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Abstract. Self-managing systems will be highly dependent upon information ac-
quired from disparate applications, devices, components and subsystems. To be
effectively managed, such information will need to conform to a common model.
One standard that provides a common model for describing disparate computer and
network information is the Common Information Model (CIM). Although CIM
defines the models necessary for inferring properties about distributed systems,
its specification as a semi-formal ontology limits its ability to support important
requirements of a self-managing distributed system including knowledge inter-
operability and aggregation, as well as reasoning. To support these requirements,
there is a need to model, represent and share CIM as a formal ontology. In this
paper, we propose a framework for constructing a CIM ontology based upon pre-
vious research that identified mappings from Unified Modeling Language (UML)
constructs to ontology language constructs. We extend and apply these mappings
to a UML representation of the CIM Schema in order to derive a semantically
valid and consistent formal CIM ontology.

1 Introduction

The increasing complexity of modern distributed systems has recently led to large-scale
research initiatives in self-managing distributed systems; that is, distributed systems ca-
pable of configuring, optimizing, healing and protecting themselves [1].A self-managing
distributed system will, in general, be dependent upon reasoning mechanisms for infer-
ring properties about its (distributed) operational domain. Such reasoning mechanisms
will, in turn, be highly dependent upon information acquired from nodes within the dis-
tributed system. For example, a self-managing distributed system tasked with optimizing
network performance between multiple nodes may need to reason over information (e.g.,
processor speed, memory capacity, packet loss, network configurations and other instru-
mentation) acquired from its nodes’ CPUs, operating systems, network applications and
network devices.

In order to effectively manage information generated by disparate applications, de-
vices, components and subsystems from multiple nodes in a self-managing distributed
system, such information must conform to a common model [2]. One standard that is
expected to provide such a model is the Common Information Model (CIM) [3]. CIM is
a comprehensive set of object-oriented models that specify concepts about a computing

C. Bussler et al. (Eds.): WISE 2004 Workshops, LNCS 3307, pp. 11–21, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.3     Für schnelle Web-Anzeige optimieren: Nein     Piktogramme einbetten: Nein     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 2400 2400 ] dpi     Papierformat: [ 595 842 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 2400 dpi     Downsampling für Bilder über: 3600 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Farbe nicht ändern     Methode: StandardGeräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Ja     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: Ja     DSC-Warnungen protokollieren: Nein     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja     EPS-Info von DSC beibehalten: Ja     OPI-Kommentare beibehalten: Nein     Dokumentinfo von DSC beibehalten: JaANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments true     /DoThumbnails false     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize false     /ParseDSCCommentsForDocInfo true     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.3     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends true     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo true     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /LeaveColorUnchanged     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 300     /EndPage -1     /AutoPositionEPSFiles true     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 2400     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 300     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 2400 2400 ]>> setpagedevice



12 S. Quirolgico et al.

or network environment; it comprises a core model that defines a basic classification of
elements and associations for a managed environment (e.g., logical and physical ele-
ments, capabilities, settings and profiles) as well as common models that define concepts
that are common to particular management areas (e.g., applications, systems, devices
and policies). The core and common models together are referred to as the CIM Schema
[4].

Although the CIM Schema defines the models necessary for inferring properties
about distributed systems, its specification as a semi-formal ontology [5,6,7,8] limits
its ability to support important requirements of a self-managing distributed system in-
cluding knowledge interoperability, knowledge aggregation and reasoning. These lim-
itations are due, in part, to the constraints imposed by the languages (e.g., XML and
XML Schema) used to model, represent and share semi-formal ontologies. With respect
to knowledge interoperability, for example, such languages do not (1) provide globally-
understood constructs for expressing semantics nor (2) impose a common interpretation
of the meta-data contained within the model [9]. Thus, semi-formal ontologies encoded
by these languages can only be used by those systems that have a complete and a pri-
ori understanding of the semantics surrounding the ontology. In an open self-managing
distributed system environment, however, knowledge from a network node will need
to interoperate among possibly several heterogeneous nodes. With respect to knowl-
edge aggregation, XML-encoded ontologies cannot be arbitrarily combined with other
ontologies in a flexible manner [9]. In a self-managing distributed system, however,
knowledge about network nodes will need to be aggregated with other knowledge (e.g.,
domain knowledge). With respect to reasoning, XML-encoded ontologies do not em-
body the constructs for facilitating parsing, logical deduction or semantic interpretation.
However, in a self-managing distributed system, reasoning over knowledge from net-
work nodes will be necessary to infer the operational state of the distributed system.

In order to facilitate the interoperability and aggregation of, as well as the reason-
ing over, CIM-based knowledge in self-managing distributed systems, there is a need
to model, represent and share CIM as a formal ontology; that is, an ontology that de-
fines the semantics of its vocabulary by a complete and sound axiomatization [5,6,
7,8]. One language that can be used to construct a formal CIM ontology is the Re-
source Description Framework (RDF) [10]. RDF is an assertional language that defines
(domain-agnostic) semantic constructs for expressing propositions using precise formal
vocabularies. In RDF, meta-data is defined using the vocabulary description language
RDF Schema (RDFS) [11] that defines not how instances will be expressed (as is the
case, for example, with XML Schema), but rather, provides a vocabulary for describing
certain features of the data. This vocabulary can be reused in any setting allowing ap-
plications to infer properties about RDF/S-specified knowledge without having a prior
understanding of the semantics surrounding that knowledge [12]. By using an RDF/S-
based CIM ontology, the semantics of CIM-based instances can be partially deduced
by systems that have no prior knowledge of the CIM Schema thereby fulfilling the in-
teroperability requirement of a self-managing distributed system. In addition, different
vocabularies can be arbitrarily combined to form new knowledge. This feature of RDF/S
could allow, for example, knowledge from a CIM ontology to be more easily combined
with knowledge from a specific domain ontology (e.g., grid systems) thereby fulfilling
the aggregation requirement of a self-managing distributed system. RDF/S also allows
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for the expression of logical propositions from meta-data descriptions. These proposi-
tions can be arbitrarily combined to form a set of (semantically) connected propositions
that, in turn, can directly serve as knowledge in a form required for reasoning thereby
fulfilling the reasoning requirement of a self-managing distributed system.

In this paper, we aim toward the construction of a formal CIM ontology by propos-
ing a framework based upon previous research that identified mappings from Unified
Modeling Language (UML) [13] constructs to ontology language constructs. Here, we
extend and apply these mappings to a UML representation of the CIM Schema in order
to facilitate the derivation of a semantically valid and consistent CIM ontology.Although
our approach provides a first step for constructing a consistent and semantically valid
CIM ontology, we identify some issues that must be resolved before a complete, valid
and consistent CIM ontology can be derived. We begin by describing the the mapping
of CIM UML to CIM RDF/S and also describe limitations associated with these map-
pings. Next, we describe how the limitations of mapping CIM UML to CIM RDF/S can
be overcome by mapping CIM UML to the more powerful Web Ontology Language
(OWL). Finally, we identify issues that must be resolved before a complete, valid and
consistent CIM ontology can be derived.

2 Constructing a CIM RDF/S Ontology

The construction of an ontology for describing the CIM Schema requires the mapping of
CIM concepts to ontology language constructs. When mapping between CIM concepts
to ontology language constructs, it is important to determine whether the mapping can
preserve the semantics of the original CIM model. This is determined largely by whether
the modeling languages used are semantically equivalent; that is, given two modeling
languages L1 and L2, there is a one-to-one correspondence between the semantics of
constructs in L1 and the semantics of constructs in L2 [14]. In an effort to construct
a formal CIM ontology that preserves the semantics of the CIM Schema, we leverage
previous research [15,16] that identified (one-way) mappings from UML constructs to
RDF/S constructs by applying these mappings to a UML representation of the CIM
Schema. By using these mappings, we not only increase the (semantic) validity of the
resulting ontology but also ensure the consistency of mappings from CIM UML con-
structs including classes, attributes and relationships to CIM RDF/S ontology constructs
including classes and properties. Table 1 shows an overview of some CIM concepts and
their mappings to UML and RDF/S constructs. Note that mappings from a CIM concept
to a specific construct in the target language should reflect a full (or at least an approx-
imate) semantic correspondence. In some cases, a CIM concept is mapped to a set of
constructs in the target language that fully (or approximately) reflects the semantics of
the CIM concept. In other cases, there may be no constructs in the target language that
semantically correspond to the CIM concept.

2.1 Mapping CIM Schema Classes and Properties

In the CIM Schema, concepts related to computing and network environments are
represented primarily by UML classes. For example, the notion of a (hardware, software
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Table 1. CIM Concepts and Related Mappings.

CIM Concept UML RDF/S OWL

Named Element ✓ ✓ ✓

Class ✓ ✓ ✓

Property ✓ ✧ ✧

Method ✓ ✧ ✧

Generalization ✓ ✓ ✓

Association/Aggregation ✧ ✧ ✧

Cardinality ✓ ✗ ✓

Qualifiers (multiple) ✓✧✗ ✓✧✗ ✓✧✗

Datatypes ✓ ✓ ✓

✓ Maps to a specific construct (full/approx. semantic correspondence)

✧ Maps to a set of constructs (full/approx. semantic correspondence)

✗ No defined mapping (no semantic correspondence)

or service-oriented) Product is defined as a UML class as shown in Figure 1. Here, we
represent a CIM Schema concept as a rdfs:Class class that corresponds to a generic
notion of a type or category. To represent a CIM Schema concept as an rdfs:Class
in an RDF/S statement, we use the rdf:type property that defines the resource
(e.g., a Product) as a member of a particular class (e.g., rdfs:Class). In addi-
tion, we use the namespace prefix cim: to refer to the CIM Schema vocabulary
defined by an XML namespace declaration such as
xmlns:cim="http://www.dmtf.org/CIMSchema28#". For example, we can
represent the class cim:Product by the triple as shown in Figure 2 (line 5). In addition,
we represent a CIM Schema property or method (defined as a UML attribute or
operation, respectively) as an rdf:Property class. For example, we can represent the
attribute cim:Product.Vendor by the triple shown in Figure 2 (line 6).

In RDF/S, each rdf:Property can be associated with a domain that specifies the
class(es) on whose members a property can be used and a range that specifies the class(es)
or datatype(s) to which the values of the property are restricted. For example, the property
cim:Product.Vendor may be used by any instance of cim:Product and the value
of cim:Product.Vendor must be a member of xsd:string as shown in Figure 2
(lines 7-8). Note that a mapping of CIM to RDF/S necessitates the mapping of UML
datatypes to datatypes used by RDF/S. In UML, attributes may conform to a variety
of intrinsic datatypes (e.g., integers, booleans and string datatypes). These datatypes
can be mapped directly to those used by RDF/S as defined in the xsd: (XML Schema
datatype) namespace [17]. For example, a boolean datatype in UML may be mapped to
the xsd:boolean datatype in RDF/S.

2.2 Mapping CIM Schema Relationships

The structure of the CIM Schema defines a number of relationships between CIM
classes. In Figure 1, for example, there exists a generalization relationship be-
tween cim:Product and cim:ManagedElement. In RDF/S, the UML generaliza-
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Product

Name : string {key}
IdentifyingNumber : string {key}
Vendor : string {key}
Version : string {key}
SKUNumber : string
WarrantyStartDate : datetime
WarrantyDuration : uint32

Product
Component

Product
Software

Component

AcmeProduct
(from Acme)

Series : string

ManagedElement

Caption : string
Description : string
ElementName : string

SoftwareIdentity

InstanceID : string {key}
MajorVersion : uint16
MinorVersion : uint16
RevisionNumber : uint16
BuildNumber : uint16
VersionString : string
TargetOperatingSystems : string []
Manufacturer : string
Languages : string[]
Classifications : uint16[] {enum}
ClassificationDescriptions : string[]

Fig. 1. CIM UML Classes.

tion relationship can be mapped directly to the rdfs:subClassOf property. For ex-
ample, we may represent a generalization relationship between cim:Product and
cim:ManagedElement by the triple shown in Figure 2 (line 9).

In addition to generalization, the CIM Schema also defines other relationships
including association and aggregation relationships.1 In UML, such relationships are rep-
resented by association classes. For example, the cim:ProductSoftwareComponent
association class represents the “ProductSoftwareComponent” aggregation in Figure
1. Since a UML association class is a subclass of a UML class, we may represent
cim:ProductSoftwareComponent as an rdfs:Class as shown in Figure 2 (line
15). Association classes in the CIM Schema include references that define the set of
classes that may be linked by the association or aggregation relationship. Each reference
is an rdf:Property that is represented by the term cim:REF. For example,
cim:ProductSoftwareComponent contains the cim:REF
cim.ProductSoftwareComponent.GroupComponent that is used by instances of
cim:ProductSoftwareComponent to define the range of classes (i.e., cim:Product)
that can be associated with one or more cim:SoftwareIdentity classes. Similarly,
the cim:REF cim.ProductSoftwareComponent.PartComponent is used by in-
stances of cim:ProductSoftwareComponent to define the range of classes (i.e.,
cim:SoftwareIdentity) that can be used to describe a cim:Product. These
reference definitions are shown in Figure 2 (lines 16-21).

With respect to associations and aggregations, UML roles can also be represented
in RDF/S as an rdf:Property. To represent UML roles in the CIM ontology, we
augment the CIM Schema vocabularies by defining role names using the convention
“<vocabulary> : has<RoleName>”. For example, a cim:Product may have the role
cim:hasSoftwareComponent with respect to cim:SoftwareIdentity. Conversely,

1 Note that an aggregation relationship is a specialization of an association relationship.
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1 // ManagedElement class
2 cim:ManagedElement rdf:type rdfs:Class .
3
4 // Product class
5 cim:Product rdf:type rdfs:Class .
6 cim:Product.Vendor rdf:type rdf:Property .
7 cim:Product.Vendor rdfs:domain cim:Product .
8 cim:Product.Vendor rdfs:range xsd:string .
9 cim:Product rdfs:subClassOf cim:ManagedElement .
10
11 // SoftwareIdentity class
12 cim:SoftwareIdentity rdf:type rdfs:Class
13
14 // ProductSoftwareComponent (association class)
15 cim:ProductSoftwareComponent rdf:type rdfs:Class .
16 cim:ProductSoftwareComponent.GroupComponent rdf:type cim:REF .
17 cim:ProductSoftwareComponent.GroupComponent rdf:domain cim:ProductSoftwareComponent .
18 cim:ProductSoftwareComponent.GroupComponent rdf:range cim:Product .
19 cim:ProductSoftwareComponent.PartComponent rdf:type cim:REF .
20 cim:ProductSoftwareComponent.PartComponent rdf:domain cim:ProductSoftwareComponent .
21 cim:ProductSoftwareComponent.PartComponent rdf:range cim:SoftwareIdentity .
22
23 // roles
24 cim:hasSoftwareComponent rdf:type rdf:Property .
25 cim:hasSoftwareComponent rdf:domain cim:Product .
26 cim:hasSoftwareComponent rdf:range cim:SoftwareIdentity .
27 cim:isSoftwareComponentOf rdf:type rdf:Property .
28 cim:isSoftwareComponentOf rdf:domain cim:SoftwareIdentity .
29 cim:isSoftwareComponentOf rdf:range cim:Product .
30
31 // AcmeProduct class
32 acme:AcmeProduct rdf:type rdfs:Class .
33 acme:AcmeProduct rdfs:subClassOf cim:Product .

Fig. 2. CIM RDF/S Statements.

cim:SoftwareIdentity may have the role cim:isSoftwareComponentOf with re-
spect to cim:Product. These examples are shown in Figure 2 (lines 24-29).

The CIM Schema may also be extended by vendors to suit their particular needs.
These vendor-specified extensions to the CIM Schema are referred to as extension
schemas. Extension schemas extend the CIM Schema by defining classes that in-
herit from CIM Schema classes. In Figure 1, for example, the vendor-defined class
AcmeProduct inherits from the CIM class Product. Because an RDF/S ontology may
comprise multiple vocabularies, relationships between concepts from different vocabu-
laries can be defined. This feature of RDF/S allows for the construction of an ontology
that defines relationships between concepts in the CIM Schema and concepts defined
in a vendor-specified extension schema. For example, we may express the generaliza-
tion relationship between acme:AcmeProduct and cim:Product as shown in Figure
2 (lines 32-33).

3 Constructing a CIM OWL Ontology

Although RDF/S may be used to express some types of knowledge, it deliberately lacks
sufficient constructs to adequately express all types of knowledge [15,18]. As shown
in Table 1, for example, RDF/S does not provide constructs for expressing cardinality
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restrictions such as those used for describing association or aggregation relationships
between CIM classes. In addition, RDF/S cannot adequately express some CIM qualifiers
that are used to define constraints on CIM properties. For example, RDF/S cannot directly
represent the semantics of the CIM ‘key’qualifier which is used to indicate that the value
of a CIM property must be unique for all instances of a particular class. Such qualifiers
are currently denoted in CIM UML as shown in Figure 1.

The limited expressivity of RDF/S motivated the development of the (semantically-
richer) DAML+OIL (DARPA Agent Markup Language and Ontology Inference Layer)
ontology markup language [19] which, in turn, formed the basis of the Web Ontology
Language (OWL) [20]. OWL is an RDF/S-based language that can explicitly represent
the meaning of terms in vocabularies and the relationships between those terms. OWL
enhances the expressivity of RDF/S (and DAML+OIL) by adding more vocabulary for
describing properties and classes including relations between classes (e.g. disjointness),
cardinality, equality, richer typing of properties, characteristics of properties (e.g. sym-
metry) and enumerated classes. To map the CIM Schema to OWL2, we extend previous
work that identified mappings from UML constructs to DAML+OIL constructs [14,21]
as well as preliminary work that identified mappings from UML constructs to OWL
constructs [22]. An overview of the mappings from CIM concepts to OWL constructs
are shown in Table 1.

One concept that is required for expressing the CIM Schema, but not included in
RDF/S, is the notion of cardinality. In OWL, cardinality is stated on a property with re-
spect to a class. For example, cim:Product has a minimum and maximum cardinality of
one on the rdf:Property cim:hasSoftwareComponent. This cardinality restriction
can be expressed by the triples shown in Figure 2 (lines 2-4).

Another important CIM concept that cannot be adequately expressed using RDF/S
is the concept of uniqueness. In OWL, the owl:FunctionalProperty restriction
may be used to define mutually distinct properties. With respect to CIM, this is im-
portant for ensuring that (1) class names (including association names) are unique
within the schema, (2) method names are unique within the domain class and (3) ref-
erence names are unique within the scope of the defining association. For example,
owl:FunctionalProperty may be used to realize the CIM ’key’ qualifier on the at-
tribute cim:Product.Name as shown in Figure 2 (line 7).

Yet another limitation of RDF/S is its inability to express local range restrictions
associated with a particular property for a particular class. Here, if an instance of a
class is related by a property to a second object, then the second object can be in-
ferred to be an instance of the local range restriction class. Local range restrictions on
a property can be represented using the owl:allValuesFrom restriction. For example,
cim:Product may have rdf:Property cim:hasSoftwareComponent restricted to
have owl:allValuesFrom cim:SoftwareIdentity. This means that if an instance of
cim:Product is related by the rdf:Property cim:hasSoftwareComponent to the
instance “Printer Driver”, then from this a reasoner can deduce that “Printer Driver” is
an instance of the class cim:SoftwareIdentity. This example is shown in Figure 2
(lines 10-12).

2 In this paper, we consider only OWL DL.
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1 // cardinality
2 _:SWIdentityRole rdf:type owl:Restriction .
3 _:SWIdentityRole owl:onProperty cim:Product.hasSoftwareComponent .
4 _:SWIdentityRole owl:cardinality "1"ˆˆxsd:nonNegativeInteger .
5
6 // uniqueness constraints
7 cim:Product.Name rdf:type owl:FunctionalProperty .
8
9 // local range restrictions
10 _:SWIdentityRole rdf:type owl:Restriction .
11 _:SWIdentityRole owl:onProperty cim:Product.hasSoftwareComponent .
12 _:SWIdentityRole owl:allValuesFrom cim:SoftwareIdentity .
13
14 // transitivity
15 _:ProductCompRole rdf:type owl:Restriction .
16 _:ProductCompRole owl:onProperty cim:Product.hasProductComponent .
17 _:ProductCompRole rdf:type owl:TransitiveProperty .
18
19 // inverse
20 cim:hasSoftwareComponent owl:inverseOf cim:isSoftwareComponentOf .
21
22 // property equivalence
23 cim:Product.Vendor owl:equivalentProperty cim:SoftwareIdentity.Manufacturer .
24
25 // imports
26 # owl:imports rdf:resource="http://www.dmtf.org/CIMSchema28" .

Fig. 3. CIM OWL Statements.

OWL can also be used to enhance the semantics surrounding relationships between
CIM classes. For example, the owl:TransitiveProperty property may be used
to express a chain of cim:ProductComponent associations on a cim:Product as
shown in Figure 2 (lines 15-17). In addition, the owl:inverseOf property may be
used to state the inverse of a relationship. For example, an instance of cim:Product
may have a cim:hasSoftwareComponent role with respect to one or more instances
of cim:SoftwareIdentity. If cim:isSoftwareComponentOf is the inverse of
cim:hasSoftwareComponent, and there exists a cim:Product with property
cim:hasSWFeature and property value cim:SoftwareFeature, then a reasoner can
deduce that cim:SoftwareIdentity cim:isSoftwareComponentOf cim:Product
where cim:isSoftwareComponentOf is the owl:inverseOf
cim:hasSoftwareComponent as shown in Figure 2 (line 20).

An important advantage of using OWL to define a CIM ontology is that OWL pro-
vides constructs for defining equivalence between classes and properties. In OWL,
class and property equivalence is represented using the owl:equivalentClass and
owl:equivalentProperty axioms. For example, the property cim:Product.Vendor
may be synonymous with cim:SoftwareIdentity.Manufacturer in those environ-
ments where all products from a specific company are developed in-house (and thus, the
name of the vendor is the same as the manufacturer). This equivalence relationship is
shown in Figure 2 (line 23). The OWL equivalence axioms may also be used to facilitate
interoperability between, and the merging of, ontologies by describing equivalence rela-
tionships between classes and properties defined in CIM and those defined, for example,
in the IEEE Standard Upper Ontology (SUO) [23]. In addition, the owl:imports con-
struct may be used to reference another OWL ontology containing definitions whose
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semantics are considered to be part of the meaning of the importing ontology. This
ontology-importing feature can be used to combine a CIM ontology with other ontolo-
gies. For example, an ontology that describes military systems may import the CIM
ontology to describe the management of its computer and network systems by using the
OWL statement as shown in Figure 2 (line 26).

4 Current Limitations

Although the proposed framework provides a first step toward the construction of a
formal CIM ontology, a number of issues must first be resolved before such an ontology
can be considered consistent, semantically valid, and complete. One issue concerns the
mapping of some CIM concepts to UML constructs. Currently, while many CIM concepts
can be mapped directly to UML constructs (e.g., CIM Class), some CIM concepts (e.g.,
some CIM qualifiers) cannot; thus, such concepts must be added to the ontology in an
ad-hoc fashion leading to a possibly inconsistent or invalid ontology.

Another related issue concerns CIM concepts (particularly, CIM qualifiers) that have
no mappings to either UML constructs or OWL constructs. For example, the notion of
a CIM default value does not have a corresponding UML construct nor a corresponding
OWL construct. In cases where no direct mapping from CIM concepts to specific terms
in the RDF/S or OWL vocabulary can be derived, we define such concepts within the
cim: vocabulary (e.g., we define cim:default as an rdf:Property that is used to
represent the notion of a default value).

Another issue concerns the inability of OWL to fully express some UML constructs
[14,21,22]. For example, OWL provides no constructs for adequately representing a
UML abstract class. Thus, some CIM concepts (e.g., ManagedElement that is repre-
sented by a UML abstract class) cannot be mapped directly to RDF/S or OWL constructs
and must be manually included in the cim: vocabulary.

Finally, both RDF/S and OWL can only partially express some CIM Schema seman-
tics. For example, CIM methods can be defined as an rdf:Property, but cannot be
mapped to OWL construct(s) that more closely match the notion of a UML operation.

5 Related Work

The idea of using CIM for facilitating self-managing systems has been previously de-
scribed by Bantz [24] who proposed the use of CIM information to facilitate decision
making in autonomic computing, and by Ganek [2] who proposed the use of CIM to
facilitate interoperability between heterogeneous autonomic computing elements.

In addition, the idea of using CIM ontologies for describing management knowledge
has been previously proposed. For example, López de Vergara et. al [25] proposed
an algorithm for mapping CIM, as well as other information models, into a common
DAML+OIL ontology. Also, Lavinal et. al [26] proposed the construction of a CIM
ontology using OKBC while Tangmunarunkit [27] proposed the use of an RDF/S-based
CIM ontology for grid computing. Finally, Lanfranchi et. al [28] defined a mapping of
CIM to the description logic DLR.
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The work presented in this paper, however, is distinguished from these previous
efforts in that this work leverages and extends research that identified mappings from
UML constructs to ontology language constructs in order to achieve semantically valid
and consistent mappings from CIM UML to a formal CIM ontology. Previous research in
mapping UML to RDF/S and DAML+OIL included works by Chang [15] who described
mappings from UML to RDF/S and Cranefield [16] who described an automatic mapping
from UML to RDF/S using XMI. In addition, Backlawski et. al [14], Falkoych et. al
[21] and Kogut et. al [29] described mappings from UML to DAML+OIL constructs
while AT&T [22] described a preliminary analysis of mapping UML to OWL Full.

6 Conclusion

This paper proposed a framework for constructing a formal CIM ontology based upon
previously-identified mappings from UML constructs to RDF/S and OWL constructs.
We began by presenting details about the mapping of CIM classes, properties and rela-
tionships to RDF/S constructs as well as defined a vocabulary for representing concepts
associated with the CIM Schema. Given the limitations of RDF/S for expressing the
semantics of CIM concepts, we described the mapping of these concepts to the RDF/S-
based ontology language OWL. Although OWL provides enhanced expressivity over
RDF/S, there exists some CIM concepts that cannot be directly mapped to OWL con-
structs. In such cases, we proposed the definition of these concepts within the context
of the cim: vocabulary.

Currently, the specifications for CIM, UML, and OWL are fluid; thus, future research
in this area will consider how changes to these specifications affect the derivation of a
CIM ontology. Future versions of CIM, for example, are expected to reflect possibly
significant changes to the CIM Schema as well as its representation in the forthcoming
UML 2.0 (e.g., the use of UML roles for representing CIM qualifiers). Such changes
might facilitate the derivation of a more complete CIM ontology by providing a more
complete mapping between CIM concepts and UML constructs (and thus, a more direct
mapping of CIM concepts, such as qualifiers, to RDF/S and OWL). In addition, research
continues on mapping UML constructs to OWL constructs that will directly impact the
derivation of a CIM ontology. It is expected that the framework proposed in this paper
could be easily extended to support these anticipated changes.
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