
SEMANTIC INTEGRATION THROUGH INVARIANTS
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1. INTRODUCTION

Many tasks require correct and meaningful communication and integration among in-
telligent agents and information resources. A major barrier to such interoperability is se-
mantic heterogeneity: different applications, databases, and agents may ascribe disparate
meanings to the same terms or use distinct terms to convey the same meaning. The de-
velopment of ontologies have been proposed as a key technology to support semantic
integration—two software systems can be completely semantically integrated through a
shared understanding of the terminology in their respective ontologies.

A semantics-preserving exchange of information between two software applications re-
quires mappings between logically equivalent concepts in the ontology of each application.
The challenge of semantic integration is therefore equivalent to the problem of generating
such mappings, determining that they are correct, and providing a vehicle for executing the
mappings, thus translating terms from one ontology into another.

Current approaches to semantic integration do not fully exploit the model-theoretic
structures underlying ontologies. They are typically based on the taxonomic structure of
the terminology ([11], [12]) or heuristics-based comparisons of the symbols of the ter-
minology ([1, 8]). These approaches are well-suited to working with many ontologies
currently under development, most of which define a terminology with minimal formal
grounding and a set of possible models which does not contain a rich set of features and
properties.

However, automated and correct approaches to semantic integration will require ontolo-
gies with a deeper formal grounding so that strong decisions may be made by automated
process in comparing ontologies for integration. This article presents an approach to this
goal, by presenting techniques based on the development of strong ontologies with termi-
nologies grounded in properties of the underlying possible models. With these as inputs,
semi-automated and automated components may be used to create mapping between on-
tologies and perform translations.

The Process Specification Language (PSL) ([5], [6]) is used in this article to demon-
strate this approach to ontology construction and integration. It has been designed to facil-
itate correct and complete exchange of process information among manufacturing systems
such as scheduling, process modeling, process planning, production planning, simulation,
project management, workflow, and business process reengineering. Its primary function is
as a neutral interchange ontology, providing a mediator between integration targets ([2]).
As of June 2004, Part 1 of PSL has been accepted as an International Standard through
project ISO 18629 within the International Organisation of Standardisation.

PSL consists of a core ontology which outlines basic objects that exist in the domain,
and a multitude of definitional extensions that provide a rich terminology for describing
process knowledge. These extensions are based on invariants, properties of the models
preserved by isomorphism, which partition the first-order models of the core ontology.
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2 MICHAEL GRÜNINGER AND JOSEPH B. KOPENA

Using these invariants, semantic mappings between application ontologies and PSL may
be semi-automatically generated. In addition, the direct relationship between the PSL ter-
minology and the invariants improves the ability to verify the generated results. These
semantic mappings may then be used to perform integration between applications or on-
tologies. They may also be used to bootstrap an ontology to those applications which do
not have an associated, explicit, formal ontology as well as to analyze the application.

This article first describes the integration architecture which outlines the entire process.
A brief overview of PSL is then provided, particularly in regards to the construction of its
terminology. The form and process of creating semantic mappings is then given. Appli-
cation and ontology analysis and integration is then presented, followed by a concluding
discussion of open problems in this area and a summary of this article.

2. AN ARCHITECTURE FORSEMANTIC INTEGRATION

This section describes the Interlingua Architecture, the basic approach to application
integration employed in this work. Semantic integration is then presented in terms of this
architecture as the tasks and questions which must be performed and answered.

2.1. The Interlingua Architecture. Informally, semantic mappings express the meaning
of a term from one ontology in terms of the other ontology; each such mapping may simply
link one term to another or may specify a complex transformation. More formally, semantic
mappings are characterized by the notion of definable interpretation ([9]): LetN be a
structure in the languageL0 andM be a structure in the languageL . We say thatN is
definably interpretable inM iff we can find a definable subsetX of Mn and we can interpret
the symbols ofL0 as definable subsets and functions onX so that the resulting structure
in L0 is isomorphic toN . An ontologyT1 is definably interpretable in an ontologyT2 iff
every model ofT1 is definably interpretable in a model ofT2.

In current practice, semantic mappings are manually generated directly between the ap-
plication ontologies. However, for software applications operating in open environments
such as the Semantic Web, it cannot be assumed that the mappings have been generated
prior to the interaction between the applications. In [7], a number of architectures have
been proposed to support semantic integration in such an open environment. Each archi-
tecture is distinguished by the origins of the semantic mappings, the existence of a medi-
ating ontology, and the degree of agreement that exists among the anticipated community
of interacting software.

The Interlingua Architectureis adopted within this work, the distinguishing feature of
which is the existence of a mediating ontology that is independent of the applications’ on-
tologies and is used as a neutral interchange ontology ([2]). Semantic mappings between
application and interlingua ontologies are manually generated and verified prior to appli-
cation interaction time [3]. This process of creating the mapping between the application
ontology and the interlingua ontology is identical to the process of creating a mapping di-
rectly between two application ontologies, the key difference of this approach being that
application ontologies are integrated with the interlingua rather than each other.

The most obvious property of this approach is the dramatic reduction of the number of
translators which must be constructed. The manual, point-to-point approach requires on
the order ofn2 translators, one for each pairing, while the interlingua approach mandates
only one translator per application. In addition to the initial costly development of a trans-
lator for each pairing under the point-to-point approach, if one application’s ontology is
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FIGURE 1. Translation pairings for a set of manufacturing process systems.

changed, each associated translator must be updated. Using an interlingua, only the trans-
lator to and from the interlingua must be maintained for each application.1. An example
of these properties from the domain of systems for managing manufacturing processes is
shown in Figure 1.

Importantly, the point-to-point approach does not work in environments which feature
unanticipated software interactions. Interaction can only occur between pairs of software
for which a specific translator has been previously developed. Using the interlingua model,
a mapping between the application ontology and the interlingua is all that is necessary to
interact with the community of software for which mappings to and from the interlingua
have also been developed. This eliminates the problem of changes in applications mandat-
ing changes to all other systems, and allows existing software to seamlessly interoperate
with newly introduced applications. This is not possible using manual, point-to-point map-
pings.

2.2. Integration and Translation. Under the Interlingua Architecture, there are two steps
in translation: the execution of the mapping from the application ontology to the inter-
lingua and subsequently from the interlingua to the target application’s ontology. If the
application ontologies and the interlingua ontology are specified using the same logical
language, then translation can be accomplished by applying deduction to the axioms of the
interlingua ontology in conjunction with the formal mapping rules ([3], [2]). In effect, a
direct mapping rule from one application’s ontology to the target application’s ontology
is inferred from the two separate rules. If these mapping rules have been verified to pre-
serve semantics between the application and interlingua ontology, it is guaranteed that this
translation between the applications also preserves semantics.

An important question is then whether the existence of the pre-defined mappings be-
tween the application ontologies and the interlingua ontology enables the automatic gener-
ation of a point-to-point mapping between the applications’ ontologies. More formally, if
M1 andM2 are both definably interpretable inN , isM1 definably interpretableM2? An-
swering this question is equivalent to the task of semantic integration within the Interlingua
Architecture; it is addressed in this work by comparing the mappings between application
ontologies and the interlingua.

1See [13] for a more detailed discussion of the tradeoffs between the point-to-point and interlingua
approaches.
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3. INVARIANT-BASED ONTOLOGY DESIGN

This section briefly overviews the core of the PSL Ontology. It then introduces the
notion of invariant-based ontologies and demonstrates how this approach has been used in
defining the extensive PSL terminology.

3.1. Core Theories of The Process Specification Language.The PSL ontology is a set
of theories in the language of first order logic. Theories that introduce new primitive con-
cepts are referred to as core theories, while theories containing only conservative defini-
tions are referred to as definitional extensions2.

All core theories within the ontology are consistent extensions of PSL-Core, (Tpsl core),
which axiomatizes a set of intuitive semantic primitives that is adequate for describing
the fundamental concepts of manufacturing processes. Specifically, PSL-Core introduces
four disjoint classes: activities, activity occurrences, timepoints, and objects. Activities
may have zero or more occurrences, activity occurrences begin and end at timepoints,
and timepoints constitute a linearly ordered set with endpoints at infinity. Objects are
simply those elements that are not activities, occurrences, or timepoints. Extensions to
PSL-Core defining the core theories include axiomatizations of occurrence trees, discrete
states, subactivities, atomic activities, and complex activities.

3.1.1. Occurrence Trees.The occurrence trees that are axiomatized in the core theory
Tocctreeare partially ordered sets of activity occurrences—for a given set of activities, all
discrete sequences of their occurrences are branches of a tree. An occurrence tree contains
all occurrences ofall activities, not simply the set of occurrences of a particular (possibly
complex) activity. As each tree is discrete, every activity occurrence in the tree has a unique
successor occurrence of each activity.

There are constraints on which activities can possibly occur in some domain. This intu-
ition is the cornerstone for characterizing the semantics of classes of activities and process
descriptions. Although occurrence trees characterize all sequences of activity occurrences,
not all of these sequences will intuitively be physically possible within the domain. We will
therefore want to consider the subtrees of the occurrence trees that consist only ofpossible
sequences of activity occurrences; such a subtree is referred to as a legal occurrence tree.

3.1.2. Discrete States.The core theoryTdisc state introduces the notion of fluents (state).
Fluents are changed only by the occurrence of activities, and fluents do not change during
the occurrence of primitive activities. In addition, activities have preconditions (fluents that
must hold before an occurrence) and effects (fluents that always hold after an occurrence).

3.1.3. Subactivities.The PSL Ontology uses thesubactivityrelation to capture the basic
intuitions for the composition of activities. This relation is a discrete partial ordering in
which primitive activities are the minimal elements.

3.1.4. Atomic Activities.The core theoryTatomic axiomatizes intuitions about the concur-
rent aggregation of primitive activities. This is represented by the occurrence of concurrent
activities, rather than concurrent activity occurrences.

2The complete set of axioms for the PSL Ontology can be found at
http://www.mel.nist.gov/psl/psl-ontology/. Core theories are indicated by a .th suffix and defi-
nitional extensions by a .def suffix. As of June 2004, the ontology is in version 2.2.
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3.1.5. Complex Activities.The core theoryTcomplexcharacterizes the relationship between
the occurrence of a complex activity and occurrences of its subactivities. Occurrences of
complex activities correspond to sets of occurrences of subactivities; in particular, they
form subtrees of the occurrence tree. An activity tree consists of all possible sequences of
atomic subactivity occurrences beginning from a root subactivity occurrence. In a sense,
activity trees are a microcosm of an occurrence tree, in which we consider all of the ways
in which the world unfoldsin the context of an occurrence of the complex activity.

Each activity tree is composed of a set of isomorphic copies of a unique minimal activ-
ity tree consisting only of subactivity occurrences. Not every occurrence of a subactivity is
a subactivity occurrence; there may be other external activities that occur during an occur-
rence of an activity, or subactivity occurrences may need to satisfy temporal constraints.
Within models ofTcomplex, these constraints on subactivity occurrences are captured by
different ways of embedding the minimal activity tree into the activity tree.

3.2. Terminologies Based on Classification by Invariant.Many ontologies are specified
as taxonomies or class hierarchies, yet few provide formal justification for their classifica-
tion scheme. If we consider ontologies of mathematical structures, we see that logicians
classify models by using properties of models, known as invariants, that are preserved by
isomorphism.

For some classes of structures, invariants can be used to classify the structures up to
isomorphism; for example, vector spaces can be classified up to isomorphism by their
dimension. For other classes of structures, such as graphs, it is not possible to formulate
a complete set of invariants. However, even without a complete set, invariants can still
be used to provide a classification of the models of a theory. Figure 2 provides such an
example from the domain of geometric shapes. Some invariants of objects in this domain
are given in Figure 2(a). These are used in Figure 2(b) to define the class of regular shapes.
Several shapes are classified against this definition and the results given in Figure 2(c).

Following this methodology, the set of models for the core theories of PSL are parti-
tioned into equivalence classes defined with respect to the set of invariants of the models.
Each equivalence class in the classification of PSL models is axiomatized using a defi-
nitional extension of PSL. Each definitional extension in the PSL Ontology is associated
with a unique invariant; the different classes of activities or objects that are defined in an
extension correspond to different properties of the invariant. In this way, the terminology
of the PSL Ontology arises from the classification of the models of the core theories with
respect to sets of invariants and intuitively corresponds to classes of activities and objects.

Models of the core theory of complex activities are classified with respect to invariants
related to substructures of activity trees. In particular, the models can be completely char-
acterized by four invariants—the minimal activity tree, the variation of the minimal activity
tree across the occurrence tree, the way in which the minimal activity tree is embedded into
the activity tree, and the distribution of activity trees within the occurrence tree. Each of
these substructures can in turn be classified with respect to their own sets of invariants.

Many of the invariants corresponding to definitional extensions in the PSL Ontology are
related to the automorphism groups or semigroups3 for different substructures of the mod-
els. The following subsections demonstrate two examples of PSL invariants, one defined
with respect to models of the theoryTocctree∪Tdisc state and the other defined with respect
to models ofTcomplex.

3An automorphism is a bijection from a structure to itself that preserves the extensions of the relations and
functions in the structure; intuitively, it is a symmetry in the structure.
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◦ Is the shape a polygon withn≥ 3 sides?
◦ Is the shape convex?
◦ Is the symmetry groupSymmof the shape≡ Dn, which consists of the ro-

tationsR2kp/n for k = 0,1, . . . ,n−1 and the reflectionsRl1, . . . ,Rln about the
lines l1, . . . , ln connecting the centroid to the vertices and midpoints?

(a) Several invariant properties of geometric shapes.

Regular polygons≡ convex polygons w/n≥ 3 sides and symmetry group≡ Dn.

(b) Definition for the class of regular shapes using the above invariants.
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yes,n = 3;
convex;

Symm≡ Dn

⊃ regular

(c) Several shapes classified as regular or irregular through comparison to the definition.

FIGURE 2. The use of invariants in constructing a terminology of geo-
metric shapes. Although not a complete set, these invariants do provide
for formally defining terms in the language.

3.2.1. Preconditions.With respect to the models of the theoryTocctree, we can consider
mappings that are permutations of activity occurrences that preserve legal occurrences of
an activitya in an occurrence tree; this set of mappings forms a group, which is referred
to asOP(a). Each invariant related to occurrence constraints is based on subgroups of this
group.

The most prevalent class of occurrence constraints is that of Markovian activities, ac-
tivities whose preconditions depend only on the state prior to the occurrences. The class of
Markovian activities is defined in the definitional extensionstate precond.de f, a portion
of which is given in Figure 3.

The invariant associated with this extension is the groupPF (a), which is the maximal
normal subgroup ofAut(F ) that is also a subgroup ofOP(a). In this example,F is
the structure isomorphic to the extension of theprior relation. Aut(F ) is the group of
permutations that map activity occurrences only to other activity occurrences that agree on
the set of fluents that hold prior to them. IfPF (a) = Aut(F ), then these permutations
preserve the legal occurrences of an activity, and the activity’s preconditions are strictly
Markovian; this is axiomatized by themarkov precondclass in Figure 3. IfPF (a) is
only a subgroup ofAut(F ), then there exist additional non-Markovian constraints on the
legal occurrences of the activity; this is axiomatized by thepartial stateclass in Figure 3.
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(1) (∀o1,o2)stateequiv(o1,o2)≡
(∀ f ) (prior( f ,o1)≡ prior( f ,o2))

(2) (∀a,o1,o2) possequiv(a,o1,o2)≡
(poss(a,o1)≡ poss(a,o2))

(3) (∀a)markov precond(a)≡
((∀o1,o2)stateequiv(o1,o2)⊃ possequiv(a,o1,o2))

(4) (∀a) partial state(a)≡
(∃o1) ((∀o2)stateequiv(o1,o2)⊃ possequiv(a,o1,o2))
∧(∃o3,o4)stateequiv(o3,o4)∧¬possequiv(a,o3,o4)

(5) (∀a) rigid state(a)≡
(∀o1)(∃o2)stateequiv(o1,o2)∧¬possequiv(a,o1,o2)

FIGURE 3. Classes of activities with state-based preconditions from the
definitional extensionstate precond.de f.

If PF (a) is the trivial identity group, then there are no Markovian constraints on the legal
occurrences of the activity; this is axiomatized by therigid stateclass in Figure 3.

The additional relations in Figure 3 are defined to capture the action of the automor-
phism groups on the models. Two activity occurrenceso1,o2 arestateequiviff there exists
a permutation inAut(F ) that mapso1 to o2; the two activity occurrences arepossequiv
iff there exists a permutation inOP(a) that mapso1 to o2.

3.2.2. Classes of Complex Activities.This second example concerns invariants for com-
plex activities based on symmetries of the activity trees. The automorphism groups used
here are defined as sets of mappings between branches that preserve different properties of
the activity trees.

Two branches of an activity tree are occurrence-isomorphic if there is a one-to-one map-
ping of subactivity occurrences that preserves the activities—occurrences of an activity are
mapped to occurrences of the same activity, but order is not preserved. In the activity tree
in Figure 4, the mapping(o1,o2,o3,o4)↔ (o7,o8,o5,o6) is an occurrence-isomorphism; a
triangle is mapped to a triangle, a circle to a circle, and so on.

One invariant for activity trees considers the group of occurrence isomorphisms. An
activity tree ispermutedif this group is symmetric,nondet permutedif it is the product
of symmetric groups,partial permutedif there are no branches that are fixed, andsimple
if there are no nontrivial permutations of subactivity occurrences in the activity tree.

Two branches of an activity tree are order automorphic if there is a one-to-one mapping
of subactivity occurrences that preserves the ordering and which also allows permutation of
the activities. In the activity tree in Figure 4, the mapping(o1,o2,o3,o4)↔ (o5,o6,o7,o8)
is an order-isomorphism, in which there is also the following mapping on the set of activi-
ties: (a1,a2,a3,a4)⇔ (a3,a4,a1,a2). In Figure 4, this is depicted as mapping a triangle to
a circle, and an inverted triangle to a square.

Another invariant for activity trees considers the group of order automorphisms. An
activity tree isorderedif this group is the automorphism group of a tree,nondetordered
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FIGURE 4. Example of an activity tree for aSplit activity in OWL-S.
Note that the diagram depicts two separate activity trees within a stylized
legal occurrence tree. Also, occurrences of different subactivities are
depicted by different shapes; triangles are occurrences of the activitya1,
inverted triangles are occurrences ofa2, circles are occurrences ofa3,
and squares are occurrences ofa4.

if it is the product of the automorphism groups of a set of trees, andunorderedif there are
no nontrivial order automorphisms in the activity tree.

4. SEMANTIC MAPPING VIA TRANSLATION DEFINITIONS

As noted in Section 2, the generation of semantic mappings between two ontologies
T1 andT2 is equivalent to the formal problem of determining whetherT1 is definably in-
terpretable inT2. Although in general an extremely difficult problem, the invariants used
in the classification of the models of the ontologies can also be used to generate semantic
mappings. Semantic mappings preserve models—each model of the ontologyT1 is mapped
to an isomorphic substructure of a model of the ontologyT2. Since invariants are properties
of the models that are preserved by isomorphism, semantic mappings must also preserve
the invariants. Therefore, if models ofT1 andT2 are characterized up to isomorphism by
some sets of invariants, thenT1 is definably interpretable inT2 iff there is a mapping of the
invariants ofT1 to the invariants ofT2; a concept inT1 will be mapped to a concept inT2 iff
the invariants have the same values.

Translation definitionsspecify the semantic mappings between PSL and application
ontologies. Following the above discussion, they are generated using the organization of
the definitional extensions, each of which corresponds to a different invariant. Every class
of activity, activity occurrence, or fluent in an extension corresponds to a different value for
the invariant. The consequent of a translation definition is equivalent to the list of invariant
values for members of the application ontology class.

Translation definitions have a special syntactic form—they are biconditionals in which
the antecedent is a class in the application ontology and the consequent is a formula that
uses only the lexicon of the PSL Ontology. For example, the concept ofAtomicProcessin
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the OWL-S Ontology ([10]) has the following translation definition:

(∀a)AtomicProcess(a)≡ primitive(a)∧markov precond(a)∧
(markove f f ects(a)∨context f ree(a)).

The invariant corresponding to themarkov precondclass was discussed in the Sec-
tion 3.2.1; the invariants corresponding to themarkove f f ectsandcontext f ree classes
are based on automorphism groups consisting of permutations of activity occurrences that
preserve effects (i.e., fluents that are achieved or falsified by activity occurrences).

Similarly, the classes of activity trees associated with the occurrence isomorphism and
order isomorphism groups described in Section 3.2.2 can be applied to specify translation
definitions for additional classes of activities in OWL-S. In an OWL-S Split activity, sets of
subactivities are performed in parallel. There exist nontrivial permutations of subactivity
occurrences among the branches of the activity trees, as shown by the example in Figure 4,
so that the translation definition is:

(∀a)Split(a)≡ uni f orm(a)∧ (∃o)occurrenceo f(o,a)∧
¬simple(o)∧ordered(o)∧strong poset(o).

This translation definition has two parts; the first part declares that the activity is uniform—
all activity trees for the activity are isomorphic. The second part states that there exists an
activity tree for the activity which is ordered and not simple.

4.1. Semi-Automatic Generation of Semantic Mappings.The generation of semantic
mappings through the specification of invariant values has been implemented in the PSL
project’s Twenty Questions mapping tool4. Each question corresponds to an invariant, and
each value of the invariant is a possible answer to the question. Any particular activity,
activity occurrence, or fluent will have a unique value for the invariant; however, if we
are mapping a class of activities, occurrences, or fluents from some application ontology,
then different members of the class may have different values for the same invariant. In
such a case, one would respond to a question by supplying multiple answers. By guiding
and supporting users in creating translation definitions without requiring them to work
directly with first order logic axiomatizations, the Twenty Questions tool provides a semi-
automated technique for creating semantic mappings.

Figure 5 gives a sample question corresponding to the invariantPF (a). The possible
values for this invariant are subgroups ofAut(F ), so that exactly one of the following
must be true:PF (a) = Aut(F ), PF (a) < Aut(F ), or PF (a) = I . Following the ax-
iomatizations given in Figure 3 for the classes of activities corresponding to these values,
selecting the first answer would generate the translation definition:

(∀a)myclass(a)≡markov precond(a).

Selecting the first two answers would give the translation definition:

(∀a)myclass(a)≡ (markov precond(a)∨ partial state(a)).

In this latter case, some activities inmyclasswill have Markov preconditions while other
activities will not.

This example raises the issue of validating the semantic mappings that are generated in
this way—how can we determine the correctness of the mappings between an application
ontology and the PSL Ontology? If the application ontologies are axiomatized, then we
can verify the semantic mappings by proving that they do indeed preserve the models of the

4Available athttp://ats.nist.gov/psl/twenty.html.
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2. Constraints on Atomic Activity Occurrences based on State
Are the constraints on the occurrence of the atomic activity based only on the state prior

to the activity occurrence?
2 Any occurrence of the activity depends only on fluents that hold prior to the

activity occurrence.
2 Some (but not all) occurrences of the activity depend only on fluents that hold

prior to the activity occurrence.
2 There is no relationship between occurrences of the activity and the fluents

that hold prior to occurrences of the activity.

FIGURE 5. One of the Twenty Questions, used to classify activities with
state-based preconditions.

ontologies. This can be done in by demonstrating that the class of models of the application
ontology is axiomatized by the interlingua, in this case PSL, together with the translation
definitions.

4.1.1. Bootstrapping Application Ontologies.Software such as the Twenty Questions tool
provides support for other tasks in addition to creating mappings between application on-
tologies and the interlingua. In particular, they may be used to define a formal ontology
for applications which do not have an explicitly axiomatized ontology. This is afforded by
the assumption of theOntological Stance([6]), the main tenet of which is that a software
application may be modeled as if it were an inference system working on an axiomatized
ontology.

The Ontological Stance is an operational characterization of the set of intended models
for the application’s terminology. In this sense, it should be treated as a semantic constraint
on the application—it does not postulate a specific set of axioms, but rather a set of intended
models. Given a software application, there exists a class of modelsM A such that any
sentenceΦ is decided by the application to be satisfiable iff there existsM ∈M A such
thatM |= Φ.

By answering the questions presented by the Twenty Questions tool, the application
designer is capturing the application’s set of intended models. Given correct input, the
translation definitions generated by the tool together with the interlingua ontology define
an explicit axiomatization of the application’s previously implicit ontology.

To validate the attributed ontology, the generated translation definitions may be treated
as falsifiable hypotheses and tested empirically. By the Ontological Stance, the application
decides some sentenceΦ to be provable iffTpsl∪Ttranslation |= Φ whereTpsl is the set of
axioms for the PSL Ontology andTtranslation is the set of translation definitions that are
being verified. In this way, it may be evaluated whether or not the attributed ontology
correctly predicts inferences made by the software, and consequently whether or not the
translation definitions accurately capture the semantics of the application.

5. COMPARISON OFSEMANTIC INTEGRATION PROFILES FORINTEGRATION

The set of translation definitions for all concepts in a software application’s ontology
defines asemantic integration profilefor that application. If the interlingua hasm invariants
and each invariantn values, then an application profile will have the form:



SEMANTIC INTEGRATION THROUGH INVARIANTS 11

(∀a)Conto
1 (a)≡ (p11(a)∨ . . .∨ p1n(a))∧ . . .∧ (pm1(a)∨ . . .∨ pmn(a))

...

(∀a)Conto
k (a)≡ (p11(a)∨ . . .∨ p1n(a))∧ . . .∧ (pm1(a)∨ . . .∨ pmn(a))

Note that although the translation definition for the OWL-S Split class as presented in
Section 4 appears to not follow this form, the variation is merely syntactic. Some invariants
of the PSL ontology do not pertain directly to classes of activities, but rather indirectly
through associated classes of sets of occurrences.

As noted in Section 2.2, translation between integration targets may be accomplished
by applying deduction to the axioms of the interlingua, the semantic mappings, and the
input to be translated. For example, given the following mappings from two application
ontologies into PSL:

(∀a)Calice
1 (a)≡ unconstrained(a)∧ (markove f f ects(a)∨context f ree(a)).

(∀a)Cbob
1 (a)≡ (unconstrained(a)∨markov precond(a))∧context f ree(a).

The following mappings between the two concepts may be inferred:

Tpsl |= (∀a)markov precond(a)⊃ (Calice
1 (a)⊃Cbob

1 (a)).

Tpsl |= (∀a)markove f f ects(a)⊃ (Cbob
1 (a)⊃Calice

1 (a)).

Such mappings will in general take the form of:

(∀a) (p11(a)∨ . . .∨ p1n(a))∧ . . .∧ (pm1(a)∨ . . .∨ pmn(a))⊃ (Calice
i (a)⊃Cbob

j (a)))

The antecedents of these sentences can be considered to be guard conditions that determine
which activities can be shared between the two ontologies. This can either be used to
support direct exchange, or simply as a comparison between the application ontologies.
In this example, thealice can export anyunconstrainedactivity description tobob and
bobcan export anycontext f reeactivity description toalice; however,alicecannot export
markov precondactivity descriptions tobobandbobcannot export anymarkove f f ects
activity descriptions toalice.

Although inferred implicitly during translation, these relationships may be explicitly
determined by the simple PROFILE-COMPARE algorithm presented in Figure 6. Explicitly
inferring these mappings offers several capabilities. If run-time translation efficiency is
important, then these point-to-point mapping rules could be generated upon first interac-
tion and then cached as explicit rules to be used in subsequent interactions. A detailed
discussion of such tradeoffs and overlaps between point-to-point and interlingua-based in-
tegration approaches is presented in [13].

In addition, by explicitly generating such mappings, it may be possible to use simpler
inference engines to perform translation, rather than requiring a full first order reasoner to
implicitly translate using axioms of the interlinqua, the semantic mappings, and the input
to be translated. Importantly, such explicit mappings may also be used by the application
designers to examine the structure of their application as well as to to evaluate relationships
and coverage relative to the interlingua or other ontologies.
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PROFILE-COMPARE(Pa,Pb)
1 for eachCa ∈ Pa
2 do for eachCb ∈ Pb
3 do {ga,gb}← CONCEPT-COMPARE(Ca,Cb)
4 OUTPUT(‘ga⊃ (Ca⊃Cb)’)
5 OUTPUT(‘gb⊃ (Cb⊃Ca)’)

CONCEPT-COMPARE(Ca,Cb)
1 Ra← true;Rb← true
2 for i← 1 to m
3 do s← VALUES(Ca, i)∩ VALUES(Cb, i)
4 if s 6= /0
5 then Ra← CONJUNCTION(Ra,DISJUNCTION(s))
6 Rb← CONJUNCTION(Rb,DISJUNCTION(s))
7 else ifVALUES(Ca, i) 6= /0∧ VALUES(Cb, i) 6= /0
8 then error “No mapping.”
9 return {Ra,Rb}

FIGURE 6. The PROFILE-COMPARE algorithm for determining rela-
tionships between ontologies, given the semantic integration profiles.

6. OPEN PROBLEMS

Several important issues related to semantic integration have not been addressed so far
in this work, including:

• Translation Definitions for Primitive Relations
All of the translation definitions generated by the Twenty Questions tool are

restricted to semantic mappings using only the definitional extensions of the PSL
Ontology; they do not provide general semantic mappings between concepts within
the core theories of the ontology.

Translation definitions are also restricted to mappings between the classes of
the application ontology and the PSL Ontology; they do not map relations in the
different ontologies. For example, different applications may impose restrictions
on thesubactivityrelation in the composition of complex activities—in one on-
tology, the relation may not be transitive, while in the other ontology, the relation
may be isomorphic to a bipartite graph consisting of primitive and nonprimitive
activities. Even though both of these relations are definably interpretable within
the PSL Ontology, the mappings do not use invariants, and there is no general way
of generating a direct mapping between the two ontologies.

This leads to the following question:
Under what conditions does the existence of a semantic integration profile

guarantee the existence of a definable interpretation of primitive relations with
respect to the invariants in the profile?
• Incomplete Sets of Invariants

The approach to semantic integration taken in this paper relies on the existence
of a complete set of invariants for the models of the ontology. However, there
are theories (e.g. graphs) for which such a set of invariants cannot be found. In
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such cases, two concepts may have equivalent semantic integration profiles (i.e.,
equivalent values for the invariants) yet not have isomorphic intended models.

In some cases, this may require the introduction of new core theories to ax-
iomatize the intended models of the concepts. For example, a theory of resource
requirements would be required to distinguish between different classes of manu-
facturing and logistics activities. Of course, this does not eliminate the problem if
the models of the new core theories also do not have complete sets of invariants.

Given a theory whose models cannot be completely classified by some set of
invariants, how can the translation definitions be augmented by more general rel-
ative interpretation axioms?
• Recognizing Classes from Domain Theories

The PSL Ontology makes a distinction between the axioms of the ontology and
the axioms of a domain theory that uses the ontology, which are characterized as
syntactic classes of sentences that are satisfied elements of the models. For ex-
ample, traditional precondition axioms are characterized as the class of sentences
that are satisfied bymarkov precondactivities, and traditional effect axioms are
equivalent to the class of sentences that are satisfied bymarkove f f ectactivities.
On the other hand, many process ontologies used by software applications do not
explicitly specify classes of activities, but only specify syntactic classes of process
descriptions.

Is it always possible to automatically determine the profile for a class using
only the domain theory associated with elements of the class?

7. CONCLUSIONS

This paper has described how model-theoretic invariants of an ontology can be used to
specify semantic mappings translation definitions between application ontologies and an
interlingua. In particular, examples have been presented using the Process Specification
Language (PSL) ontology as the neutral medium in integration.

The sets of models for the core theories of PSL are partitioned into equivalence classes
defined with respect to the invariants of the models. Each equivalence class in the classi-
fication of PSL models is axiomatized using a definitional extension of PSL. The Twenty
Questions tool that is based on these invariants and definitional extensions supports semi-
automatic generation of semantic mappings between an application ontology and the PSL
Ontology.

This approach can be generalized to other ontologies by specifying the invariants for
the models of the axiomatizations. Future work in this area includes developing software
to generate mappings based on profiles created with the Twenty Questions tool and appli-
cation to translation between PSL and other ontologies (such as OWL-S) and translators
for existing process modelers and schedulers.
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