[image: image5.jpg]

[image: image4.jpg]

Grid File Access

Proposal

David Foster, Don Petravick, Michael Ernst

	Date:
	20th March 2003

	Version:
	1.3

	Status:
	Draft

	Editor:
	David Foster

	Document Log

	Issue
	Date
	Author
	Comment

	0.1
	14/12/2002
	DGF
	First Version

	0.2
	02/28/2003
	ME, DP
	Second Version

	0.4
	03/03/2003
	ME, DP
	third version, accommodate DGF’s input

	0.5
	03/06/2003
	ME, DP
	added specific S/W components

	0.6
	03/07/2003
	ME, DO
	changes in response to David’s comments

	1.0
	03/14/2003
	DGF
	Preparation of 1.0

	1.1
	03/18/2003
	DGF
	Exec Summary and Conclusions

	1.2
	03/20/2003
	DGF
	Included comments from Jeff, Oxana, James Casey

	1.3
	03/21/2003
	DGF
	Included comments from John Gordon, J-P Baud

	Document Change Record

	Issue
	Item
	Reason for Change

	
	
	

	
	
	

	
	
	

1 Mandate and Introduction

This working group was mandated by the Grid Deployment Board at its meeting of the 9th December 2002 and subsequently reaffirmed at the meeting of the 6th February 2003.

The motivation is to understand the Grid File Access requirements and issues and present an understanding as to the state of the technology and the strategy going forward.

In particular a specific recommendation for LCG-1 should be a product of this work.

This document does not cover all the discussion or background but is really focussed on the solution proposal and the implications.

2 Table of Contents

iiDocument Log

iiDocument Change Record

11
Mandate and Introduction

22
Table of Contents

33
Executive Summary

44
Basic Requirements

75
Architectural Models

96
Job Workflow

117
The Proposal

158
Middleware Discussion

169
System Requirements

1710
Software Recommendations

18Appendix 1 – File naming conventions

19Appendix 2 - Physics Data Objects

21References

3 Executive Summary

This document proposes the use of the SRM interface for mass storage manipulation together with the different access protocols (e.g. RFIO, dCap) for file access to a local storage system. It is assumed that the local storage system will be grid accessible through the GridFTP protocol so files can be copied into the storage system.

There are different levels of complexity that can be envisaged:

1. Deploy RFIO for worker node to file system access. Provide GridFTP services to give the possibility of copying in/out data to the wide area.

2. Add the possibility to manipulate mass storage through a SRM client library and an associated SRM service for the local mass storage system. There is a strong argument in favour of hiding mass storage from the worker nodes and applications. This will require future data management services to provide these transparent services.

3. Allow for the possibility of multiple file access protocols. This would require however a mechanism for matching job capability to the access mechanism in the absence of a common abstract layer (Posix I/O?) hiding the details of the access mechanism from the application.

This leaves a lot of complex questions unanswered. Indeed many people are working on issues such as the security implications of local and wide area data access.

However, while waiting for this work to complete, what is presented is a pragmatic approach to deployable functionality in order for experience to be gained. It is proposed to implement Level 1 and Level 2. This functionality will be tested by taking the EDG-WP5 implementation provided as part of the EDG testbed 2.

However, there are alternative software solutions if major problems are found with this approach. Such solutions will probably require additional integration work.

The rest of this document will discuss a number of the issues and implications in some detail but it is clear that a complete grid storage system architecture is required for the final design of LCG. This information should provide input to a future architecture design.

4 Basic Requirements

An application running on a worker node must be able to perform basic Open/Seek/Read/Write operations on a file on the local storage element. The implementation should work with the file selection process below:
In LCG-1 a cluster of worker nodes are supported by a storage element. The storage element is a combination of storage related services and physical storage. In this document this storage element functionality is limited and is largely used as a temporary store. Although we recognize there are permanent stores, we detailed the case of a temporary store “near” a compute element servicing the I/O requirements for the jobs running on the worker nodes.

Ideally some combination of middleware, e.g. the Resource Broker and the Replica Manager, not the job itself, will cause replicas of a job’s input data to be placed on a cluster’s storage elements in time for job execution, and middleware will handle the validated output of a job appropriately, for example, by moving it to a permanent store of some type.

These Storage Elements have a Wide area network (or GRID) interface and a local interface (typically LAN).

Grid Interface
Looking out of the fabric and towards the grid, Grid replica services must be able to place files on these storage elements and retrieve files from these storage elements. In addition to file movement, the storage element must also present management interfaces to grid middleware. An example of a management interface: allowing grid middleware to confirm that a replica it thinks ought to be on the storage element is actually there, and to reserve space for the expected output of the job.

LAN Interface

Looking into the fabric, a job running on a worker node must be able to read files from the storage element, and write its output onto the storage element. Read and write access requirements include the open(), read(), write(), close(), creat(), and seek() functionalities.

File Access

Current HEP grid sites provide storage elements using a variety of technologies.

Two important categories of technologies are

· Kernel like, possibly distributed file systems.

· User-code distributed file systems.

NFS typifies a Kernel level file system. While an NFS-based storage element needs additional services on the "grid" side, kernel techniques provide standard access mechanisms for application code to access file data as the files look like local files so standard I/O mechanisms can be used. Not all HEP sites have found that these sorts of systems scale to their needs. Consequently, a number of "user code file systems" have been put into service. A partial list (below) gives a notion of the complexity of the environment.

System

access method

Example site

Castor[12]
rfio (protocol)

CERN

Dcache/Enstore
dcap (protocol)

Fermilab

Dcache /OSM
dcap (protocol)

DESY

HPSS

rfio (protocol)

IN2P3

HPSS

hpss custom protocol
Various

rootd

Rootd (protocol)

Various

POSIX file sys
kernel file interface
Various

Slashgrid[3]
kernel file interface
Various

Table 1 -- Diversity of File Access Protocols

File Naming

A single file may be identified by many different names. However, a Globally Unique IDentifier (GUID) should be assigned to each new dataset by the system.

Logical file names (LFNs) may be provided as aliases to the GUID.

The Replica Metadata Catalog (RMC) maps an LFN provided by an application to a GUID, and the Replica Location Service (RLS) maps the GUID to a Site File Name (SFN).

The SFN is of the form “machine:port/path understood by machine”, which gets translated by middleware into a Site URL (SURL) e.g. of the form "srm://machine:port/path understood by machine".

The SURL is transformed by the Storage Resource Management system to a Transport URL (TURL) which is the final specification of the location of the file and the protocol to be used.

Grid Implications
From the LAN side, there is no standard mechanism or interface to these I/O sub-systems. Therefore, before a job is submitted to a given worker node the I/O system it supports must be known and compatible with the expectations of the job. This is significant if we imagine a grid with mixed I/O systems.

1. Sites must declare the I/O capabilities of their storage elements. This can be subject to a detailed design, one notion might be: Compute elements must declare what loadable APIs to local I/O are available for jobs. (e.g. root_io, file_io), and must set up the environment appropriately (e.g. LD_LIBRARY_PATH)

2. Jobs could declare their ability to handle various I/O protocols. How this is done can be subject to a detailed design, an example notion is: Jobs could declare which protocols and API’s they are able to use for local file access. (root_io, file_io). A reasonable thing is to suppose jobs with no declaration can just do “file::….”

3. Schedulers and /or resource brokers (i.e. Workload Managers) will consider these declarations and place jobs appropriately.

4. Files are fully specified using a URL-like syntax, we always convert to a SURL of the form "srm://..." and then ask the relevant SRM for a TURL.

5. Integration with scientific I/O packages should be supplemented by provision of a standard utility for copying files from the worker node to and from the storage element.

Table 3 -- Requirements induced by diverse access methods

Simplicity would dictate a single deployed I/O system initially.

Storage Management

Storage management services should coordinates space allocation and file transfer requests [11]. The requirements include:

· Grid Middleware should be able to determine what datasets are on the local storage elements.

· Creating or Staging datasets of many files to the local storage element should be supported by space reservation functionality that helps assure the success of the whole operation.

· Data should move directly between storage elements. Entities like replica managers should be able to master storage-system-to-storage-system transfers.

· Data movement between storage elements should be made reliable at the lowest level feasible.

Currently very little exists in the way of data management services and should be part of future storage architecture and developments.

The Storage Resource Manager (SRM) manages the storage resources, it is not involved in the actual data movement apart from possibly initiating transfers. This is illustrated in figure 3. There the application is performing all management (space allocation, SFN/TURL conversion etc) operations through its SRM client while the actual data transfer is utilizing the protocol specified in the TURL, i.e. the dCap protocol in this particular example.

5 Architectural Models

The storage resources for a grid job may consist of two types of storage.

1. Sandbox storage is temporary disk space, used as scratch, perhaps to hold executables, and is available for the duration of the job, and is presented as a file system to a job. However this approach is undesirable were there are many similar jobs with the same file requirements or where the files involved are very large.

2. Storage on Storage Elements is the main way files are fed to and from jobs. Storage elements have a Grid side and a Local side.

Local Access

Within a fabric, local storage resources are provided by a site to a job using local methods. For example, the job may access a file through physics I/O libraries, with site-local authentication and authorization mechanisms. Examples that illustrate the local access concept are: a storage element that is an NFS server, or a storage element that runs a rootd server.

Local access requirements include:

· allowing for the local side of the storage element to be behind the same firewall as the compute elements.

· allows for local authentication and authorization mechanisms.

· allows for local low-level administration mechanisms for the storage server, including cluster administration software, like Rocks.

Grid Access

Grid software will use grid methods to place input data onto fabric's storage elements to allow for computation on a site's worker nodes. Grid data management software will copy or make permanent a job’s output data sets, and make them part of the virtual organizations' data. Therefore storage elements must have a GRID interface, which is presented in a grid environment. Elements of a grid environment include:

· Presence of firewalls and other protective measures.

· The use of GRID authorization and authentication measures.

· Given a scheduling decision to run a job on a site, placement of input data may proceed without knowing which specific computer on that fabric node will run the job.

· We allow for storage elements to buffer the output of a job, freeing the processor for a new job.

There are many ways to architect systems with these properties. An illustrative system, but by no means the only one, is pictured below: The illustration depicts worker nodes on a local network isolated from the wide area network.

[image: image1.png]

Depicted is a local, isolated LAN holding the worker nodes, and a wide area network. Two computing systems straddle the local network and the wide area network.

A head node, which provides batch system access, and other services outside the scope of this document, and may provide some sort of firewall.

A scalable storage system implemented on a number of disk-heavy commodity computers, which implements only grid services on the wide area network, and file serving and other protocols on the isolated local area network.

In a simpler case, the storage system could be a single node, with two network interfaces. The node could run local firewall software allowing it to only offer GridFTP and other Grid services to the wide area network. On the local interface any number of appropriate services could be offered. The local interface could be available for any sort of administrative use or other function.

There are many variations on this theme, the primary requirements are that the grid-side protocols needed by the storage element are available to the wide area network, and that the throughput to the storage element be sufficient to accommodate the movement of data sets to and from the fabric.

6 Job Workflow

As discussed in the basic requirements sections, the SRM can be used to parameterize specific I/O mechanisms, deferring decisions on which protocol to use until run time. This is an advantage, since this accommodates the diverse storage systems currently in place.
Under these conditions:

· Jobs must declare which protocols they can speak.

· Fabric sites must declare the protocols their storage elements can speak.

Replica Manager pre-staging

Sometime before a job is released to run, a replica manager might move input data to prepare for the job execution. The LCG grid storage elements must have a grid interface that has a management component in addition to the obvious data transfer component.

Storage elements have to present a "grid side" interface that is appropriate for a replica manager to use. The elements of the interface include

· Allowing the replica manager to check that files it supposes to be on the storage element are indeed there.

· Determining that there is available capacity, quota and suitable permissions for the new files to be placed on the storage element.

· Taking steps to make sure replicas stay on the storage element for the duration of the job.

· Possibly optimize the files on the storage system, for example stage the input files in the case of a Hierarchical Storage Element.

· Replicate data onto the local store.

Output data set handling

The output of a job has to be handled. Some elements of handling are:

1. Possible movement of the data from scratch areas (on the worker node or storage element) to a permanent storage system (or equivalent operations for systems that can perform this operation internally)

2. Retention of the data on the storage element.

3. Deletion of the data.

The SRM component proposed for file management provides for a number of primitives that are useful for these operations.

· Structured query of the storage element’s name space (v2.1)

· Space reservations, increasing the probability that write operations will succeed.

· Pinning files in the store.

· Pre-stage files, for storage systems having a hierarchy.

· Have the storage element copy files directly to/from other storage systems in a reliable fashion, with interface semantics appropriate for replica managers.

· Retaining files on the local storage element until they can be copied off the storage element or otherwise made permanent. ("Durable spaces")
7 The Proposal

The SRM protocol is used for URL translation, name translation, and protocol selection.

The GRIDFTP protocol V1.0 is used for grid file transfers and as a common local transfer protocol.

These are supported by a variety of packages, summarized in the table below:

	Package
	SRM V1.1
	GridFTP V1.0
	Temporary Store?
	Permanent Store?

	EDG WP-5
	V2.1but supports required functionality so can easily back-fit V1.1 interface.
	yes, via Globus
	yes
	Yes either as disk or with backing MSS

	DRM(LBL)
	Yes
	yes
	yes
	no

	Dcache (stand-alone)
	Yes
	yes
	yes
	no

	Dcache/Enstore
	Yes
	yes
	no
	yes

	CASTOR
	Yes
	yes
	yes
	yes

This approach accommodates all the types of systems listed in the basic requirements, and allows for the run-time negotiation of transfer protocols.

The diagram below depicts how the proposed protocol works for job I/O in the LCG system for reading data. [The placement and distribution of replicas on the storage element is discussed in section 6, Job work-flows]

[image: image2.png]8 Worker Modss

Permanent
Store

 Figure 2 – Local and Grid Interactions with a Storage Element

In step 1, Grid Middleware seeks to place a job’s input files on a storage element before a job has been queued to the local batch system.

The required steps are detailed below:

1.1 The replica managers query the storage element to confirm the existence of replicas its database indicates are on the storage element. To confirm the existence of the file, the SRM interface is used. This is because the reference is the SFN or "srm:" SURL here, not a URL to the resource itself.

Replica managers keep files on the temporary store by using the SRM interface to pin them. Pinned files may disappear because of operational accident (e.g disk crash, or “rm” out of band). Replica managers indicate disinterest in a file by undoing the SRM pin operation (SrmRelease), marking files as eligible for deletion by the SRM when space is needed.

1.2 The replica manager reserves space on the storage element for replicas it will place there using the SRM reserve space operation.. If the temporary store is full, the temporary store deletes un-pinned files using some implementation-specific algorithm, e.g. least recently used.

1.3 The replica manager commands the storage element to copy the replicas into the reserved space by using the srmCopy service. This is supported in Version 1.1 of SRM.

1.4 The SRM server causes the storage element to use GridFTP (or other transfer protocol) to place the replicas onto itself. The transfers are “reliable” in the sense that the SRM will re-try errors. This is SrmCopy() in Version 1.1 of the protocol.

1.5 The replica manager pins the copies on the storage system using SrmPin.

1.6 The replica manager notifies the job manager that pre-staging for this job is complete.

[image: image3.png]Physics Application

Experiment’s Framework Scientific 'O

Replica
Manager File 1O
Client

Figure 3 – Software layering diagram of an application and a storage element, Notice the flat, un-layered relationship between the client software in the application.

In step 2, the job interacts with the storage element’s resource manager to obtain a transfer URL.

As indicated in figure 3, the replica manager client, SRM client and scientific I/O libraries are independent, -- not layered on themselves.

2.0 The Physics application requests the Experiment’s Framework to open a file.

2.1 The Experiment’s Framework interacts with the replica manager to obtain SFN’s for its LFN’s. (the job does not know about GUIDS). This interaction is not layered through SRM software.

2.2 The Experiment’s Framework computes an SURL based on the SFN (this composing a string of the form “srm://host:port/SFN/”).

2.3 The Experiment’s Framework calls the SRM to get a TURL from the SURL. (SRM V1.1) and a list of I/O protocols the scientific I/O package can speak (n.b. Root can be queried for its I/O capabilities at run time).

In step 3. the application opens and reads it’s input.
3.1 The job calls a scientific I/O library in an open operation. It gives the library the TURL passed back by the SRM. The job read its data and closes the file through the scientific I/O library.

In step 4, Grid Middleware moves the permanent output of the job to a permanent store somewhere on the grid, using SRM copy, the transfer is storage-system-to-storage-system.

The figure illustrates a subset of the possible capabilities. Other capabilities may include allowing for grid- wide access to data by the job directly, if that is desired or necessary.

This proposal accommodates and subsumes the simple cases of kernel file systems. Here the TURL is computed from to the SURL in a straightforward way. An example of a source URL and its equivalent TURL are (under suitable assumptions about uniform mounting of file systems):

SURL: srm://srm:srm-port/file-name

TURL: file:///file-name
Other considerations

In the practical experience of a number of labs, straightforward use of a distributed file system has not been a success in data intensive computing environments. This is because mutually uncoordinated I/O requests can cause high levels of packet loss in a naive Ethernet SAN. Fermilab, for example, gives its experiments a "farms file copy" utility, which marshals access to farm head nodes, shaping the traffic on the Ethernet LAN, and preventing the thrashing of the disks on file severs. Such tools are not standardized among HEP computational sites. The SRM protocol can be used in a uniform way as a traffic-shaping tool by metering the TURLs, if required.

Storage system developers have also noted that the translation step between SURL and TURL provides an opportunity to scale systems since the SRM can load-balance across many machines and ports. An example of how this may be used in the LCG-1 would be to support replicas of pile-up data.

Very significantly, the proposal of SRM as a protocol is not coupled to prescription of a single implementation. There are a number of groups working on independent, inter-operating implementations of SRM. These include groups that are implementing SRM features on large-scale central data-centre infrastructure for example CERN (castor), DESY/Fermilab (Dcache), Jefferson Lab (Jasmine) and LBL (HPSS). LBL have a Disk Resource manager that is stand alone and lighter weight.

The DataGrid Storage Element is actively following SRM, and had semantically equivalent functions in December, 2002. Fermilab is considering implementing the SRM interface on its "dFarm" distributed scratch space system used on its farms, and is interested in producing Java Classes that might be useful to embed in other storage systems. There is interest from the Condor group at University of Wisconsin.

Therefore there is acceptance at Tier 0 and Tier 1 centres, and there is likely to be a “market place" of suitable, open source packages for Tier 2 and lower centers.

8 Middleware Discussion

The interaction of the proposed storage element solution with the underlying grid middleware is relatively easy to understand and plan.

The external interface to the storage element itself must be a compatible implementation of a wide area grid data transfer protocol. The current logical choice is GridFTP, which is a sufficiently defined protocol that several groups have been able to make compatible implementations. As proposed however, the software handling replicas does not need to use grid FTP client software. The SRM_copy() feature of the SRM protocol provides for a reliable file transfer directly between storage systems, so that neither replica engines nor applications that stage their own data handle file data directly.
In addition to the transfer tools there are elements for authentication and authorization. The implementation of security on the storage elements is not more complicated than security for executing process requests. For data registered to the grid being transferred between known storage elements, it may be possible to simplify the authentication by using trust relationships.

9 System Requirements

The system requirements for only outgoing TCP/IP access to compute nodes proposed by the LCG Grid Deployment Board working groups and the gateway and firewall architectures used currently in many computing centers place significant restrictions on the methods used for grid data access.

However:

· Each participating site will need a storage element as defined earlier in this document.

· The storage element will need at least one network interface with a valid external IP address. Depending on the configuration of the local cluster it may also have a second network interface connected to an internal local area network.

· The storage element must run an agreed set of grid services for incoming and outgoing data transfer. If the storage element is behind a local firewall, allowances may need to be made to enable services running on the storage element.

· The storage element must be connected to a storage pool of agreed size. The type of storage pool to deploy is a decision for the site manager. A multi-disk RAID device directly connected to the storage element or an aggregation of local disks on the compute nodes using tools like dCache, dFarm, or pvfs should be immaterial to the storage element functionality.

· The storage pool chosen must be able to determine the space available when polled, the length of time a given file has resided in the storage element, and the access properties of a given file.

· The storage element must have the same authentication, authorization, and VO management outlined by the grid deployment board working group.

· LCG Applications running with the more flexible data access architecture will require some specific functionality.

· Applications running on the LCG will need to publish the local file access protocols that they support and fabric nodes will need to publish the local file access protocols used, so that the resource broker can assign requests properly. This requirement can be removed if a single access method can be agreed upon.
· Applications could be set up to request files of the storage element, which would then request to have them transferred if they did not reside locally. This simple implementation would work well with rudimentary resource brokers and would not require applications to publish the required input files before submission. More advanced resource brokers will be able to pre-stage files before submitting processes to improve efficiency. Applications in LCG-1 will publish the required information through the JDL.

10 Software Recommendations

Possible components to be deployed that match the proposed general solution

	Component
	Package
	Version
	Group
	Delivered

	SRM Client*
	SRMcp
	V1.1
	FNAL
	April 2003

	GridFTP Protocol
	GridFTP
	V1.0
	Globus
	Available

	Temporary Storage Sys.
	dCache
	V1.5.1
	FNAL/DESY
	May 2003

	Temporary Storage Sys.
	DRM
	V1.2
	LBL
	Available

	Temporary Storage Sys.
	CASTOR
	V1.5.2.1
	CERN
	Available

	Permanent Storage Sys.
	CASTOR
	V1.5.2.1
	CERN
	Available

	Permanent Storage Sys.
	dCache/Enstore
	
	FNAL
	May 2003

	dCap Protocol
	dCap
	V2
	DESY/FNAL
	Available

	dCap Library
	dCap
	V2_24
	DESY/FNAL
	Available

	rfio Protocol
	rfio
	
	CERN
	Available

For LCG-1 clients may access SRM by executing UNIX programs. Alternatively a Java class library is available. A C/C++ class library is not currently available, though not impossible.

How the EDG-WP5 matches the overall proposal..

	Component
	Package
	Version
	Delivered

	SRM Client*
	
	
	April 2003

	GridFTP Protocol
	
	
	April 2003

	Temporary Storage Sys.
	
	
	April 2003

	Permanent Storage Sys.
	
	
	April 2003

	rfio Protocol
	
	
	April 2003

Appendix 1 – File naming conventions

The following is extracted from the SRM document (V2.0) and provides the naming conventions agreed between PPDG and EDG WP2:

LFN- is a logical file name that is globally unique for a given dataset. Thus, the dataset name is usually the first part of the LFN. It is the choice of the dataset designer how to assign these names. If the files are organized in directories then the directory names are part of the LFN. The dataset name and directory names are separated by “/”. An example of an LFN is: “CERN-dataset-7/run17/part1/file-123”.

SFN- is a file name assigned by a site to a file. Normally, the site file name will consist of a “machine:port/directory/LFN”, but the site can choose to use another string instead of the LFN. An example of an SFN is: “sleepy.lbl.gov:4000/tmp/foo-3000”. In this example we used the simple file name “foo-3000” to simplify the example.

SURL – is a “site URL” which consists of “protocol://SFN”. The protocol for communicating with an SRM is simply “srm”. An example of an SURL for a file managed by SRM is: “srm://sleepy.lbl.gov:4000/tmp/foo-3000”.

TFN – is the “transfer” file name of the actual physical location of a file that needs to be transferred. It has a format similar to an SFN.

TURL – is the “transfer URL” that an SRM returns to a client for the client to “get” or “put” a file in that location. It consists of “protocol://TFN”, where the protocol must be a specific transfer protocol selected by SRM from the list of protocols provided by the client (see recommendation 9). If the physical storage location matches the one provided by the SURL, then only the protocol is replaced in the TURL. For the above SURL example, and assuming the protocol is “gridftp”, the TURL will be: “gridftp://sleepy.lbl.gov:4000/tmp/foo-3000”. However, the physical file location can be anywhere at that site, giving the freedom for the site manager to change the physical locations of files without having to change the SURL or update the replica catalog. If for the above example the physical location of the file is on another machine (e.g. “dm.lbl.gov”, another path (e.g. “/home /level1”), and even another file-name (e.g. “abc-3000”) then the TURL will be: “gridftp://dm.lbl.gov:4000/home /level1/abc-3000”.

StFN – is the “storage” file name that a client may request SRM to use when it stores the file. This is useful for telling SRMs where to archive a file. Normally, SRMs that archive files, such as an HRM, may choose to honor that request. But, the SRM may choose to give it another name, and return that to the client.

For LCG (POOL and EDG-RLS), we have additional semantics defined:

GUID – The Global Unique ID is the truly enforced internal identifier that the system assigns itself upon creation of the entry. The UUID mechanism is used to create these identifiers. GUIDs are immutable, and an SFN may have one and only one GUID.

LFN – The additional semantic consideration for the LFN is that although it should be globally unique, this cannot be enforced by the system since this name is controlled by the users and applications. From the user viewpoint, LFNs are mutable, may be changed and can be regarded as aliases or symlinks to the GUID. A GUID may have many LFNs. LFNs should enable the users to define human-readable aliases and enable applications to impose their own semantics on the identifier. So where the SRM document is not specific, we are: the mapping between LFN and SFN is an N : 1 : M mapping where the 1 in the middle is the file's GUID. So there may be many replicas of an SFN with the same GUID (1:M) and there may be many aliases of a GUID (N:1). For the user the GUID is hidden and we have the N:M mapping as advocated by the SRM and RLS documents.

Appendix 2 - Physics Data Objects

The interaction that is more complicated and will require an active development program is the interaction of the resource brokers and grid schedulers with the data storage. The LHC experiments, in general, have been attempting to improve data accessibility by utilizing databases to manage the storage. One common method for organizing the data in the database is by completeness.

At the bottom level is the simplest information required to perform a selection of the event described. Sometimes called a “tag”, this data is predicted to be between a few hundred and a few thousand bytes and contains a pointer back to the full event. The next level of the database contains the information required to perform a standard analysis, often referred to as the analysis object data or AOD. It is predicted to be between tens to hundreds of kilobytes. Above that there is usually a level of event summary data, sometimes called an ESD. It is usually predicted to be approximately half a megabyte, and is needed to calculate complicated variables or recalculate elements in the AOD. The final level is the raw event data, from which all other levels can be calculated. The size estimates vary between experiments for the raw event data.

A very simple application might access the data at only one level of the database. For instance, a user might wish to make an event selection based on information in the tags. This could be a fast process, because even selecting from a sample of 10^9 events might only be a few hundred gigabytes to read over. It is easy to imagine that the application request would communicate with the experiment database before submission to the grid. The database would identify all the tag data files required to complete the request and communicate this to the grid scheduler, which would in turn assign the request to available computing resources with the requested data or pre-stage the requested data to available resources and submit the job. In a more complicated example, the user might then wish to use the selected sample of events chosen from the tags described above and perform an analysis using variables from the AOD. One advantage of the database is that the tags have a pointer back to event data and the AOD can be accessed transparently, if the database files are available. Alternatively, the user might wish to re-reconstruct selected events or recalculate variables on the AOD with a new algorithm, which might require access to ESD database files for a very small subset of events. The initial conditions that the resource broker and grid scheduler used to optimize the placement of the tag selection job do not completely describe the data requirements because the job itself can point to additional needed database files.

In the past, these types of analysis jobs would have been accomplished with multiple process requests: one to select the events and another running on a different set of database files to calculate the additional quantities or re-reconstruct the selected events. With the implementation of a database it is possible to conceive of complicated applications with a single request. However, it is difficult to maintain the data accessibility over a wide area.

It is not obvious how an application running on computing resources connects to the global database though the storage element can identify which database files it needs next, if the complete set of required data cannot be identified before a request is submitted. It is not possible or reasonable to ship all the levels of the database, especially if only a small subset is actually needed. Nevertheless, it is not clear how the resource brokers and grid schedulers can optimise these types of requests and choose appropriate computing resources. To optimise this type of functionality it may require that the applications themselves be re-locatable after they have been started, if the runtime data requirements no longer match the initial assumptions. This would be a significant application development effort. It will also require a careful assessment of the capabilities of the computing system to know how often requests of this type could be accommodated and have middleware that would continually update the predictions of when a request would complete.

Simple application requests can be handled with technologies and techniques available today. To handle more complicated application requests will require research into the interaction of the schedulers, the applications, and the storage elements.

Pool provides technology neutral navigational access to distributed data without exposing details of the particular storage technology. Evidently, POOL would need to be SRM-aware.

Assuming

1. POOL opens a container file when the first object in that file is requested,

2. The file should be present on the local storage element when it is opened,

Pool would use the same primitives a that a replica manager would use to place a file on the storage element:

1. Query to see if the file is in the local store

2. If not, reserve space for it, and bring the file into the local store using srm_copy()

3. Pin the file in the local store.

4. Release the pin when done with the file.

The “middleware selection” report of GDB working group 1 mentions monitoring in the context of understanding, debugging and trouble shooting. The SRM API has rich source of parameter information and it seems likely that it could be interfaced to a monitoring system for trouble shooting. Some effort should be applied to defining a common SRM monitoring schema for all SRM implementations, which could be expanded upon by individual implementations. This is currently a research topic in the SRM community.

The “middleware selection” report of GDB working group 1 does not specify that information exposed via the monitoring channel (Which we understand is likely R-GMA) is used by schedulers and other grid software.

References

[2] Coda File System http://www.coda.cs.cmu.edu/

[3] SlashGrid http://www.gridpp.ac.uk/slashgrid/

[4] AVFS http://sourceforge.net/projects/avf

[5] UserVFS http://uservfs.sourceforge.net/

[6] The Pluggable File System http://www.cs.wisc.edu/condor/pfs/

[7] UVFS http://www.sciencething.org/geekthings/index.html

[8] FUSE http://sourceforge.net/projects/avf

[9] LUFS http://lufs.sourceforge.net/

[10] newuserfs http://sourcefrog.net/projects/newuserfs
[11] http://sdm.lbl.gov/srm-wg
[12] http://castor.web.cern.ch/castor/DOCUMENTATION/MAN/#rfio
PAGE
3

[image: image4.jpg][image: image5.jpg][image: image6.jpg]

[image: image7.jpg]

