Comparing Authorization Management Cost for Identity-Based and Role-Based-Access Control 

David F. Ferraiolo, John F. Barkley and Ramaswamy Chandramouli

National Institute of Standards and Technology

Gaithersburg, Maryland 20899

Abstract  

The cost of managing authorization data is one of the key elements in the overall cost of  enterprise security management. The nature of authorization data is a function of access control schemes that enterprise information systems support. Among the several access control schemes, the Role Based Access Control (RBAC) has been proven to reduce the cost of authorization management. However there has not been any work in actually quantifying those savings. In this paper, we analyze the various variables involved in administration of access control using Identity Based Access Control (IBAC) and RBAC schemes and derive cost expressions for basic authorization management tasks/functions. We then compare the overall administrative costs of creating and maintain​ing authorization data for IBAC and RBAC and illustrate the potential payoffs in implementing a RBAC based scheme.

1.0 Introduction
The increasing use of information systems to support more and more of business processes, and the distributed nature of these new systems has increased the risk of unauthorized disclosure and misuse of corporate data.  To realize the full benefits of automation and to minimize the risk of corporate data exposure, organizations need effective access control schemes as part of their overall enterprise security strategy. In particular, the creation and maintenance of authorization data which forms the core component of any access control scheme, presents a great technical and financial challenge. 
One of the promising access control schemes which has been proven to address the above issue is Role-Based Access Control (RBAC). However, since majority of the legacy systems as well many new systems only support the conventional identity-based access control (IBAC), switching to a RBAC approach will require a significant investment on the part of an enterprise. These costs are in terms of new security management software and the engineering process of redefining authorization information with respect to roles. Non the less, it is our opinion that the potential benefits RBAC offers should outweigh these costs. These benefits include reduced complexity of authorization manage​ment, the ability to enforce important access control policies, increased operational assur​ance, and a reduced cost in administering access control policies.    
Recently a number of papers have been published describing these benefits of RBAC [3][4][5][6][7], without any attempt at quantifying how role concepts relate to administrative cost. The purpose of this paper is to provide greater insight as to the quantitative adminis​trative cost benefits of RBAC over an existing identity-based approach. This is achieved through the development of a computational cost model for authorization data management (creation, update and deletion) that can be applied to various security administration scenarios. The cost model is used to calculation a return on investment (ROI) and to analyze the economic impact of switching over to the RBAC scheme.   
Section 2 of this paper describes some basic similarities and differences between identity-based (IBAC) and role-based access control approaches. The differences between identity-based and role-based access control approaches are further delineated throughout the remaining sections of this paper. Section 3 describes basic administrative functions that are fundamentally required by an enterprise regardless of the type of access control deployed. Section 4 provides a comprehensive definition of the RBAC computational model. This model is in terms of the relative costs associated with performing authorization management functions with respect to IBAC and RBAC mechanisms and enterprise specific architectural and administrative parameters. Section 5 provides an example calculation of expected annual savings for a typical mid-sized enterprise. 
2.0 Identity and Role Based Access Controls

Before any access is granted, a user identity check is made, possibly by calling an authentication server. If this “logon” test succeeds, a connection operation binds the session to a subject, i.e., creates a 1-to-1mapping from the user u to some subject s.  Thus for the purpose of performing an access control calculation we can drop the user denotation u below and use the subject s it binds instead. Access means having the permission to perform an action within a computing environment, such as the ability read, write, append or delete information. The access control mechanism is used to protect information, or more generally speaking protect objects from unauthorized access. Autho​rization management is the administrative process of defining what subjects may have access to what objects, with respect to a set of predefined enterprise security policies. An access control mechanism restricts which subjects can perform which operations on which object. In general an approval of a particular operation to be performed on one or more objects is referred to as a privilege. Even though privilege and permission are often used interchangeably, we make a distinction between what is tabulated from what is calculated.  We use privilege for an express access grant, i.e., a datum which is tabulated as part of the access control information, and permission for a value calculated by combining privileges, and subject attributes. 

For the purposes of this paper, restrictions can be either identity-based or role-based. For identity-based mechanisms, access is controlled on the basis of the identity of the user u, or more accurately, the identity of the subject s acting as a surrogate of u that is requesting to perform an operation op on an object o.  For role-based mechanisms, access control decisions are based on the role r of a subject s acting on behalf of a user u requesting to perform an operation op on an object o where the user u is a known member of role r.
By far the most prevalent type of identity-based access control mechanism, is an access control list (ACL) [8]. An access control list is a lower level mechanism that contains the names of subjects that are authorized to access the object to which it refers, as well as specific permissions that are granted to each authorized subject. Thus, when a subject wants to access an object, the system searches for an entry of the subject in the appropriate ACL. If an entry exists, and if the necessary operation is part of that entry, then access is permitted. Privilege to create and modify ACLs is restricted to the owners of the objects for which the ACLs protect. To support discretionary policies, ownership or control typically resides with the creators of the objects. In an attempt to support non-discretionary policies, that are typical of most organizations, ownership is assumed by the enterprise, where security administrators centrally control ACL entries on behalf of the enterprise. For administrative efficiency reasons, a group is often used as an entry on the ACL as a shorthand notation for describing a collection of individual subjects. For purposes of access control calculations, the subject’s identity is compared to the identities maintained in the group. If a match is found, the subject is allowed to perform the operation cor​responding to the group entry. 
From a modeling perspective, roles are equivalent to groups. A role can represent a collection of users and a user can be a member of multiple roles. Unfortunately, in practice not all group mechanisms allow users to be a member of more then one group. Similarly, a single privilege can be associated with one or more groups/roles and a single group/role with one or more privileges. As such, by assigning a user to a group/role implicitly provides the user with the ability to execute those privileges that are associated with that group/role. For the purposes of this paper we will assume a group/ACL mechanism (ACLg) to be equivalent to that of a RBAC role. A real world mechanism ACLg, would be considered equivalent to an RBAC role if:

· There were no practical restrictions on the number of groups that could be created;

· There were no practical restrictions on the number of users that could become a member of any group; and

· There were no practical restrictions on the number of groups to which a user can have simultaneous membership.

Although, identity based systems often include a similar group structure to that of a role, roles and groups differ fundamentally in the way they are used and managed. See Appendix A for a more formal delineation of these differences. Under the RBAC model, membership within a role is resolved independently of the object attributes. This allows for the centralized management of user/role relationships, to include mutual exclusivity of role membership, as well as, the centralized establishment of subject security attributes (i.e., the user’s active role set). As such, a role-subject attribute can take on a general meaning across multiple systems, making it simpler and cheaper to administer user/role and role/role relationships over the semantically equivalent group mechanism. E.g., by granting a user membership into a role on a front-end server has the effect of granting the user privilege to objects across back-end servers that contain corresponding role attributes. 

Under an IBAC scheme groups are defined as object security attributes. Group membership is typically determined within the system for which the object resides. From an authorization management perspective, each system is treated as a stand-alone system. Their underlying access control mechanisms are locally and individually adminis​trated with little or no regard to the authorization data that is maintained within other enterprise systems. 
To provide further administrative efficiency, the RBAC model allows roles to contain other roles, and as such form role hierarchies. Role hierarchies are strict partial orderings on the set of roles. A strict partial ordering is a relation which is asymmetric and transitive and which is often represented by the symbol “>”. The notation “ r > r’ ” means that r “inherits” r’ or r “contains” r’.

Strict partial orderings can be visualized by means of a directed acyclic graph. Given a strict partial ordering, the directed acyclic graph corresponding to that relation can be constructed by drawing an arrow from r to r’ if and only if r directly inherits r’. Under this scheme, the roles toward the top of the graph would represent the more powerful roles (i.e., those roles containing a greater number of privileges and a fewer number of users). And the roles toward the bottom of the graph would represent the least powerful roles (i.e., those roles containing a fewer number of privileges and a greater number of users).  By assigning a user to a role has the effect of assigning the user to all roles that are contained by that role. And by assigning a privilege to a role has the effect of assigning the privilege to all roles that contain that role. Although, it is not inconceivable that a group mechanism could provide semantically similar features, in general group mechanisms do not support hierarchies. 

By taking advantage of the multiple inheritance properties of the directed role graph, individual users can be introduced directly into the role graph as a UserRole. As such individual users and their unique privileges can be included as part of the overall RBAC scheme (i.e., privileges specific to a particular user are assigned to the UserRole that represents the user in the role graph). By initially assigning a user to a given role has the effect of creating a UserRole and establishing an inheritance relationship between the UserRole and the role that the user was assigned. Any subsequent user-role assignments would be in terms of role-role inheritance relationships.  Because user privilege assignments are always established in the context of the role graph, the UserRole can be treated as any other role in the graph for the purposes of creating and inheriting privileges. Because a UserRole is a special type of role, always consisting of one user, a UserRole must always be a topmost node in the role graph (it can not have ascendants).

3.0 Administrative Functions

Regardless of the type of access control implemented, an enterprise must perform basic authorization management functions to support operational requirements. These administrative functions include two categories of operations:
· Distribution of privileges, and 

· Revocation of privileges

Both distribution and revocation of privileges may involve a third category of operation

· Review of privileges.

Distribution of privileges refers to the administrative operations involved in the appropriate establishment of user privileges. The distribution of privileges is necessary in order to establish or modify a user’s functional capabilities. Typically, distribution operations pertain to: 

The initial assignment of permissions to establish functional capabilities for new users; the reassignment of permissions to reflect a user’s change of responsibility; and the assignment of new privileges to existing users to reflect a change in or the creation of new functions within the enterprise. When a new employee enters on duty, privileges must be appropriately assigned to the user. When a user’s function changes within the enterprise, the existing privileges of the user must be reviewed and changes made accordingly. In addition, new privileges are assigned to the user in order for the user to effectively perform his/her new responsibil​ities. In order to establish new functions within the enterprise, new privileges must be assigned to existing users that are authorized to perform the new functions.
When distributing privileges, special attention is taken to abide by the principle of least privilege. Least privilege is the time honored administrative practice of selectively assign​ing privileges to a user such that the user is given no more privilege than is necessary for the performance of his/her job function. Achieving least privilege has the benefit of avoiding an individual the ability to perform unnecessary and potentially harmful actions merely as a side effect of granting the ability to perform a desired function [9]. Privileges are the legal rights granted to an individual, to enable the holder to those rights to act in the system within the bounds of those rights. The question then becomes how to assign users the appropriate set of permissions, among the aggregate of system permissions, that correspond to the user’s authorized functions or duties within the enterprise. 

When a user separates from the enterprise, changes jobs or responsibilities within the enterprise, or an existing function becomes obsolete an administrator must subsequently revoke appropriate user privileges. In the case where the user separates from the enterprise all of the user’s privileges would need to be effectively revoked. One approach to this problem might be to simply delete all of the user’s existing accounts within the enterprise. However, this would leave garbage in the system, that might lead to inappropriate and potentially damaging accesses. In the case where the employee changes responsibilities within the enterprise, the administra​tor must take great care in selectively revoking privileges. By deleting privileges that are necessary for the performance of the user’s new responsibilities would inhibit the user’s ability to effectively perform his/her job. By not deleting privileges that are no longer necessary in performing the user’s new responsibilities would be a violation of the principle of least privilege, and thereby provide the potential for abuse.  

4.0 RBAC Cost Model

RBAC exhibits cost advantages over IBAC, such as that of an ideal ACLg mechanism described in section 2, by reducing the number of administrative operations that must be performed to achieve and maintain a common access control policy. In terms of the RBAC model, these cost advantages can be realized through the creation and use of role hierarchies, and through centrally maintained user-role and role-role relationships. Because an RBAC role spans multiple systems within an enterprise, user-role and role-role relationships can be created and maintained at an abstraction above, and independently of each enterprise system. E.g., by centrally granting a user membership into a role has the effect of granting the user the set of privileges that are associated with that role and all roles that are contained by that role. Because, role hierarchies reduce cost independently of the enterprise’s back-end systems we begin specification of the RBAC cost model by first qualifying savings through the use of hierarchical role relationships. 

4.1 Hierarchical and Non-hierarchical Role Representations

Job functions within an enterprise often have overlapping responsibilities and privileges, i.e., users belonging to different roles may need to perform common operations. Further​more, within many organizations there are a number of general operations that are per​formed by a large number of users. As such, it would prove inefficient and administratively cumbersome to specify repeatedly these general privileges for each role or group that gets created. Role hierarchies provide a means of dramatically reducing and in many cases eliminating the need to perform repetitive administrative operations. 

The administrative advantages of RBAC are realized when an organization makes use of RBAC in the following manner. Roles are defined and associated with privileges with respect to resources that are maintained within the back-end systems. Role relationships, e.g., a role hierarchy, are also defined. Within a role hierarchy, if one role inherits another, then the inheriting role obtains the privileges of the inherited role by virtue of the inheritance relationship, not as a result of the inheriting role having a direct association with the privileges of the inherited role. Resource access then becomes a matter of associating users with roles. 

Lets consider how hierarchies can be used to express policy. Figure 1a shows a simple access control policy using hierarchies. The roles r1, r2, and r3 are assigned privileges p1, p2, and p3 respectively. User u has been assigned role r1. As a result of the hierarchy, user u has been effectively authorized privileges p1, p2, and p3. This authorization is accomplished by a single administrative operation, associate user u with role r1. When u is replaced by another user, a total of two administrative operations must be performed, one to remove u from r1 (and by inheritance, also from r2, and r3) and one to assign the new user to r1 (and by inheritance to r2, and r3). 

The same access control policy can be accomplished without using hierarchies, by making three assignment operations, i.e., associate user u with r1, r2, and r3 (figure 1b). Although figure 1b provides the same effect of granting user u, privileges p1, p2, and p3, as that of figure 1a, figure 1b, does not provide the same access control policy or functional expression as that of figure 1a. To achieve the same policy expression would entail three additional permission assignments, i.e., associate p3 with r2, and r3, and associate p2 with r1 (figure 1c).

[image: image1.wmf]u

n

i

u

u

u

n

i

u

u

n

k

k

n

m

m

u

i

ave

i

u

i

ave

i

å

å

=

=

=

=

1

1

)

(

,

)

(

[image: image2.wmf]
[image: image3.wmf]C

C

C

total

H

u

u

total

NH

u

u

u

u

total

NH

u

ave

i

u

ave

i

ave

i

u

m

n

or

k

n

m

n

+

=

+

=


[image: image4.wmf][image: image5.wmf][image: image6.wmf]C

C

total

H

n

i

u

n

i

u

n

i

u

u

n

i

u

n

i

i

u

NH

total

NH

u

u

i

u

i

u

i

i

u

i

u

u

m

k

m

k

m

u

C

+

=

+

=

+

=

=

å

å

å

å

å

=

=

=

=

=

1

1

1

1

1

)

(

)

(

[image: image7.wmf][image: image8.wmf]15

4

1

1

1

=

+

=

=

=

å

å

å

=

=

=

u

i

u

i

u

u

i

u

n

i

u

n

i

u

total

NH

n

i

u

total

H

k

m

k

C

C

[image: image9.wmf]C

C

total

H

n

j

p

n

i

p

n

j

p

p

n

j

p

n

j

j

p

NH

total

NH

p

p

j

u

j

p

j

j

j

j

p

p

m

k

m

k

m

p

C

+

=

+

=

+

=

=

å

å

å

å

å

=

=

=

=

=

1

1

1

1

1

)

(

)

(

)

(

)

(

)

(

[image: image10.wmf]p

n

j

p

p

p

n

j

p

p

n

k

k

n

m

m

p

j

ave

j

p

j

ave

j

å

å

=

=

=

=

1

1

)

(

,

)

(

[image: image11.wmf][image: image12.wmf]ave

j

ave

j

p

p

p

p

total

NHp

k

n

m

n

C

+

=


[image: image13.wmf]C

C

C

C

total

NH

total

Hp

total

NHp

gain

Hp

p

-

=

[image: image14.wmf][image: image15.wmf]1

,

+

=

=

-

=

C

C

C

C

C

C

C

C

total

H

u

u

total

H

total

NH

fact

H

total

NH

total

H

total

NH

gain

H

u

ave

i

u

u

u

u

u

u

u

m

n

[image: image16.wmf]Graph 1 - Cost of Assigning New Users to Existing Privileges

$0

$100,000

$200,000

$300,000

$400,000

$500,000

$600,000

$700,000

$800,000

1000

2000

3000

4000

5000

Number of new users (

n

new-usr

)

IBAC

RBACnh

RBACh

[image: image17.wmf]Graph 2 - Cost Trend for the Re-assignment of Users

$-

$100,000

$200,000

$300,000

$400,000

$500,000

$600,000

500

1000

1500

2000

2500

Number of users changinging responsability

IBAC

RBACnh

RBACh

[image: image18.wmf]Graph 4 - Cost Trend for Creating a New Function

$-

$20,000

$40,000

$60,000

$80,000

$100,000

25

50

75

100

125

Number of new functions created

IBAC

RBACnh

RBACh

[image: image19.wmf]Graph 5 - Lose of User Productivity 

$-

$2,000,000

$4,000,000

$6,000,000

$8,000,000

$10,000,000

1000

2000

3000

4000

5000

Number of new hires

IBAC

RBACnh

RBACh


[image: image20.wmf]C

C

total

H

n

j

p

n

i

p

n

j

p

p

n

j

p

n

j

j

p

NH

total

NH

p

p

j

u

j

p

j

j

j

j

p

p

m

k

m

k

m

p

C

+

=

+

=

+

=

=

å

å

å

å

å

=

=

=

=

=

1

1

1

1

1

)

(

)

(

)

(

)

(

)

(

[image: image21.wmf]1

,

+

=

=

-

=

C

C

C

C

C

C

C

C

total

H

u

u

total

H

total

NH

fact

H

total

NH

total

H

total

NH

gain

H

u

ave

i

u

u

u

u

u

u

u

m

n


[image: image22.wmf]
[image: image23.wmf]Graph 4 - Cost Trend for Creating a New Function

$-

$20,000

$40,000

$60,000

$80,000

$100,000

25

50

75

100

125

Number of new functions created

IBAC

RBACnh

RBACh

[image: image24.wmf]u

n

i

u

u

u

n

i

u

u

n

k

k

n

m

m

u

i

ave

i

u

i

ave

i

å

å

=

=

=

=

1

1

)

(

,

)

(

[image: image25.wmf]15

4

1

1

1

=

+

=

=

=

å

å

å

=

=

=

u

i

u

i

u

u

i

u

n

i

u

n

i

u

total

NH

n

i

u

total

H

k

m

k

C

C

[image: image26.wmf]C

C

C

total

H

u

u

total

NH

u

u

u

u

total

NH

u

ave

i

u

ave

i

ave

i

u

m

n

or

k

n

m

n

+

=

+

=

[image: image27.wmf]C

C

total

H

n

i

u

n

i

u

n

i

u

u

n

i

u

n

i

i

u

NH

total

NH

u

u

i

u

i

u

i

i

u

i

u

u

m

k

m

k

m

u

C

+

=

+

=

+

=

=

å

å

å

å

å

=

=

=

=

=

1

1

1

1

1

)

(

)

(

[image: image28.wmf]p

n

j

p

p

p

n

j

p

p

n

k

k

n

m

m

p

j

ave

j

p

j

ave

j

å

å

=

=

=

=

1

1

)

(

,

)

(

[image: image29.wmf]Graph 5 - Lose of User Productivity 

$-

$2,000,000

$4,000,000

$6,000,000

$8,000,000

$10,000,000

1000

2000

3000

4000

5000

Number of new hires

IBAC

RBACnh

RBACh

[image: image30.wmf]ave

j

ave

j

p

p

p

p

total

NHp

k

n

m

n

C

+

=


[image: image31.wmf]Graph 2 - Cost Trend for the Re-assignment of Users

$-

$100,000

$200,000

$300,000

$400,000

$500,000

$600,000

500

1000

1500

2000

2500

Number of users changinging responsability

IBAC

RBACnh

RBACh

[image: image32.wmf]C

C

C

C

total

NH

total

Hp

total

NHp

gain

Hp

p

-

=

[image: image33.wmf]Graph 1 - Cost of Assigning New Users to Existing Privileges

$0

$100,000

$200,000

$300,000

$400,000

$500,000

$600,000

$700,000

$800,000

1000

2000

3000

4000

5000

Number of new users (

n

new-usr

)

IBAC

RBACnh

RBACh








4.1.1 User-Role Relationships

The cost model for this example can be described as follows:

Let 

mu= the number of distinct roles inherited by any role R assigned to user u where u is not assigned to any role inherited by R
More precisely:

mu = the number of roles in the set: {r|(u( R) ( (R > r) ( ~ (u ( r)}

where: “u ( R” means “user u is assigned role R”

The administrative cost is qualified as the number of user-role assignments required by the policy expression. When a hierarchical role expression is used as in figure 1a, the administrative cost for user u, CH(u), is 1 by definition. However, when the non-hierarchical role representation is used as in figure 1b, additional role assignments for user u must be made for each of the roles which has a hierarchical relationship in figure 1a. The number of these additional role assignments is mu. Thus including the cost of the additional role assignments, the administrative cost for user u, CNH(u), is:

CNH(u) = mu + 1

             = mu + CH(u)

If u is assigned ku different roles in a hierarchy, then the cost of the non-hierarchical role expression is:

CNH(u) = mu + ku
CNH(u) = mu + CH(u)
Now, let:

nu = the number of users which are assigned at least one role r
More precisely:

nu = the number of users in the set: {ui ((r, ui ( r}

Thus, with the non-hierarchical role expression, the cost for all users assigned at least one role is: 
As an example consider the role graph depicted in figure 2. Figure 2 includes three users, u1, u2, and u3, each assigned at least one role. As such nu equals three. u1 is assigned to one role r2, which contains three roles, r5, r7, and r8. Therefore, mu1 and ku1 are three and one respectively. Because u2 is assigned two roles, r1 and r2, ku2 is two. r1 contains five roles, r3, r5, r6, r7, and r8. r2 contains three roles, r5, r7, and r8. Because r5, r7, and r8 are contained by  roles r1 and r2, these roles are counted only once, thus mu2 is five. u3 is assigned to one role, r4, and r4 contains three role, r6, r7, and r8, and as such, ku3 and mu3, are one and three respectivly.

Therefore, the total cost of the hierarchical and non-hierarchical role expressions of the role graph depicted in figure 2, are: 













Although accurate, determining cost with respect to a known role graph would be inappropriate in the calculation of a return on investment, for the deployment of RBAC. This is due to the limited knowledge an enterprise would have as to the details of the role graph prior to performing role engineering. As such, we look at a more practical approach. 

Although, determining a complete role graph for an enterprise is difficult, estimating the average mui and kui could be achieved with minimal analysis.  Because average mui and kui can be expressed as follows:


Using the variables muiave and kuiave, we can re-specify the non-hierarchical and hierarchical cost expressions by the following equations:


Now we can practically calculate the gain in efficiency and the hierarchical cost factor for administering user assignments using a hierarchical role representation versus a non-hierarchical role representation for a common policy using the following two equations:
As an example, consider the cost of administering user-role assignments for the policy represented in figure 2.  By using the hierarchical representation provides a gain in administrative efficiency of 73% over the use of the non-hierarchical representation, and a hierarchical cost factor of 3.75.

4.1.2 Privilege Role Relationships

Thus far we have consider the cost of administering user/role relations for hierarchical and non-hierarchical role representations. However, role hierarchies also afford a similar but dual efficiency as that of user-role relationships when administering role-privilege relationships.

To better understand how role hierarchies provide this efficiency consider Figure 3. Figure 3a shows a simple access control policy using hierarchies. The hierarchy presented in figure 3a is an equivalent representation of the three roles or groups presented in figure 3b. Users u1, u2, and u3 have been assigned to roles r1, r2, and r3, respectively, for both the hierarchical and non-hierarchical representations. Privilege p has been assigned role r3 within in the role hierarchy. As a result of the hierarchy, privilege p has been effectively authorized for users u1, u2, and u3. This authorization is accomplished by a single administrative operation, assign privilege p to role r3. To achieve the same access control policy without using hierarchies can only be accomplished by making three assignment operations, i.e., assign privilege p to r1, r2, and r3. 












Because role-privilege relationships are inherited in the opposite direction as user-role relationships we can replace the definitions for mu and ku with the dual definitions with respect to privilege relationships.

Let 

mp= the number of roles that are inherited by any role R assigned to privilege p where p is not assigned any role that inherits R
More precisely:

mp = the number of roles in the set: {r|(p( R) ( (R < r) ( ~ (p ( r)}

where: “p ( R” means “privilege p is assigned role R”

If p is then assigned kp different roles in a hierarchy, then the cost of the non-hierarchical role representation is:

CNH(p) = mp + kp
CNH(p) = mp + CH(p)

Now, let 

np = the number of privileges which are assigned at least one role r
More precisely:

np = the number of privileges in the set: {pi ((r, pi ( r}

Thus, for the non-hierarchical role representation, the cost for all privileges assigned at least one role is: 

But, Because

We can state:


Finally, the gain in administrative efficiency for administering privilege assignments using a hierarchical role representation versus a non-hierarchical role representation for a common policy is expressed using the following equation:

Assuming for figure 2, that each role, ri has been assigned one privilege pi. The gain in administrative efficiency for administering privilege assignments for the role graph represented in figure 2 using the hierarchical representation over the non-hierarchical representation is 71%. 

4.2 Centralized User-Role Management

To lay the groundwork for centralized authorization management vendors are introducing enterprise security administration systems, single sign-on, and directory services allowing a user subject attributes to be shared in the network so that each subject would be described only once. Under an IBAC scheme, a user’s identity could be centrally verified and bound to a subject, allowing the subject direct entry to back-end servers where object access checks could be performed through the use of the centrally verified subject identity. As such, centralized authorization management offers IBAC greater administrative efficiency by reducing the number of times a user would need to log-on across multiple servers. Although, impressive from a users’ point of view, centralized management has no effect on efficiency from an authorization management perspective.  This is because user-privilege associations must be performed either at the object level, in the case of an subject ACL entry or at the server level in the case of group membership. On the other hand, centralized authorization management offers RBAC great benefits because roles and user role assignments can be maintained centrally, independent of the object attributes that are used in the calculation of access permission. By centrally assigning a user to a role, grants the user privilege within multiple servers. Thus, security administrators can focus much of their efforts on the central server as users are added or deleted and as users change roles rather than attempting to maintain lists of users and groups on multiple servers. 

4.2.1 Assigning User Privilege through Predefined Roles and Groups

Lets consider how user-privilege relationships as expressed by centrally maintained roles are mapped onto ACL group entries that are maintained on back-end systems (see figure 4 below). Recall that a privilege is an approval to perform an operation on an object. From the previous section we know that granting a user, u, membership into the set of  ku roles, assigns the user the set of privileges that are associated with the set of ku roles, plus the set of privileges that are inherited by the ku roles . Thus by assigning a user to ku roles within an RBACH scheme would require the assignment of the user to ku +  mu roles in the RBACNH scheme to achieve the same policy effect. Within each back-end system each user-privilege assignment is managed as an entry on an ACL, where the entry includes an operation or a set of operations and either a subject ID or a group ID. When roles are centrally maintained, each ku +  mu role in the role graph maps one-to-many onto multiple back-end system groups. With respect to a particular system, a single role maps one-to-one onto a single group and indirectly to multiple group ACL entries. Thus to achieve the same policy effect of assigning a user to the ku +  mu roles in the RBACNH scheme would require the assignment of the user to multiple instances of  ku +  mu groups. For example, the group Accounts Receivable Clerk that corresponds to the role Accounts Receivable Clerk may exist on multiple systems. To better qualify the number of ku +  mu groups instances we define the following term:  

Let:

nsys/grp = the average number of systems containing a common instance of a single group.

We can now quantify the relative cost of assigning privilege to a user via role membership in a RBACH, RBACNH and IBAC schemes. 

RBACH: kui ave

RBACNH: kui ave + mui ave

IBAC: nsys/grp * (kui ave + mui ave)















4.2.2 Assigning New Privilege to Existing Users and Roles (Augmenting a Function)

Although users may obtain predefined privilege through membership into existing roles and groups, not all user privileges can be expressed through roles and groups. To establish privileges that are unique to a user, new privileges must be created for the user in the form of new ACL entries. Creating these user unique privileges involves the creation of new ACL entries on the systems where the objects reside. From our ACL definition, an ACL entry may include a subject identifier and/or group identifier and a set of one or more operations for a protected object. The <object, operation> pair is an expression of privilege, and the subject and group identifiers associate the privilege with a user or a set of users respectively. For IBAC scheme this is the extent of privilege creation and assignment. In an RBAC scheme users are not directly assigned privilege, but rather a privilege is assigned to a role and a user is assigned to a role in the centrally maintained role graph. For the purposes of qualitatively comparing the RBAC to IBAC schemes, the basic action of assigning privilege to a subject or group identifier can be thought of as an equivalent action to that of assigning privilege to a role. For this equivalence to hold the subject or group identifier must correspond to a specific role in the role graph. 

To consider the qualitative cost factors of privilege inheritance, each subject or group identifier in the IBAC scheme would need to map directly to one role in the RBACNH scheme, and by virtue of privilege inheritance to (mpiave + kpiave) roles in the RBACH scheme. Although technically accurate from a privilege inheritance perspective, such a mapping would result in an expression of policy similar to that depicted in figure 1c. I.e., users would be redundantly assigned privilege. This would be unnecessary from a policy perspective and inappropriate from a cost perspective. 

This implies that reflecting user-role and role-role relationships of RBACH within IBAC with the selective assignment of privilege to group and subject identities is sufficient to express RBACH policies in an IBAC environment. As such, we conclude that the assignment of a privilege to an existing group or subject identifier is equivalent to the assignment of a privilege to a role from a qualitative cost perspective.  

However, in order to create new privileges in an IBAC environment, appropriate groups and user accounts must first be created if they do not already exist. Consider the case where a new system is introduced into the enterprise to support new payroll applications and files. Before users can be assigned privilege to access these resources, new groups need to be created that reflect the appropriate payroll functions, new user accounts need to be created before assigning privilege to subject identifiers and users need to be appropriately assigned to the groups that are created. In an RBAC scheme, role creation and role population is unnecessary. To understand the qualitative cost relationship between IBAC and RBACH consider the actions within IBAC of assigning a privilege to a role within a system that does not contain a corresponding group within the system. To achieve the same RBACH effect, a group that corresponds to the role would need to be created on the system, and the users that are directly assigned to the role would need to be assigned to the newly created group. In addition, the users that are assigned to roles that would inherit the newly created privilege would also need to be assigned to the group. If any of the user accounts do not exist on the system, then these accounts must also be created.

To quantify this cost we consider the following variables:

ngrp/yr-exst-fun = the number of groups per year that must be created to correspond to an enterprise function to enable the expression of privileges for files and applications that are included as part of an enterprise function.

nusrs/grp-new = the average number of users that are assigned to a new group.

nnew-acct/grp = the average number of new user accounts that must be created in order to completely populate a new group.

We can now quantify the administrative actions that are required due to the assignment of a privilege to an existing enterprise function on a system where a group does not exist locally that corresponds to the function in an IBAC scheme.

IBAC: ngrp/yr-exst-fun  * (nusrs/grp-new + nnew-acct/grp )

For RBACNH and RBACH there is no incurred cost because the roles already exist and are populated with users. 

4.2. 3  Creating a new function 

Creating a new enterprise function (i.e., Accounts Receivable) in RBAC entails the creation of a new role (encapsulating the new function), inserting it into the role graph, and directly assigning privileges to the role on the back-end systems where the applications and files that comprise the function reside. By inserting the role into the role graph (in the RBACH scheme), the role could then become available for the explicit assignment of user membership and would automatically inherit user membership from the roles that are contain by the inserted role. By considering the privilege role relationships established in section 4.1.2, we assume a role that is created for the purposes of privilege assignment to be contained by mpiave roles.  Once inserted into the role graph, the role would then become available across the enterprise for privilege assignment. To qualify cost of user assignment for the creation of a new function within RBACH and to derive qualified cost for RBACNH and IBAC we define the average number of users that are explicitly assigned to a role in a role graph.

nusr/roleH = the average number of users that are directly assigned to an enterprise function and are not assigned to other enterprise functions that are included as a specialization of the function.

The number of users explicitly assigned to a role that represents an enterprise function in RBACH can be expressed simply as:

RBACH: nusr/roleH
To achieve the same policy effect of RBACH, in RBACNH would require the creation of a new role, with the explicit assignment of users that would be equal to the set of users assigned (explicitly and through inheritance) to a corresponding role in RBACH. The number of users explicitly assigned to a role that represents an enterprise function in RBACNH can be expressed as:

RBACNH: nusr/roleH * mpi ave
To create a new function in the IBAC scheme would entail creating a group on each system where the files and applications that comprise the new function reside. Users would need to be assigned to the groups in a manner that would correspond to the users that were assigned to a role in RBACNH. If any of the users that were to be assigned to the group do not have an account on the system where the group resides, then accounts would need to be created for those users. 

We can now qualify the annual cost of creating new enterprise functions in the IBAC scheme.

IBAC: nusr/roleH * mpi ave * nsys/grp + nsys/grp * nnew-acct/grp 
To create a new enterprise function in RBAC would require creating a new role, inserting the role into the role graph, and assigning new members to the role.  

Although, privileges are created on the back-end systems, once role privilege relationships are created, privileges associated with users and roles can be centrally specified. This is because each centrally maintained role, to include UserRoles is mapped to privileges that are maintained on the back-end systems. 

























4.3 Quantifying Cost

Now that we have qualified the administrative relationships of using RBAC hierarchies and centrally administering user-role relationships we can begin to quantify the advantage of RBAC over IBAC in terms of the administrative functions that were described back in section 3.0. Regardless of the type of access control in use an organization will incur cost through the distribution, revocation and review of user privileges. Within this section we will compare the relative cost of performing these administrative functions using an IBAC approach and an RBAC approach that deploys role hierarchies and a centralized user-role assignment approach. Recall that an RBAC role, r and an IBAC group mechanism, ACLg, are considered equivalent under the properties described in section 2. We use this equivalency to determine enterprises ROI for the deployment of an RBAC scheme over an IBAC scheme. To calculate ROI we define cost equations for each administrative function, with respect to the IBAC and RBAC schemes. To define these equations we define additional parameters to represent administrative labor cost, time requirements to perform administrative tasks, and access control architectural characteristics. 

4.3.1 Administratation cost 

We first consider the cost per hour for a security administrator.

Let:

acost= The average cost for a security administrator per year.

The cost for acost includes the cost for benefits such as health, life, and retirement. 

Let:

d = the number of working days per year.

The number of working day should take into consideration holidays, vacation days, and sick days. 

Let:

h = the number of hours an administrator performs actual administrative tasks. 

The number of hours, h, should take into consideration, time spent performing other essential activities related to performing administrative tasks, such as attending meetings and reviewing documentation and reports. 

Taking into consideration the cost parameters described above, we can define the net cost to perform actual administrative functions per hour.

anet = acost / d * h
4.3.2 Assigning existing privileges to new users

Next we quantify the cost to assign privileges to new users, for IBAC and RBAC. The quantification uses general relationships defined in section 4.1.1 as well as cost parameters that are derived from an enterprises existing IBAC approach at assigning privileges to new users. This method relies on a mui ave as estimated through analysis. mui ave as estimated takes into consideration efficiencies pertaining to the layering of user/role inheritance relationships that are difficult to visualize and implemented within the existing enterprise group structures. 
Let:

nnewu= the number of new users that are assigned privileges within the system, each year.

tfull-func = the average time in minutes for an administrator to create appropriate ACL user entries and group memberships for the establishment of a user’s full functional capabilities.

We now define the cost in an IBAC scheme for the assignment of privileges to new users, Cset-upibac 

Cset-upibac = anet * nnewu * tfull-func / 60

We now define the cost of assigning privileges to new users for RBAC.  For RBAC and IBAC we assume that the annualized cost to perform administrative functions, anet and the annual number of new users, nnewu to be the same under each scheme. Thus, to understand the relative costs for Cset-upibac and Cset-uprbac, we must describe the relationship between the time to establish user privilege in an IBAC and RBAC scheme. The time to assign privileges in IBAC is directly related to the required administrative tasks of assigning users to groups and ACL entries for all objects in all systems that the user will require access. These tasks can be mapped to the non-hierarchical role space that is then mapped to the hierarchical role space using the relationships identified in section 4.1. We first define component variables related to tfull-func:

Let:

nsys/usr-new = the average number of systems in which a new user will posses privileges

nacl/u-new/sys = the average number of new user acl entries per user per system.

tacl-ent = the time to create an ACL entry, to include the time to specify the operation(s) that the user will be permitted to perform on the object.

ngrps/user = the average number of groups per user.

nsys/grp = the average number of systems per group.

tu-role/grp = the time to assign a user to a role or group.

tusr-acct = the time to create a user’s account.

tfull-func can now be redefined in terms of the time to perform its subtasks:

tfull-func = nsys/grp * ngrps/user *  tu-role/grp + nsys/usr-new (nacl/u-new/sys *  tacl-ent + tusr-acct)

Note that each tfull-func equation contains three components -- the time spent assigning users to groups, the time spent creating user identity ACL entries, and the time spent creating user accounts.

In the IBAC scheme, administrators would need to be expended tfull-func minutes for nnewu new users, for a total time of:

Tfull-funcIBAC = nnewu * (nsys/grp * ngrps/user *  tu-role/grp + nsys/usr-new (nacl/u-new/sys *  tacl-ent + tusr-acct))

In the non-hierarchical role scheme, each new user is assigned to kui ave + mui ave roles within a single system rather then directly to groups or ACL entries on a system by system basis.  As such, the total annual time required to assign new users system privileges in a non-hierarchical RBAC scheme, Tfull-funcNH is:

Tfull-funcNH  = nnewu * (ngrps/user *  tu-role/grp + nsys/usr-new * nacl/u-new/sys *  tacl-ent + tusr-acct)

With respect to RBACH, each new user is assigned kui ave roles in a single system to establish back-end system privileges. Using the mapping relationships defined section 4.2.1 we derive kui ave  in terms mui ave and  ngrps/user and redefine time spent assigning users to groups in IBAC in terms of kui ave and mui ave: 

 kui ave + mui ave =  ngrps/user

kui ave  =  ngrps/user - mui ave
The total annual time required to assign new user’s system privileges in a hierarchical RBAC scheme, Tfull-funcH is:

Tfull-funcH = nnewu * (kui ave * tu-role/grp + nsys/usr-new * nacl/u-new/sys *  tacl-ent + tusr-acct)
We can now quantify the relative cost of assigning privilege to a user via role membership in a RBACH, RBACNH and IBAC schemes: 

Cset-upibac = anet * nnewu * Tfull-funcibac  / 60
Cset-uprbac-h = anet * nnewu * Tfull-funcH  / 60

Cset-uprbac-nh = anet * nnewu * Tfull-funcNH  / 60

4.3.3 Change of user responsibility

We next determine the annual cost associated with users changing functions, Cch-funibac. 

Let:

nchngu = the number of users that are expected to undergo a change of responsibility each year.

To determine the cost associated with a change of user responsibility we must identify several cost factors. First we need to determine average time required review and modify all privileges associated with a user’s existing responsibilities. Second, we need to determine the average time required establishing new permissions to completely achieve the user’s new responsibility. 

Let:

trevp = the time spent to identify and review all ACL entries for which a user’s identity is either included as an entry or is associated with a group that is included as an ACL entry, plus the time to verify or delete the user’s identity as appropriate.

tfull-funcrem = the average time in minutes spent by an administrator to identify and establish appropriate ACL user entries and group memberships for the remainder of the user’s new enterprise responsibility given the functionality that was established during trevp.

By, using the hourly administrative cost, anet, we define the annual cost associated with the change of user responsibility for IBAC scheme: 

Cch-funibac =  (trevp + tfull-funcrem) * nchngu * anet / 60

Too define the annual cost associated with the change of user responsibility RBACNH and RBACH we assume that the environmental parameters nchngu and anet remain the same under all three schemes and define trevp and tfull-funcrem relative to the three schemes. Taking a similar approach to that of defining relative cost for the assignment of existing privileges to new users, we examine trevp and tfull-funcrem in terms of the subtasks involved in reviewing privilege and distributing new user privilege for users changing functions.

Let:

trev-acl-ent = the average time to identify each ACL entry within a system for which a user’s identity is explicitly included, plus the time to verify or delete that user’s identity as appropriate. 

trev-u-role/grp =the average time to identify each group/role within a system that is assigned to a user, plus the time to verify or delete that user’s identity as appropriate.

trevp can now be re-defined in terms of its subtasks:

trevp= trev-acl-ent * nacl/u/sys * nsys/usr + trev-u-role/grp * nsys/grp* ngrps/usr
Now let:

Pfract = the fraction of the total number of UID ACL entries and group memberships (i.e., nacl/u/sys + ngrp/u/sys) that are deleted due to a change of user responsibility. 

tfull-funcrem can now be re-defined in terms of its subtasks:

tfull-funcrem = pfract * (nsys/grp * ngrps/user *  tu-role/grp + nsys/usr-new (nacl/usr/sys *  tacl-ent + tusr-acct))

The annualized time required too administer the change of user responsibilities across all systems is the time to review all user privileges plus the time to assign new privileges. It should be noted that on average the number of privileges that are deleted from a user’s full functionality as a result in a changing of user responsibility is the same as the number of privileges that are added to achieve a user’s full functionality.

Tch-funibac = nchngu * (trev-acl-ent * nacl/u/sys * nsys/usr + trev-u-role/grp * nsys/grp* ngrps/usr + pfract * (nsys/grp * ngrps/user * tu-role/grp + nsys/usr (nacl/usr/sys * tacl-ent + tusr-acct)))   

The annualized time required too administer the change nchngu users responsibilities across all systems for RNACNH is Tch-funNH,: 

Tch-funNH = nchngu * (trev-acl-ent * nacl/u/sys * nsys/usr + trev-u-role/grp * ngrps/usr + pfract * (ngrps/user * tu-role/grp + nsys/usr * nacl/usr/sys * tacl-ent + tusr-acct))

The annualized time required too administer the change nchngu users responsibilities across all systems for RNACH is Tch-funH,:

Tch-funH = nchngu * (trev-acl-ent * nacl/u/sys * nsys/usr + trev-u-role/grp * kui ave + pfract * (kui ave * tu-role/grp + nsys/usr * nacl/usr/sys * tacl-ent + tusr-acct))

By, using the hourly administrative cost, anet, we can define the annual cost associated with the change of user responsibility for the non-hierarchical and hierarchical RBAC schemes: 

Cch-funNH =  anet * Tch-funNH  / 60

Cch-funH = anet * Tch-funH  / 60

4.3.4 Establishment of new privileges to existing users and groups

The third administrative function related to the distribution privileges, is the establishment of new enterprise privileges to existing users. For an IBAC scheme the administrative task of creating new privileges involves the creation of new ACL entries on the systems where the objects and applications reside. From our ACL definition, an ACL entry may include a subject identifier and/or group identifier and a set of one or more operations for a protected object. The <object, operation> pair is an expression of privilege, and the subject and group identifiers associate the privilege with a user or a set of users respectively. In an RBAC scheme users are not directly assigned privilege, but rather a privilege is assigned to a role or a group corresponding to role and a user is assigned to a role in the role graph.  As such each user identifier is mapped to a corresponding UserRole and each group identifier is mapped to a role. As an expression of privilege, each group or subjectID within each system is mapped to one role in the non-hierarchical RBAC scheme, and each role in the non-hierarchical RBAC scheme is mapped to (mpiave + kpiave) roles in the hierarchical RBAC scheme. As such, RBAC hierarchies provides administrative efficiency by reducing the overall number of entries that would otherwise be necessary to be administratively created, without the use of RBAC hierarchies. 

The assignment of a privilege to an existing group or user identifier under IBAC is equivalent to the assignment of a privilege to a role from a qualitative cost perspective.  However, in order to create new privileges in an IBAC environment, appropriate groups and user accounts must first be created if they do not already exist. 

By using the net hourly administrative cost, anet, the qualitative cost defined in section 4.2.2 and time components we define the annualized cost of assigning new privileges to existing enterprise functions for IBAC, Ccreate-privibac:

Ccreate-privibac = anet * ngrp/yr-exst-fun ( nusrs/grp-new * tu-role/grp + nnew-acct/grp *  tusr-acct ) /60
4.3.5 Revocation of Privilege

We next determine the annual cost associated with the revocation of privileges for the users that separate from the enterprise, Cu-sep.

By, using trevp to represent the time too review a users existing privileges, nservave to represent the average number of system for which a user posses privileges, and anet to represent the hourly cost to perform administrative functions, we can define Cu-sepibac as:
Cu-sepibac = trevp * nu-sep * nsysave * anet / 60

trevp can be re-defined in terms of its subtasks:

trevp= trev-acl-ent * nacl/u/sys + trev-u-role/grp * ngrp/u/sys

In the non-hierarchical RBAC scheme, each user, ui, is assigned to kui ave + mui ave roles within a single system rather then directly to groups or ACL entries on a system by system basis.

The total annualized time required too review nu-sep users privileges in a non-hierarchical scheme, TrevpNH , can be defined as:

TrevpNH= nu-sep* trev-u-role/grp * (kui ave + mui ave)

In the hierarchical RBAC scheme, each user, ui, is assigned to kui ave roles within a single system rather then to kui ave + mui ave roles in a non-hierarchical RBAC scheme. Thus the total annualized time to review nu-sep users privileges in a hierarchical scheme TrevpH can be defined as:

TrevpH = nu-sep* trev-u-role/grp * kui

By, using the hourly administrative cost, anet, we can define the annual cost associated with the change of user responsibility for the non-hierarchical and hierarchical RBAC schemes:

Cu-sepNH = nu-sep* anet * trev-u-role/grp * (kui ave + mui ave)

Cu-sepH = nu-sep* anet * trev-u-role/grp * kui ave 

4.3.6 Removing or modifying obsolete privileges

As organizational functions and policy evolve over time, existing privileges must be modified and deleted. This administrative task involves identifying the objects and operations that are associated with the obsolete or modified functions and either remove or modify them within their systems. In particular administrators must either delete existing ACL instances or modify the operations associated with ACL entries. In the case of deleting the entire ACL, RBAC offers no administrative advantage, because the implementation of an RBAC model has no effect on the number of system objects that must be maintained. However, because RBAC reduces the overall number of ACL entries, RBAC reduces the complexity of modifying ACL modes of operation.
4.3.7 Lose of user productivity

When users are newly hired or are introduced to the system for the first time, the organization realizes a temporary lose of productivity. This is due to a user’s inability to perform computer-related functions while system privileges are being established for the user. The process of establishing user privileges often involves the execution of a series of organizational and administrative procedures. This procedure may include the identification of organizational functions and privileges to be performed by the user on the part of management, a review of the collection of functions and privileges by organizational or corporate security officials, and the administrative process of actually establishing system privileges.  Lose of user productivity for newly hired users is expressed as the product of the average hourly cost of a newly hired user, and the time to perform the process of establishing a user’s system privileges, divided by the percentage of time that those user’s typically perform non-computer related tasks. 

Let:

Cnew-hire  = the average hourly cost for a new user.

tpriv-est = the average time to perform the procedural and administrative process of establishing a newly hired user’s system privileges.

tnon-compu = the percentage of time that a newly hired user would be expected to perform non-computer related activities even if system access was available.

We can now define the costs to the enterprise due to the lose of newly hired user productivity, Cl-pibac by the following equation:

Cl-pibac = nnewu * Cnew-hire * tpriv-est  / tnon-compu
Assuming the time to perform the procedural and administrative process of establishing a newly hired user’s system privileges for RBAC and IBAC are related the administrative time of establishing a new user’s privileges, we look to the equations of section 4.3.2 to establish a relative comparison for RBAC and IBAC. 

Cl-pNH = Cl-pibac * Tfull-funcNH  / Tfull-funcIBAC
Cl-pH = Cl-pibac * Tfull-funcH  / Tfull-funcIBAC
4.3.8 Creating a new function

To qualify the time involved in creating a new enterprise function within the IBAC scheme we will need to define an additional cost variable.

nnew-fun/yr = The average number of new functions created each year.

By, using tnew-func to represent the time too create a new enterprise function, we define annual cost of creating new enterprise functions Cnew-func as:

Cnew-func = anet * nnew-fun/yr *  tnew-func
tnew-funcibac can be redefined in terms of its subtasks for IBAC:

tnew-funcibac = tu-role/grp * nusrs/grp * nsys/grp + nsys/grp * nnew-acct/grp * tusr-acct
By applying the following mapping equation defined in section 4.2.3 we defined the time to create a new enterprise function for RBACNH in terms of nusrs/grp. 

nusrs/grp = nusr/roleH  * mui ave
tnew-funcNH = tu-role/grp * nusrs/grp
By applying the following mapping equation defined in section 4.2.3 we defined the time to create a new enterprise function for RBACH in terms of nusrs/grp / mpi ave.

nusr/roleH  = nusrs/grp / mpi ave
tnew-funcH = tu-role/grp * nusrs/grp / mpi ave
5.0 Example Enterprise

ACME international is a large corporation that is experiencing moderate growth. ACME has 90,000 users, to include 72,000 employees, and 18,000 suppliers, consultants and other partners. In the coming year ACME projects the need to increase the overall number of system users by 3.5%. In addition ACME expects to loose 6% of its current user base due to attrition and re-structuring. To meet its operational goal, ACME will need to add 8,550 new users of which 5,400 will be added due to attrition and re-structuring. In addition due to re-structuring, re-training, and shifting operational needs, ACME will need to transfer 5,500 users between job functions, delete an estimated 125 obsolete functions and create an estimated 150 new functions. 

After examining its roles and functional makeup of its 28 departments ACME has estimated that a resulting enterprise wide role graph would have the following characteristics:

· kui ave is 1.5 

· mui ave is 5.5

· mpi ave is 4.0

5.1 Administrator net cost

Assume the annual cost for an administrator including overhead is $150,000, the number of working days per year is 234 days, and the average number of hours per day that an administrator actually performs administrative functions is 6 hour.

anet = $107 per hour

5.2 Assigning privileges to new users

By assuming the average number of servers for which a users has privileges is 7.5, and an average time of 78 minutes for the establishment of a users full functionality, the annual cost for setting up new privileges is:

Cset-upibac = anet * nnewu * tfull-func / 60

Cset-upibac = $107 per hour * 8,550 users * 78 min / 60 min = $1,189,305

tfull-func  is redefined in terms of the time to perform its subtasks:

tfull-func = nsys/grp * ngrps/user-new *  tu-role/grp + nsys/usr-new (nacl/u-new/sys *  tacl-ent + tusr-acct)

tusr-acct = 2.0 min.
nsys/usr-new = 4.5  

nsys/grp = 3

nacl/u-new/sys = 3
tacl-ent = 2.0 min.
ngrps/usr-new = 7
tu-role/grp = 2.0  min.

tfull-func = 42 + 27 + 9 = 78 min.

In the IBAC scheme, administrators would need to be expended tfull-func minutes for nnewu new users, for a total time of:

Tfull-funcIBAC = nnewu * tfull-func
                 = 666,900 min.

Cset-upibac = anet * Tfull-funcIBAC / 60

               = $1,189,305

Tfull-funcNH  = nnewu * (ngrps/user-new *  tu-role/grp + nsys/usr-new * nacl/u-new/sys *  tacl-ent + tusr-acct)

                      = nnewu * (14 + 27 + 2)

       = 367,650 min.

Cset-upNH = anet * Tfull-funcNH / 60

              = $655,643

Tfull-funcH = nnewu * (kui ave * tu-role/grp + nsys/usr-new * nacl/u-new/sys *  tacl-ent + tusr-acct)
              = nnewu * (3 + 27 + 2)

              = 273,600 min.

Cset-upH = anet * Tfull-funcNH / 60

            = $ 487,920

ROI (Cset-up) = Cset-upibac - Cset-upH  =  $ 701,385

Graph 1 illustrates the relative cost for this example enterprise for administering the assignment of existing privileges to new users with respect to anet * tfull-func for IBAC and RBAC schemes.


For graph 1 components anet, tfull-func of the cost equation Cset-up = anet * nnewu * tfull-func / 60 are treated as constants per the values assumed in this example.  As values for nnewu increase the ROI for the deployment of RBAC becomes more attractive.  Note that nnewu may pertain to an annualized value or a value that increasing over time.
5.3 Changing user responsibility
In our example we assume 5,500 users change responsibility per year. 

The annualized time required too administer the change of user responsibilities across all systems is the time to review all user privileges plus the time to assign new privileges. It should be noted that on average the number of privileges that are deleted from a user’s full functionality as a result in a changing of user responsibility is the same as the number of privileges that are added to achieve a user’s full functionality.

The annual cost for the enterprise to administer changes of responsibility is:

Cch-funibac = anet * nchngu * (trevp + tfull-funcrem) / 60

trevp is defined in terms of its subtasks:

trevp= trev-acl-ent * nacl/u/sys * nsys/usr + trev-u-role/grp * nsys/grp* ngrps/usr

Assuming:

trev-acl-ent = 1.5 min.

trev-u-role/grp = 1.5 min.

nacl/u/sys = 4.0

nsys/usr = 5.5

ngrps/usr = 9

tfull-funcrem is defined in terms of its subtasks:

tfull-funcrem = pfract * (nsys/grp * ngrps/user-new *  tu-role/grp + nsys/usr-new (nacl/usr-new/sys *  tacl-ent + tusr-acct))

Assuming:

Pfract =  .50

Tch-funibac = nchngu * (trev-acl-ent * nacl/u/sys * nsys/usr + trev-u-role/grp * nsys/grp* ngrps/usr + pfract * (nsys/grp * ngrps/user * tu-role/grp + nsys/usr (nacl/usr/sys * tacl-ent + tusr-acct)))

              = nchngu * ((33 + 40.5) + pfract * (42 + 27 + 9))

= 618,750 min. = 10,313 hrs.

Cch-funibac = $ 1,103,491

The annualized time required too administer the change nchngu users responsibilities across all systems for RNACNH is Tch-funNH,::

Tch-funNH = nchngu * (trev-acl-ent * nacl/u/sys * nsys/usr + trev-u-role/grp * ngrps/usr ) + pfract * (ngrps/user * tu-role/grp + nsys/usr *    nacl/usr/sys * tacl-ent + tusr-acct))

    = nchngu * ((33 + 13.5) + pfract * (14 + 27 + 2))

    = 6,233 hrs.

Cch-funNH = $ 666,931

The annualized time required too administer the change nchngu users responsibilities across all systems for RNACH is Tch-funH,:

Tch-funH = nchngu * (trev-acl-ent * nacl/u/sys * nsys/usr + trev-u-role/grp * kui ave + pfract * (kui ave * tu-role/grp + nsys/usr * nacl/usr/sys * tacl-ent + tusr-acct))

= nchngu * ((33 + 2.25) + pfract * (3 + 27 + 2))

= 4,698 hrs.

Cch-funH = $ 502,686

ROI (Cch-fun) = Cch-funibac - Cch-funH =  $ 600,805

Graph 3 illustrates the relative cost for this example enterprise for the creation of new functions with respect to anet * tnew-func for IBAC and RBAC schemes.


For graph 2 components anet, tfull-func of the cost equation Cset-up = anet * nnewu * tfull-func / 60 are treated as constants per the values assumed in this example.  As values for nnewu increase the ROI for the deployment of RBAC becomes more attractive.  Note that nnewu may pertain to an annualized value or a value that increasing over time.

5.4 Establishment of new privileges to existing users and groups

By using the net hourly administrative cost, anet, the specified in section 5.1 we define the annualized cost of assigning new privileges to existing enterprise functions for IBAC, Ccreate-privibac:

Ccreate-privibac = anet * ngrp/yr-exst-fun ( nusrs/grp * tu-role/grp + nnew-acct/new-grp *  tusr-acct ) /60

ngrp/yr-exst-fun  = 1,200

nnew-acct/new-grp = 12

nusrs/grp = 45

Ccreate-privibac = $107 per hour * 1,200 (45 * 2 min. + 12 * 2) / 60

                    = $243,960

5.5 Creating a new function

To qualify the time involved in creating a new enterprise function within the IBAC scheme we will need to define an additional cost variable.

nnew-fun/yr = The average number of new functions created each year.

By, using tnew-func to represent the time too create a new enterprise function, we define annual cost of creating new enterprise functions Cnew-func as:

Cnew-func = anet * nnew-fun/yr *  tnew-func
nnew-fun/yr = 150

tnew-funcibac can be redefined in terms of its subtasks for IBAC:

tnew-funcibac = tu-role/grp * nusrs/grp * nsys/grp + nsys/grp * nnew-acct/new-grp * tusr-acct
nnew-acct/new-grp = 12

nusrs/grp = 45

Cnew-funcibac = anet * nnew-fun/yr * (2 * 45 * 3 + 3 * 12 * 2) / 60

                  = $91,485
tnew-funcNH = tu-role/grp * nusrs/grp
Cnew-funcNH = anet * nnew-fun/yr * 2 * 45 / 60

                 = $24,075

tnew-funcH = tu-role/grp * nusrs/grp / mpi ave
Cnew-funcH = anet * nnew-fun/yr * 2 * 45 / 4 / 60

                 = $6,019

ROI (Cnew-func) = Cnew-funcibac - Cnew-funcH =  $ 85,466

Graph 4 illustrates the relative cost for this example enterprise for administrative of creating new functions.  the assignment of existing privileges to new users with respect to anet * tfull-func for IBAC and RBAC schemes.

For graph 4 the components anet, tnew-func of the cost equation Cnew-func are treated as constants per the values assumed in this example.  As values for nnew-fun increase the ROI for the deployment of RBAC becomes more attractive.  Note that nnew-fun may pertain to an annualized value or a value that increasing over time.


5.6 Lose of user productivity
We determine the cost to ACME international due to the lose of newly hired user productivity, Cl-pibac by using the equation derived in section 4.3.7:

Cl-pibac = nnewu * Cnew-hire * tpriv-est  / tnon-compu
We first consider the cost per hour for a newly hired user.

Let:

ucost = The average cost for a newly hired user per year.

       = $150,000

The cost for ucost includes the cost for benefits such as health, life, and retirement. 

Let:

d = the number of working days per year.

   = 234 days

The number of working day should take into consideration holidays, vacation days, and sick days. 

Cnew-hire = ucost / d

                   = $150,000 per year / 234 days = $641 per working day 

Let:

tnon-compu = the typical percentage of time a new user would productively perform non-computer related activities during the period tpriv-est. 

tnon-compu = 50%

tnon-compu should take into consideration, time spent performing other essential activities related to, or in preparation of the users assigned tasks, such as attending meetings and filling out forms. 

tpriv-est = 5 work days

tnon-compu = 50 %

Cl-pibac = 8,550 new users * $641 per day * 5 days * .50

           = $ 13,701,375

Assuming that the time to perform the procedural process of establishing newly hired user’s privileges for RBAC is linearly related to the time to perform the procedural process of establishing new user’s privileges under IBAC, we look to the equations of section 4.3.2 to establish a cost comparison. 

Cl-pNH = Cl-pibac * tfull-funcNH  / tfull-funcIBAC
          = $ 13,701,375 * 43 min. / 78 min.

          = $ 7,553,322

Cl-pH  = Cl-pibac * Tfull-funcH  / Tfull-funcIBAC
                  = $ 13,701,375 * 32 min. / 78 min

         =  $ 5,621,077



ROI (Cl-p) = Cl-pibac - Cl-pH =  $ 8,080,298

Graph 5 illustrates the relative lose of user productivity due to the users inability to access computer resources during the establishment of user privileges. Louse is calculated in respect to Cl-pibac, Cl-pNH, and Cl-pH. where   all components are treated as constants per this example, with the exception of nnewu which varies from 1000 to 5000 in increments of 1000. 

Note that values for nnewu may pertain to an annualized value or a value that increasing over time.

References 

1. J. Barkley, “Comparing Simple Role Based Access Control Models and Access Control Lists, In Proceedings of the Second ACM Workshop on Role Based Access Control, November 1997.

2. David F. Ferraiolo, Dennis M. Gilbert, Nickilyn Lynch, “An Examination of Federal and Commercial Access Control Policy Needs,” Proceedings of the 16th NIST-NSA National Computer Security Conference, Baltimore, MD, 20-23 September 1993.

3. R. Sandu, E.J. Coyne, H.L. Feinstein, and C.E. Youman, “Role Based Access Control Models,” IEEE Computer, 29(2), February 1996.

4. M. Nyanchama and S.L. Osborn. Access rights administration in role-based security systems. Proceedings of the IFIP WG11.3 working conference on database security, 1994.

5. J. Hoffman. Implementing RBAC on type enforced systems. In proceedings, 13th Annual Computer security applications conference. IEEE Computer Society Press, 1997.

6. David F. Ferraiolo and Richard Kuhn, “Role-Based Access Control,” Proceedings of the 15th NIST-NSA National Computer Security Conference, Baltimore, MD, 13-16 October 1992.

7. David F. Ferraiolo, Janet A. Cugini, D. Richard Kuhn, “Role-Based Access Control: Features and Motivations,” Proceedings 11th Annual Computer Security Applications Conference, New Orleans, LA, December 1995.

8. National Computer Security Center, A Guide to Understanding Discretionary Access Control in Trusted Systems, NCSC-TG-003, September 1987.

9. Virgil Gligor, J. Huskamp, S. Welke, C. Linn, and W. T. Mayfield, Traditional Capability-Based Systems: An Analysis of Their Ability to Meet the Trusted Computer Security Evaluation Criteria, IDA Paper P-1935, October 1986.

Appendix A

Role-Based and Identity-Based Access Control Models

The following types are defined for RBAC and IBAC

· type user of individual users

· type subject of subject identifiers

· type role of role identifiers

· type operation of executable program

· type object = InformationContainer

· type permission = 2(operation (  object)
The following mapping functions are defined for RBAC and IBAC:

· RM(r:role)(2user, the role members mapping, which gives the set of users authorized for the role, r.

· RP(r:role)(2permissions, the role permissions mapping, which gives the set of permissions authorized for role r.

· POp(p:permission)(operation, the permission to operation mapping, which gives the operation associated with permission, p.

· POb(p:permission)(object, the permission to object mapping, which gives the object associated with permission, p.
· SU(s:subject)(user, the subject to user mapping, which gives the user associated with subject s.
The following property is defined for RBAC:

· Role Membership Inheritance:

((i,j: role)((u: user) i > j ( u ( RM[i] ( u ( RM[j]

The following axiom determines if a subject can access an object:

· access: subject ( operation ( object (boolean
· access(s,op,o) =

1: if subject s can access object o using operation p
0: otherwise

Object access authorization for IBAC:

((s:subject)((o:object)((op:operation)access(s,op,o)

( ((r:role)((p:permission)(SU(s)(RM(r)(p(RP(r)(op(POp(p)(o(POb(p)

With the following mapping function, object access is defined for RBAC:

· AR(s:subject)(2role, the active role mapping, which gives the set of roles in which subject, s, is active.

((s:subject)((o:object)((op:operation)access(s,op,o)

( ((r:role)((p:permission)(r(AR(s)(p(RP(r)(op(OP(p)(o(PO(p)

u





u





1c - non-hierarchical 


     privilege assignment





p3





p2





p3





p2





p3





p1





u





r3





r2





r1





Figure 1 - Three representations of a simple access policy





1b - non-hierarchical 


     user assignment





1a - hierarchical





u





u





p3





nusr/roleH * mpiave * nsys/grp * (nusr/grp + nnew-acct/grp)





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





p1





r8





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





Figure 2 - Example role graph





u3





u1





r5





r6





r7





r4





Figure 3 - A comparison of privilege relationships for hierarchical and non-


                  hierarchical role representations





r2





u2





� EMBED Equation.3  ���





� EMBED Equation.3  ���





nsys/grp* (kuiave + muiave)





3b - Non-hierarchical privilege assignment





3a - Hierarchical privilege assignment





p





p





p





u3





u2





u1





r3





r2





r1





p





u3





u2





u1





r3





r2





r1





� EMBED Equation.3  ���





r3





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





p2





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





u





r1











r3





r2





r1





p3





p1





p2





u





r3





r2





r1





kuiave +muiave= ngrps/usr





ui





G1        G2        G3        G4        Gkuiave +muiave





ui





kuiave





ui





kuiave +muiave





4c-Decentralized identity-based group Scheme





4b-Non-hierarchical Scheme





4a-Hierarchical Scheme





O1:G3,r;G12r,x;u3


O4:G5:r;u7,r,w


…


O1005:G12,r





...





O1:G3,r;G12r,x;u3


O4:G5:r;u7,r,w


…


O1005:G5,r





O1:G3,r;G12r,x;u3


O4:G5:r;u7,r,w


…


O1005:G16,r





u,u,…u





u,u,…u





u,u,…u





u,u,…u





...





u,u,…u





u,u,…u





...





mpiave * nusr/roleH





nusr/roleH





u,u,…u





...





u,u,…u





u,u,…u





nnew-acct/grp





u, u,…,u





u, u,…,u





Figure 4 - user/privilege assignment mappings





u, u,…,u





...





nusr/roleH





u


u


…


u





nusr/roleH





u


u


…


u





nusr/roleH





u


u


…


u





nusr/roleH





u


u


…


u





mpiave * nusr/roleH





5c-Decentralized identity-based group Scheme





5b-Non-hierarchical Scheme





5a-Hierarchical Scheme





O1:G3,r;G12r,x;u3


O4:G5:r;u7,r,w


…


O1005:G12,r





...





O1:G3,r;G12r,x;u3


O4:G5:r;u7,r,w


…


O1005:G5,r





O1:G3,r;G12r,x;u3


O4:G5:r;u7,r,w


…


O1005:G16,r











� EMBED MSGraph.Chart.8 \s ���





� EMBED MSGraph.Chart.8 \s ���





� EMBED MSGraph.Chart.8 \s ���





� EMBED MSGraph.Chart.8 \s ���








1
1

_958546608.unknown

_960387977.unknown

_960625520.unknown

_980249060

_983698939

_983774424

_980248192

_960388134.unknown

_958556203.unknown

_958891575.unknown

_958556174.unknown

_958555898.unknown

_957269135.unknown

_957698835.unknown

_958545394.unknown

_958546542.unknown

_957700332.unknown

_957357660.unknown

_957263038.unknown

