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Abstract

The appropriate method for aggregating capital goods across vintages to
produce a single capital stock measure has long been a contentious issue, and
the literature covering this topic is quite extensive.  This paper presents a
methodology that estimates efficiency schedules within a production function,
allowing the data to reveal how the efficiency of capital goods evolve as they
age.  Specifically we insert a parameterized investment stream into the
position of a capital variable in a production function, and then estimate the
parameters of the production function simultaneously with the parameters of
the investment stream.  Plant level panel data for a select group of steel
plants employing a common technology are used to estimate the model.  Our
primary finding is that when using a simple Cobb Douglas production function,
the estimated efficiency schedules appear to follow a geometric pattern, which
is consistent with the estimates of economic depreciation of Hulten and Wykoff
(1981).  Results from more flexible functional forms produced much less
precise and unreliable estimates. 
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     1  See Hulten (1989) and Jorgenson (1989) for summaries.

     2  Obtaining measures of the decline in the productive ability is
difficult because the flow of capital services are not directly observable
because most capital is owner used, and the rents that accrue from the capital
are internalized by the owner.  What is observed is a stream of capital
investments, so what must be done is to convert these observed investment
streams into a capital stock measure, where the capital stock is proportional
to the capital services.
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I. Introduction

The appropriate method for aggregating capital goods across vintages

into a single measure of capital stock has long been a contentious issue, and

the literature covering this topic is extensive.1  The works of Leontief

(1947), Fisher (1965) and Diewert (1980) explore the theoretical conditions

under which an aggregate capital stock exists and when a capital stock may be

expressed as a weighted sum across all vintages of capital in use.  These

weights reflect the relative efficiency of capital as it ages, and the series

of these weights is referred to as an efficiency schedule.  The empirical

literature on capital efficiency schedules includes studies that estimate

economic depreciation for specific classes of capital goods [e.g. Hall (1971)

and Hulten and Wykoff (1981)], dynamic factor demands that explicitly estimate

a geometric capital efficiency rate [e.g. Epstein and Denny (1980), Kim

(1988), and Prucha and Nadiri (1990)], and models that measure the effects of

a distributed lag of investments on current profit [e.g. Pakes and Griliches

(1983)].2

This paper presents a methodology that estimates capital efficiency

schedules by inserting a parameterized investment stream into the position of

a capital variable in a production function.  The parameters of the production

function are then simultaneously estimated with the parameters of the

investment stream.  In order to perform this exercise, data on inputs, output,

and previous investments for a group of manufacturing plants that employ a

common technology is required.  To meet this need, the model is estimated
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using a plant level panel dataset from the Census Bureau's Longitudinal

Research Database (LRD).  The panel data used in this study provides two means

of identifying how efficiency of capital evolves as it ages.  First, in a

cross section, plants are heterogenous with respect to their capital age

distributions.  Ceteris paribus, if two plants differ only by the age of their

equipment, then the plant with the older equipment will not be capable of

producing as much as the plant with newer capital.  Second, the panel dataset

allows us to observe the levels of output and other inputs while the capital

of a plant ages.  

We view this study as an exploratory exercise, testing whether the rich

panel data the LRD provides can indeed be used to estimate the impacts of

investment on production.  In particular, efficiency schedules are estimated

for a group of steel making plants that employ electric arc furnace

technology, also known as mini-mills.  These plants are ideal to study capital

efficiency in that they possess a common technology and produce similar

outputs.  Unlike integrated steel plants, much of the capital stock in these

plants was purchased in the 1970's and 1980's, coinciding with the coverage of

the LRD.    

This paper tests several hypotheses regarding efficiency schedules and

fundamental questions regarding capital accumulation.  For instance, we test

whether the efficiency of capital goods initially increase, due to learning or

other phenomena.  Pakes and Griliches (1983) find that when profits are

regressed on previous investments, investments made 3-4 years prior have a

larger impact than more recent investments.  This result is also consistent

with a long time to build story [Kydland and Prescott (1982)] in which capital

purchased at time t may not be productive until time t+1 or t+2 when the

entire project is complete.  

Once the capital becomes productive, we estimate how quickly the

efficiency of capital deteriorates as it ages.  Jorgenson (1989) reviews some



     3  To date, Hulten and Wykoff (1981) have performed the most thorough and
comprehensive used asset price study, examining depreciation patterns for 22
classes of producer durables and 10 classes of structures.  The question
arises whether the type of assets that participate in second hand markets are
representative of assets in place. In particular, this paper uses plant level
data on U.S. steel mills that employ electric arc furnace technology.  A large
portion of the production machinery in these plants is large, rather bulky,
and infrequently traded in second hand markets.  If large machinery is under
represented in used asset markets and large machinery depreciates at different
rates than smaller machinery, then using depreciation rates based on used
asset price studies may be inappropriate.   
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of the differing opinions regarding the form of efficiency schedules.  A point

of contention is whether most production machinery is able to perform close to

original standards over time before rapidly deteriorating [e.g. one-hoss

shay], or whether machines become steadily more inefficient [e.g. geometric]. 

These issues are not only important for obtaining accurate productivity

measures, but also provide information for a wide range of dynamic models that

contain capital accumulation equations.  For instance, one of the more

frequently used capital accumulation equations is Kt=(1-8)Kt-1+It-1, where Kt is

capital at time t, I is investment, and 8 is the geometric rate of decay.  One

of our goals to test whether the data support this frequently used model.  

Empirically the most popular method for obtaining estimates of

efficiency schedules has been to examine prices of used capital goods. Studies

of this type collect price and age for specific asset types from second hand

markets3.  By examining how prices of used assets vary by age, economic

depreciation, and hence, the decline in capital efficiency can be deduced [see

Jorgenson (1973)].  As an example, consider a light bulb with an expected life

of two years.  After one year, the light bulb still illuminates the same

amount of light as it did initially, it has not lost efficiency in a

productive sense.  However, the light bulb has economically depreciated since

the expected remaining lifetime of the light bulb has diminished by one half. 

In the special case where the loss of efficiency is geometric, then the rates

of economic depreciation and the loss in efficiency are equivalent.  



     4  Rothschild (1973) and Bertola and Cabellero (1990) provide criticisms
of quadratic cost of adjustment models.  Doms and Dunne (1992) have shown that
the observed plant level investment behavior appears to be inconsistent with
the standard quadratic cost of adjustment framework. 
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Another approach for inferring physical deterioration is to estimate a

geometric rate of deterioration within dynamic factor demand models.  A large

share of these studies are based on Malinvaud (1953).  In these models, firms

take into account the adverse effects that current production has on machine

life.  The more produced, the sooner machines will have to be replaced. 

Examples of empirical applications include Epstein and Denny (1980), Kim

(1988) and Prucha and Nadiri (1990).  These models possess the attractive

feature of modeling the firm's intertemporal optimization problem.  A drawback

of these models is that they assume geometric decay for tractability, while

this is an assumption we test.  Additionally, the dynamic element in these

models rely on quadratic adjustment costs of capital, an assumption that has

come under increasing criticism.4 

Our primary finding is that when using a Cobb Douglas production

function, the estimated efficiency schedules follow a geometric pattern, with

efficiency declining by 7-9% per year.  These estimated geometric rates of

deterioration are consistent with Hulten and Wykoff estimates of economic

depreciation.  Additionally, after the first year, the data do not support

initial increases in the efficiency schedule.  The model is also estimated

using more flexible forms, including other production functions and dynamic

factor demand models.  However, the estimates from these models are extremely

sensitive to model specification.

Do these results imply that capital goods in mini-mills physically

deteriorate at 7-9% a year?  There is no doubt that older machines are more

likely to suffer break downs more frequently than newer machines.  However,

the trade literature seems to suggest that the primary capital goods in this

industry require maintenance proportionate to use, and there are instances of



     5   The primary pieces of capital equipment in mini-mills are the
electric arc furnaces, casters, and rollers.  Publications such as 33 Metal
Producing U.S. Steel Industry Data Handbook 1989 present age distributions for
these pieces of equipment.
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furnaces that were built in the 1940's still in use in the 1980's5.  One

possible explanation for this is that older equipment may not be used as

frequently as newer equipment.  For instance, many plants possess more than

one furnace.  These plants are more likely to use the newer and more efficient

furnaces before having to use older furnaces.  This results in older equipment

being idled more often than newer equipment, and consequently older equipment

may appear to be less productive than newer equipment.

The paper proceeds with a description of the models to be estimated in

section II.  Section III describes the data used in estimation while section

IV discusses the results.  In section V, several extensions to the basic

models are explored.  First, the estimation technique is modified to exploit

the panel nature of the data.  Second, a test is derived to test whether there

errors in the investment deflators are non-exponential.  Finally, sensitivity

analysis is performed by allowing the functional form of the production

function to be more flexible.  The last section summarizes and concludes the

paper. 

II.  Model 

This section presents the procedure used to estimate capital efficiency

schedules.  We begin by decomposing the effects of time, vintage, and age on

the efficiency of a capital good.  The capital stock at time t, Kt, is a

constructed as a weighted sum of previous investments:

(2.1) K
t
'j

4

J'0
*
t,t&J

I
t,t&J



     6  In this paper we focus on constructing capital stocks for production
machinery.  Capital machinery is a heterogeneous mixture of different types of
capital goods, but our data does not break out the expenditures by type of
capital good.

     7  d(t) may be a result of Hicks neutral technical change, or Harrod
technical change.  Given the production model that will be estimated, it will
not be necessary to distinguish between these.

     8  It may be argued that age in and of itself has little effect on
deterioration, but usage does.  In this case, age acts as a proxy for usage.
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where It,t-J is the nominal investment made at time t-J that has not been

retired by time t.6  The weights, *t,t-J, measure such effects as inflation,

deterioration, and embodied technical change, and these weights transform the

nominal investments into common capital units.  

Hall (1968) decomposes * into three independent components; functions of

age, vintage, and time.

(2.2) *
t,t&J

'd(t)b(t&J)M(J)

The first element of *, d(t), often referred to disembodied technical change,

affects the productive ability of all inputs in production, not just capital.7 

The second component of *, b(t-J), varies by the vintage of the capital. 

Initially we assume that the vintage component equals the investment deflator

series.  This assumes that the investment deflator series accurately captures

the effects of inflation and embodied technical change.  Under this scenario,

we need only estimate d and M.  Section V examines the consequences and

results from allowing b to deviate from the investment deflator series. 

The remaining term in *, M(J), is usually assumed to be a decreasing

function of age; as a piece of capital ages, it becomes less productive.8  We

refer to M(J) as the efficiency schedule and several popular forms for

efficiency schedules have been posited in the capital measurement literature. 

The form of M(J) varies by the characteristics of the capital goods under

consideration.  For example, light bulbs exhibit one hoss shay deterioration; 
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light bulbs retain the same luminescence over time until they burn out.  On

the other hand, dry ice experiences geometric deterioration;  the amount of

dry ice that evaporates is proportional to the amount remaining. 

Unfortunately the efficiency patterns for production machinery are unknown,

and we would like the data to tell us which pattern is correct.  

Three functional forms of M(J) are discussed and used in estimation,

each with its own advantages and disadvantages.  These parameterizations cover

a vast array of possible efficiency patterns.  The first efficiency model is

the geometric.  Due to its simplicity and special characteristics, the

geometric model is one of the more widely used in applied and theoretical

modeling,  

(2.3) M(J)'(1&8)J.

This model only has one parameter to be estimated, 8.  Hulten and Wykoff

(1981) compare the results from a geometric model to a more flexible and

parameterized form, the Box Cox transformation.  The Box Cox model possesses

the ability to produce both concave and convex efficiency patterns, including

one hoss shay, geometric, and linear,

(2.4) M((J)'8
1
% 8

2
J( ,

  

where J('
J
83&1
8
3

, M((J)'
M
84(J)&1
8
4

.

Although the Box Cox has the flexibility to be concave or convex, it,

like the geometric, does have the disadvantage of being monotonic.  A priori,

there are several reasons to expect M to be non monotonic.  For instance,

learning how to optimally use machinery may take time, resulting in older
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machines being relatively being more productive than newer machines. 

Investment timing provides another reason for M to initially increase.  An

investment made at time t may be part of a project not completed until time

t+2.  The productive ability of capital purchased at t increases upon project

completion at time t+2. 

A functional form that possesses the ability to be non-monotonic is the

polynomial: 

  

(2.5) M(J)'8
0
%j

g

s'1
8sJ

s

The polynomial has g+1 parameters.  A drawback to the polynomial is the

difficulty it has in fitting curves that contain flat regions.  If capital

equipment initially deteriorates slowly, or reaches a plateau, then the

polynomial may not fare so well.  

The geometric, Box Cox, and polynomial functions encompass the commonly

assumed forms of efficiency.  Our goal is to estimate these three models and

let the data reveal which model is the most appropriate.  This goal is

accomplished by substituting (2.1) and (2.2) into the capital variable in a

production function, and then estimating the parameters of the production

function simultaneously with the parameters of M and d.  For a Cobb Douglas

production in log form, the estimated model becomes: 

(2.6) Q
it

' $
0
% X

it
$
x
% $

k
ln j

t&1

J'0
b(t&J)M(J)I i
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(
j
Y
j
% e

it
,

where the i subscripts and superscripts denote plant i, Qt is log of output,

Xt is a k vector of log inputs and other variables, and the ß's are

appropriately dimensioned parameter vectors.   An i.i.d error term, eit, is
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appended, where eit ~ N(0,F2).  The disembodied technical change component,

ßkln(d(t)), is changed to a series of time dummies, Y1,..,YT-1.      

We estimate (2.6) using nonlinear least squares.  Before presenting the

estimation results, we briefly discuss the data used.

III.  Data

In order to estimate a production function (2.6), data from production

units employing a common technology is needed.  Additionally, a near complete

time series of investment for each unit is required.  To meet these stringent

data requirements, we use a panel dataset consisting of annual observations on

individual raw steel producing plants that employ electric arc furnaces (EAFs)

as their sole source of raw steel making capacity.  Most of the data items

used in the estimation come from confidential, establishment level data at the

U.S. Census Bureau.  Data on inputs and investment come from the Longitudinal

Research Database (LRD), while output data are taken from the Current

Industrial Reports (CIR).  The LRD contains establishment level data on

employment, inventories, outputs, inputs, investments, retirements, and the

book value of capital.  The LRD contains the 1963, 1967, 1972, 1977, and 1982

Census of Manufacturers and the Annual Survey of Manufacturers from 1973

through 1986.  Except for 1963 and 1967, annual investments and retirements

before 1972 are not available.  Appendix A discusses the procedures used to

estimate investments made prior to 1972.

      The CIR augments the LRD with seven digit output detail. Additionally,

the CIR identifies the raw steel making technology employed at the plant

level.  The CIR data are used to construct output measures and to identify

plants that use EAF technology.  The CIR and LRD overlap between 1978 and

1986, and these are the data used in estimation.    

Table III.1 presents sample summary statistics.  Notice that the sample

size begins to tail off after the 1982 steel depression.  This is due to
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several factors.  First, 1983 is the end of an ASM panel, and several plants

failed to make the 1984 panel.  Second, although mini-mills have received much

attention due to their success against large integrated steel mills, many

mini-mills have gone bankrupted and closed.  Finally, other observations are

dropped that contained erroneous or largely imputed data.  These observations

tended to be at the beginning and end of a plant's life.  This sample

attrition results in declining industry coverage, as measured by the total

sample EAF output compared to total industry EAF output.                       
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Table III.1
Sample Summary Statistics

Year N Average  Eaf
Output

% of All EAF
Output

Capacity
Utilization

1978 49 376 57 .90

1979 50 414 61 .95

1980 50 377 60 .90

1981 53 403 62 .91

1982 50 287 62 .68

1983 46 312 54 .75

1984 39 391 49 .86

1985 40 376 50 .86

1986 35 433 50 .89

N=number of observations    Average EAF Output=1000's of tons of raw steel produced
% of All EAF OUTPUT=sample EAF output/total industry EAF output
Capacity Utilization=raw steel output/rated raw steel capability
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IV.  Results     

This section presents and discusses the parameter estimates of (2.6). 

Estimates from the geometric, Box Cox, and polynomial models are presented and

compared.  Before preceding with the results, we address several points

concerning the implementation of the model:  the treatment of current year

investment, and other variables included.

The effect of current year investment on current year production is

ambiguous.  Current year investment does increase the current year capital

stock.  However, the productivity of capital purchased in year t depends on

what time of year the investment is installed, and this information is

unavailable.  New investment may also enter the production function outside of

the capital variable.  Cost of adjustment models postulate that current

investment diminishes current output.  Conversely, Olley and Pakes (1991)

suggest that current year investment is positively correlated with omitted,

plant specific factors, such as managerial ability.  The results presented in

this section are based on excluding current year investment from the capital

stock:  the hypothesis that the coefficient for current year investment is

zero, Ho: M(1)=0, could never be rejected.  However, current year investment

as a ratio to total capital appears in the model.

In preliminary work, many other variables that may affect production

were included.  These variables included ownership changes, unionization,

plant age, output mix, and location information.  The inclusion of these

variables had little impact on the remaining parameters in the model.  The

last point concerns the whether capital stock serves as an adequate proxy for

capital service.  The traditional solution is to assume that capital stock is

proportional to service, and this proportion is constant over time and across

plants.  To assume otherwise requires plant/year measures of capacity

utilization.  A plant specific capacity utilization measure is constructed by

using the ratio of CIR data on raw steel production to private estimates of



     9  This figure is based on a correction for retirements, since data used
in estimation does make an adjustment for retirements.  Based on a
conversation with Charles Hulten, the average depreciation rate is multiplied
by two thirds. 

     10  Less than 2% of all deflated investment in this sample is greater
than 25 years old.
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raw steel making capability.  When measures of capacity utilization are

included in the model, the capital parameter, ßK, usually increases, but the

parameters for the efficiency schedules remain unchanged.  The results present

here do not make an adjustment for capacity utilization.

Figure IV.1 presents the estimates of M in addition to a baseline

efficiency schedule.  This baseline model constructs capital by using economic

depreciation rates from Hulten and Wykoff (1981) and the 1977 Capital Flows

Table (CFT).  The CFT presents distributions of asset purchases by I-O

industry group.  For each of these asset categories Hulten and Wykoff have

estimated geometric economic depreciation rates.  Using the CFT distribution,

an average geometric depreciation rate of 8=.09 is derived.9

The most striking feature of figure IV.1 is the amazing similarity

between the three estimated efficiency schedules.  The polynomial and Box-Cox

possess the ability to deviate greatly from the geometric, but the best model

fits are obtained with geometric-like patterns.  The figure also includes a

90% confidence interval generated from the polynomial model.  This confidence

interval envelopes the other efficiency schedules while excluding the baseline

case.  The schedules begin deviating at age 26, when the estimates begin

getting severely less precise.10  

These estimates are based on a value added definition of output [i.e.

value of shipments-cost of materials].  When (2.6) is estimated with materials

as a separate factor, the estimated geometric rate of deterioration increases

to 8=.09, nearly identical to the baseline case.  Again, the polynomial and

Box Cox models nearly replicate the geometric results. 
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The similarity between the efficiency schedules is perhaps the strongest

result in this paper.  Using used asset price data, Hulten and Wykoff (1981)

find a similar result in that the Box-Cox results resembles a geometric

pattern.  The geometric decline in efficiency found in this paper supports the
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Table IV.1
NLS Estimates of 2.6, Cobb-Douglas Production Function

(standard errors in parentheses)

Dependent Variable=log(shipments-materials)

  Baseline Geometric Box Cox Polynomial†

Intercept 3.84 3.74 3.69 3.73
(.150) (.156) (.182) (.534)

K .324 .350 .352 .350
(.0356) (.0344) (.0383) (.0399)

L .366 .333 .332 .334 
 (.0358) (.0300) (.0301) (.0488)

E .193 .188 .189 .189  
(.0360) (.0360) (.0360) (.0347)

DK  -.176 .0742 .0905 .0716 
(.338) (.344) (.345) (.593)

DK2 .380 .101 .0953 .0999 
(.673) (.681) (.682) (1.10)

DL -.333 -.3412 -.352 -.347
(.0908) (.0907) (.0909) (.0373)

DL2 -6.3E-4 -6.6E-4 -6.7E-4 -6.6E-4
(1.7E-4) (1.7E-4) (1.7E-4) (.0919)

Y79 .0697 .0679 .0681 .0677
(.0543) (.0540) (.0541) (.0541)

Y80 .0805 .0770 .0778 .0765 
           (.0550) (.0548) (.0549) (.0549)

Y81      .0362 .0293 .0298 .287 
           (.0543) (.0541) (.0542) (.0542)

Y82        -.0647 -.0768 -.0759 -.0775
           (.0590) (.0589) (.0591) (.0591)

Y83        -.145 -.152 -.150 -.153 
           (.0579) (.0577) (.0580) (.0580)

Y84       -.0258 -.0388 -.0380 -.0401
           (.0578) (.0573) (.0575) (.0575)

Y85      .00160 -.0150 -.0148 -.165
           (.0599) (.0601) (.0601) (.0601)

Y86       .0561 .0374 .0374 .0356 
           (.0608) (.0611) (.0613) (.0611)

R2   .90 .90 .90 .90
SSE 33.4 33.0 33.0 33.0

------------------------------------------------------------------------------
---
Number of observations=458
Notes: K=log of capital  L=log of labor, 1000's of production hours  
E=log of electricity, 1,000,000's of kilowatts
DK=current real investment as a % of total real investment  
DL=% change in total employment, Y79-Y86=year dummies, SSE=sum of squared
residuals 
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†  These are the results from a second order polynomial.  Higher order
polynomials produced only slightly smaller SSE's.
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geometric pattern of economic depreciation found by Hulten and Wykoff since

physical deterioration and economic depreciation coincide when deterioration

occurs geometrically [see Jorgenson (1973)].     

In a variety of ways we test whether the deterioration schedule should

initially be convex, not concave, as in Pakes and Griliches (1983). 

Specifically, for each model we test whether M remains constant or increases

during the first 2-3 years by allowing the efficiency schedule to deviate from

its functional form.  In each case, the data did not support deviations from

the geometric pattern.        

The actual parameter estimates and standard errors are presented in

Table IV.1.  Given that the three parameterizations of M yielded nearly

identical patterns, the magnitude and variance of parameter estimates show

little variation across the models.  The greatest variation in the table is

between the baseline model and the other models.  The baseline capital

coefficient is slightly lower, as is the overall model fit.  Current

investment as a fraction of capital is uniformly insignificant, but the change

in labor is generally largely negative, perhaps supporting large costs of

adjustment for labor.  The only statistically significant time dummy is for

1983, a year in which the steel industry was only beginning to recover from

its 1982 depression.

 

V. Model Extensions     

In this section we extend our analysis in three directions.  First, the

estimation technique of Cornwall, Schmidt, and Sickles (CSS) (1990) is

extended to a nonlinear framework to exploit the panel nature of the data. 

Second, we allow the vintage component, b(t-J), to deviate from the deflator

series.  The model no longer is identified, however, a test is devised as to

whether the errors in the deflator series are not exponential.  Lastly, the

Cobb Douglas assumption is relaxed, and the results from more flexible
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functional forms are discussed. 

1.  Panel Data

The omission of unobserved, plant level production factors when

estimating production functions can yield biased parameter estimates.  Fixed

effects models assume that these unobserved, plant specific factors vary by

plant, but do not vary over time.  CSS present a model that extends the panel

data literature by allowing not only the intercepts to vary across plants, but

also other slope coefficients.  Their paper, which estimates productivity for

eight airlines, allows the efficiency time patterns for each airline to follow

a unique time path.  Their approach does not model why firm level efficiency

evolves, it only allows for the evolution to occur, and it allows the

examination of that evolution.  We extend (2.6) to include plant specific

functions of time.  

(5.1) Q
it

' $
0
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it
$
x
% $

k
ln j

t&1
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b(t&J)M(J)I i

t,t&J

% j
T&S

j'1
(
j
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The plant specific coefficients, "ij, enter as a polynomial function of time. 

For identification, the number of time dummies is reduced by S. 

For all values of S, equation (5.1) is nonlinear in variables and

parameters, and is estimated by nonlinear least squares (NLS).  When S > 0,

the model is transformed to purge the plant specific component.  For

simplicity, collapse (5.1) into matrix notation,

(5.2) Q ( ' X (#
x
% #

k
ln(K () % TS" % TD( % e ,



     11  For a more thorough description of this procedure, see Cornwall,
Schmidt, and Sickles (1990).
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where TS is the block diagonal time series matrix, TD is the time dummy

matrix, and K* is a vector containing the weighted investment stream.  Let

Q=diag(TS), let P=Q(Q'Q)-1Q', and let M=I-P .  Multiplying both sides of (5.2)

by M eliminates TS.  On this transformed data, nonlinear least squares can be

applied to obtain consistent estimates of ß, (, ", and M.  When S=1, the data

is mean differenced as in traditional fixed effects models.11 

We find that the estimates for the geometric deterioration function,

when S=1 and S=2, closely resemble those when S=0, although the standard

errors increase significantly: 8=.08 when S=1 and S=2, with t-statistics less

than 1.  For the Box Cox and polynomial functions, the model has a difficult

time converging when S>0.  In the case of the polynomial, the deterioration

estimates become more volatile for J>10, and statistically insignificant.   

2.  Errors in Investment Deflators

The models and results presented so far assume that the investment

deflators accurately measure changes in technology and price levels. 

Controversy has arisen over whether investment deflators and price deflators

for capital goods in general, are properly constructed [see Gordon (1989) and

Tripplett (1989) for examples].  In this section we discuss the consequences

and results when this assumption is relaxed.  

Hall (1968) demonstrates that when b is allowed to vary the three

components of * are no longer uniquely identified.  

(5.3) *
t,t&J

' d(t)b(t&J)M(J)'d ((t)b ((t&J)M((J)

with d ((t)' R&td(t)
b ((t&J)' Rt&Jb(t&J)

M((J)' RJM(J), for R>0
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Let b be the correct deflator series.  Suppose we use an investment deflator

series, bu, that understates the effect of technical progress, that is, bu <

b.  When the error in the bu series increases exponentially over vintages,

then this is equivalent to (5.3) with R>1 and bu=b*.  Under this special

scenario, estimates of d and M will be biased; d^=d* and M^=M*.  However, since

the product of these biased parameters replicate the true *, the rest of the

parameters in the production function will be unaffected.      

Hall proves that the identification issue raised in (5.3) has a unique

form: the same * may be achieved by erroneous b, d, and M only when the errors

in these measures are exponential.  If the errors in b are not exponential,

then there do not exist M and d that produce the correct *.  Under this

scenario, estimates of d and M will be biased in an unpredictable manner. 

Also, given the inability the parameters to replicate the true *, the

parameter estimates of ß are also likely to be biased.    

The enhanced model allows for non exponential errors in investment

deflators by bisecting b, the correct deflator, into a product of the

investment deflators and an error index.  

(5.4) b(t&J) ' b e(t&J)b D(t&J)

where bD(t-J) is the investment deflator for vintage t-J, and 

 

(5.5) b e ' 1 % j
i

j'1
(
j
(t&J)j

If there are no errors in bD, or the errors in the deflator are exponential,

then the addition of (5.4) will not provide any improvement in data fit since

the basic model suffices in producing the true *.  In the case where the

errors are not exponential, adding (5.4) does allow the true * to be derived. 

However, the enhanced model will not allow M, d, and b, to be separately
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identified as shown in (5.3), the enhanced model only provides the ability to

replicate the true *.  

We test the restrictions imposed by the basic model, (i=0 œ i by using a

likelihood ratio test.  The identification problem in (5.3) implies that there

is no loss of predictive ability when one of the indices is restricted, and a

restriction must be imposed for the model to converge.  In practice we impose

a restriction on the disembodied technical change component, d(1978)=d(1986). 

The enhanced models did not provide a statistically better fit than the basic

models, implying that if there are errors in the investment deflators, these

errors may be exponential.  Given the identification problems, this is the

strongest test we can devise.  

This result may or may not be surprising for the electric steel mill

industry.  The basic steel technology has remained unchanged, however, large

technical improvements are frequently reported in trade journals:  the steel

making process is more computerized, larger transformers are more energy

efficient, water cooled panels save energy and extend refractory life.  The

question still remains whether investment deflators truly capture the full

impact of these changes.

3.  Other Models Tested

It is fair to criticize the results presented so far on several grounds. 

Perhaps the greatest fault lies in model choice, the Cobb Douglas production

function.  The functional form is simplistic and restrictive.  A more flexible

production function, the translog, which the Cobb Douglas is a special case,

is also estimated.  We find that the estimated efficiency schedules from the

translog are very sensitive to the precise specification.  We also estimate

cost and factor demand equations with the assumption that capital is fixed in

the short run.  Again, like the translog production function, the estimates

for 8 proved sensitive to model specification, the results being extremely
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unrobust.  Specifically, these models are sensitive to which equations are

included in estimation, how time is interacted with other inputs, and whether

translog or generalized leontief functional forms are used.  Further, cross

equation parameter restrictions rarely hold statistically.  Our results

suggest that although flexible functions are theoretically attractive,

empirically they produce unreliable estimates. 

VI.  Conclusions

This paper investigates how the relative efficiency of capital varies by

age.  This exercise is useful given the vital role capital plays in

production, and hence the analysis productivity and economic growth.  To

estimate efficiency schedules, this study employs a straight-forward

methodology: insert a parameterized investment stream for a capital variable

in a production function, and then estimate the parameters of the production

function simultaneously with the parameters of the investment stream.  This

study exploits a rich panel data set that contains input, output, and

investment information for a group of steel producing plants that use the same

technology.        

Our results show that reasonable and fairly precise estimates of

efficiency schedules are generated from simple production models, the Cobb

Douglas.  More elaborate production and factor demand models produce much less

precise estimates.  However, for the simple production models several

interesting results emerge.  The relative efficiency of capital appears to

deteriorate at approximately a geometric rate.  This is similar to results

from studies that examine the dual to this problem of examining prices of used

assets.  Although the estimated geometric rate depends on the functional form

of the production function, the estimates are similar to those of Hulten and

Wykoff (1981).  

This paper has demonstrated that plant level panel data provide a new
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source of information on capital accumulation in the manufacturing sector, and

an important tool in testing fundamental hypotheses regarding the productive

capability of capital as it ages.  A natural course for future research would

be to expand this analysis to other industries, since the characteristics of

capital differ markedly across industries.   
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Appendix A:  Presample Investment Estimation

As mentioned in the data section, continuous annual investment data do

not exist prior to 1972.  However, for those plants that started before 1972,

the 1972 book value of capital, BV72, is observed, and BV72 is the sum of all

net investments made on or before 1972.  The problem is how to appropriately

distribute BV72 over the presample period.  In this section, two complementary

models of presample gross investment and retirement are presented.

The first method exploits observed investment behavior of young plants

in the insample period.  These plants display a pattern of investing heavily

in their first two years followed by a substantial reduction during the next

two years.  This witnessed investment pattern is used to impute the first four

or five gross investments made by plants born after 1958.  

The second method imputes gross investments and retirements for older

plants.  More specifically, gross investments made between the 1963, 1967 and

1972 CM's are modeled as a function of plant age, gross industry investment,

and the initial and ending book values of capital.  The change in the book

value of capital between two censuses equals the sum of gross investments less

retirements made during the interval.  Once gross investments are estimated,

then retirements can be calculated.        

Both methods rely heavily on a plant's start date, t0.  The start dates 

for the plants used in this study were ascertained from various trade

journals.  Other studies using the LRD may obtain some birth data that were

collected in the 1975 and 1981 ASM's.  Because the birth data may not be

available in for every plant, the following discussion is general in that it

assumes that birth information for one reason or another is not available. 

However, when the birth information is available a plant's start date is

known, as is the case for all plants in this paper, then the estimation

procedure is easily amended.       
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The first step for both imputation procedures is to classify each plant 

born before 1972 into one of three categories.  The classification is

determined by when a plant is first observed in a CM.

           GROUP     First CM        Start Date
             1         1972       1967 < t0 < 1972
             2         1967       1963 < t0 # 1967
             3         1963              t0 # 1963 

The birth year for plants in groups 1 & 2 fall within an interval ranging from

the census of first appearance to the previous available census.  We make no

lower bound assumptions concerning plants that start before 1963.     

Imputation Method #1      

The first imputation method is used in imputing (I72,67, .., I72,71) for

group 1 and (I67,63, .., I67,66) for group 2.  Based on the observation that young

plants rarely retire any equipment in the first 5 years of operation, we

assume no retirements are made in the first four or five years of a plant. 

There are several reasons to expect why investment patterns for new

plants in the U.S. electric steel mill industry follow a similar pattern; 

large initial investments followed by smaller investments.  A plant in this

industry is initially built with a certain scale and changing this scale

requires relatively large expenditures.  If managers initially do not know 

their true costs or market demand, they may wait several periods until making

large investments.  Another reason for this pattern could be that a new plant

is likely to embody the latest technology.  When there is technical progress,

the marginal benefit of investing into a new technology increases with time. 

Initially after the plant commences operation, this marginal benefit will be

small.

To examine the initial investment patterns of new plants, we compute the

real net investment distribution for plants that started after 1972.  Table

A.1 presents means and standard deviations for these vectors.  These data
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indicate that, on average, the initial two investments in a plant are large

relative to consequent investments.  Another interesting  phenomenon that

occurs is the large investments that occur again when plants are 5 years old. 

Portions of the standard deviations in columns 1 and 2 is  attributable to the

timing of plant construction.  For several plants, the  initial investment is

small, beginning towards the later half of the year.   The investment made in

the second period for these plants will tend to be quite large.  In contrast,

for plants that begin construction early in the year, the second period

investment will be small.  Associated with the construction timing issue is

when the LRD picks up these plants.  If the LRD picks up births with a time

lag, then an investment stream will be lumped together into the first period.  

   

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 
Table A.1

Mean Real Net Investment Distributions by Plant Age
(standard deviations in parentheses)

                           Year of Operation 
               1         2         3         4         5         N     
Age      2   .834      .167        -         -         -         16
            (.290)    (.290)
         3   .724      .226      .0498       -         -         14
            (.326)    (.316)    (.0892)
         4   .657      .238      .0533     .0518       -         12 
            (.344)    (.319)    (.0843)   (.0744)
         5   .453      .236      .0529     .0515     .206        12
            (.329)    (.306)    (.0709)   (.0325)   (.251)
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 
N = number of plants 

Using investment patterns of plants born after 1972 as a basis of

imputing presample investment patterns has limited use.  The LRD can only

calculate real net investment distributions to a maximum of 15 years.  Notice

that the number of plants contributing to estimating the table A.1

distributions decreases from 16 to 12.  Investment spans greater than 5 years 

are not presented due to small samples and high variances.      
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We assume the probability of birth is uniformly distributed between 1968

and 1971 for group 1, and between 1963 and 1967 for group 2.  A mean estimated

real investment distribution not conditional on plant age is calculated for

the two periods.  Using these distribution and BV72 we estimate the 1967-1971

investments for group 1, and using BV67 we estimate the 1963-1966 investments

for group 2.  

Imputation Method #2

The first method of imputation takes advantage of the special behavior 

of young plants.  Now we present the methodology used for older plants.  We

use plant specification information observed in the  1963, 1967, and 1972 CM's

to infer annual investments and retirements.

Consider the following example.  Suppose BV72=200 and BV67=100.  An 

infinite number of linear combinations of gross investments and retirements 

could have occurred in the 1972-1967 period.  At the one extreme, gross 

investments for the period could have been 100 with no retirements.  Suppose

we assumed total investments totaled 150.  Then simultaneously we are assuming

retirements=50.

Using insample data we estimate the relationship between changes in book

value and gross industry investment for 4 and 5 year periods.  We then apply

the parameter estimates from the insample estimation, ß, to the following

model: 

(A.1)       (I71, ..., I68) = g(BV72,BV67,GI67,..72,ß). 

where GI represents gross industry investment.  A.1 is estimated using a

linear SUR model to minimize the variance of ß.  The book values and gross

industry investment are fully interacted.  Estimates of ß are used to impute

the 1964-1966 and 1968-1971 gross investments.  Retirements are calculated by

looking at total gross estimated investments and the change in book values of

capital.  
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