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Abstract 
 

Emerging applications of mobile data management, 
such as content-based image retrieval in ad hoc 
networks, require the awareness of content distribution 
to enact and optimize the communication and search 
tasks. Caching is a widely used approach in mobile 
environments to improve system performance and keep 
track of replications. Within the scope of mobile and 
ubiquitous computing infrastructure, traditional 
caching techniques are not effective for large-size data 
such as images due to the limitations of bandwidth, 
storage, and power. The functionality of caching 
techniques relies on exact match, making them 
unsuitable for imprecise and similarity-based queries. 
In addition, the description of cached contents is 
defined based on the query context instead of data 
content, which fails to exploit the semantic locality of 
cached data and makes the traditional caching 
techniques inefficient in utilizing cache storage. In this 
paper, we present a semantic-aware caching scheme 
(SAIC) for image databases in ad hoc networks. The 
proposed scheme is designed based on several novel 
ideas: 1) multi-level partitioning of semantic space, 2) 
constraint-based representation of image semantics, 3) 
non-flooding query resolution, and 4) adaptive cache 
consistency maintenance. Our combination of theore-
tical analysis and simulation show the efficiency of the 
proposed scheme, and evaluate its performance in 
comparison against two ad hoc caching schemes as 
advanced in the literature.  
 
1. Introduction 
 

With the advent of mobile networks and ubiquitous 
computing, ad hoc networks are becoming popular in 
environments where the infrastructures are either 
destroyed or too expensive to be built. Most of the 

previous research focuses on routing protocols 
adaptive to the dynamic network topologies [1], and 
relatively few works have been reported on data 
processing [2]. The study of routing is important for 
successful communications; nevertheless, data 
processing is an equally significant issue in the 
applications of ad hoc networks, since the ultimate task 
of a network is to support data sharing and to allow 
timely and reliable access to the information. 
Consequently, there is a great need for methods that 
facilitate efficient accessing of voluminous data in ad 
hoc networks. 

One important data processing application for ad 
hoc networks is content-based image retrieval (CBIR). 
Due to the advances in visualization techniques, more 
and more information is represented as images instead 
of plain texts. Using images can enrich the communi-
cations between the nodes in an ad hoc network, 
making their messages more expressive. We use an 
example to show the necessity of accessing image data 
in ad hoc networks. 

Example 1 – Consider the information sharing of a 
rescue team in a flooded area. Messages transmitted 
between team members may include descriptions of 
wounded victims, damaged buildings, and dangerous 
circumstances. Correct judgments and actions need to 
be taken swiftly based on the situations described in 
the messages. However, some situations, e.g. the 
wound of a victim, cannot be easily described using 
only textual expressions. Moreover, the victims in the 
flooded area may have similar wound, hence similar 
queries may be issued continuously. In such a case, the 
capability of handling image data is of great 
importance. 

Ad hoc networks have both advantages and 
disadvantages in dealing with image data. In contrast 
with the lower-bandwidth wide-area wireless networks 
such as cellular networks (100Kbps for GRPS and 
384Kbps for W-CDMA), ad hoc networks 



comparatively offer higher bandwidth (11Mbps for 
IEEE 802.11b and up to 54Mbps for IEEE 802.11a 
and 802.11g) [1]. In addition, ad hoc networks do not 
rely on infrastructures to support node communications. 
However, this flexible infrastructure-free characteristic 
also complicates the process of image data access: The 
network topology is constantly changing due to node 
mobility. When a content-based query (e.g. nearest-
neighbor image query) is issued, the data source nodes 
are unknown at the requesting node. As a result, 
traditionally data-retrieval algorithms rely on flooding 
strategy to facilitate data access processing [3]. The 
flooding approach drastically consumes system 
resources — storage, bandwidth, and energy. Consi-
dering the sheer size of the images, the performance 
deterioration is more drastic. Consequently, ad hoc 
networks cannot utilize classical content-based image 
retrieval methods that are based on centralized or 
flooding mechanisms. To overcome this difficulty, this 
paper describes a semantic-aware image caching 
scheme (SAIC). We address the fundamental problem 
of supporting nearest-neighbor retrieval within the 
network, in which each node caches a semantic content 
of earlier queries. By analyzing the cache content, an 
overview of data distribution in the network is 
obtained, and the later queries are resolved with 
optimized search cost. 

The rest of this paper is organized into five sections: 
Section 2 introduces the background knowledge and 
related work. Section 3 outlines the preliminary 
concepts. Section 4 introduces the caching rationale. 
Section 5 evaluates the proposed scheme using 
experimental analysis. Section 6 draws the paper into 
conclusions. 
 
2. Background 
 
2.1. Image Representation 
 

Image representation provides the foundation for 
CBIR. Traditional feature-based image retrieval 
systems employ three types of features in image 
representation: color, shape, and texture [4]. However, 
the performance of feature-based systems is far from 
satisfactory due to the fact that images with similar 
features may not share common semantic contents, 
which is known as the semantic gap [5]. 

To bridge or narrow the semantic gap, one approach 
is to devise automatic semantic learning functions that 
map low-level feature space to high-level semantic 
space [4]. Based on the principles of semantic learning, 
the methods can be categorized as inductive and 
transductive ones [4]: 1) The goal of inductive 

methods is to create a classifier that identifies some 
training images based on semantic contents (e.g. 
annotations) and generalizes well on images without 
annotations. A widely used inductive model is support 
vector machine (SVM) [6]. 2) Transductive methods 
aim at accurately predicting the semantic relevance of 
the non-annotated images which are attainable during 
the training process. Methods belonging to this 
category include latent semantic analysis (LSA) [7], 
principal component analysis (PCA) [4], and locality 
preserving projection (LPP) [7]. 

Training sample images 
scattered in semantic space

The trained classifier partitions 
the space for semantic categories

with linear boundaries 

Figure 1:   An example of semantic categories. 

The inductive and transductive methods provide 
techniques for constructing and training classifiers that 
are capable of dividing the image data set (or semantic 
space) into regions with linear boundaries, where each 
region corresponds to a category of semantically simi-
lar images. Figure 1 illustrates an example of semantic 
categories in the semantic space. 

The partitioning of semantic space provides a 
means of representing and organizing images based on 
their semantic contents. Given a collection of 
semantically similar images, one can collectively 
represent them using the description of semantic 
categories. Based on this observation, a semantic 
caching scheme will be proposed in this paper to 
facilitate content based image retrieval in ad hoc 
networks. 
 
2.2. Ad Hoc Caching 
 

Caching has been widely used in mobile 
environment to reduce network traffic and deal with 
disconnections. Most of the previous study of caching 
for ad hoc networks focused on the efficient 
exploration of routing information [1] with only a few 
caching schemes to address the data retrieval issue [2]. 



The data caching in ad hoc networks is a natural 
extension of the caching schemes in wired networks ─ 
to keep a copy of the data items that have recently been 
accessed. Traditional schemes let a mobile node cache 
either the results of its recent queries or the data that 
have been forwarded though it to other nodes [2]. The 
data caching scheme proposed in [8] allows the 
caching of queries as the semantic descriptions of the 
cached data. Such a caching scheme is efficient only 
for small-size data items, and cannot effectively deal 
with large-size data such as images in mobile 
databases. In general, the classical semantic caching 
approaches have three major drawbacks in dealing 
with image retrieval: First, the traditional techniques 
rely on exact match of data items; however, image 
queries are usually imprecise and similarity-based. 
This characteristic of image retrieval makes it difficult 
for the traditional techniques to exploit the cached data. 
Second, the semantic description of the cached 
contents is obtained in the context of queries, and any 
change of queries will cause reorganization of the 
cache, which leads to the inefficient utilization of the 
cache space. Third, the semantic description does not 
reflect the popularity of data, making it inefficient in 
providing QoS-related services. 

Path caching is another application of caching in ad 
hoc networks ─ to record a path to the data source. The 
scope of path caching was further extended to the 
domain of data replica allocation in [9]. The CachePath 
scheme proposed in [2] dynamically caches the path 
information of passing-by data. These schemes, in 
general, consider the data items as independent entities 
and do not utilize the semantic locality among them. 
As a result, they do not explore content distribution in 
the ad hoc network. 

The work presented in this paper differs from the 
previous efforts since it is intended to devise a caching 
scheme that facilitates the content-based image 
retrieval in a dynamic distributed environment such as 
an ad hoc network. 

 
3. Problem Formulation 
 
3.1. Overview 
 

In this section, we introduce the formalized problem 
description of content-based image retrieval in ad hoc 
networks and the optimization goals in the context of 
the problem description. We assume reliable pair-wise 
message communications between mobile nodes in the 
order of their generation, using some existing hop-by-
hop routing protocol, such as AODV or DSR. 

The problem of content-based image retrieval in ad 
hoc networks can be viewed as follows: Given a set of 
images X = {x1, x2, …, xm} disseminated among a 
collection of mobile nodes N = {n1, n2, …, nr}, a query 
image xq, and an integer k, find the minimum subset N* 
= {n1

*, n2
*, …, ns

*} N containing k images with 
smallest semantic distances to x

⊂
q. 

Without loss of generality, we assume the images x1, 
x2, …, xm are represented as data points in a n-
dimensional semantic space Rn. The semantic 
similarity between two images is defined based on the 
Euclidean distance between their corresponding data 
points in Rn. 

Definition 1: Nearest-neighbor retrieval (k-NN) 
Given an image set X = {x1, x2, …, xm} and a query 
image xq, the nearest-neighbor retrieval of xq within X, 
denoted as k-NN(xq, X), is the following set: 
k-NN(xq, X) =  {xi│∀ y ∉k-NN(xq, X), dist(y, xq) > 
dist(xi, xq) ∧ | k-NN(xq, X)| = k}            (1) 
where dist(.) denotes the semantic distance between 
images. 

In the context of distributed data sources in an ad 
hoc network, the cost of k-NN is formidably high due 
to the necessity of traversing the whole network. Note 
that semantically similar images are densely located 
clusters in the semantic space (i.e. semantic 
categories). As a result, the cost of k-NN could be 
reduced through restricting the search region within a 
semantic category. 

Definition 2: Semantic category 
An n-dimensional semantic space Rn can be partitioned 
into a collection of orthogonal regions, which are re-
ferred to as semantic categories of images €1, €2, …, €t. 

As mentioned in section 2, the semantic categories 
are deducted from a training sample X  = 

{ 1x ,
2x ,…,

nx } that satisfies X  = U €
t

i 1=

i. Let δ(€i, X ) 

represent the sample data points in category €i, then the 
corresponding region of €i in the semantic space Rn , 
denoted as ζ(€i), can be viewed as the locus of points 
whose semantic distance to the data points in δ(€i, X ) 
is smaller than to those in any other semantic category. 

Given an image xi and a semantic category €j, if xi 
belongs to €j, their relationship is denoted as xi ∈  
ζ(€i). 

Definition 3: Inner-category k-NN 
Given an image xq and a semantic category €j, the 
inner-category k-NN of xq within category €j is a set: 
k-NNc(xq, €j) = {xi │∀ y ∉k-NNc(xq, €j), dist(y, xq) > 
dist(xi, xq) ∧ xi ∈  ζ(€j) }             (2) 



 
3.2. Multi-Level Semantic Description 
 

A hierarchical representation model is used to 
reduce the search space to a subset of categories when 
|k-NNc(xq, €j)| ≠ k. The main idea of the hierarchical 
representation model is based on the observation that 
k-NN retrieval may involve images from several basic 
semantic categories, which form a more generic scope 
with common semantic characteristics. The interrela-
tionship between semantic categories is defined as 
follows. 

Definition 4: Hypernym/Hyponym relationship 
The semantics of a given category €i could be anno-
tated as ω(€i). Then an on-line thesaurus ψ (e.g. 
Roget’s thesaurus or Wordnet) can be used to define 
the inter-relationship between semantic categories: 
For two given semantic categories €i and €j, 

(1) If ω(€i) describes a generic concept that 
includes ω(€j), then ω(€i) is a hypernym of 
ω(€j), denoted as ω(€i) f H ω(€i). 

(2) If ω(€i) describes a specific concept that is 
included in ω(€j), then ω(€i) is a hyponym of 
ω(€j), denoted as ω(€i) p H ω(€i). 

It can be proven that the hypernym/hyponym rela-
tionship is partial order, which shows the “inclusion” 
relationship between semantic categories. Based on 
this definition, we can construct a hierarchical 
semantic organization for semantic categories. 

Definition 5: Semantic hierarchy 
Given a set of orthogonal semantic categories Ω = {€1, 
€2, …, €t} and an on-line thesaurus ψ, the semantic 
hierarchy HS(Ω, ψ) is defined as the Hasse Diagram of 
(Ω,p H). 
 
3.3. Data Contents of Mobile Nodes 
 

As mentioned before, the images X = {x1, x2, …, 
xm} are disseminated among a collection of mobile 
nodes n1, n2, …, nr. Let Dc(ni) denote the images in 

node ni, as a result, U D
r

i 1=

c(ni) = X. The distribution 

pattern of the images over the nodes can be considered 
as a many-to-many relationship, i.e., each image may 
be distributed among multiple nodes, and each node 
may contain a collection of images. Based on this 
observation, we propose to represent the images in 
Dc(ni) using the combination of semantic categories 
and the minimum bounding region of the images. Here 
we define the concept of vicinity constraint. 

Definition 6: Vicinity constraint 

Given a set of images X* = {x1
*, x2

*, …, xh
*}, each 

image xi is represented as a vector of semantic attri-
butes vi = (ai

1, …, ai
n). The vicinity constraint Cv(X*) is 

a collection of constraints showing the n-dimensional 
minimum bounding region of x1

*, x2
*, …, xh

*: 
Cv(X*) = ([min{a1

1, …, ah
1}, max{a1

1, …, ah
1}],…, 

          [min{a1
n, …, ah

n}, max{a1
n, …, ah

n}])       (3) 

Definition 7: Node content descriptor 
Given a node nk and a semantic category €i, if every 
image xj in Dc(nk) satisfies xj ∈  ζ(€i), then the node 
content descriptor ξ(nk) is denoted as: 
ξ(nk)  =  ζ(€i)∩ Cv(Dc(nk))             (4) 

The node content descriptor as defined can be used 
to represent a collection of images as follows. Given a 
set of images X* = {x1

*, x2
*, …, xh

*}, first find their 
semantic categories as described in definition 2. In 
each category, use the intersection of category region 
and vicinity constraint to describe a tightly bounding 
region that encloses the images. Figure 2 shows an 
illustrative example of the node content description. 
 Semantic category boundary Vicinity constraint Image representation

ζ (€1) 

ζ (€2)

Cv
1

Cv
2

ζ (€1) ∩Cv
1 

 
ζ (€2) ∩Cv

2 

Figure 2: An illustrative example of a node content. 
 
4. Semantic-Aware Image Caching 
 

A semantic-aware image caching scheme (SAIC) is 
first presented in this section and then we investigate 
how to process CBIR in such an organization. We also 
examine how to effectively utilize cache storage with 
respect to the QoS requirements. 
 
4.1. Caching Rationale 
 

The basic idea of the caching scheme proposed in 
this paper, called Semantic-Aware Image Caching 
(SAIC), is to allow each node in an ad hoc network to 
gradually record semantic descriptions of the image 
query results passing by it. The query resolution is 
performed through the cooperation of two phases — 
query forwarding and cache updating: 



Query forwarding: Initially, the local caches are 
empty and every query, if not resolved locally, is 
forwarded to other nodes for appropriate data result. 
To minimize the number of messages spent on query 
forwarding, we use Grid Location Service (GLS) that 
tracks the location information of mobile nodes [5]. 
Figure 3 gives an illustrative example of query 
forwarding. The geographic space is divided into a 
collection of predetermined squares, each one 
containing a set of nodes. A query Q, starting from the 
requesting node nr, is forwarded between the grids 
following the spiral pattern. The spiral curve keeps 
growing until the data source node ns is found and the 
query result is forwarded back thru the shortest path 
between ns and nr. Here we have an observation of the 
query forwarding process: Let d denote the distance 
between nr and ns, then all the nodes taking part in the 
query forwarding are within the sphere σ(nr, d) 
centered at nr with a radius d. In addition, each node 
only forwards the query along the spiral curve instead 
of rebroadcasting to all directions. Based on this 
observation, we can claim that the message complexity 
is restricted to linear order of the number of nodes, 
which is much smaller than that of flooding. 

Cache updating: When query Q is forwarded 
between the nodes, its semantic content (i.e. the 
vicinity constraints) is cached by the relaying nodes for 
future query processing purposes. When Q is resolved 
at the data source ns, node nr will send an updating 
message along the same route as the query forwarding. 
The nodes on the route will choose the nearer one from 
nr and ns to cache along with query Q. Thus the 
network is divided into two parts: the nodes within and 
outside the sphere σ(nr, d). Later, suppose a node nr

* 
issues a query Q*, semantically similar to Q. The Q* is 
forwarded among the nodes following the same spiral 
pattern. When Q* meets with a node ni within the 
sphere σ(nr, d), the query is resolved at ni and the 
result from source node (i.e. ns or nr) will be sent to nr

*. 
Note that the forwarding of Q* could be restricted 
within a section of the network. Therefore the data-
distribution information is propagated in the process of 
query resolution, and flooding is avoided. 

 

nr

ns
Image query 

Query result 

 
Figure 3:   Query processing and caching rationale. 
 
4.2. Cache Model 
 

Definitions 6 and 7 allow one to describe a set of 
images based on their semantic categories and vicinity 
constraints. Similarly, the cache content of a mobile 
node can also be represented in the same way. The 
difference is that the mobile nodes only cache the 
semantic description of images, while the raw image 
data are kept in the source nodes. 

In the SAIC scheme, the cache content is intended 
to characterize the data distribution of remote nodes 
through analysis of earlier queries. If an inner-category 
k-NN query k-NNc(xq, €j) is resolved successfully at a 
remote node ni, the node id ni along with the semantic 
description of query result will be cached for future 
use. If k-NNc(xq, €j) is not resolved at ni, then node ni 
contains no semantically similar images in category €j 
(i.e. €j is vacant for query xq in ni), thus €j will be 
marked as a vacant region for xq and its semantically 
similar queries. As more queries are submitted, the 
categories €1, €2, …, €t are potentially partitioned into 
two groups according to the data content of ni: the 
categories that contain similar image data and the ones 
that do not have similar data. 

The local cache of a mobile node ni is a set of cache 
entries — each entry indicates one or multiple remote 
nodes in the network. An entry is a triplet Ti = 
(matching region, vacant region, node list). The 
matching region is the description of resolved queries 
as defined in definition 7, which can be considered as 
subspaces covering the data points of earlier query 
results. The vacant region shows the unresolved 
queries, which can be represented as a collection of 
subspaces where no query results are found. The node 
list shows the mobile nodes whose data contents can 
be characterized by the matching region and the vacant 
region. 



 
5. Performance Study 
 

To evaluate the performance of the proposed 
caching scheme, we implemented a simulator in ns-2 
environment (version 2.26) [10]. To facilitate image 
retrieval, a semantic-representation module was also 
developed and added to the simulator. 
 
5.1. Simulation Setup 
 

The simulation was initialized by assuming a 
default number of pre-existing nodes in the network 
and randomly setting up the connections between the 
nodes. In addition, to mimic the dynamic structure of 
the ad hoc networks, during the course of the 
simulation, a mixture of operations, including 
querying, updating, node joining, and node leaving, are 
randomly submitted to the network. The simulator 
relies on a set of input parameters that are summarized 
in table 1. 

Node mobility patterns: Two mobility models — 
random way point (RWP) [3] and Manhattan [10] — 
are used in the simulator. Each node randomly selects 
its movement (i.e. direction and velocity) within an 
1500×320m2 area. The node density can be adjusted by 
changing the number of nodes from 50 to 100. 

Data and query distribution: The test bed 
comprises up to 3000 images (435 features) of 100 
semantic categories from the Corel dataset, which is 
similar as the dataset used in [7]. 2000 images in the 
test bed are used to train a LPP subspace learning 
module that partitions the semantic space into 100 
orthogonal regions, and the remaining 1000 images are 
used as test images for CBIR queries. The query 
generation pattern follows Zipf-like distribution, which 
is widely used to model non-uniformly distributed 
queries [11]. 

Table 1:        The simulation parameters. 
Parameter Default Range 

 

Simulation time 5000 sec 100 – 20000 
Environment size 1500*320m2 104 m2 to 108m2

Transmitter range 100m 100m to 1,000m 
Bandwidth 1M bps 0.1 – 10M bps 
Number of nodes 100 50 to 100 
Node mobility (vmax) 2 m/s 1 to 20 m/s 
Local cache size 800 KB 20 KB to 2 MB 
Query rate ( Qrate ) 0.1 query/s 0.01 to 10 query/s 
Control message 2 KB  
Data message size 20 KB 10 KB to 1 MB 
Image dataset size 3000  
Semantic category 100  
Nearest neighbors 10 1 to 20 

 
5.2. Simulation Result 
 

The experiments were run using different 
workloads and system settings. The proposed model 
has been compared and contrasted against those 
presented in [2] based on performance metrics such as 
cache hit ratio and response time for different 
workloads, i.e., mean query rate and nearest-neighbor 
number, and different system parameters, i.e, cache 
size, network density, and node mobility. 

• Cache Hit Ratio 
Traditional performance metrics of a caching 

scheme, i.e., query response time, throughput, and 
search cost, are highly dependent on cache hit ratio. 

Figure 4 shows the cache hit ratio as a function of 
the node density and cache size. As can be seen, the 
SAIC scheme regardless of the cache size, offers a 
higher hit ratio than the CachePath and CacheData 
models. This implies that relative to the CacheData and 
CachPath models, the SAIC offers a reasonable hit 
ratio with smaller cache size. Within the scope of 
mobile paradigm, this is an interesting observation 
since mobile nodes always strive for limited memory. 

In addition, the cache hit ratio of SAIC increases as 
the number of nodes increases, while CacheData and 
CachePath have decreased hit ratio with increased 
node density ─ For a fixed data set and a fixed set of 
queries, the semantic locality of queries decreases and 
hence cache effectiveness drops. However, in SAIC, 
increase in the node density also implies an increase in 
semantic replica of the query results. This increases the 
probability of cache hit for future semantically similar 
queries. 
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Figure 4:    The effect of density on cache hit ratio. 
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Figure 5:    The effect of speed on cache hit ratio. 

From figure 5, as one can expect, the cache hit ratio 
of SAIC and CachePath drops as the node mobility 
increases — increase in mobility incurs more changes 
in network topology, making it more difficult for 
CachePath and SAIC to locate remote data source 
nodes. The cache hit ratio of CacheData, in 
comparison, is not drastically affected by the mobility 
due to its independence from path information. 

Figure 6 shows the cache hit ratios of the caching 
schemes using different mobility patterns. All schemes 
improve their performance in Manhattan pattern. This 
is due to the spatial and temporal dependence in 
Manhattan pattern that leads to reduced probability of 
route breaks and topology changes. In addition, the 
performance variation of the SAIC is less drastic than 
CachePath. This is due to the cache replacement 
policies adapted by these two caching schemes: 
CachePath simply removes the less frequently accessed 
data items to save cache space. However, the SAIC 
attempts to increase the semantic contents of the cache 
by using coarser semantic descriptions for the less 
frequently accessed cache entries. Increase in the 
semantic contents of the cache improves the cache hit 
ratio and hence, implies better cache utilization and 
more robust model adaptable to dynamic network 
topology. 
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Figure 6: The effect of mobility pattern on hit ratio. 
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 Figure 7:    The accuracy of the caching schemes. 
An important issue for caching schemes is the 

accuracy of query results when cache hits are obtained. 
The accuracy is evaluated through the comparisons of 
query results returned from caches against the ones 
from flooding-based retrieval. As can be seen from 
figure 7, the SAIC outperforms Cache-Path and achie-
ves comparable accuracy as CacheData. The better 
performance of CacheData is due to its caching of raw 
images. The SAIC returns more accurate query results 
than CachePath due to its exploitation of content 
distribution, which gives the heuristic information for 
well-aimed search. 

• Query Response Time 
In another simulation run, we measured the query 

response time as a function of node density, cache size, 
and average query generation time. Figure 8 shows the 
combined effect of cache size and mobility on query 
response time. As can be seen from figure 8, Cache-
Data is more sensitive to the cache size than CachePath 
and SAIC. For a fixed set of queries, CacheData 
requires much more cache space because it stores the 
raw images. CachePath and SAIC, in comparison, only 



cache the data content description and the ids of data 
source nodes, making better utilization of storage. 
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Figure 8:   The effect of cache size on response time. 

• The Network Traffic 
In order to evaluate the impact of the caching 

strategies on the network traffic, we tuned the 
simulator to examine the message overhead on mobile 
nodes. Figure 9 shows that SAIC incurs much less 
message overhead than CachePath and CacheData. The 
reason is that SAIC resolves queries using semantic 
replicas in nearby nodes instead of faraway data source 
nodes if possible. Therefore, the data requests and 
replies need to travel less number of hops and mobile 
nodes need to process less number of messages. 

In CacheData and CachePath the cache misses 
could incur flooding in the whole network, and each 
node may reply the query with the most similar images 
in its local database. The multiple replies to the query 
further increases the network traffic, and thus implies 
higher requirement for bandwidth. SAIC solves this 
issue by performing inner-category k-NN on a small 
portion of the network — the semantically most 
relevant nodes. Figure 10 shows the impact of 
bandwidth on response time. Note that CacheData 
achieves comparable perfor-mance to SAIC as 
bandwidth increases. The reason is that the large 
bandwidth remedies the difference of access latency 
between local cache and remote nodes, reducing the 
effect of flooding and duplicated query results. 
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Figure 9:      The average traffic on each node. 
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Figure 10: The effect of bandwidth. 
 
6. Conclusions 
 

Content-based image retrieval is a challenging task 
in ad hoc networks due to the node mobility, the 
network bandwidth, and the lack of infrastructure. In 
this paper we proposed a semantic-aware caching 
scheme to facilitate the efficient image retrieval in ad 
hoc networks. It employs vicinity constraints to 
represent image contents, offering higher cache hit 
ratio, higher space utilization, reduced network traffic, 
and lower average image retrieval time. 

Extensive simulation results also showed that the 
performance of SAIC does not change drastically with 
various network settings (e.g. node density and 
mobility), which shows the robustness and scalability 
of SAIC. 

We are tuning the performance of SAIC further and 
exploiting its application in other mobile environments 
such as sensor networks and WLANs. In addition, the 
scope of SAIC can be extended to accommodate other 
multimedia data (e.g. audio and video data). 
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