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Abstract.  We present an approach for controlling relaxation parameters in
variable conductance diffusion.  This approach incorporates a Bayesian
classifier to perform a partial labeling of an image, followed by a diffusion step.
Conductance values between pixels are controlled by statistical measurements
made of the partial classification.  Several iterations follow, interleaving partial
labeling with diffusion steps until a convergence or stopping criterion is met.
The method is suitable for performing diffusion within multi-valued images.  It
consistently controls relaxation parameters, even in the presence of noise.  The
method is presented along with results on phantom and MR images.

1  Introduction

The first task in computer aided visualization of medical images is to classify organs
and other solid masses (such as tumors) into tissue types.  Statistical classification
methods seldom incorporate either the geometry of regions within the image or the
scale at which information is represented.  Alternatively, structural methods often
ignore the distributions of intensity values within the image when making judgments
about boundary properties and measures of homogeneity within regions.  These
weaknesses are aggravated when these methods are individually applied to
multivalued images, images with more than one value per pixel.  What is needed is a
segmentation method that takes into account scale, boundary information, and the
probability distribution of the intensities of the multivalued image.  We introduce a
statistically controlled version of variable conductance diffusion (VCD) that employs
user supplied control points to estimate the class conditional densities of the coherent
regions within the image to control the conductance parameters of VCD.

Performing VCD on multivalued images is not a new idea.  Both Whitaker and
Gerig independently explored techniques in VCD on images of multiple parameters
[Whitaker 91b][Gerig 91b].  Gerig uses a statistical evaluation of the feature space
represented by the intensities of multiple echoes in MR imaging to evaluate the
performance of his boundary preserving filter.  Whitaker generates feature spaces and
performs mathematical measurements in those spaces to control conductance in his
diffusion process.  Both have speculated on the use of statistics to generate
conductance functions.

The problem is how to align the incommensurate values of a multivalued image.
Our approach is to query a user for sample points identified with particular classes
within an image (tissue types in medical images).  From these data samples we then
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determine the statistical correlation among image values through estimations of the
class conditional probabilities.  Using a Bayesian approach, we pursue
“boundariness,” discrimination between tissue classes, and control diffusion based on
our ability to discriminate between one type of tissue and another.

Our method controls not only conductance but also the relaxation parameters of
VCD.  As the diffusion continues, we modify our estimates of the class conditional
probabilities, and reduce the feature space measurement scale.

We first present an overview of the progression of VCD ideas to date.  We
introduce a discrete implementation of multivalued VCD, then explain the weakness
that we are addressing in this work, the analysis of images with multiple
incommensurate data values per pixel.  We then present the user supervised
statistically controlled VCD method as a mechanism for overcoming these
weaknesses.  We end with some results of statistically controlled VCD on a computer
generated phantom as well as an MR image.

2  Some Background on VCD

There is a progression of diffusion based filtering and segmentation ideas in the
research literature. Isotropic diffusion is easily expressed as solutions to the following
differential equation:

∇ • c∇I = ∂I/∂t (1)

where the constant c is the conductance value for the image and I is the pixel intensity
at a particular location.  Gaussians and their derivatives are solutions to this equation.
ter Haar Romeny and his associates explore the Gaussian as a filter kernel in the
generation and analysis of image scale [ter Haar Romeny 1991a,b].

Analysis through isotropic Gaussian scale often discards boundary information
and other image features at one scale in return for particular features at different scale.
In order to retain boundary information during the diffusion, Perona and Malik
proposed an edge affected diffusion process [Perona 1988].  According to these
authors, an anisotropic edge affected diffusion can be controlled by a scalar
conductance function, g(||∇I(x, y, t)||), whose argument is the gradient magnitude of
the gradually evolving image.  Their edge affected diffusion equation is

∇ • g(||∇I(x, y, t)||) ∇I = ∂I/∂t (2)

where the function g contains a constant relaxation parameter k, and can typically be
expressed as

g α( ) = e
− α

k




2
(3)

Equation 2 requires the instantaneous measurement of gradient magnitude at a
pixel sized scale.  Instabilities in these conductance measures proposed by Perona and
Malik led Whitaker to explore a multiscale version of this diffusion (called variable
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conductance diffusion, VCD, or geometry limited diffusion) [Whitaker 91a].
Whitaker adds a convolution with a Gaussian whose size decreases over time to
control the scale of the measurement of gradient magnitude.  His modified diffusion
equation is

∇ • g(||G(s, t) ⊗ ∇I(x, y, t)||) ∇I = ∂I/∂t (4)

where G(σ, t) is a Gaussian convolution kernel whose standard deviation gradually
decreases over time and the symbol ⊗ represents a convolution.  This equation
exhibits improved stability over the equation (2) proposed by the previous authors.

Gerig and his associates independently developed a similar approach using a
different function to control conductance [Gerig 90].  These diffusion systems have
been used in medicine as a preparation for Bayesian classification.  Typically the
statistical classifier is followed by a morphological operation and a connected
component analysis to include image structure into the segmentation [Kubler 90].

Gerig and Whitaker independently explore the potential of multivalued VCD on
images of two or more parameters.  Whitaker shows that gradient images can be
diffused to form image descriptions from higher order derivative information of single
valued images [Whitaker 91b].  Moreover, he shows that dissimilarity measures other
than gradient magnitude, such as gradient direction, can be used to control diffusion.
He also postulates that control of VCD can be enabled through statistical
measurements of image features.  Gerig et.al. use the Euclidean norm to combine the
gradient magnitude of two echoes of MR images to generate a conductance value
[Gerig 91b].  Their conductance term takes on the form:

δ
δt

 
I1 x,t

I2 x,t
 = ∇cc 

∇I1

∇I2
 + cc 

∇2I1

∇2I2

(5)

cc x, t  = cc1 x, t 2 + cc2 x, t 2
(6)

where the combined conductance component cc(x, t) is used as the conductance value
in both image echoes I1 and I2.

isotropic diffusion

edge affected diffusion

variable conductance diffusion

multivalued variable conductance diffusion

user supervised multivalued variable conductance diffusion

There has been a progression of diffusion systems throughout the development of
these ideas.  The multivalued work performed by Gerig and by Whitaker requires a
well chosen mathematically based dissimilarity measure to be selected to control
conductance.  The work presented here is a step toward using measurements of the
image itself to control VCD.
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3  A Discrete Implementation of Multivalued VCD

We have implemented a discrete version of the continuous process described in the
equations presented above.  The discrete variable conductance diffusion mechanism is
crude, but indicates some research areas that still require significant development.
The discrete multivalued variable conductance diffusion model is driven directly from
the analysis of the image through local histograms or feature space in a iterative
fashion.  Simply, for each pixel location, x, let  Ix,t  represent the multivalued
intensity of the pixel during the t'th iteration.  Moreover, let the value of the pixel at
the t+1 iteration be determined by the following:

Ix,t+1 = Ix,t + ∆Ix,t (7)

where ∆Ix,t  is defined by the following equation

( ) ( )( )∑ ∆=ω−ω
)x(odneighborho

r
t,xt,rt,xt,rt,xfi ,,rx IIIII (8)

The functions ωωi(||x - r||), and ωωf(Ix,t , Ir,t) are scalar values and represent weighting
functions based upon measurements in image space and in feature space respectively.
The first weight, ωωi(||x - r||), assumes that the image follows a Gibbs distribution; that

is, that the value of a pixel is reinforced by neighboring pixel values.  The ωωf(Ix,t ,
Ir,t) weight assumes that individual classes of pixel type maintain a local distribution
in feature space.  In the current implementation, the two weighting functions are:
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Notice that probability distribution in both image space as well as feature space
(controlled by σσi and σσf respectively) are isotropic and not necessarily time
dependent in this implementation.

The method for multivalued diffusion presented in this paper will address the
construction of multivalued diffusion covariance measures and a means for creating a
value for the multicluster analog of σσf.  The value of σσi controls the spatial scale of

the diffusion and is a gradually decreasing scalar function of time, t.  That is, σσi =

σσ(t), where the value of σσ(t m) > σσ(t n) for time t m < t n.
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4  Incommensurate Intra-Pixel Values

Multivalued VCD as described by the equations above do not relate the separate
values of each pixel.  Essentially, due to the isotropic nature of the weighting function
in feature space, it is assumed that the within pixel values are “normalized” around
some expected value for a pixel class.  This is not always true.  Consider the 2
dimensional feature space described by a two echo MR image (Proton density
weighted and T2 weighted) where we select the intensity of the proton density
weighted values as one feature and the T2 intensity as the other.  Figure 1 shows an
example of this image, and the resulting feature space.

Figure 1 - Two valued MR slice of a human head.  The upper images are the proton
density  and T2 weighted values, the lower views are the scatter plots of the image
features.  Lower Left:  The feature space defined by the intensities of the two echoes,
Lower Right:  The class conditional densities associated with the control points.

If we overlay class conditional densities for white matter, gray matter, and cerebral
spinal fluid (CSF), it is clear that the distributions of each of these three tissue classes
are not isotropically distributed (see Figure 1, lower right).  Therefore, the assumption
that spatial weighting should not show directional preference in the feature space is
shown to be invalid.

How then do we estimate this bias in feature space?  More importantly, this
directional bias will evolve during the filtering process.  It is essential that we
continue to track the orientation of the class conditional density and measure pixel
similarity based on the changing image space.
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5  Method

Probability distribution information will be supplied by the user as a set of user
selected training points, providing the VCD system with semantic a priori  knowledge
of the data that would not otherwise be available.  Throughout the many iterations of
the discrete VCD method, new estimates of class conditional density are calculated
from the control points specified in the initial user session.  We employ a variation of
a Bayesian classifier, slightly modified from that presented in the literature [Duda 73].
We iterate through the following steps:

1. Collect initial classification of image data
2. Calculate covariance matrices for each identified cluster using the image

values from the current iteration. (use the original image for iteration 0)
3. For each pixel, calculate the diffusion vector ∆Ix,t  using a statistically

based feature weighting function ωωf(Ix,t , Ir,t)

4. Adjust each pixel by the diffusion vector. (i.e. set  Ix,t+1 = Ix,t + ∆Ix,t)

5. Check for stopping criterion.  If diffusion is to continue, go to step 2, using
the current image values Ix,t+1 to calculate new covariance values.

Let us address each step in order.  The first step is to identify the locations of tissue
types of interest.  The user is queried for sample points that can be identified by tissue
type.  A mouse based interface is provided so that the user can quickly identify many
locations for each tissue class.  It is important to note that the essential element
acquired in this step is the location of the pixels in the training set, rather than specific
intensity values.  The intensity values will migrate throughout the iterative diffusion
process; while intensity may vary, the spatial locations of important features remain
fixed.

In step 2, let NC be the number of tissue classifications specified by the user.  For
each tissue class cw (w = 1,2,...,NC) we calculate a covariance matrix Cw.
Specifically, let Ip,t represent a  multivalued  pixel in a  particular tissue pattern and p
= 1...n where n is the number of individual pixels in the user supplied tissue pattern
Uw  (i.e.  Uw = {I1,...,In}), and t represents the current iteration.  Calculate the

multivalued mean µµw for the tissue pattern.  If we represent the i-th value of µµ as µµ[i]
and the i-th value of Ip,t as Ip,t[i], then the covariance matrix Cw for the tissue
pattern pw is estimated by:

( )( )]j[]j[]i[]i[)j,i( t,p

n

1p
t,pn

1
w µ−∑ µ−=

=
IIC (11)

We calculate the diffusion vector ∆Ix,t in step 3 using a function similar to equation

4; however, we modify the feature weighting function ωωf(Ix,t  Ir,t) to include the
available a priori information to normalize the similarity measures that control the
diffusion.  If P(cw) is the a priori  probability of class cw, then the new weighting
function is:
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The first exponential term weights the importance of the pixel values of Ix,t and Ir,t
relative to the tissue class cw.  The second exponential term represents a weighted
measure of the similarity of the multivalued pixel intensities of Ix,t  and Ir,t relative to
the estimated Gaussian distribution of tissue class cw.  In the results presented in this
paper, P(cw) is assumed to equal 1/NC.

It remains in step 4 to combine the current Ix,t with the diffusion vector ∆Ix,t and
check for the stopping criterion in step 5.  In current applications, the stopping
criterion is simply a number of iterations; however, termination could easily be based
upon the minimum or maximum value of |Cw| (w = 1,...,NC) falling below some
convergence threshold.

Figure 2 - simulated MR image of a computer generated
egg phantom.  Columns left-right: T1 image, T2 image,
Feature space scatterplot, classifier distributions.  Rows
from top to bottom: 2 variable image through 30
iterations of statistically controlled VCD (Top original
image, 2nd row - 10th iteration, 3rd row 20th iteration,
4th row 30th iteration)
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6  Results

Figure 2 shows a simulated MR image of an egg shaped object as it passes through
several iterations of VCD.  The training classification included patterns of "egg yolk",
"egg white" and background values, of approximately 100 pixels per pattern.  The top
of the set shows the original image, with simulated T1 and T2 weighted values
followed by the scatter plot of the features.  The rightmost column is a representation
of the classification distributions of each of the training clusters.

Figure 3 shows a slice of an MR image taken from a scan of a human head.  Only
the T1 echoes are display in the figure.  The left side shows the T1 weighted image
with the original scatter plot of the pixel features.  The right side shows the same
image after several iterations using the statistically controlled VCD process.  The
training patterns included white matter (myelinated cerebral tissue) and gray matter
(unmyelinated tissue) only.  Note that although some degradation of detail or blurring
is apparent, boundaries of regions in the user supplied classifications (gray matter and
white matter) remain largely unaffected, while within the regions themselves, pixel
values are more homogeneous.

The plots of the image features reveal that significant cluster improvement has
occurred.  The background pixel distribution has narrowed considerably, and
delineation between feature clusters is becoming apparent.  Figure 4 is a plot of the
class conditional distributions based upon the covariance measures of the training
pixels.  After several iterations, the mean values of the user supplied partially
classified pixels have remained fixed, while the variances, or the spread of the
distributions have narrowed.  From this view, we begin to see where the
discrimination between white and gray matter lies.

Figure 3 - VCD on an axial MR slice of a human head.  The upper images are the T2
weighted values, the lower views are the scatter plots of the image features.  Left:
Before VCD, Right After several VCD iterations.  (not shown, T1 weighted values for
either before or after)
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Figure 4 - Classification distributions for white matter and gray matter displayed
within the feature space.  Distributions are based on user supplied a priori  locations of
classified pixels.  As pixel values diffuse, the means of the classification distributions
remain stationary, while the variances narrow.  Left: Before VCD, Right: After several
VCD iterations.

7  Discussion

We have improved our control of multivalued VCD over the previous discrete
implementation through the application of a priori  information.  Previously, the value
for σf was a constant (the analog of k in a single valued VCD process), and isotropic
within the feature space.  Since there is no guarantee that the separate values within a
pixel are commensurate, some means of understanding and compensating for the
nature of the pixel features is required.  Therefore, we apply statistical measures of the
feature space to achieve commensurability.

We assume that there is a statistical correlation among pixel features.
Measurements of pixel-to-pixel similarity are therefore made relative to estimates of
class distributions from training sets supplied by the user.  As pixel values diffuse, the
distributions representing the classified tissue types narrow, raising the criteria for
similarity, and automatically lowering conductance values.

7.1  Convergence

We can monitor the rate at which the distributions of the pre-classified pixels
converge by measuring the determinants of the covariance matrices generated by each
of the a priori pixel sequences.  Figure 5 shows the covariance values through 100
iterations of the computer generated egg phantom.  The large image space weight on
the diffusion process early in the VCD sequence accounts for the rapid reduction in
variance;  during the later stages, narrow variance values slow diffusion, and the
determinants subsequently do not fall as rapidly.  This particular image shows
exaggerated convergence due to the large contiguous regions providing significant
reinforcement for the diffusion.
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Figure 5 - Tracking the variance of the classifier distributions through 100 iterations of
VCD

7.2  Watching the Means

This mechanism does not guarantee that individual pixel values remain monotonic
with successive iterations; however, in order for regions to be properly classified, it is
essential for the mean values of every cluster to remain relatively fixed within the
feature space.  Each of the weighting functions is balanced, providing for constant
energy across the image throughout the VCD process.

Figure 6 shows a plot of the mean values for each of the three clusters through
several iterations of VCD on the computer generated egg phantom.  Note that the
cluster centers do not vary significantly between iterations.

7.3  Region Boundary Pixels

Bayesian classification combined with VCD systems often have the property that the
enhanced boundary gradients arising from the diffusion lead to binary classification,
often ignoring partial voluming effects.  The statistically based mechanism described
here is sensitive enough to provide superior probability information regarding the
nature of region boundary pixels.
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Figure 6 - Plots of the mean values for the pre-classification pixel information during
100 iterations of VCD on the computer generated egg phantom

In essence, the rate at which the process diffuses pixel values is based on the
narrowness of the distributions of the pre-selected classifying pixels.  If the user
supplies a training pattern that has only representative values, then the variance for
that cluster will begin low indicating low conductance for similar pixels.  Boundary
pixels appear relatively dissimilar when variance is low; subsequently, they do not
migrate toward the mean value.

If a sharper classification is desired, however, it is only necessary for the user to
widen the initial variance of the classification distribution by selecting pixels that are
only marginally representative of the tissue class.  This will widen the distributions
specified by the training class initially, causing border pixels to begin diffusing toward
a classification mean reinforced by the classification strength of their neighboring
pixels.  As VCD proceeds, however, continued narrowing of the classifications
provides the appropriate reduction of interpixel conductance.
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8  Future Work

Limiting the use of statistical information to local neighborhoods in controlling
diffusion may make possible an adaptive filter that will perform segmentation even in
the presence of non-linear distortions of signal intensity.  "Cold" spots or sensitivity
depressions are the subject of much discussion over MR data, and make traditional
Bayesian classification difficult.  In order to best adapt VCD systems to MR data, a
study of the statistical nature of multivalued MR data, or more precisely, a study of
the correlation between MR echoes of a single data set is intended.

Using this information, we propose to construct diffusion systems that depend on
local statistical information, rather than traditional global cluster information.  The
problems of small sample size are expected to be the most significant obstacle in this
proposed direction.  The goal is to enable VCD filtering in regions of low sensitivity,
intensity, or contrast, even as they cross sensitivity distortion boundaries.

9  Conclusions

We have demonstrated a means of setting relaxation control parameters for variable
conductance diffusion by allowing the user to specify tissue types of interest in
medical images.  The resulting images show significant stability with regions of
interest converging on a limited range of intensities.  Border pixels of homogeneous
regions show pronounced stability.  They do not leak into surrounding regions.

A weakness of this method is that it continues to depend upon a
relaxation/annealing schedule that is arbitrarily set by the user.  We continue to
explore methods for determining better means of controlling of relaxation parameters
to work toward VCD in the presence of non-linear distortions of image intensity.
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