoef k prefixname] [-scoef k prefixname]|

[-bucket n prefixname] [-brick m; options] ... [-brick m,, options]

The different command line options are explained below.

3.3 Options

-input fname

The mandatory -input command specifies that fname is the filename of the AFNI 3d +
time data set to be used as the “prototype” for the output file. The prototype defines the
dimensions of the output dataset, as well as the length of the time series.

29

-noise nlabel

The mandatory -noise command tells program 3dTSgen which noise model to use. During
initialization, program 3d TSgen attempts to locate all noise models that have been compiled
and stored on disk. Each noise model has an associated name or label. If program 3dTSgen
finds nlabel among the noise model names, then that noise model will be used for generating
the artificial time series. Otherwise, the program prints an error message and halts.

-signal slabel

The mandatory -signal command tells program 3dTSgen which signal model to use. Dur-
ing initialization, program 3dTSgen attempts to locate all signal models that have been
compiled and stored on disk. Each signal model has an associated name or label. If pro-
gram 3dTSgen finds slabel among the signal model names, then that signal model will
be used for generating the artificial time series. Otherwise, the program prints an error
message and halts.

-ncnstr k ¢, dg
The optional -ncnstr command specifies the constraints on the noise model parameter
values. The kth noise parameter is selected at random, with a uniform density, over the
specified interval:
Cp <= gn[k] <= dk,
To fix the value for a specific noise parameter, the user can set ¢, = d;. The default
values for the noise parameter constraints are specified in the file which defines the noise
model.

-scnstr k c; dg

The optional -scnstr command specifies the constraints on the signal model parameter
values. The kth signal parameter is selected at random, with a uniform density, over the
specified interval:

Cp <= gs[k] <= dy.
To fix the value for a specific signal parameter, the user can set ¢y = dj. The default

values for the signal parameter constraints are specified in the file which defines the signal
model.

-sigma s

The mandatory -sigma command is used to set the standard deviation s of the additive
Gaussian noise. This random noise will be independent at each voxel and at each time
point.

-voxel num

The optional -voxel command is used to control output to the user’s terminal during
program execution. If this command is used, the individual time step values of the time
series, as well as the signal and noise parameters, are written to the screen for voxel number
num. Note that the -voxel command effects screen output only, and has absolutely no effect
upon the data file output generated by the program.

30

-output prefirname

The mandatory output command tells program 3dTSgen to write the 3d+time dataset
to the file have the specified prefirname. The output dataset has n sub-bricks, where n is
the length of the time series.

AFNI 3d+time dataset

-ncoef k prefirname
The optional -ncoef command is used to save the “true” randomly generated values of
the kth noise parameter. The result is stored as an AFNI “fim” dataset.

AFNI “fim” dataset { Ynlk] = “true” kth noise parameter

-scoef k prefixrname
The optional -scoef command is used to save the “true” randomly generated values of
the kth signal parameter. The result is stored as an AFNI “fim” dataset.

AFNI “fim” dataset { v,lk] = “true” kth signal parameter

-bucket n prefixname

The -bucket command is used to create a single AFNI “bucket” type dataset having n
sub-bricks. The output is written to the file with the user specified prefix filename. Each of
the individual sub-bricks can then be accessed for display within program afni. The purpose
of this command is to simplify file management, since all of the output parameter datasets
(but not the 3d+time dataset itself) for a particular problem can now be contained within
the single AFNI bucket dataset.

If n = 0, then the default output bucket dataset is created. (See Example 3.) The

labels for the individual signal and noise parameters come from the model definition source
code. The default dataset has p + r sub-bricks, as illustrated below.

Brick Label Contents
#0 (Label for noise par. #0) 9r[0] = non-linear L.S. est. of ~,[0]

#r-1 (Label for noise par. #r-1) | g,[r — 1] = non-linear L.S. est. of v, [r — 1]
#r (Label for signal par. #0) | g5[0] = non-linear L.S. est. of ~,[0]

#p+r-1 | (Label for signal par. #p-1) | gs[p — 1] = non-linear L.S. est. of v,[p — 1]

If n > 0, then the contents and labels for the individual sub-bricks within the bucket
dataset are specified by the user, by means of the -brick command described below. Note
that the -bucket command must precede the -brick commands.

31

-brick m options

The -brick command is used to specify the contents and labels for the mth sub-brick
(0 < m < n) within the bucket dataset. There must be one -brick command for each
of the n sub-bricks in the dataset (where n has been previously specified by the -bucket
command).

There are 2 versions of the -brick command:
-brick m ncoef k label The mth sub-brick is to contain the ¢rue (randomly generated)

value for the kth parameter in the noise model.
-brick m scoef k label The mth sub-brick is to contain the true (randomly generated)
value for the kth parameter in the signal model.
In each case, the label for the sub-brick is specified by label.

3.4 Examples

Example 1. Statistical Significance Calculation

A researcher wishes to assess the probability of obtaining false positives for a set of
data. From previous experience, a time series under the null condition can be represented
by a linear trend plus independent Gaussian noise.

Batch Command File for Example 1

3dTSgen \
-input fred+orig \
-noise Linear \
-signal Null \
-sigma 25.0 \
-nconstr 0 -100.0 100.0 \
-nconstr 1 -1.0 1.0 '\
-voxel 12345 \
-output noise.ts
|

The -input command indicates that the AFNI 3d+time dataset fred+orig should be
used as the prototype for the output dataset; i.e., the number of voxels and the time series
length are taken from dataset fred+orig. The -noise command indicates that the Linear
noise model (linear trend+Gaussian noise) should be used. The -signal command indicates
that the program should use the Null signal model (no signal model, i.e., just noise is
present). The noise parameter constraints are specified by the -nconstr commands. The
-voxel command results in the time series and parameter values being printed to the screen
for voxel #12345. Finally, the -output command writes the AFNI 3d+time dataset to the
output file with prefix noise.ts.

Now, the output file noise.ts can be used as input to other 3d+time statistical analysis
programs, e.g., 3dfim, 3dNLfim, etc. For example, if noise.ts is used as input to program

32

3dNLfim, the resulting F-statistic output file for significance of the nonlinear regression can
be used to assess the probability of a false detection.

Example 2. Statistical Power Calculation
To estimate the probability of detecting a signal when the signal is present (i.e., the
statistical power), the following batch command file was used to execute program 3dTSgen.

3dTSgen \
-input fred+orig \
-noise Linear \
-signal DiffExp \

-sigma 25.0 \

-nconstr 0 -100
-nconstr 1 -1.0
-sconstr 0 45.0
-sconstr 1 -500
-sconstr 2 0.00
-sconstr 3 0.15

-voxel 12345 \
-output signal.ts \

-ncoef
-ncoef
-scoef
-scoef
-scoef
-scoef

W NP O = O

signal.
signal.
signal.

signal
signal
signal

Batch Command File for Example 2

.0 100.0 \
1.0 \
75.0 \
.0 500.0 \
0.15 '\
0.50 \

Xk \

.alphal \
.alpha?2
u

As in Example 1, the -input command indicates that the AFNI 3d+time dataset
fred+orig should be used as the prototype for the output dataset. The -noise command
indicates that the Linear noise model (linear trend+Gaussian noise) should be used. The -
signal command indicates that the program should use the DiffExp signal model (differential
- exponential drug response function). The noise model parameter constraints are specified
by the -nconstr commands, and the signal model parameter constraints are specified by the
-sconstr commands. The -voxel command results in the time series and parameter values
being printed to the screen for voxel #12345. The -output command writes the AFNI
3d+time dataset to the output file with prefix signal.ts. The -ncoef and -scoef commands
store the noise and signal model parameters that were used to generate the time series at
each voxel. These values are stored in separate AFNI datasets for each parameter.

33

Now, if the output file signal.ts is used as input to program 3dNLfim, the resulting F-
statistic output files can be used to assess the statistical power of the test in detecting
signal buried in noise.

Example 3. Statistical Power Calculation (continued)

In the previous example, the noise and signal model parameters that were used to
generate the time series at each voxel were written to separate datasets. In order to simplify
file management, all of these parameters can be written to a single ‘bucket’ dataset, as
shown below.

Batch Command File for Example 3

-input fred+orig \
-noise Linear \
-signal DiffExp \

-sigma 25.0 \

-nconstr 0 -100.0 100.0 \
-nconstr 1 -1.0 1.0 \
-sconstr 0 45.0 75.0 \
-sconstr 1 -500.0 500.0 \
-sconstr 2 0.00 0.15 \
-sconstr 3 0.15 0.50 \

-voxel 12345 \
-output signal.ts \
-bucket 0 signal.parameters
[|

The batch command file is that same as for Example 2, except that the last 6 lines (6
output commands) have been replaced by the single -bucket command. The ‘0’ following
-bucket indicates that the default bucket dataset should be created, and that the output
should be written to file signal.parameters+orig (.HEAD and .BRIK). The bucket dataset has
the structure:

Brick | Label Contents

#0 constant | noise parameter g,[0] used to generate time series
#1 linear noise parameter g,[1] used to generate time series
#2 t0 signal parameter g;[0] used to generate time series
#3 k signal parameter g;[1] used to generate time series
#4 alphal | signal parameter g,[2] used to generate time series
#5 alpha2 | signal parameter ¢,[3] used to generate time series

Note that the labels for the six parameters in the model are taken directly from the
model definition shared-object files. These labels are used within afni to identify the indi-
vidual sub-bricks.

34

4 Signal and Noise Models

4.1 Signal Models

Presently, nine different signal models are included with the AFNI source code. These are
listed below.

Label Description Parameters

Null No Signal —

SineWave_AP Sinusoidal Response Amplitude, Phase
SquareWave_ AP Square Wave Response Amplitude, Phase
TrnglWave AP Triangular Wave Response Amplitude, Phase
SineWave_APF Sinusoidal Response Amplitude, Phase, Frequency
SquareWave_ APF Square Wave Response Amplitude, Phase, Frequency
TrnglWave_APF Triangular Wave Response Amplitude, Phase, Frequency
DiffExp Differential-Exponential Drug Response t0, k, alphal, alpha2
GammaVar Gamma-Variate Function Drug Response 10, k, r, b

The actual signal models are defined in the C source code files model_null.c, model_sinewave_ap.c,
..., model_gammavar.c. These source code files have been compiled into the “shared object”
files model_null.so, model_sinewave_ap.so, ..., model_gammavar.so.

If a new signal model is to be added, or if a pre-existing model is modified, then only
the model itself has to be compiled. Programs 3dNLfim, plug_nlfit, and 3dTSgen will then
automatically have access to the new or modified model.

Each signal model contains two separate function routines. The function initialize_model
is called first (by program 3dNLfim, or plug_nlfit, or 3dTSgen) to initialize the signal model
prior to execution. The second function, signal_model, does the actual calculation of the
time series values corresponding to the specified model with the given parameter values.

4.2 Initializing the Signal Model

The function initialize_model is used to establish the name, number of parameters, labels
for the parameters, and default values for the parameter constraints. The function returns
a data structure of type MODEL _interface, as defined below:

typedef struct {

char label[MAX_NAME_LENGTH] ; /* name of the model */
int model_type; /* noise or signal model? */
int params; /* number of parameters x/

char plabel[MAX_PARAMETERS] [MAX_NAME LENGTH]; /* parameter labels */

float min constr[MAX PARAMETERS]; /* minimum parameter constraints */

float max constr[MAX PARAMETERS]; /* maximum parameter constraints */

void_func * call func; /* function which implements the model */
} MODEL_interface;

35

The initialize_model function must declare a variable to be of type MODEL _interface, and
each member of the MODEL _interface structure must then be initialized. In the following,
we will assume that variable mi has been declared to be of type MODEL _interface.

The user must assign a unique name to each model (this name is used by the programs
to identify the model itself). If, for example, the user wants to assign the name “Drug
Response” to the model, then the corresponding c-language statement would be:

strcpy (mi->1label, ’’DrugResponse’’);

Note that no space is left between “Drug” and “Response”; this is for reasons connected
with execution of the batch command file.

The type of model must be specified. Each model is either a MODEL_NOISE_TYPE or
a MODEL_SIGNAL_TYPE. Since the user is specifying a signal model, the function must
include the statement:

mi->model_type = MODEL_SIGNAL_TYPE;

The number of parameters in the model must be specified. At present, there is a limit
of 10 parameters for the signal model. If the user’s model has 3 parameters, then the
following statement must appear:

mi->params = 3;

Each of the parameters must be given a name. The parameters are numbered consecu-
tively, starting with 0. Therefore, the third parameter would be given the name “beta” by
the statement:

strcpy (mi->plabel[2], ’’beta’’);

Minimum and maximum (default) constraints must be specified for each parameter in
the model. Again, it must be emphasized that the parameters are numbered consecutively,
starting with 0. So, the constraints for the 2nd parameter could be specified by:

mi->min_constr[1]= -100.0; mi->max_constr[1]= 250.0;

The last member of the mi structure is used to indicate the name of the function to be
called which implements the model itself. If the function name is signal_model, then the
following statement must appear:

mi->call_func = &signal_model;

A listing of function intialize_model for the differential-exponential drug response model
appears below.

36

Listing of function initialize_ model from file model diffexp.c

/%

Routine to initialize the signal model by defining

the number of parameters in the signal model, the name of
the signal model, and the default values for the minimum
and maximum parameter constraints.

*/

MODEL_interface * initialize model ()

{

MODEL_interface * mi = NULL;

[k allocate memory space for model interface ————- * /
mi = (MODEL_interface *) XtMalloc (sizeof (MODEL_interface));

[*===== define interface for the differential - exponential
model ----- */
[k=== name of this model ----- */

[x——=—= this is a signal model ----- */
mi->model_type = MODEL_SIGNAL_TYPE;

[*—=—=== number of parameters in the model ----- */
mi->params = 4;

[*k===== parameter labels ----- */
strcpy (mi->plabell[0], ’’t0’’);
strcpy (mi->plabel[1], ’’k’’);
strcpy (mi->plabel[2], ’’alphal’’);
strcpy (mi->plabel[3], ’’alpha2’’);

[k=== minimum and maximum parameter constraints ----- */
mi->min constr[0]= 45.0; mi->max_constr[0]= 75.0;
mi->min constr[1]= -500.0; mi->max_constr[1]= 500.0;
mi->min_constr[2]= 0.00; mi->max_constr[2]= 0.15;
mi->min_constr[3]= 0.15; mi->max_constr[3]= 0.50;

[*k===== function which implements the model ----- */
mi->call_func = &signal _model;

[*===== return pointer to the model interface ----- x/
return (mi);

37

The C code for the differential-exponential drug response model indicates: the output
label for this model is “DiffExp”; there are 4 parameters in the model; and the signal model
parameter names and constraints are as follows:

45.0 < gs[0] = “t0” < 75.0
—500.0 < gs[1] = “k” < 500.0
0.00 < gs[2] = “alphal” < 0.15
0.15 < gs[3] = “alpha2” < 0.50

Note that these are the default values for the signal parameter constraints, and they may
be overridden by the user in either program 3dNLfim, or program plug_nlfit, or program
3dTSgen.

4.3 Defining the Signal Model

A listing of function signal_model from model _diffexp.c appears below. There are 3 inputs
to the function: gs, an array containing the estimated parameter vector; ts_length, the
number of time series data points; and x_array, which contains the independent variable(s)
(currently, this is just the time index). As output, the function calculates the time series
array ts_array.

As indicated below, the signal model is the “DiffExp” drug response model. Recall that
the differential-exponential drug response model is:

Y, =k [e—oa(ti—to) _ 6_0‘2(ti—t0)]
This is translated into C code as:

fval = gs[1]*(exp(-gs[2]*(t-gs[0]))- exp(-gs[3]1*(t-gs[0])));

where
gS[O] = 1o,
gsll] = &,
gS[Q] = 0,
gS[?)] = g,

t = x_array[it|[1] = ¢;,

fval = ts_array[it] = Y;.
The correspondence between the model parameters and the elements of the gs array is
arbitrary, but the user must be consistent. The x_array is actually a matrix; column 0
consists of all 1’s (this represents the constant term), column 1 consists of the integers from
0 to ts_length-1 (this represents time ¢, where time is measured in units corresponding to
the interval between successive images), and column 2 consists of the squares of column 1
(representing ¢?). The complete signal_model function is listed below.

38

Listing of function signal model from file model diffexp.c

/%

Routine to calculate the time series which results from
using the differential exponential drug response signal
model with the specified model parameters.

Definition of model parameters:
gs[0] = time delay of response (t0)
gs[1] = multiplicative constant (k)
gs[2] = elimination rate constant (alphal)

gs[3] = absorption rate constant (alpha2)

*/

void signal_model

(
float * gs, /* parameters for signal model */
int ts_length, /* length of time series data */
float ** x_array, /* independent variable matrix */
float * ts_array /*estimated signal model time series*/

)

{
int it; /* time index */
float t; /* time */
float fval; /* time series value at time t */

for (it = 0; it < ts_length; it++)
{
t = x_arraylit] [1];
if (t < gs[0])
fval = 0.0;
else
fval = gs[1] * (exp(-gs[2]*(t-gs[0])) -
exp(-gs[31*(t-gs[01)));
ts_array[it] = fval;

Particularly note in the above code that if ¢ < g¢s[0], then fwval is set to 0. This is
required so that the “signal” does not occur prior to tp = gs[0]. Any model where the

signal “switches on” at a particular time must incorporate similar logic.

39

4.4 Compilation

Once the initialize_model and the signal_model functions have been created, the C source
code should be stored in one file, under a file name beginning with “model”, and ending
with “.c”, such as model_new.c. This file should be stored in the same directory with the
AFNI source code.

To facilitate compilation of the source code to a shared object, file Makefile.INCLUDE
(distributed with MCW AFNI) contains the necessary commands. In Makefile.INCLUDE,
locate the line beginning with “models:”. Following “models:” there is a list of the file
names for the different pre-defined models. The new model file prefix name should be
appended to this list, e.g.,

models: model constant.$(S0) model linear.$(SO) model quadratic.$(S0) \

model diffexp.$(S0) model_gammavar.$(SO) model_new.$(S0)

Now, after Makefile.INCLUDE has been updated, the new model shared object file is
created through the command:

make models

The computer responds by compiling all model source code files which have been added
or modified since the last compilation. The shared object file model_new.so should now
appear in the directory listing.

At initialization, Programs 3dNLfim, plug nlfit, and 3dTSgen will search for the model
libraries. These programs will look in the directories specified in the shell environment
variable AFNI_MODELPATH. If this variable does not exist, then these programs will use
the PATH variable instead. For example, if the following command appears in the .cshrc
file:

setenv AFNI_MODELPATH /user/fred/AFNI96

then the programs will search directory /user/fred/AFNI96 for model libraries. All shared
object libraries, in the specified directories, whose name begins with “model”, and which
contain the initialize_model function, will be loaded into the program. Note that storing
plugins and models in the same directory is perfectly acceptable. However, duplicate model
names should be avoided at all cost.

40

4.5 Noise Models

Presently, there are 3 different noise models included with the source code. These are listed
below.

Label Description Parameters

Constant Constant + Gaussian Noise Constant

Linear Linear Trend + Gaussian Noise Constant, Linear

Quadratic Quadratic + Gaussian Noise Constant, Linear, Quadratic

The actual noise models are defined in source code files model_constant.c, model_linear.c, and
model_quadratic.c. The noise models, once they have been compiled into dynamic library
“shared object” files, are used by programs 3dNLfim, plug_nlfit, and 3dTSgen.

Two separate function routines are involved in the definition of the noise models. The
function intialize_model is called first to establish the name, number of parameters, param-
eter labels, and default values for the noise parameter constraints. The second function,
noise_model, does the actual calculation of the time series values corresponding to the spec-
ified noise model with the given parameter values.

At the present time, the set of noise models is limited to those listed above. However, as
mentioned in the documentation for Program 3dNLfim, the capability to include additional
independent variables (such as the “ort” time series of Program 3dfim) may be added in
the future. This would allow the user to extend the list of noise models.

It should be noted that under the current paradigm, the “noise” model is always a
“linear” model. This was done for simplicity, since this makes calculation of the reduced
(noise) model a linear regression problem. It is not absolutely necessary that the noise
model be linear. However, allowing nonlinear noise models would require altering the
program(s) so that both the reduced and the full models would use nonlinear parameter
estimation (thus increasing run time). The author invites comments on the utility of
nonlinear noise models.

41

References

. P. A. Bandettini, A. Jesmanowicz, E. C. Wong, J. S. Hyde, Processing strategies for
time-course data sets in functional MRI of the human brain. Magn. Reson. Med.
30, 161-173 (1993).

. R. W. Cox, A. Jesmanowicz, J.S. Hyde, Real-time functional magnetic resonance
imaging. Magn. Reson. Med. 33, 230-236 (1995).

. C. R. Craig, R. E. Stitzel, Modern Pharmacology, 2nd edition. Boston: Little, Brown
and Company (1982).

. W. W. Orrison Jr., J. D. Lewine, J. A. Sanders, M. F. Hartshorne, Functional Brain
Imaging. St. Louis: Mosby (1995).

. S. S. Rao, Optimization Theory and Applications, 2nd edition. New Delhi: Wiley
(1984).

. J. W. Cooper, R. B. Lam, A Jump Start Course in C++ Programming. New York:
Wiley (1994).

. J. Neter, W. Wasserman, M. H. Kutner, Applied Linear Statistical Models, 2nd edi-
tion. Homewood, Illinois: Irwin (1985).

42

