

ORNL-5786

OAK RIDGE NATIONAL LABORATORY

MARTIN MARIETTA

A Review and Analysis of Parameters for As sessing Transport of Environmer ally Released Radionucli as through Agriculture

> C. F. Baes III R. D. Sharp A. L. Sjoreen R. W. Shor

MANAGED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY

2. ELEMENT-SPECIFIC TRANSPORT PARAMETERS

Quantification of nuclide transport through agricultural systems in TERRA involves the parameters describing soil-to-plant uptake for vegetative growth (leaves and stems), B_v ; and nonvegetative growth (fruits, seeds, and tubers), B_r ; ingestion-to-milk transfer, F_m ; ingestion-to-meat transfer for beef cattle, F_f ; and the soil-water distribution coefficient, K_d . Ideally, these transport parameters should be nuclide-specific. For example, isotopic differences in plant availability have been shown for plutonium.⁸⁻¹⁰ However, available information for other elements and the lack of compelling theory for a nuclide-specific approach necessitates an element-specific determination for these parameters. Thus, it is assumed here that variability among isotopes of the same element is insignificant compared to variability among different elements and the overall variability inherent in the parameters themselves. For soil-plant uptake of strontium, available information supports this assumption.¹¹

2.1 Soil-to-Plant Uptake Parameters B, and B,

Root uptake of radionuclides incorporated into surface horizons of soil is parameterized by the transfer coefficients B, and B,, representing the ratio of elemental concentrations in plant and soil at harvestable maturity. The parameters B_y and B_r are given by

$$B_{\nu} = \frac{C_{\nu}}{C_s} \text{ and }$$
(1)

$$B_r = \frac{C_r}{C_s} \tag{2}$$

where

- B_{ν} = soil-to-plant elemental transfer coefficient for vegetative portions of food crops and feed plants,
- B_r = soil-to-plant elemental transfer coefficient for nonvegetative (reproductive) portions of food crops and feed plants,
- C_{ν} = elemental concentration in vegetative portions of food crops and feed plants (dry weight) at edible maturity,
- C_r = elemental concentration in nonvegetative (reproductive) portions of food crops and feed plants (dry weight) at edible maturity, and
- C_s = elemental concentration in root zone soil (dry weight).

This approach to concentration ratios is significantly different from the $B_{i\nu1}$ and $B_{i\nu2}$ approach used by Moore et al.¹ and is in response to some inconsistencies and inadequacies experienced with the AIRDOS-EPA approach.¹² In Moore et al.,¹ $B_{i\nu1}$ values were calculated from dry plant/dry soil concentration ratios for livestock feeds, and $B_{i\nu2}$ values were calculated from fresh weight plant/dry soil concentration ratios for food crops. This approach was used because information on feed and food crops is customarily reported in dry and fresh weights, respectively. In analysis of available literature for these concentration ratios, all data in a reference were divided into "animal feeds" and "direct consumption by man" categories, corresponding to $B_{i\nu1}$ and $B_{i\nu2}$, respectively. A literature reference could be used for $B_{i\nu1}$ or $B_{i\nu2}$ or both. Conversely, $B_{i\nu1}$ and $B_{i\nu2}$ for an element might be derived from two sets of data and references which could be equal, share common elements, or be disjointed. For most elements, $B_{i\nu2} \leq B_{i\nu1}$ was observed. This result is logical because the concentration of a finite quantity of material in a plant decreases as plant weight increases. However, if two disjointed sets of references were used, $B_{i\nu2} \geq B_{i\nu1}$ for an element could occur. The resultant values of B_{iv1} and B_{iv2} were appropriate with respect to the references used to generate them, but were not directly comparable with each other. In the approach used here, classification of references is based on physiologic plant characteristics, and not upon ultimate fate of the plant in the human food chain.

Also, in the Moore et al.¹ approach, any statistical analysis of B_{iv2} would have to be based on "converted" parameter values because they are usually reported in dry weight. Because very few references include dry-to-wet weight conversion factors, general references such as Morrison $(1959)^{13}$ and Spector $(1959)^{14}$ were used for generation of B_{iv2} . In some cases a value of 25% dry matter^{1,6,15} was used to convert to wet weight. These transformations of reported data added unnecessary uncertainty to parameter estimates, and statistical analysis would be less precise than analysis of original data. Thus, the adoption of dry weight concentration ratios here reduces additional imprecision in parameter estimates and facilitates a more direct comparison between the two concentration factors (B_v and B_r).

Adoption of B_v and B_r over B_{iv1} and B_{iv2} is based on an evaluation of literature references for root uptake and distribution of elements in plants. Nonuniform elemental distributions in food and feed crops has been widely observed (Table 2.1). Typically, nonnutritional elemental concentrations in agricultural plants are generally ordered as roots > leaves ≥ stems > tubers ≥ fruits ≥ seeds.^{10,17,31-37} Variations in the relative distribution of elements among plant parts occur with species, variety, growth conditions, and element, but in general for most elements, $C_v > C_r$.

Analysis of food and feed production in the conterminous United States suggests that B_{y} and B_r are analogous to B_{iv1} and B_{iv2} , respectively. Leafy vegetables are the only group of food crops for which B_{y} is the appropriate transfer parameter. Nationally, leafy vegetables comprise a relatively small portion of food crop production (Table 2.2). Thus, major portions of food crops in the United States are associated with the transport parameter B_r . For feed crops, grains are the only category associated with B_{x} . Although the relative importance of grain feeds varies considerably by state and county, in most areas nongrain feeds dominate. Therefore, the use of default soil-to-plant transport parameters (reviewed in the following sections) in the computer code AIRDOS-EPA merely requires substitution of B_v for B_{iv1} and substitution of a B_r , converted from dry weight to wet weight, for B_{iv2} . Appropriate generic factors for conversion of B_r to B_{iv2} , based on relative importance of various nonleafy vegetables in the Unites States, are 0.126, 0.222, and 0.888 for exposed produce, protected produce, and grains, respectively (Table 2.3). Weighting these conversion factors by the relative importance (based on production in kilograms) of each category in the United States (Table 2.2) yields an overall average value of 0.428. However, regional differences in the relative importance of the food categories and assessment requirements may require the selection of more appropriate conversion factors from Tables 2.2 and 2.3.

2.1.1 Protocols for determination of parameter values

All estimates of B_v and B_r are based on any combination of 1) analysis of literature references, 2) correlations with other parameters, 3) elemental systematics, or 4) comparisons of observed and predicted elemental concentrations in foods. In general, no *a priori* biases or protocols were used to produce conservative values.

Analysis of literature references required subjective evaluation of the experimental techniques, reliability of reported data, and appropriateness of reported values to the parameters. Practically, when many references were available for an element, subjective standards were relatively high; when only one or a few references were available, standards were less rigorous, and alternative approaches became increasingly important. Occasionally, reported data was not amenable for direct calculation of B_v or B_r based on Eqs. (1) and (2). If such corollary information such as soil bulk density, crop yield, background concentration, counting efficiency, and specific activities were not reported or easily available from other references, estimates of them were made for indirect

	•		•
Element	$(C_r/C_v)^a$	Plant	Reference
Li	1.6×10^{-1}	pumpkin	16
Be	1.4×10^{-1}	pumpkin	16
В	3.1×10^{-1}	various vegetables	17
Na	6.8×10^{-1}	pumpkin	16
Mg	6.6×10^{-1}	grain and root crops	18
Ca	1.6×10^{-1}	grain and root crops	18
Ti	5.3×10^{-1}	sedge and nut grasses	19
Cr	5.7×10^{-1}	pumpkin	16
Mn	2.0×10^{-1}	various vegetables	17
Fe	1.1×10^{-1}	pumpkin	16
Co	2.7×10^{-1}	sedge and nut grasses	19
Zn	3.5×10^{-1}	corn	20
Sr	8.7×10^{-2}	oats	21
Y	1.3×10^{-1}	beans	22
Mo	1.2×10^{-1}	various vegetables	17
Tc	1.9×10^{-2}	wheat	23
Cd	7.0×10^{-2}	various vegetables	24
Ι	4.9×10^{-1}	various vegetables	25
Cs	2.6×10^{-1}	wheat	26
Ba	9.6×10^{-2}	pumpkin	16
Ce	3.4×10^{-1}	beans	22
Pb	4.2×10^{-2}	various vegetables	27
Ро	1.5×10^{-1}	various vegetables	28
U	5.0×10^{-1}	various grain and root crops	29
Np	3.5×10^{-2}	wheat	30
Pu	1.2×10^{-2}	various vegetables	10
Am	4.2×10^{-3}	various vegetables	10
Cm	6.7×10^{-3}	various vegetables	10

 Table 2.1. Examples of nonuniform elemental distribution in plants

 ${}^{a}(C_{r}/C_{v})$ ratios were determined when pairs of observations were reported for a plant type. values in the table are the geometric mean of these ratios for the given reference.

calculation of B_{ν} or B_{r} . Acceptance or rejection of such references was subjective, depending on the number and quality of other available references and comparison of indirect estimates with direct estimates from reliable sources. Often reported data were presented graphically. When such references were used, some error from visual interpretation of the graphs is inherent in resultant parameter estimates.

Although past estimates of plant uptake parameters have been based on the assumption of equilibrium,^{39,40} studies in which the concentration of polonium,⁴¹ radium,⁴² cesium,⁴³ a mixture of fission products,⁴⁴ or strontium^{43,45,51} in assorted plants has been repeatedly measured indicate that concentration factors for radionuclides change with time. If equilibrium or near-equilibrium conditions are achieved, they occur late in plant ontogeny. Because the transport parameters are used to generate plant concentrations at edible maturity for all vegetative categories, except pasture, an attempt was made to use references in which plant and soil concentrations were measured at edible maturity of the plant. In a majority of references, soil concentrations are given for the beginning of the experiment and plant concentration factors are small and removal mechanisms from soil are controlled, only slight error is introduced in using such references. Also, concentration factors determined before edible maturity were used if subjective evaluation of the experiment suggested only slight error would be introduced from using these references. However, most references in which concentration factors were measured within three weeks of seed germination were rejected. For experimental determination of concentration factors for technetium, the above considerations severely limited the available data base.

	Percent of total						
	Leafy vegetables	Exposed produces	Protected produce	Grains			
California	-						
Area harvested	8.1	32.7	42.6	16.5			
Production	14.4	52.3	29.7	3.5			
Florida							
Area harvested	2.8	6.8	87.0	3.5			
Production	4.9	7.2	87.4	0.6			
Maine							
Area harvested	0.1	14.9	83.1	2.0			
Production	0.1	3.1	96.6	0.2			
Minnesota							
Area harvested	< 0.1	0.4	25.2	74.3			
Production	0.2	1.3	46.6	51.9			
Montana							
Area harvested	< 0.1	< 0.1	4.1	95.9			
Production	< 0.1	0.1	12.0	87.9			
Texas							
Area harvested	1.4	1.8	33.1	63.7			
Production	10.3	5.2	55.1	29.4			
Virginia							
Area harvested	1.5	14.6	32.1	51.8			
Production	4.7	31.7	34.9	28.6			
Conterminous U.S.							
Area harvested	1.2	6.1	23.3	69.4			
Production	5.8	20.0	42.2	32.0			

Table 2.2. Relative importance of food crop categories in selected states and the conterminous U.S.^a

^aReference: Shor, Baes, and Sharp⁷, Appendix B.

If a reference was judged appropriate, analysis of the reported values was done in a manner similar to that of Moore et al.¹ with several modifications. First, all reported values were divided into those for vegetative growth (leaves, stems, straws) or nonvegetative growth (reproductive and storage parts such as fruits, seeds, and tubers). Plant concentrations for the former were used in calculation of B_v and the latter for B_r . Also, if C_v and C_r were reported for a single plant type (e.g., wheat straw and grain or carrot top and root), the ratio (C_r/C_v) was calculated. The geometric mean of all reported values applied to B_v , B_r , or (C_r/C_v) ratio was calculated for each reference. For some references the (C_r/C_v) ratio could be calculated, but B_v , and B_r could not because hydroponic solutions were used to grow plants or C_s was not reported. Finally, the geometric means for each reference were used to construct a distribution for B_v , B_r , or (C_r/C_v) ratio. The geometric means of these (inter-reference) distributions were taken to be the best unbiased estimates of the parameters, because reported values often spanned more than an order of magnitude, and because the distributions for elements strontium, cesium, and plutonium (for which there were numerous references) appeared to be lognormally distributed.

Vegetable	Conversion factor ^a	Weighting factor	Reference	Vegetable	Conversion factor	Weighting factor	Reference
Exposed produce				Protected produce			
Apple	0.159	15.4	14	Onion	0.125	3.6	14
Asparagus	0.070	0.6	14	Orange	0.128	22.8	14
Bushberries	0.151	1.6	14	Peanut	0.920	3.4	38
Cherry	0.170	0.7	14	Peas	0.257	0.4	14
Cucumber	0.039	4.0	14	Potato	0.222	33.7	14
Eggplant	0.073	0.1	14	Sugarbeet	0.164	6.5	13
Grape	0.181	20.2	14	Sugarcane	0.232	5.5	13
Peach	0.131	6.9	14	Sweet corn	0.261	6.0	14
Pear	0.173	3.5	14	Sweet potato	0.315	1.5	14
Plums and prunes	0.540	3.1	14	Tree nuts	0.967	0.4	14
Sweet pepper	0.074	1.3	14	Watermelon	0.079	2.6	14
Snap bean	0.111	0.7	14				
Squash	0.082	1.8	14	Weighted average	0.222		
Strawberry	0.101	1.3	14				
Tomato	0.059	38.8	14	Grains			
				Barley	0.889	10.1	14
Weighted average	0.126			Corn (for meal)	0.895	37.7	38
				Oats	0.917	2.3	14
Protected produce				Rye	0.890	0.5	14
Bean (dry)	0.878	2.2	14	Soybean	0.925	5.3	14
Cantaloupe	0.060	1.1	14	Wheat	0.875	44.0	14
Carrot	0.118	2.4	14				
Grapefruit	0.112	5.5	14	Weighted average	0.888		
Lemon	0.107	2.4	14				

Table 2.3. Dry-to-wet weight conversion factors for exposed produce, protected produce, and grains

^aConversion factor = grams dry/grams wet.

^bRelative importance based on production in kilograms (percent of total) in the United States based on reference 7.

When only a few literature references were available, alternatives or supplements to the geometric means of distributions method were employed. For example, it was found that B_{ν} was correlated with C_s for several elements, e.g., B, P, Cu, and Zn. That is, entry of the element into the plant appeared to be regulated rather than a constant fraction of the soil concentration. Therefore, studies employing highly enriched soil concentrations might yield inappropriate concentration factors for model calculations. Such correlations were combined with average or typical observed soil concentrations⁵² to generate appropriate concentration factors.

Another approach to determination of concentration factors was to compare plant concentrations surveyed in the literature^{53,54} with those generated by the equations

$$C_v = B_v C_s^{\prime} \text{ and }$$
(3)

$$C_r = B_r C_s^t , \qquad (4)$$

where C_s^{t} is an average or typical soil concentration reported in the literature.⁵² If predicted plant concentrations were clearly atypical of reported values, the concentration factors were revised accordingly. In general, this method served as a critique of, or supplement to, other methods because of the uncertainties in values for "average" soil and plant concentrations. Typically, these values ranged over two orders of magnitude.

Finally, for rare elements and elements with little or no experimental information available, elemental systematics were used to derive best estimates when no other method or information was available. That is, relationships established between concentration factors for an element and those for other elements of the same or adjacent periods or groups were examined for trends. Such trends were extrapolated to the element in question, with the implication that chemically similar elements act similarly in the soil-plant environment. This elemental analog approach was extremely useful when support information for B_r was unavailable or meager. Systematic trends in observed (C_r/C_v) ratios were often used to predict B_r from B_v when the support data for the former was lacking, but relatively good for the latter.

Selection of values used as default in the TERRA code involved all of the above procedures. The final value selected as default was estimated to two significant digits rounded off to the nearest 0.5 decimal place (Figs. 2.1 and 2.2). That is, if a value of 1.3 was determined from the various above-outlined procedures a value of 1.5 was adopted. A determined value of 1.2 was rounded off to 1.0. The values of B_v and B_r in Figures 2.1 and 2.2 are further discussed in the following sections (2.1.2 through 2.1.10).

2.1.2 Croup IA and IIA elements

The Group IA or alkali metals (Li, Na, K, Rb, Cs, and Fr) and the Group IIA or alkaline earth metals (Be, Mg, Ca, Sr, Ba, and Ra) are, generally, relatively easily taken up from soil by plants. Many of the lighter of these elements are essential plant nutrients and some, including isotopes of cesium, strontium, and radium, are extremely important radiologically. Literature references for calculation of B_{ν} and B_{r} for cesium^{26,34,55-71} and strontium^{11,16-19,21,31-33,59-86} are quite abundant. Available references for the rest of the elements in these two groups are less numerous. References were available for lithium, ¹⁶ sodium, ^{16,17,65} potassium, ^{16-18,65,71,84} rubidium, ⁶⁵ beryllium, ¹⁶ magnesium, ^{16,18,65,71} No references were found for francium.

Cesium is the best documented of the Group IA elements. Analysis of the 18 references from which B_v estimates were taken suggests that the distribution of geometric means is lognormal (Fig. 2.3). The geometric means established for each of the 18 references ranged from 0.018 to 0.52 with a geometric mean of the means = 0.078. This value was rounded off to 0.08 for use in TERRA. Half of the B_v references included information pertinent to B_r , yielding a geometric mean of 0.018 for B_r . Ten of the references yielded (C_r/C_v) ratios, suggesting a value of 0.49 for this ratio. Using this ratio value with the B_r estimate previously mentioned yields a second estimate of B_r of 0.038 by the equation

$$B_{r} = B_{v} \left[\frac{C_{r}}{C_{v}} \right]$$
(5)

Thus, an estimate of $B_r = 0.03$, which is near the midpoint of the range (0.018 to 0.038), was adopted. The ratio of default values of B_r and $B_v(B_r/B_v)$ is within one standard deviation of the (C_r/C_v) ratio distribution determined from the 10 references. Comparison of observed concentrations of cesium in plant foods with those predicted using the default estimate for B_r (Fig. 2.2) suggests that the default value is not unreasonable (Table 2.4). No information on naturally occurring cesium in vegetation applicable to B_v was available, but a radiological survey of the Marshall Islands⁹⁴ indicates that predicted Cs-137 concentrations in plants using the default estimate of B_v and measured soil concentrations are less than observed concentrations (which include resuspended material).

The B_{ν} and B_{r} values chosen for lithium are derived from an unpublished study by Baes and Katz of natural variations in elemental concentrations in associated pumpkins and soils.¹⁶

	IA	II A											III A	IV A	VA	VIA	VII A
II	Li 0.025	Be 0.010											В 4.0		N 30		F 0.060
III	Na 0.075	Mg 1.0	III B	IV B	VВ	VI B	VII B		– VIII –		ΙB	II B	Al 4.0×10 ⁻³	Si 0.35	P 3.5	S 1.5	CI 70
IV	K 1.0	Ca 3.5	Sc 6.0×10 ⁻³	Ti 5.5×10 ⁻³	V 5.5×10 ⁻³	Cr 7.5×10 ⁻³	Mn 0.25	Fe 4.0×10 ⁻³	Co 0.020	Ni 0.060	Cu 0.40	Zn 1.5	Ga 4.0×10 ⁻³	Ge 0.40	As 0.040	Se 0.025	Br 1.5
V	Rb 0.15	Sr 2.5	Y 0.015	Zr 2.0×10 ⁻³	Nb 0.020	Mo 0.25	Тс 9.5	Ru 0.075	Rh 0.15	Pd 0.15	Ag 0.40	Cd 0.55	In 4.0×10 ⁻³	Sn 0.030	Sb 0.20	Te 0.025	l 0.15
VI	Cs 0.080	Ba 0.15		Hf 3.5×10 ⁻³	Ta 0.010	W 0.045	Re 1.5	Os 0.015	lr 0.055	Pt 0.095	Au 0.40	Hg 0.90	TI 4.0×10 ⁻³	Pb 0.045	Bi 0.035	Po 2.5×10 ⁻³	At 1.0
VII	Fr 0.030	Ra 0.015															
	Lanthanio	des	La 0.010	Ce 0.010	Pr 0.010	Nd 0.010	Pm 0.010	Sm 0.010	Eu 0.010	Gd 0.010	Tb 0.010	Dy 0.010	Ho 0.010	Er 0.010	Tm 0.010	Yb 0.010	Lu 0.010
	Actinides	i	Ac 3.5×10 ⁻³	Th 8.5×10 ⁻⁴	Pa 2.5×10 ⁻³	U 8.5×10 ⁻³	Np 0.10	Pu 4.5×10 ⁻⁴	Am 5.5×10 ⁻³	Cm 8.5×10 ⁻⁴							
	Key:	Li 0.025]	Symbol Transfer	Coefficie	nt, B _v											

Figure 2.1. Values of the soil-to-plant concentration factor B_{ν} adopted as default estimates in the computer code TERRA.

	IA	II A											III A	IV A	VA	VIA	VII A
II	Li 4.0×10 ⁻³	Be 1.5×10 ⁻³											B 2.0		N 30		F 6.0×10 ⁻³
III	Na 0.055	Mg 0.55	III B	IV B	VВ	VI B	VII B		– VIII –		ΙB	II B	AI 6.5×10 ⁻⁴	Si 0.070	P 3.5	S 1.5	CI 70
IV	K 0.55	Ca 0.35	Sc 1.0×10 ⁻³	Ti 3.0×10 ⁻³	V 3.0×10 ⁻³	Cr 4.5×10 ⁻³	Mn 0.050	Fe 1.0×10 ⁻³	Co 7.0×10 ⁻³	Ni 0.060	Cu 0.25	Zn 0.90	Ga 4.0×10 ⁻⁴	Ge 0.080	As 6.0×10 ⁻³	Se 0.025	Br 1.5
V	Rb 0.070	Sr 0.25	Y 6.0×10 ⁻³	Zr 5.0×10 ⁻⁴	Nb 5.0×10 ⁻³	Mo 0.060	Tc 1.5	Ru 0.020	Rh 0.040	Pd 0.040	Ag 0.10	Cd 0.15	In 4.0×10 ⁻⁴	Sn 6.0×10 ⁻³	Sb 0.030	Te 4.0×10 ⁻³	l 0.050
VI	Cs 0.030	Ba 0.015		Hf 8.5×10 ⁻⁴	Ta 2.5×10 ⁻³	W 0.010	Re 0.35	Os 3.5×10 ⁻³	lr 0.015	Pt 0.025	Au 0.10	Hg 0.20	TI 4.0×10 ⁻⁴	Pb 9.0×10 ⁻³	Bi 5.0×10 ⁻³	Po 4.0×10 ⁻⁴	At 0.15
VII	Fr 0.030	Ra 0.015			-												
	Lanthani	des	La 4.0×10 ⁻³	Ce 4.0×10 ⁻³	Pr 4.0×10 ⁻³	Nd 4.0×10 ⁻³	Pm 4.0×10 ⁻³	Sm 4.0×10 ⁻³	Eu 4.0×10 ⁻³	Gd 4.0×10 ⁻³	Tb 4.0×10 ⁻³	Dy 4.0×10 ⁻³	Ho 4.0×10 ⁻³	Er 4.0×10 ⁻³	Tm 4.0×10 ⁻³	Yb 4.0×10 ⁻³	Lu 4.0×10 ⁻³
	Actinides	5	Ac 3.5×10 ⁻⁴	Th 8.5×10 ⁻⁵	Pa 2.5×10 ⁻⁴	U 4.0×10 ⁻³	Np 0.010	Pu 4.5×10 ⁻⁵	Am 2.5×10 ⁻⁴	Cm 1.5×10 ⁻⁵							
	Key:	Li 4.0×10 ⁻³		Symbol Transfer	Coefficie	nt, B _r											

Figure 2.2. Values of the soil-to-plant concentration factor B_r adopted as default estimates in the computer code TERRA.

Figure 2.3. Lognormal probability plot of geometric means of B_v for cesium (calculated from references 26, 34, and 55-71), including one geometric standard deviation of the mean.

Comparison of observed and predicted plant concentrations in Table 2.4 indicates that both default B_y and B_r predict plant concentrations which are within observed ranges.

The B_v for sodium (0.075) was also derived from reference 16. Reference 65 reported soil and plant concentrations from which a lower estimate of B_v for sodium was derived, but systematic trends observed by plotting B_v against atomic number for Group IA and IIA elements (Fig. 2.4). suggest the rejection of this lower value. Comparison of observed and predicted plant sodium using the higher value supports its selection, because the predicted value is slightly below the reported range.

An estimate of the (C_r/C_v) ratio for sodium of 0.74 was derived from references 16 and 17. One and two standard deviations of the data reported in references 17 and 16, respectively, include the value 1.0. Thus, $B_v = B_r$ for sodium is quite likely for many plants. However, reported values of C_r for sodium are generally less than C_v . Thus, the derived ratio of 0.74 was judged acceptable, yielding a default value of 0.055 for sodium B_r using Eq. (5). This estimate of B_r appears reasonable (Table 2.4).

The default value of B_{ν} for potassium was determined to be 1.0. This value is based on the geometric mean of values determined for two references (16 and 65), the correlation between B_{ν} and C_s for potassium observed from these references (Fig. 2.5), and the assumption that typical agricultural practice includes soil fertilization with potassium.

The (C_r/C_v) ratio based on literature references is quite variable for potassium. Values at or near 1.0 were found for pumpkin¹⁶ and many common vegetables,¹⁷ including root crops.⁷¹ Lower ratios near 0.4 have been observed for grains.^{18,71,84} From Table 2.4, $C_r < C_v$ appears to apply to potassium, and thus the geometric mean of values determined for references 16-18, 71, and 84 was used to generate a value of $B_r = 0.55$. This estimate yields predicted C_r for potassium which agrees well with the observed range (Table 2.4).

One reference was found for rubidium B_{ν} , but both default B_{ν} and B_{r} values were derived by assuming systematic trends in B_{ν} (Fig. 2.4) and (B_{r}/B_{ν}) ratio (Fig. 2.6) for Group IA and IIA elements and comparing observed and predicted C_{ν} and C_{r} . No references were found for francium B_{ν} , B_{r} , C_{ν} , or C_{r} ; and therefore, assumed systematic trends in B_{ν} and (B_{r}/B_{ν}) ratio were used exclusively for default estimates of the concentration factors. The B_{ν} of 0.03 determined here for francium compares well with the value of 0.04 derived from Ng et al.¹⁵ (assuming 25% dry matter).

Strontium is perhaps the best studied of all elements in the periodic table with respect to plant uptake. As for cesium, analysis of the references for B_v indicates that this parameter is lognormally distributed (Fig. 2.7). The range of reference mean values, 0.077 to 17, is larger than the range for cesium, but the number of references is also greater. The geometric mean of the reference means = 2.7, and it was rounded off to 2.5 for use in TERRA. Fifteen references applicable to B_r yielded a value of 0.25. Twenty-five references yielded estimates of (C_r/C_v) , which when multiplied by the default value of B_v also gave a $B_r = 0.25$.

A $B_v = 0.01$ for beryllium was derived from reference 16. That reference also yielded a $B_r = 0.0028$ for pumpkin, but examination of Figs. 2.4 and 2.6 suggest that a value of 0.0015 is more reasonable. Adoption of this value yields a predicted C_r value which is approximately an order of magnitude higher than reported values (Table 2.4). However, as noted by Shacklette et al.,⁵³ toxicity to plants is severe and measurable amounts are rarely observed in plants.

The B_v for magnesium (1.0) was determined from references 16 and 65. The geometric mean of values of (C_r/C_v) ratio for references 16, 18, and 71 was used to derive a $B_r = 0.55$. Predicted and observed C_v and C_r for magnesium agree well (Table 2.4).

Calcium $B_v(3.5)$ was derived from references 16, 65, 71, and 72. Comparison of predicted and observed C_v values using this B_v value (Table 2.4) and comparison among other Group IIA elements for B_v in Fig. 2.4 support the reasonableness of this value. Calculated mean (C_r/C_v) ratios for calcium, strontium, barium, and radium, 0.081, 0.13, 0.18, and 0.095, respectively, suggested the adoption of a value of 0.1 for all Group IIA elements below magnesium. Thus, $B_r = 0.35$ for calcium is used in TERRA. Comparison of predicted and observed C_v values using this B_v (Table 2.4) is good.

Flement	Average	Vegetative g	rowth (C_v)	Fruits and tubers (C_r)		
Element	in soil $(C_s)^a$	Observed range ^b	Predicted ^c	Observed range ^b	Predicted ^d	
Group IA						
Li	30	0.15 to 55	0.75	0.010 to 9.8	0.12	
Na	6,300	700 to 20,000	470	15 to 3,500	350	
K	14,000	1,000 to 77,000 ^{e,f}	14,000	7,800 to 28,000 ^e	7,500	
Rb	100	18 to 400	15	1.0 to 50	7.0	
Cs	5.0		0.40	2.0×10^{-3} to 0.35	0.15	
Fr						
Group IIA						
Be	6.0	0.090	0.060	1.0×10 ⁻³	9.0×10 ⁻³	
Mg	6,300	110 to 14,000 ^{f,g}	6,300	200 to 11,000 ^{f,g}	3,500	
Ca	14,000	1,000 to 78,000 ^f	48,000	71 to 6,400 ^{f,g}	4,800	
Sr	300	13 to 1,900	750	0.060 to 40	75	
Ba	500	28 to 80	75	0.30 to 86	7.5	
Ra	8.0×10^{-7}	2.6×10^{-9}	1.2×10^{-8}	1.1×10^{-9}	1.2×10^{-9}	

Table 2.4. Comparison of observed and predicted concentrations of Group I A
and II A elements in produce and plants (ppm, dry wt.)

 b Taken or calculated from values in reference 53 assuming ash wt./dry wt. = .128 and .057 for vegetative growth and fruits and tubers, respectively

^cThe product, $B_v \times C_s$. ^dThe product, $B_r \times C_s$.

^eReference 13.

^fReference 14.

^gReference 54.

The B_{ν} for barium (0.15) was determined from references 16, 59, and 65. The default B_{ν} value was calculated in a manner similar to that for calcium using Eq. (5). Observed and predicted C_{ν} and C_{r} agree well (Table 2.4).

Because of its importance radiologically, the concentration factors for radium used in AIRDOS-EPA have been both highly scrutinized and criticized.⁹⁵ Reevaluations of the $B_{i\nu1}$ and $B_{i\nu2}$ values listed in Moore et al.¹ have been based on corrections of values reported in the literature¹² and subjective evaluation of the quality of the references.⁹⁵ Unfortunately, available references for calculation of soil-to-plant concentration factors for radium must all be judged subjectively (Table 2.5). However, separation of plants into the two categories in association with B_{ν} and B_{r} eliminates inconsistencies in the $B_{i\nu1}$ and $B_{i\nu2}$ approach and suggests that only one available reference reports questionable results. The earliest reference found for radium soil-plant concentration factors, reported by Kirchmann and Boulenger in 1968,⁸⁷ has not been used in support of B_{ν} and B_{r} here because their analytical technique is questionable⁹⁵ and yields extremely high values. Furthermore, the experimental technique for determination of radium used by Kirchmann and Boulenger has been questioned.⁹⁵ However, reference 87 does yield a (B_r/B_{ν}) ratio consistent with those for calcium, strontium, and barium. Insufficient criteria have been found for rejection of any of the remaining references.

Figure 2.4. Assumed systematic trends in B_{ν} for Group IA and IIA elements. Solid dots and error bars represent geometric means and standard deviations determined from available references.

Figure 2.5. Correlation between soil potassium concentration and the soil-to-plant concentration factor, B_{ν} , for potassium based on references 16 and 65.

Figure 2.5. Assumed systematic trends in (B_r/B_v) ratio for Group IA and IIA elements. Solid dots and error bars represent geometric means and standard deviations determined from available references.

Figure 2.7. Lognormal probability plot of geometric means of B_v for strontium (calculated from references 11, 16, 17, 21, 31, 33, 59, 60, 62-70, 72, 74-76, 78, 81-83, 85, and 86), including one geometric standard deviation of the mean.

B_{v}	B_r	(C_r/C_v)	Reference	Comments
0.71	0.10	0.95	87	Ra-226 measurement technique questionable. Estimates of B_{y} and B_{r} not used in present analysis.
	5.0×10^{-4}		90	Reported wet weight plant concentrations converted to dry weight using reference 13.
0.045	3.2×10^{-3}		88	Values reported for "herbage and fruit" required assump- tions as to exact makeup. Wet weight plant concentrations converted to dry weight using reference 14.
0.060		1.8	93	Vegetation sampled inappropriate to human pathways. Resuspension of soil onto plant surfaces suspected.
0.012			89	Pot geometry and soil bulk density assumed in order to esti- mate soil radium concentrations. Ash weight plant concen- trations converted to dry weight using reference 13.
0.020			91	
2.4×10^{-3}	8.2×10^{-4}		92	"Salad" was assumed to be lettuce. Ash weight plant con- centrations converted to dry weight using reference 14.

Table 2.5. Literature values of B_{ν} , B_{r} , and the (C_{r}/C_{ν}) ratio for radium^a

^aGeometric means of all values reported.

In a review of Ra-226 transport by McDowell-Boyer, Watson, and Travis,⁹⁶ a value of 0.09 was recommended for a radium forage and hay concentration factor. The authors recommended a value of 0.02 for vegetables, fruit, and grain. The dry weight equivalent of this value would be a factor of 4 to 10 higher, depending on the assumed water content of vegetables, fruit, and grains. The value for B_{ν} derived from five references listed in Table 2.5 is 0.017, which is roughly a factor of 5 lower than the value recommended in reference 96. This value has been rounded off to 0.015. The B_{ν} value derived from three references listed in Table 2.5 is 0.0011, which is much lower than the value recommended in reference 96. The (B_r/B_{ν}) ratio obtained from reference 87 and similar ratios found for calcium, strontium, and barium suggest that a $B_r = 0.0015$ is reasonable. These default B_{ν} and B_r values appear to be acceptable based on systematic trends (Figs. 2.4 and 2.6) for Group IIA elements and comparison of observed and predicted C_{ν} and C_r values (Table 2.4).

Much work has been done on the effect of available soil calcium on the uptake of strontium byplants,^{18,21,33,71,78,79,81,82} and this subject has been thoroughly reviewed by Francis;²³³ in general, plant uptake of strontium is inversely proportional to the amount of exchangeable calcium in the soil. The same effect of soil calcium on plant uptake of radium has also been suggested.⁸⁸ Therefore, it is likely that plant uptake of all Group IIA elements will be negatively affected by increasing soil calcium. The exact relationships between calcium and other IIA elements will be affected by plant type, plant part, and soil characteristics; therefore, in the TERRA computer code, soil calcium influence on B_v and B_r for Group IIA elements is not considered. However, a user of the code may wish to select higher B_v and B_r values than the defaults (Figs. 2.1 and 2.2) for Group IIA elements for pasture pathways and lower values for food crop pathways, assuming that in the latter case soils are more intensively prepared and amended (including liming).

2.1.3 Group IIIA, IVA, and VA elements

Groups IIIA, IVA, and VA contain elements which are essential plant nutrients, elements for which some isotopes are important radiologically, and elements for which experimental evidence for B_v and B_r is scanty. By far, the best documented element of these groups for B_v and B_r is lead, ^{16,20,27,91,99-105} followed by arsenic, ^{16,19,98} boron, ^{16,17,65,76} aluminum, ^{16,17,19,65} phosphorus, ^{16,17,97} indium, ⁶⁵ tin, ⁶⁵ and antimony. ⁶⁵ No references were readily obtainable for nitrogen, silicon, gallium, germanium, thallium, and bismuth. Corollary information was used to estimate transfer parameters for these elements.

The B_{ν} value of 4.0 adopted for boron is based on the relationship between soil boron concentration and boron B_{ν} determined from references 16, 65, and 76 (Fig. 2.8), and an assumed average soil boron concentration of 10 ppm (Table 2.6).⁵² The (B_r/B_{ν}) ratio as determined from references 16 and 17 is approximately 0.5, and a B_r value of 2.0 was adopted. Comparison of observed and predicted boron food concentrations (Table 2.6) indicates that the default B_{ν} and B_r values are reasonable.

The B_r estimate of 0.004 for aluminum is based on references 16 and 65. The (B_r/B_v) ratio of 0.167 determined from reference 17 was used to generate a default value for B_r of 6.5×10^{-4} . This value is a factor of 2.5 greater than the single value of 2.6×10^{-4} found by Baes and Katz,¹⁶ but comparison of observed and predicted aluminum concentrations in produce (Table 2.6) indicates the default B_v and B_r estimates give reasonable predictions which are near the low end of reported ranges.

The B_v for indium was taken from a single value determined from reference 65. Because the default B_v estimate for indium equals the default B_v estimate for aluminum, a gallium B_v of 0.004 was also assumed for this Period IV element. Since no data were available for thallium B_v , its value was set equal to that for aluminum, gallium, and indium. A (B_r/B_v) ratio of 0.1 was assumed for gallium, indium, and thallium, yielding a B_r of 4.0×10^{-4} for these elements. Unfortunately, elemental concentrations of gallium, indium, and thallium in soils and a variety of produce are not well-documented. However, the values assumed here are consistent with the fragmentary information of observed plant concentrations of these elements.

Of the Group IVA elements, lead is the best documented with respect to B_v and B_r . The default B_v value of 0.045 is the geometric mean of values determined for nine references. A (B_r/B_v) ratio of 0.2 based on references 16, 20, 27, 99 and 102 yields a B_r estimate of 0.009. Table 2.6 shows that these B_v and B_r default values yield appropriate estimates of lead concentrations in produce.

No references for the direct measurement of B_{ν} or B_{r} for silicon were found. Ng et al.15 provide data from which a dry weight transfer factor of 6.1×10^{-4} can be derived. Menzel,¹⁰⁶ however, reported that the transfer coefficient for soluble forms of silicon ranged between 0.1 and 1.0. Using the 330,000 ppm (33%) value for silicon in soil reported by Vinogradov⁵² and the C_{ν} range reported by Shacklette et al., ⁵³ the Ng et al. value is approximately an order of magnitude too low and the range reported by Menzel is too high. Therefore, for a B_{ν} estimate, the C_{ν} value reported for grasses of 110,000 ppm silicon (plant concentrations for other produce or vegetables were reported in wet or ash weight) was combined with the reported average soil concentration according to Eq. (3) to give a $B_{\nu} = 0.35$ for silicon. The (B_r/B_{ν}) ratio for silicon was assumed to be the same as for lead, generating a B_{ν} estimate of 0.07.

Reference 15 yields a dry weight transfer factor of 0.4 for germanium. This value appears to be slightly low when predicted and measured C_v values are compared (Table 2.6). However, in the absence of experimental evidence and because the value agrees well with the default B_v estimate for silicon, it is used for germanium B_v also. The (B_r/B_v) ratio is also assumed to be 0.2 as for lead and silicon, yielding a B_r estimate of 0.08.

The B_v for tin of 0.03 is based on reference 65, and the B_r value of 0.006 is based on an assumed (B_r/B_v) ratio of 0.2. Comparison of observed and predicted C_v and C_r values in Table 2.6 indicates that the default B_v and B_r values are reasonable.

Figure 2.8. Correlation between soil boron concentration and the soil-to-plant concentration factor, B_{ν} , for boron based on references 16, 65, and 76.

	Average	Vegetative gro	wth (C_v)	Fruits and tub	pers (C_r)
Element	in soil $(C_s)^a$	Observed range ^b	Predicted ^c	Observed range ^b	Predicted ^d
Group III A					
В	10	4.0 to 2,100	40	66 to 520	20
Al	71,000	900	280	11 to 86	46
Ga	30	0.13	0.12		0.012
In					
T1		0.26 to 0.90			
Group IV A					
Si	330,000	24,000 to 110,000	120,000		23,000
Ge	1.0	0.64 to 13	0.40		0.080
Sn	10	0.13	0.30	0.10 to 1.8	0.060
Pb	10	0.13 to 9.0	0.45	0.015 to 1.0	0.090
Group V A					
N	1,000	16,000 to 43,000 ^e	30,000	4,500 to 29,000 ^{e,f}	30,000
Р	800	600 to 9,800 ^e	2,800	630 to 52,000f	2,800
As	5.0	<0.05 to 0.25	0.20	<0.05 to 3.9	0.030
Sb	0.10	< 0.056 ^g	0.020	1.3×10^{-4} to 0.039^{g}	3.0×10^{-3}
Bi	1.0	0.15	0.035	0.068	5.0×10^{-3}

Table 2.6. Comparison of observed a	and predicted	concentrations	of Group	III A
IV A, and V A elements in	produce and	plants (ppm, dr	y wt.)	

^bTaken or calculated from values in reference 53 assuming ash wt./dry wt. = .128 and .057 for vegetative growth and fruits and tubers, respectively

^cThe product, $B_v \times C_s$.

^dThe product, $B_r \times C_s$.

^eReference 14.

^fReference 13.

^gReference 54.

No references for experimental determination of B_{ν} for the essential plant nutrient nitrogen were readily available. The review reference 15 yields a default value of 30, which gives a predicted C_{ν} in the midrange of reported values (Table 2.6). Thus, this value was adopted for use in TERRA. Comparison of observed C_{ν} and C_{r} ranges indicates that nitrogen uptake in vegetative and reproductive plant parts is approximately the same. In the absence of evidence to the contrary, $B_{\nu} = B_{r}$ was assumed.

The B_v for phosphorus is based on the relationship between soil phosphorus concentration and B_v found from data in reference 16 (Fig. 2.9), assuming an average soil concentration of phosphorus of 800 ppm.⁵² Three references yield estimates of (B_r/B_v) ratio. Two references (16 and 97) yield estimates greater than 1.0. Reference 17 yields a value of 0.78, but one standard deviation of the mean includes 1.0. Thus as for nitrogen, $B_v = B_r$ was adopted. Comparison of observed and predicted C_v and C_r indicates that default values of B_v and B_r for phosphorus are reasonable.

The B_v for arsenic of 0.04 was determined from references 16 and 98. References 16 and 19 both indicate that, unlike the lighter members of Group VA elements, the accumulation of arsenic in nonvegetative plant parts is less than for vegetative parts. A (B_r/B_v) ratio for arsenic of 0.15 was used to calculate a default $B_r = 0.006$. Comparison of observed and predicted C_v and C_r values (Table 2.6) shows that the default B_v predicts C_v values near the high end of the observed range and the B_r predicts C_r values near the low end of the observed range.

Figure 2.9. Correlation between soil phosphorus concentration and the soil-to-plant concentration factor, B_{ν} , for phosphorus based on reference 16.

The B_v for antimony was taken from reference 65. The (B_r/B_v) ratio for arsenic was also used for antimony. Comparisons of observed and predicted C_v and C_r for arsenic (Table 2.6) are reasonably good.

The B_v for bismuth was determined from the B_v estimates for lead and polonium (discussed in Sec. 2.1.4). The B_r estimate was generated from the default B_v of 0.035 and the (B_r/B_v) ratio used for arsenic and antimony. Comparison of observed and predicted C_v and C_r , although not definitive, are relatively good (Table 2.6).

2.1.4 Group VIA and VIIA elements

The Group VIA and VIIA elements include the relatively mobile anions and the radiologically important elements polonium and iodine. Of these elements the best documented are iodine, ^{25,59,65,107,234,235} selenium,^{19,65,76} and polonium.^{28,91} Single references were available for fluorine,¹⁰⁸ chlorine,⁶⁵ and bromine,⁶⁵ and no references were readily available for sulfur, tellurium, and astatine.

No references on direct determination of soil-to-plant transfer coefficients for sulfur were readily available. However, assuming an average sulfur concentration of 1400 ppm in vegetative portions of plants¹⁴ and 850 ppm in soil,⁵² a B_v of 1.5 results. Comparison of observed C_v and C_r for sulfur indicate that $B_v = B_r$ for this element (Table 2.7).

The default B_{ν} value for selenium of 0.025 was determined via several approaches. The value obtained from references 65 and 76 (0.032) was compared with values given by Ng et al.¹⁵ and Menzel.¹⁰⁶ The latter two estimates were several orders of magnitude higher than the value obtained from references 65 and 76. Although B_{ν} for plant-fly ash relationships^{19,65,76} is comparable to B_{ν} estimates given by Ng et al.¹⁵ and Menzel,¹⁰⁶ their estimates, when combined with an average selenium soil concentration of 1 ppm, tend to over-predict observed C_{ν} values (Table 2.7). Therefore, as a model for selenium the As/P and Br/Cl B_{ν} ratios were used as analogs for the Se/S B_{ν} ratio. If such ratios are assumed to change systematically, then the Se/S ratio may be assumed to be 0.016. This value, multiplied by the B_{ν} for sulfur, yields a default selenium B_{ν} estimate of 0.025. Comparison of observed and predicted selenium C_{ν} using this default value (Table 2.7) suggests that the default value is reasonable. Although the (B_r/B_{ν}) ratio for selenium taken from reference 19 is less than 1.0, comparison of observed C_{ν} and C_{ν} ranges suggest that $B_{\nu} = B_{\nu}$ for selenium also.

The B_{ν} for polonium based on references 28 and 91 is 2.5×10^{-3} . The (B_r/B_{ν}) ratio taken from reference 28 is 0.15. This ratio generates a default B_r value of 4.0×10^{-4} . Unfortunately, no references for comparison of observed C_{ν} and C_r were immediately available for comparison with predicted values.

No references were found for tellurium. The default B_v values determined for selenium and polonium suggest that a reasonable assumption for tellurium B_v is also a value of 0.025. Correspondingly, the (B_r/B_v) ratio of 0.15 for polonium was used to predict a B_r for tellurium of 0.004. As for polonium, no observed C_v and C_r values were available. Furthermore, no average tellurium soil concentrations were available either.

The B_v for fluorine is based on reference 108. The value of 0.06 generates a predicted C_v value which falls within the range of observed values (Table 2.7). Comparison of observed C_v and C_r ranges suggest a discrimination factor of approximately an order of magnitude. Thus, $a(B_r/B_v)$ ratio of 0.1 was assumed and $B_r = 0.006$.

The B_v and B_r for chlorine were determined through comparison of observed C_v and C_r and average C_s for chlorine (Table 2.7). Both the resulting B_v and $B_r = 70$, the highest concentration factors for any element reviewed here. Reference 65 yielded a B_v of 2.1 and a value of 20 was obtained from reference 15, but the C_v predicted with these factors are well below the reported range. Thus the more indirect method was deemed more appropriate for chlorine.

Element	Average	Vegetative gr	owth (C_{v})	Fruits and tubers (C_r)		
	in soil $(C_s)^a$	Observed range ^b	Predicted ^c	Observed range ^b	Predicted ^d	
Group VI A						
S	850	100 to 17,000 ^e	1,300	200 to 450 ^e	1,300	
Se	1.0^{f}	<0.01 to 0.35	0.025	<0.01 to 0.50	0.025	
Те						
Ро	$1.0 imes 10^{-11}$		$2.5 imes 10^{-14}$		4.0×10^{-15}	
Group VII A						
F	200	1.3 to 28	12	0.020 to 8.4	1.2	
Cl	100	2,000 to 23,000	7,000	300 to 8,500	7,000	
Br	5.0	0.31 to 4.9	7.5	0.20 to 260	7.5	
Ι	5.0	4.3 to 10	0.75	2.8 to 10	0.25	
At						

Table 2.7.	. Comparison of observed and predicted concentrations of Group VI	A
	VII A elements in produce and plants (ppm, dry wt.)	

^bTaken or calculated from values in reference 53 assuming ash wt./dry wt. = .128 and .057 for vegetative growth and fruits and tubers, respectively

^cThe product, $B_v \times C_s$.

^dThe product, $B_r \times C_s$.

^eReference 14.

^fBased on values given in references 65 and 76.

The B_v for bromine is based on reference 65. Although the corresponding predicted C_v is slightly high with respect to the observed C_v range, comparison of observed C_v and C_r ranges suggest that the reported C_v range may be low (the upper end of the C_r range is higher than that for the C_v range and a discrimination factor of greater than 1.0 for C_r appears unlikely). In lieu of contrary information, a (B_r / B_v) ratio of 1.0 was assumed for bromine, and thus $B_v = B_r$ was assumed.

The B_{ν} for iodine (0.15) is the geometric mean of values determined for references 25, 59, 65, 107, 234, and 235. References 59 and 107 indicate that B_{ν} for iodine ranges between 1.0 to 2.0. However, references 65, 234, and 235 indicate a much lower B_{ν} for iodine (0.04 to 0.10). Menzel¹⁰⁶ reports that the concentration factor for bromine is greater than that for iodine, and examination of Table 2.7 shows that the adopted B_{ν} for iodine does not predict a C_{ν} value greater than observed. Thus, the default value adopted in the TERRA code seems reasonable.

The B_v value of 0.050, adopted as a default in TERRA, is based on a compromise between the value of 0.02 derived from reference 234 and the product of the B_r/B_v ratio (0.5) derived from references 25 and 234 and the default B_v of 0.15. Examination of Table 2.7 shows that the default B_r value does not over-predict observed C_r values reported in the literature.

No references were found for astatine. A value of 1.0 for B_{ν} is derived from Ng et al.,¹⁵ and this value is adopted as a default value for TERRA. Using polonium as an analog, the assumed (B_r/B_{ν}) ratio is 0.15, producing a $B_r = 0.15$.

2.1.5 Group IIIB and the rare earth elements

The Group IIIB and the rare earth or lanthanide series elements are generally not important for plant nutrition, nor do they accumulate to any large extent in plants. Radiologically, isotopes of cerium are important. In our analysis, we found yttrium^{16,22,59,60,67} and cerium^{22,59,60,65} to be the best documented of these elements, followed by scandium,⁶⁵ lanthanum,⁶⁵ promethium,^{22,59} samarium,⁶⁵ and ytterbium.⁶⁵ No references were obtained for praseodymium, neodymium, europium, gadolinium, terbium, dysprosium, holmium, erbium, and thulium. However, because of the similarity of chemical behavior of all the lanthanides,^{110,111} soil-to-plant concentration factors for these undocumented elements are based on our analysis of cerium. The B_{ν} for yttrium of 0.015 was derived from references 16, 22, 59, 60, and 67. A (C_r/C_{ν}) ratio of 0.29 was determined from references 16, 22, and 60 and compared with a (B_r/B_{ν}) ratio of 0.46 which was based on a B_r derived from these same references. A (B_r/B_{ν}) ratio midway between these two estimates (0.36) was used to derive a default $B_r = 0.006$. Comparison of observed and predicted C_{ν} and C_r for yttrium (Table 2.8) indicate that the default B_{ν} and B_{ν} values are perhaps slightly low, but not unreasonable.

The B_v for scandium of 0.006 is based on the observation by Baes and Mesmer¹¹⁰ that the chemistry of scandium is between that for aluminum (Sect. 2.1.3) and that for yttrium, but surprisingly more like that for aluminum. A value of 0.0078 was taken from reference 65, and data from Ng et al.¹⁵ yields a value of 0.0043. The mean of these two values corresponds well with the value of 0.006 determined through systematic interpretation of Baes and Mesmers' observation (Fig. 2.10). The (B_r/B_v) ratio was determined in a similar manner to B_v assuming a systematic variation in this parameter. The ratio value of 0.2 was used to calculate a default $B_r = 0.001$. Comparison of observed and predicted scandium food concentrations (Table 2.8) are difficult because of the uncertaintity in the observed range values. However, if the observed C_r range reported is reasonable, then both predicted C_v values are not unreasonable.

The B_v for cerium of 0.01 was derived from references 22, 59, 60, and 65. Because of the similarity in the lanthanide elements, the B_v values from references 22, 59, and 65 for other members of the series were pooled with and without those for cerium to estimate B_v for all of the lanthanides. Both sets of pooled references yielded a $B_v = 0.01$. Thus, this value was adopted for elements 57 through 71. Pooling of references for (B_r/B_v) ratio^{22,60} yielded a value of 0.4. This value was also used for elements 57 through 71.

Comparisons of observed and predicted lanthanide concentrations in produce and plants is difficult because of the paucity of good experimental information. However, examination of Table 2.8 shows that for elements in which comparisons can be made, our soil-to-plant transfer coefficients tend to slightly underpredict reported food concentrations. Although some underpredictions are by more than an order of magnitude, the uncertainty involved in a typical soil concentration or the applicability of a few measurements to the true range of food concentrations does not warrant revision of the estimates.

	Average	Vegetative gr	owth (C_v)	Fruits and tubers (C_r)				
Element	in soil $(C_s)^a$	Observed range ^b	Predicted ^c	Observed range ^b	Predicted ^d			
Sc	7.0	1.0×10^{-4e}	0.042	5.0×10^{-5} to $0.10^{b,e}$	$7.0 imes 10^{-3}$			
Y	50	2.7 to 9.1	0.75	0.40 to 4.5	0.30			
La	40	< 0.074	0.40	0.052 to 0.31 ^e	0.16			
Ce	50	0.084	0.50	0.033 to 0.10 ^{b,e}	0.20			
Pr	4.5		0.045		0.18			
Nd	18		0.18	0.080	0.072			
Pm				0.080				
Sm	4.9		0.049	0.080	0.020			
Eu	0.39	$< 5.3 \times 10^{-3e}$	3.9×10^{-3}	0.080	1.6×10^{-3}			
Gd	5.5		0.055	0.080	0.022			
Tb	0.85		$8.5 imes 10^{-3}$	0.080	3.4×10^{-3}			
Dy	6.0		0.060	0.080	0.024			
Но	0.95		9.5×10^{-3}	0.080	3.8×10^{-3}			
Er	4.5		0.045	0.080	0.018			
Tm	0.45		$4.5 imes 10^{-3}$	0.080	1.8×10^{-3}			
Yb	4.6	0.53 to 3.2	0.046	0.080 to 13	0.018			
Lu	1.2		0.012	0.080	$4.8 imes 10^{-3}$			

Table 2.8. Comparison of observed and predicted concentrations of Group IIIB and the rare earth elements in produce and plants (ppm, dry wt.)

^aSc-Ce from reference 52; Pr-Lu estimated from ranges reported by Gibson et al.¹¹¹

^bTaken or calculated from values in reference 53 assuming ash wt./dry wt. = .128 and .057 for vegetative growth and fruits and tubers, respectively

^cThe product, $B_{y} \times C_{s}$.

^dThe product, $B_r \times C_s$.

^eReference 54.

2.1.6 Period IV transition elements

Elements of atomic number 22 through 30 (titanium through zinc) are perhaps the best documented for plant uptake from soil. Several of these elements, including manganese, iron, and zinc are generally accepted as essential plant micronutrients.⁵³ Others, including chromium and cobalt, are recognized as essential for animal nutrition and are suspected as plant nutrients, although their essentiality has not been established. Stable isotopes of these elements have been extensively studied because most are toxic to plants and animals at sufficient concentrations, although radiologically they are relatively unimportant. As the following discussion will show, the concept of a single equilibrium concentration factor for many of these elements can be questioned. For those elements which are essential to plant nutrition, and thus are likely to be regulated by the plant, correlations between soil concentrations and B_v have been established in a manner similar to those for potassium, phosphorus, and nitrogen.

Available references for B_{ν} , B_{r} , and (B_{r}/B_{ν}) ratio numbered 16 for zinc; $^{16,17,19,20,35,37,65,67,97,104,114+119}$ nine for manganese; 16,17,19,36,37,65,104,112,113 eight for copper 16,17,19,20,65,104,114,115 five for nickel, 16,20,102,104,114 iron, 16,17,19,65,104 and cobalt; 16,17,19,65,104 four for ch;omium; 16,19,65,102 three for titanium; 16,19,65 and two for vanadium. 16,65 Correlations between soil concentrations and B_{ν} were found for all but vanadium, titanium, and nickel. These correlations were often used in lieu of the geometric means approach to define default B_{ν} values.

Figure 2.10. Assumed systematic trends in B_v and (B_r/B_v) ratio for aluminum, scandium, and yttrium. Solid dots and error bars represent geometric means and standard deviations of the mean determined from available references.

As before, predicted plant concentrations were compared with observed values in order to assure reasonable B_v and B_r estimates. These approaches were used in lieu of elemental systematics because subsequent analyses (see Sec. 2.1.7 and 2.1.8) depended heavily on the values obtained for these Period IV elements.

The B_v for titanium of 0.0055 is the geometric mean derived from references 16 and 65. The B_r value was generated from a (B_r/B_v) ratio derived from reference 19. Both soil-to-plant concentration factors predict plant concentrations from typical soil titanium concentrations which agree well with observed plant concentrations (Table 2.9).

The B_v for vanadium was also derived from references 16 and 65, and it is numerically equal to the B_v , for titanium. No information was available on the (B_r/B_v) ratio for vanadium, and therefore, it was assumed equal to that for titanium, yielding a $B_r = 0.003$. Comparison of observed and predicted C_v and C_r for vanadium (Table 2.9) is also good.

References 16 and 65 yield a B_v by the geometric means method of 0.03 for chromium. However, a correlation between soil chromium concentration and chromium B_v was observed from the data in these two references (Fig. 2.11). Although this correlation is weak, the B_v determined by geometric means predicts C_v for chromium greater than the observed range. Therefore, the relationship in Fig. 2.11 was used to predict a chromium B_v of 0.0075 at a soil chromium concentration of 200 ppm.⁵² This value of B_v does predict a reasonable C_v , (Table 2.9).

A (B_r/B_v) ratio of 0.6 for chromium was determined from references 16, 19, and 102. This value generates a $B_r = 0.0045$, which predicts a C_r within the reported range of observed C_r values (Table 2.9).

The B_v for manganese generated by the geometric means method is 0.41. However, from data in references 16, 36, 37, 104, 112, and 113 a strong correlation between B_v and soil manganese concentration was observed (Fig. 2.12). At a typical soil manganese concentration of 850 ppm,⁵² the corresponding $B_v = 0.25$. This latter value was adopted for TERRA. Although this latter B_v value for manganese overpredicts C_v with respect to the reported observed range, the former value overpredicts C_v by an even larger factor.

The (B_r/B_v) ratio for manganese of 0.2 was determined from references 16, 17, and 19. This ratio generates a $B_r = 0.05$. Comparison of observed and predicted C_r using this B_r value (Table 2.9) indicates that the default B_r is reasonable.

Iron is an essential plant nutrient, and therefore, root uptake is probably regulated by the plant. It is not surprising that the relationship between soil iron concentration and B_v shown in Fig. 2.13 was found. At a typical soil iron concentration of 3.8%, ⁵² the corresponding $B_v = 0.004$. The (B_r/B_v) ratio based on references 16, 17, and 19 = 0.25, yielding a B_r of 0.001. Comparison of observed and predicted C_v and C_r (Table 2.9) for iron indicates the reasonableness of the default B_v , and B_r .

The B_v for cobalt of 0.02 is based on the weak correlation between soil cobalt concentration and B_v (Fig. 2.14) and a typical soil cobalt concentration of 8 ppm.⁵² A (B_r/B_v) ratio of 0.35 was derived from references 16, 17, and 19. This ratio generates a $B_r = 0.007$. Predicted C_v and C_r using these default concentration factors for cobalt agree well with observed C_v and C_r ranges (Table 2.9).

The B_v for nickel is based on references 16 and 104. Unlike chromium, manganese, iron, and cobalt, no clear relationship between soil nickel concentration and B_v was indicated from the available data. Also, unlike the other Period IV transition elements no discrimination factor between vegetative and nonvegetative plant parts was found. In fact, the geometric mean of references 16, 20, 102, and 114 for (B_r/B_v) ratio was 1.2. Therefore, a (B_r/B_v) ratio of 1.0 was assumed and $B_v = B_r$ for nickel. Examination of Table 2.9 indicates that the observed C_r range includes the C_v range, supporting this assumption. Predicted C_v and C_r values agree well with reported observed ranges.

The B_v for copper is based on the strong correlation between soil copper concentration and B_v shown in Fig. 2.15 and an average soil copper concentration of 20 ppm.⁵² The (B_r/B_v) ratio, as

Element	Average	Vegetative gr	owth (C_{v})	Fruits and tubers (C_r)			
Element	in soil $(C_s)^a$	Observed range ^b	Predicted ^c	Observed range ^b	Predicted ^d		
Ti	4,600	1.6 to 160	25	0.087 to 80	14		
V	100	<0.091 to 21	0.55	4.60×10^{-4} to 47	0.30		
Cr	200	0.18 to 2.9	1.5	0.030 to 8.0	0.90		
Mn	850	1.9 to 16	210	8.0 to 80	43		
Fe	38,000	6.5 to 410 ^e	150	10 to 160 ^e	38		
Co	8.0	0.010 to 0.54	0.16	6.0×10^{-3} to 0.36	0.056		
Ni	40	0.23 to 5.2 ^{b,f}	2.4	0.028 to 10	2.4		
Cu	20	1.7 to 11	8.0	0.80 to 27	5.0		
Zn	50	2.5 to 630	75	0.50 to 110	45		

 Table 2.9. Comparison of observed and predicted concentrations of Group IV transition elements in produce and plants (ppm, dry wt.)

 b Taken or calculated from values in reference 53 assuming ash wt./dry wt. = .128 and .057 for vegetative growth and fruits and tubers, respectively

^cThe product, $B_v \times C_s$. ^dThe product, $B_r \times C_s$. ^eReference 14. ^fReference 54.

determined from references 16, 17, 19, 20, and 114, equals 0.63. This ratio yields a $B_r = 0.25$. Both soil-to-plant concentration factors yield reasonable predicted plant copper concentrations (Table 2.9).

The B_{ν} for zinc was determined from the strong correlation between soil zinc concentration and B_{ν} determined from references 16, 35, 37, 67, 97, 104, 114, 115, 117, and 119 (Fig. 2.16) and an average zinc soil concentration of 50 ppm.⁵² The (B_r/B_{ν}) ratio of 0.6 was determined from references 16, 17, 19, 20, 67, 97, 114, and 116. Combining this ratio with the default B_{ν} value generates a B_r = 0.9. Examination of Table 2.9 shows that predicted plant concentrations using these default concentration factors fall well within observed ranges.

Figures 2.17 and 2.18 show the default B_v and (B_r/B_v) ratios, respectively, for Period IV transition elements used in the TERRA computer code. The solid lines in the figures show the systematic trends in these parameters defined by the default estimates. The dots represent the parameter values as determined from the geometric means method. The error bars represent one geometric standard deviation. With the exception of chromium, all B_v default values fall within one standard deviation of the mean. For all elements except nickel, the (B_r/B_v) ratio is the geometric mean of the reference values.

2.1.7 Period V transition elements

The Period V transition elements contain the controversial and radiologically important element technetium and the toxic metal cadmium. Additionally, this period includes the element ruthenium which is also important radiologically. For concentration factors, cadmium,^{16,17,19,20,24,65,97,102,104,105,114,116,124-126} molybdenum,^{16,17,19,65,76,120,121} technetium^{23,107,122,123,127} and are the best documented, followed by ruthenium^{22,59,60,63} and zirconium.¹⁶ No references were found for niobium, rhodium, palladium, and silver.

Figure 2.11. Correlation between soil chromium concentration and the soil-to-plant concentration factor, B_{ν} , for chromium based on references 16 and 65.

Figure 2.12. Correlation between soil manganese concentration and the soil-to-plant concentration factor, B_{ν} , for manganese based on references 16, 36, 37, 104, 112, and 113.

Figure 2.13. Correlation between soil iron concentration and the soil-to-plant concentration factor, B_{ν} , for iron based on references 16, 65, and 104.

Figure 2.14. Correlation between soil cobalt concentration and the soil-to-plant concentration factor, B_{y} , for cobalt based on references 16 and 65.

Figure 2.15. Correlation between soil copper concentration and the soil-to-plant concentration factor, B_{ν} , for copper based on references 16, 104, and 115.

Figure 2.16. Correlation between soil zinc concentration and the soil-to-plant concentration factor, B_{ν} , for zinc based on references 16, 35, 37, 67, 97, 104, 114, 115, and 119.

Figure 2.17. Assumed systematic trends in B_{ν} for Period IV elements based on default B_{ν} estimates. Solid dots and error bars represent geometric means and standard deviations determined from available references.

Figure 2.18. Assumed systematic trends in (B_r/B_v) ratio for Period IV elements. Solid dots and error bars represent geometric means and standard deviations of the mean determined from available references.

Because of its importance radiologically and because of the high concentration factors previously reported for technetium,^{23,107,122} it will be given special attention. Hoffman et al.¹²³ critiqued past studies of technetium uptake using the pertechnetate anion (TcO_4^-) and concluded that the concentration factors of 100-1000 derived from these studies were inappropriate because of the high levels of technetium added to the soils and the measurement of concentration factors before plant maturity. Evidence further suggests that technetium in soil becomes increasingly sorbed and thus is less available for plant uptake with time.^{23,128} Aging of soils over 100 days decreased observed concentration ratios by factors of 1.5 to 5.1 in one study by Cataldo.¹⁰⁷ Thus, the application of short-term pot studies to long-term assessments is clearly inappropriate for technetium. Therefore, the concentration factors representing field measurements of long-term technetium uptake in plants reported by Hoffman et al.¹²³ were adopted for the TERRA code, and references 23, 107, and 122 were used only for calculation of B_r or were excluded from our analyses.

The geometric mean of the B_v values reported by Hoffman et al.¹²³ is 9.5. The geometric mean for B_r derived from references 23 and 122 is 1.3. This value was rounded to 1.5 for use as a default value in TERRA. The (B_r/B_v) ratio generated by the two default values is 0.16 which compares favorably with the observed (B_r/B_v) ratios for molybdenum and ruthenium. It is interesting that a B_{iv2} generated from B_r (see Sect. 2.1) is roughly an order of magnitude less than the value suggested in Moore et al.¹ which takes into account successive harvesting of food crops. No information is available on average technetium concentrations in typical soils and vegetation. Until such information becomes available the B_v and B_r for technetium remain suspect.

The B_v for molybdenum of 0.25 is based on references 16, 65, 76, and 120. Although Singh and Kumar¹²¹ reported soybean grain and leaf molybdenum concentrations from which a (B_r/B_v) ratio of 2.2 was derived, the (B_r/B_v) ratio for determination of B_r was derived from references 16, 17, and 19. This (B_r/B_v) ratio is 0.25 and yields a B_r estimate of 0.06. These B_v and B_r estimates predict vegetable and produce concentrations which agree well with observed concentrations (Table 2.10).

The B_v estimate of 0.002 for zirconium is based on the data on pumpkin leaves and vines by Baes & Katz.¹⁶ A value of 0.25 was chosen for the default (B_r/B_v) ratio for zirconium based on the above analysis for molybdenum. The resultant B_r estimate of 5.0×10^{-4} yields predicted plant concentrations which are consistent with observed concentrations (Table 2.10). Observed zirconium concentrations in vegetative growth in Table 2.10 are based on a range of values reported for cabbage. Shacklette et a1.⁵³ report that zirconium is "infrequently detected in food plants." Thus, the "observed" plant concentrations in Table 2.10 for zirconium may not be entirely representative of actual produce concentration. Therefore, agreement of observed and predicted concentrations in Table 2.10 was not considered essential to acceptance or rejection of B_v and B_r values. Thus, although the predicted C_v is below the reported C_v for zirconium the default B_v for zirconium based on reference 16 is used as default in TERRA.

The B_v for ruthenium of 0.075 is based on references 22, 59, 60, and 63. The (B_r/B_v) ratio from references 22, 60, and 63 is 0.26, yielding a B_r estimate of 0.02. Unfortunately, no estimate of ruthenium in typical soils was available for comparison of observed and predicted plant concentrations.

The occurrence of cadmium in soils and plants has been well studied. The B_v for cadmium was determined from eleven references (16, 17, 24, 65, 97, 104, 105, 114, and 124-126). The geometric mean of the eleven geometric means is 0.55. A (B_r/B_v) ratio of 0.26 was derived from references 16, 19, 20, 24, 97, 102, 105, 114, 116, 125, and 126, yielding an estimate of $B_r = 0.15$. Agreement between observed and predicted cadmium concentrations in plants is excellent (Table 2.10).

Default values of B_v and B_r for niobium, rhodium, palladium, and silver were determined primarily through elemental systematic approaches, because no references on direct determination of B_v or B_r for these elements were available. The assumption that Period V transition elements

Element	Average	Vegetative gr	owth (C_v)	Fruits and tubers (C_r)			
Element	in soil $(C_s)^a$	Observed range ^b	Predicted ^c	Observed range ^b	Predicted ^d		
Zr	300	53 to 74	0.60	5.0×10^{-3} to 11	0.15		
Nb		0.038		0.017			
Mo	2.0	0.35 to 2.9	0.50	0.060 to 13	0.12		
Тс							
Ru				1.0×10^{-4} to 4.0×10^{-3}			
Rh							
Pd							
Ag	0.10	0.13	0.040	0.057	0.010		
Cd	0.50	0.13 to 2.4	0.28	0.013 to 0.82	0.075		

Table 2.10. Comparison of observed and predicted concentrations of Period V transition elements in produce and plants (ppm, dry wt.)

^bTaken or calculated from values in reference 53 assuming ash wt./dry wt. = .128 and .057 for vegetative growth and fruits and tubers, respectively

^cThe product, $B_{\nu} \times C_{s}$.

^dThe product, $B_r \times C_s$.

are natural analogs of Period IV transition elements suggested that the ratio of B_v estimates for these periods might vary systematically from Group IVB to Group IIB. Examination of these ratios for which B_v estimates had been made via other approaches (Fig. 2.19) yielded estimates of B_v ratio for Nb/V by linear extrapolation between the Zr/Ti ratio and the Mo/Cr ratio. Likewise the Rh/Co, Pd/Ni, and Ag/Cu ratios were extrapolated from the Ru/Fe and Cd/Zn ratios. These estimated ratios, when multiplied by default B_v estimates for Period IV elements (Sect. 2.1.6), yielded B_v estimates for the Period V elements niobium, rhodium, cobalt, palladium, and silver. Plotting of the resultant Period V transition element B_v estimates by atomic number (Fig. 2.20) yields results somewhat similar to the same plot for Period IV transition elements (Fig. 2.17). Unfortunately, comparison of observed and predicted C_v and C_r for niobium, rhodium, and palladium is not possible until more information is available. Some comparison for silver is possible (Table 2.10), although typical silver concentrations in plants are only approximates. The systematics approach seems to underpredict B_v for silver, but by less than an order of magnitude. The default B_r estimates for niobium, rhodium, palladium, and silver used in Fig. 2.2 were derived from an assumed (B_r/B_v) value of 0.25, which is consistent with observations for molybdenum and cadmium.

2.1.8 Period VI transition elements

Very few references for plant uptake of the Period VI transition elements were available. Also, comparisons between observed and predicted produce and plant concentrations were difficult to make because of the uncertainty in typical soil and plant concentrations (Table 2.11). Therefore, B_{ν} and B_{r} default estimates for Period VI transition elements are mostly based on their Period IV and V analogs.

Single measurements of associated soil and plant concentrations applicable to B_v were found in reference 65 for hafnium, tantalum, and tungsten. Three additional measurements were found in reference 101 for tungsten. The geometric means approach for tungsten indicates a B_v which is

Figure 2.19. Assumed systematic trends in the ratio of B_v for Period V and IV elements (Nb/V, Rh/Co, Pd/Ni, and Ag/Cu) based on the ratios of default B_v estimates for other elements in the periods.

Figure 2.20. Assumed systematic trend in B_v for Period V transition elements based on default B_v estimates. Solid dots and error bars represent geometric means and standard deviations determined from available references.

Element	Average	Vegetative growt	th (C_v)	Fruits and tuber	$s(C_r)$
Element	in soil $(C_s)^a$	Observed range ^b	Predicted ^c	Observed range ^b	Predicted ^d
Hf	6.0	<6.3×10 ^{-3e}	0.021	2.3×10^{-3} to 2.0^{e}	5.1×10^{-3}
Та					
W		0.064		0.029	
Re		6.4×10^{-4}		2.9×10^{-4}	
Os					
Ir					
Pt					
Au		$<1.1\times10^{-4}$ to 5.3×10^{-3e}		1.0×10^{-5} to 1.1×10^{-3e}	
Hg	0.010	<0.01 to 0.020	9.0×10^{-3}	<0.010 to 0.020	2.0×10^{-3}

Cable 2.11. Comparison of observed and predicted concentrations of Period V	Ί
transition elements in produce and plants (ppm, dry wt.)	

^bTaken or calculated from values in reference 53 assuming ash wt./dry wt. = .128 and .057 for vegetative growth and fruits and tubers, respectively

^cThe product, $B_v \times C_s$. ^dThe product, $B_r \times C_s$.

^eReference 54.

much greater than that for chromium and more nearly equal to that for molybdenum, although in reference 65 the derived molybdenum B_v exceeds the derived tungsten B_v by a factor of approximately three. Comparison of B_v values derived from reference 65 for hafnium and tantalum with their respective Period IV and V analogs indicates that if the single derived values are appropriate, the Period VI transition element concentration factors exceed those for their Period IV analogs, but are less than their Period V analogs.

While the above observations lend insight into the concentration factors for some Period VI transition elements, concentration factors for the rest must rely on supposition until further experimental evidence is available. Figure 2.21 represents the methodology used in determination of default B_v estimates for Period VI transition elements. To derive these, B_v default estimates for Period IV transition elements (Sect. 2.1.6) and Period V transition elements (Sect. 2.1.7) were plotted by increasing atomic number. The default B_v estimate for the Period VI elements were simply the log-averages of the two other elements within each group rounded to the nearest 0.5 decimal place. This method insures that trends observed in Period, decrease in the fifth, etc.). While such repetition of trends may be acceptable if general chemical properties are assumed to be an important basis for B_v behavior, our method has serious limitations. Our procedure implies that, except for Groups IVB and IIB, Period VI element B_v values exceed those for Period IV and are exceeded by those for Period V. Such an implication is unfounded and may be a serious limitation to our approach. However, determination of the most appropriate default estimates of B_v for Period VI transition elements will require direct experimental measurement of them.

There were no available references for the (B_r/B_v) ratio or for B_r for the Period VI elements. Therefore, a value of 0.25 for the (B_r/B_v) ratio was assumed, based on analysis of Period V transition elements. This value was used with the default B_v estimates to generate default B_r estimates.

Figure 2.21. Assumed systematic trend in B_v for Period VI elements based on assumed systematic trends in Period IV and V elements.

Comparisons of observed and predicted plant concentrations were possible only for hafnium and mercury. For these elements predicted values were always within an order of magnitude of the observed ranges. However, observed ranges were usually bounded on the low sides by detection limits of the analysis procedures.⁵⁴

2.1.9 The actinide elements

The actinide elements have been extensively studied with respect to plant uptake from soil. The greatest number of references were found for plutonium^{8-10,30,59,101,129-138} and americium,^{10,30,129,131,133,136,137,139-142} with fewer references for uranium,^{29,65,90,91,143} thorium,^{65,90,91} neptunium, and curium.^{10,30,131} No literature references were found for actinium, protactinium, or any elements of atomic number greater than 96.

The B_v for plutonium appears to be lognormally distributed and reported values range from 10^{-6} to 10^{-2} (Fig. 2.22). The fourteen references used to determine B_v for plutonium yielded a geometric mean of 4.5×10^{-4} . The (B_r/B_v) ratio of 0.1 was calculated from references 8, 10, 30, 129, 130, 134, and 136. This value produces a $B_r = 4.5 \times 10^{-5}$ which agrees well with the geometric mean of B_r derived from references 8, 10, 30, 129, 133, 134, 136, and 138. No measurements of typical or average concentrations of plutonium in soils or vegetable produce were available for comparison between predicted and observed concentrations. Comparisons of predicted and observed actinide concentrations were only possible for thorium and uranium (Table 2.12).

The B_v for americium of 0.0055 was derived from references 10, 30, 129, 131, 136, 137, and 139-142. A B_r of 2.5×10⁻⁴ was derived from references 10, 30, 129, and 136 by selecting a value midway between the range defined by the geometric mean of B_r and the product of the default B_v estimate and the geometric mean for (B_r/B_v) ratio.

The B_{ν} for uranium of 0.0085 was determined from references 29, 65, and 91. The (B_r/B_{ν}) ratios derived from data reported by Prister²⁹ and Fedorov and Romanov¹⁴³ both equaled a value of 0.5, and this value was used to determine a default B_r estimate of 0.004. Comparison of predicted and observed vegetable concentrations supports the default concentration factors, although typical uranium concentrations in vegetative portions of produce are unavailable.

The B_v for thorium of 8.5×10^{-4} was determined from references 65 and 91. No references were available for a thorium (B_r/B_v) ratio, and thus the value of 0.1 used for radium was assumed, yielding a default B_r estimate of 8.5×10^{-5} . Comparisons of observed and predicted vegetation concentrations are hampered by the uncertainty in thorium concentrations in vegetation. In the food surveys carried out by Oakes et al.⁵⁴ and Monford et al.¹⁴⁴ most thorium concentrations in food items were at or below detection limits. However, it may be concluded that the default B_v and B_r estimates assumed here do not overpredict observed food concentrations.

The default B_v estimates for actinium and protactinium were determined from those of radium and thorium and thorium and uranium, respectively, by assuming systematic variation in B_v with atomic number in a manner similar to that used for radium and francium (see Sect. 2.1.2). Such a procedure implies that thorium has the lowest B_v of the actinides of atomic number 89 through 92. This implication has yet to be tested, but examination of our default estimates of the ingestion-tocow's milk (F_m) transfer coefficient shows that it is less than or equal to those for actinium, protactinium, and uranium (see Sect. 2.2 for the milk transfer coefficient). The B_r for actinium and protactinium was determined by assumption of a (B_r/B_v) ratio of 0.1 as for radium and thorium.

The B_v for neptunium of 0.1 is based on references 10, 30, and 131. The B_r default estimate of 0.01 is based on the geometric means of B_r values from references 10 and 30. This value suggests that a (B_r/B_v) ratio of 0.1 is appropriate for neptunium also.

The B_v for curium of 8.5×10^{-4} is based on references 10, 30, and 141. The B_r estimate of 1.5×10^{-5} is based on the geometric means of B_r from references 10 and 30, suggesting an appropriate (B_r/B_v) ratio of less than 0.1. In the TERRA code B_v and B_r estimates for elements of atomic number greater than 96 are set equal to those for curium (element 96).

Figure 2.22. Lognormal probability plot of geometric means of B_{ν} for plutonium (calculated from references 8-10, 30, 59, 101, 129, 131, 132, and 134-138), including one geometric standard deviation of the mean.

	Average	Vegetative	growth (C_v)	Fruits and tubers (C_r)			
Element	concentration in soil $(C_s)^a$	Observed range ^b	Predicted ^c	Observed range ^b	Predicted ^d		
Actinide eleme	nts						
Ac							
Th	6.0	< 0.032	5.1×10^{-3}	$<2.5\times10^{-3}$ to 0.12	5.1×10^{-4}		
Pa							
U	1.0		8.5×10^{-3}	3.8×10^{-4} to 0.020	4.0×10^{-3}		
Np							
Pu							
Am							
Cm							

Table 2.12. Comparison of observed and predicted concentrations of actinide elements in produce and plants (ppm, dry wt.)

^bTaken or calculated from values reported in reference 144.

^cThe product, $B_v \times C_s$.

^dThe product, $B_r \times C_s$.

2.1.10 Comparison of default estimates with previously published values

Comparisons of our default estimates of B_v and B_r with previously used or reported values is difficult because the parameter definitions used here differ somewhat from past soil-plant uptake parameter definitions. However, general comparisons may be made. The most useful comparison is with the soil-to-plant uptake parameter B_{iv} in Table E-1 of the NRC Reg. Guide 1.109.⁶ Most of these values of B_{iv} were, in turn, taken from reference 15 by dividing the "concentration in terrestrial plants" (Table 10A) by the "elemental composition of typical agricultural soil" (Table 4). In reference 15 the plant concentrations were converted to a wet or fresh weight basis by assuming 25% dry matter in plants. Thus, the B_{iv} values generated from Tables 10A and 4 may be converted to a dry weight basis by multiplying by a factor of four. The resultant dry weight B_{iv} values may be directly compared with our B_v estimates (Fig. 2.23).

In comparing plant uptake parameters it should be remembered that the criteria for B_v and B_{iv} definition are comparable, but not equivalent. Also, as evidenced by figures 2.3, 2.7, and 2.22, each default estimate is representative of a distribution of values. Thus, a factor of 2 or 3 difference between B_v and B_{iv} should not be considered significant. Therefore, in Fig. 2.23 we have highlighted those elements for which an order of magnitude difference or greater occurs between our numbers and those in reference 15. These elements include fluorine, silicon, calcium, titanium, selenium, strontium, rhodium, palladium, indium, tellurium, osmium, iridium, platinum, gold, thallium, bismuth, polonium, radium, thorium, neptunium, and curium. Our approaches to determination of B_v estimates have led to lower estimates than those derived from reference 15 for more than half of these elements. For elements calcium, strontium, and neptunium, numerous experimental results indicate higher default values than those derived from reference 15.

2.2 Ingestion-to-Milk Parameter, F_m

The ingestion-to-milk transfer coefficients for milk cows used in TERRA are representative of the fraction of the daily elemental intake in feed which in transferred to a kilogram of milk. The

	IA	II A											III A	IV A	VA	VIA	VII A
11	Li + 8	Be + 6											B + 5		N		(F) + 100
III	Na – 3	Mg	III B	IV B	VВ	VI B	VII B		– VIII –		ΙB	II B	AI + 5	Si) + 600	Ρ	S	CI + 4
IV	К	Ca) + 100	Sc	(Ti) + 25	V	Cr + 7.5	Mn	Fe	Со	Ni	Cu	Zn	Ga + 4	Ge	As	Se) - 200	Br – 2
V	Rb – 3.5	(Sr) + 38	Y	Zr + 3	Nb	Mo – 2	Tc + 9.5	Ru – 3	Rh - 350	(Pd) - 133	Ag	Cd - 2	(In) - 250	Sn + 3	Sb + 5	(Te) - 200	І + 2
VI	Cs + 2	Ba + 7.5		Hf + 5	Ta + 4	W	Re	Os - 13	(Ir) - 950	(Pt) - 21	Au + 40	Hg	(TI) - 250	Pb - 6	Bi) - 17	Po - 1600	At
VII	Fr	(Ra) + 12															
	Lanthani	des	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	Actinides	5	Ac - 3	(Th) - 20	Pa - 4	U	(Np) + 10	Pu – 2	Am + 5.5	Cm - 12							

Figure 2.23. Comparison of soil-to-plant concentration factor default values reported in this report and derived from reference 15. The "+" and "-" signs indicate whether our estimates are greater or less than, respectively, those derived from reference 15. The values indicated are the difference factor, and circled elements indicate a difference factor of at least an order of magnitude.

elemental values for this parameter (Fig. 2.24) were taken from the extensive review in 1977 by Ng et al.,¹⁴⁵ except for the elements chromium, manganese, iron, nickel, zirconium, antimony, mercury, polonium, and americium which were taken from a later (1979) reference.⁴⁰ The protocol for rounding adopted for B_v and B_r was used also for F_m . The error introduced in defining the parameter in days/kilogram (here) rather than days/liter (as by Ng and his associates) is much less than that introduced by the rounding protocol, because the density of milk ranges from 1.028 to 1.035 kg/L.¹⁴⁶

2.3 Ingestion-to-Beef Parameter, F_{f}

The ingestion-to-beef parameters in TERRA are representative of the fraction of the daily elemental intake in feed which is transferred to and remains in a kilogram of beef until slaughter. The elemental values for this parameter (Fig. 2.25) were either taken from several reviews published by Ng and his coworkers^{15,39,40} or determined from elemental systematic assumptions. Estimates of F_f for 32 elements were available from the more recent reviews (references 39 and 40). Values for sodium, phosphorus, potassium, calcium, manganese, iron, zinc, strontium, niobium, antimony, and cerium were taken from reference 40, and values for chromium, cobalt, nickel, copper, rubidium, yttrium, zirconium, molybdenum, technetium, ruthenium, rhodium, silver, tellurium, iodine, cesium, barium, lanthanum, praseodymium, neodymium, tungsten, and americium were taken from reference 15, except for those which exceeded a theoretical maximum value of 1.0 day/kg.

A theoretical maximum F_f value may be calculated by assuming a 1 unit/kg (wet) concentration of an element in feed. If an extremely conservative 100% efficiency in transfer from feed to muscle is assumed, and beef cattle consume 50 kg (wet) feed per day,¹⁵ and the average muscle mass per head of beef cattle is 200 kg,¹³ then the average daily increase in elemental concentration in beef muscle is given by

$$\frac{(1 \operatorname{unit} / kg)(50 \operatorname{kg} / \operatorname{head} / \operatorname{day})}{200 \operatorname{kg} \operatorname{beef} / \operatorname{head}} = 0.25 \operatorname{unit} / \operatorname{kg} \operatorname{beef} / \operatorname{day}.$$
(6)

Further, if a second extremely conservative assumption that there is no biological turnover of the element from the muscle is made, then assuming that the average beef cow is fed for 200 days before slaughter¹³ gives a value of 50 units/kg beef at slaughter. Relating this value to the daily consumption of feed yields a conservative maximum F_f of (50 units/kg)/(50 units/day) or 1.0 days/kg. Clearly, default estimates near or exceeding this value are highly suspect.

Review of the F_f values derived from reference 15 indicates that estimates for gallium, germanium, tantalum, polonium, astatine, francium, actinium, thorium, protactinium, neptunium, plutonium, and curium all exceed the above-calculated theoretical maximum. Because of the radiological importance of elements of atomic number greater than 82, a systematic approach based on elemental variation of B_v and F_m was used to determine default F_f estimates (Fig. 2.26). A similar approach using systematic trends observed in F_m for Period IV elements was used to determine F_f estimates for gallium and germanium.

The approach used for elements of atomic number greater than 82 was to observe ratios of default B_v (Fig. 2.1) and F_m (Fig. 2.24) values for successive elements (Fig. 2.26). The ratios determined for both parameters were log-transformed and averaged. The exponentials of these averages were used to define a default ratio value for successive F_f default estimates. The F_f value for americium was then used to determine the default F_f estimates for curium and plutonium. In turn, each default F_f estimate was calculated by multiplication with the proper ratio, i.e., Pu $F_f = (Pu/Am)$ ratio × (Am F_f), Np $F_f = (Np/Pu)$ ratio × (Pu F_f), and so on. Implicit in such an argument is the assumption that the availability of an element for plant uptake and transportability to milk is indicative of its availability or transportability to beef. Some support for this argument is

	IA	II A											III A	IV A	VA	VIA	VII A
II	Li 0.020	Be 9.0×10 ⁻⁷											B 1.5×10 ⁻³		N 0.025		F 1.0×10 ⁻³
111	Na 0.035	Mg 4.0×10 ⁻³	III B	IV B	VВ	VI B	VII B		– VIII –		ΙB	II B	AI 2.0×10 ⁻⁴	Si 2.0×10 ⁻⁵	P 0.015	S 0.015	Cl 0.015
IV	К 7.0×10 ⁻³	Ca 0.010	Sc 5.0×10 ⁻⁶	Ti 0.010	V 2.0×10 ⁻⁵	Cr 1.5×10 ⁻³	Mn 3.5×10 ⁻⁴	Fe 2.5×10 ⁻⁴	Co 2.0×10 ⁻³	Ni 1.0×10 ⁻³	Cu 1.5×10 ⁻³	Zn 0.010	Ga 5.0×10 ⁻⁵	Ge 0.070	As 6.0×10 ⁻⁵	Se 4.0×10 ⁻³	Br 0.020
V	Rb 0.010	Sr 1.5×10 ⁻³	Y 2.0×10 ⁻⁵	Zr 3.0×10 ⁻⁵	Nb 0.020	Мо 1.5×10 ⁻³	Tc 0.010	Ru 6.0×10 ⁻⁷	Rh 0.010	Pd 0.010	Ag 0.020	Cd 1.0×10 ⁻³	In 1.0×10 ⁻⁴	Sn 1.0×10 ⁻³	Sb 1.0×10 ⁻⁴	Te 2.0×10 ⁻⁴	l 0.010
VI	Cs 7.0×10 ⁻³	Ba 3.5×10 ⁻⁴		Hf 5.0×10 ⁻⁶	Ta 3.0×10 ⁻⁶	W 3.0×10 ⁻⁴	Re 1.5×10 ⁻³	Os 5.0×10 ⁻³	lr 2.0×10⁻ ⁶	Pt 5.0×10 ⁻³	Au 5.5×10 ⁻⁶	Hg 4.5×10 ⁻⁴	TI 2.0×10 ⁻³	Pb 2.5×10 ⁻⁴	Bi 5.0×10 ⁻⁴	Po 3.5×10 ⁻⁴	At 0.010
VII	Fr 0.020	Ra 4.5×10 ⁻⁴			-												
	Lanthani	des	La 2.0×10 ⁻⁵	Ce 2.0×10 ⁻⁵	Pr 2.0×10 ⁻⁵	Nd 2.0×10 ⁻⁵	Pm 2.0×10 ⁻⁵	Sm 2.0×10 ⁻⁵	Eu 2.0×10 ⁻⁵	Gd 2.0×10 ⁻⁵	Tb 2.0×10 ⁻⁵	Dy 2.0×10 ⁻⁵	Ho 2.0×10 ⁻⁵	Er 2.0×10 ⁻⁵	Tm 2.0×10 ⁻⁵	Yb 2.0×10 ⁻⁵	Lu 2.0×10 ⁻⁵
	Actinides	3	Ac 2.0×10 ⁻⁵	Th 5.0×10 ⁻⁶	Pa 5.0×10 ⁻⁶	U 6.0×10 ⁻⁴	Np 5.0×10 ⁻⁶	Pu 1.0×10 ⁻⁷	Am 4.0×10 ⁻⁷	Cm 2.0×10 ⁻⁵							
	Key:	Li 0.020		Symbol Transfer	Coefficier	nt, F _m											

Figure 2.24. Values of the ingestion-to-milk transfer coefficient F_m adopted as default estimates in the computer code TERRA.

	IA	II A											III A	IV A	VA	VIA	VII A
II	Li 0.010	Be 1.0×10 ⁻³											B 8.0×10 ⁻⁴		N 0.075		F 0.15
111	Na 0.055	Mg 5.0×10 ⁻³	III B	IV B	VВ	VI B	VII B		– VIII –		ΙB	II B	Al 1.5×10 ⁻³	Si 4.0×10 ⁻⁵	P 0.055	S 0.10	CI 0.080
IV	K 0.020	Ca 7.0×10 ⁻⁴	Sc 0.015	Ti 0.030	V 2.5×10 ⁻³	Cr 5.5×10 ⁻³	Mn 4.0×10 ⁻⁴	Fe 0.020	Co 0.020	Ni 6.0×10 ⁻³	Cu 0.010	Zn 0.10	Ga 5.0×10 ⁻⁴	Ge 0.70	As 2.0×10 ⁻³	Se 0.015	Br 0.025
V	Rb 0.015	Sr 3.0×10 ⁻⁴	Y 3.0×10 ⁻⁴	Zr 5.5×10 ⁻³	Nb 0.25	Mo 6.0×10 ⁻³	Tc 8.5×10 ⁻³	Ru 2.0×10 ⁻³	Rh 2.0×10 ⁻³	Pd 4.0×10 ⁻³	Ag 3.0×10 ⁻³	Cd 5.5×10 ⁻⁴	In 8.0×10 ⁻³	Sn 0.080	Sb 1.0×10 ⁻³	Te 0.015	I 7.0×10 ⁻³
VI	Cs 0.020	Ba 1.5×10 ⁻⁴		Hf 1.0×10 ⁻³	Та 6.0×10 ⁻⁴	W 0.045	Re 8.0×10 ⁻³	Os 0.40	lr 1.5×10 ⁻³	Pt 4.0×10 ⁻³	Au 8.0×10 ⁻³	Hg 0.25	TI 0.040	Pb 3.0×10 ⁻⁴	Bi 4.0×10 ⁻⁴	Po 9.5×10 ⁻⁵	At 0.010
VII	Fr 2.5×10 ⁻³	Ra 2.5×10 ⁻⁴															
	Lanthani	des	La 3.0×10 ⁻⁴	Ce 7.5×10 ⁻⁴	Pr 3.0×10 ⁻⁴	Nd 3.0×10 ⁻⁴	Pm 5.0×10 ⁻³	Sm 5.0×10 ⁻³	Eu 5.0×10 ⁻³	Gd 3.5×10 ⁻³	Tb 4.5×10 ⁻³	Dy 5.5×10 ⁻³	Ho 4.5×10 ⁻³	Er 4.0×10 ⁻³	Tm 4.5×10 ⁻³	Yb 4.0×10 ⁻³	Lu 4.5×10 ⁻³
	Actinides	3	Ac 2.5×10 ⁻⁵	Th 6.0×10 ⁻⁶	Pa 1.0×10 ⁻⁵	U 2.0×10 ⁻⁴	Np 5.5×10 ⁻⁵	Pu 5.0×10 ⁻⁷	Am 3.5×10 ⁻⁶	Cm 3.5×10 ⁻⁶							
	Key:	Li 0.010		Symbol Transfer	Coefficier	nt, F _f											

Figure 2.25. Values of the ingestion-to-beef transfer coefficient F_f adopted as default estimates in the computer code TERRA.

Figure 2.26. Systematic trends in the ratio of default estimates for B_v and F_m for successive elements and corresponding assumed ratios for F_f for successive elements used to determine default F_f estimates.

seen in the systematic variability of our B_v estimates (Figs. 2.27 and 2.28) and F_m estimates (Figs. 2.29 and 2.30). However, experimental determination of F_f for elements of atomic number greater than 82 would be preferable to our present approach, if available.

2.4 The Distribution Coefficient, K_d

The distribution coefficient, K_d is the ratio of elemental concentration in soil to that in water in a soil-water system at equilibrium. In general, K_d is measured in terms of gram weights of soil and milliliter volumes of water. In TERRA the distribution coefficient is used in the following equation to determine a location-specific leaching constant for elemental removal from a given soil depth,

$$\lambda_{I} = \frac{P + I - E}{\theta d[1 + (\frac{\rho}{\theta} K_{d})]}$$
(7)

where

Р	=	annual average total precipitation (cm),
E	=	annual average evapotranspiration (cm),
Ι	=	annual average irrigation (cm),
d	=	depth of soil layer from which leaching occurs (cm),
ρ	=	soil bulk density (g/cm ³),
θ	=	volumetric water content of the soil $[mL(= cm^3)/cm^3)$, and
K_{d}	=	the distribution coefficient (mL/g).

Default estimates of K_d used in the TERRA code are presented in Fig. 2.31. The mantissa of these values has been rounded off to the nearest 0.5 decimal place as for the other element specific transport parameters. The values for magnesium, potassium, calcium, manganese, iron, cobalt, copper, zinc, strontium, yttrium, molybdenum, technetium, ruthenium, cesium, lead, polonium, cerium, thorium, uranium, neptunium, plutonium, americium, and curium were determined through a review of the K_d literature. The estimates for the remaining elements were determined by a correlation of K_d with B_y . Because of the inherent uncertainties in estimates of K_d for various materials, a brief discussion of the parameter and its determination is appropriate.

2.4.1 Variability in K_d

The first source of variability in the parameter is associated with the laboratory methods used to determine K_d . Generally, the two most common techniques for determination of K_d are the column and batch methods, although other methods have been employed to measure distributions of chemical forms¹⁴⁷ or distribution among soil fractions.¹⁴⁸ In the column method a solution of material in water is applied to a column containing uniformly packed soil. The K_d of the material is determined from comparison of the 50% breakthrough curves for the water and material according to the equation

$$\frac{V_i}{V_w} = \frac{1}{1 + \frac{\rho}{\Theta} K_d},\tag{8}$$

where

- V_i = the velocity of the migrating material (determined from the 50% breakthrough curve) and
- V_w = the velocity of the water.

Figure 2.27. Systematic variations in default B_{v} estimates for Period II, III, IV, and V elements.

Figure 2.28. Systematic variations in default B_{v} estimates for Period VI and VII elements.

Figure 2.29. Systematic variations in default F_m and F_f estimates for Period II, III, IV, and V elements.

Figure 2.30. Systematic variations in default F_m and F_f estimates for Period VI and VII elements.

	IA	II A											III A	IV A	VA	VI A	VII A
II	Li 300	Be 650											В 3.0		N 0.50		F 150
111	Na 100	Mg 4.5	III B	IV B	VΒ	VI B	VII B		– VIII –		ΙB	II B	Al 1500	Si 30	P 3.5	S 7.5	Cl 0.25
IV	K 5.5	Ca 4.0	Sc 1000	Ti 1000	V 1000	Cr 850	Mn 65	Fe 25	Co 45	Ni 150	Cu 35	Zn 40	Ga 1500	Ge 25	As 200	Se 300	Br 7.5
V	Rb 60	Sr 35	Y 500	Zr 3000	Nb 350	Mo 20	Tc 1.5	Ru 350	Rh 60	Pd 60	Ag 45	Cd 6.5	In 1500	Sn 250	Sb 45	Те 300	І 60
VI	Cs 1000	Ba 60		Hf 1500	Та 650	W 150	Re 7.5	Os 450	lr 150	Pt 90	Au 25	Hg 10	TI 1500	Pb 900	Bi 200	Po 500	At 10
VII	Fr 250	Ra 450															
	Lanthani	des	La 650	Ce 850	Pr 650	Nd 650	Pm 650	Sm 650	Eu 650	Gd 650	Tb 650	Dy 650	Ho 650	Er 650	Tm 650	Yb 650	Lu 650
	Actinides	5	Ac 1500	Th 1.5×10⁵	Pa 2500	U 450	Np 30	Pu 4500	Am 700	Cm 2000							
	Key:	Li 300		Symbol Transfer (Coefficier	nt, K _d											

Figure 2.31. Values of the soil-water distribution coefficient K_d adopted as default estimates in the computer code TERRA.

In the batch method, soil and water are shaken with the material for a period of time until equilibrium distribution between soil and water is achieved or assumed. Because of nonequilibrium or the influences of convection and diffusion in the column method, these two techniques may give different results for nonionic elemental forms.¹⁴⁹ Thus, in searching the literature for K_d values, various biases and confounding factors inherent in the laboratory methods used to determine K_d are reflected in the values reported.

A second factor responsible for variation or imprecision in K_d measurement is a result of the parameter being a ratio of two concentrations. A small amount of error in measurement of either the soil or water concentration of material may produce a large amount of error in the resultant ratio. For example, in a batch-type experimental system of 10 g soil, 100 mL H₂0, and 100 µg of material for which the true K_d is 190 mL/g, a 1% overestimate of the soil concentration (95.95 µg in soil) yields a K_d of 237 mL/g, or approximately a 25% overestimate of K_d . The relative error in K_d estimate from a given percent error in measurement of soil concentration increases rapidly with increasing K_d (Fig. 2.32). The same is true with a given percent underestimate of the water concentration as the true K_d of the material decreases. Thus, if an investigator measures only one fraction of the soil-water system and determines the concentration of the other fraction by default, significant errors may be introduced into the K_d estimate from very small experimental errors of measurement. This magnification of experimental error undoubtedly contributes a significant amount of variability to K_d estimates for materials which are highly soluble or insoluble.

A third source of variability in K_d is its variation with soil type. Soils with different pH, clay content, organic matter content, free iron and manganous oxide contents, or particle size distributions will likely yield different K_d values. For example, in a study by Griffin and Shimp¹⁵⁰ of lead absorption by clay minerals, pH was shown to be an extremely important determinant of K_d . From their data, an exponential relationship between K_d and pH of the clays was found. At pH > 7.0, lead K_d is on the order of 10³, and below this pH, K_d ranges from 10¹ to 10². Soil pH has also been shown to influence K_d for plutonium and curium;¹⁵¹⁻¹⁵³ ruthenium, yttrium, zirconium, niobium, and cerium;¹⁵⁴ arsenic and selenium;^{155,156} and manganese, iron, zinc, cobalt, copper, cadmium, and calcium.¹⁵⁷⁻¹⁵⁹

Another source of variation in K_d is the time factor involved with its determination. Batch-type K_d determinations are usually made over a period of a few to several hours until equilibrium is achieved or assumed. If equilibrium does not occur within this short time period, some error is introduced. Errors from nonequilibrium K_d determinations made after 24 hours, however, are relatively insignificant.^{151,152,160} A more significant error may be introduced by using short term K_d determinations to simulate leaching over time periods of months or years. Gast et al.²³ found that sorption of Tc-99 by low organic soils tended to significantly increase over a 5-6 week period. Treatments of the soil with dextrose, H₂O₂, and steam sterilization, and sorption variation with temperature—all indicated that microbiota played either a direct or indirect role in sorption. Heterotrophic bacteria capable of solubilizing PbS, ZnS, and CdS have been reported by Cole,¹⁶¹ and microbial influences on the solubility of transuranics has also been suggested by Wildung and Garland.¹⁶² If microbial action is, indeed, important over the long term, then the applicability of K_d experiments carried out with oven dried and sieved soil to models of leaching in agricultural soils over long time periods must be questioned.

An analysis of the literature was performed to ascertain appropriate distributions of K_d for various elements (Table 2.13). Because of the variation of K_d with soil pH, an analysis of 222 agricultural soils^{163,164} was used to determine a typical range of pH for agricultural soils. In these soils, pH was found to be normally distributed with a mean pH of 6.7 and 95% of the values between a pH of 4.7 to 8.7. Thus, the criterion was adopted of discarding K_d values which were measured in soils outside of the pH range of 4.5 to 9. The K_d determinations used to generate Table 2.13 represent a diversity of soils, pure clays (pure minerals were excluded), extracting solutions (commonly H₂O, CaCl₂, or NaCl), laboratory techniques, and magnification of experimental error. Also, unavoidably, single measurements have been combined with replicates, means, and means of means to derive K_d distributions. When many references have been used to

Figure 2.32. Percent error in K_d estimation from one to five percent overestimates of soil concentration or underestimates of water concentration in a 10 g-100 mL batch-type K_d experiment.

Element	# Obs.	μ^{a}	$\sigma^{\rm b}$	$Exp(\mu)^{c}$	Observed range ^b	References
					mL/g ——	
Mg	58	1.5	0.40	4.6	1.6 to 13.5	165, 166
Κ	10	1.7	0.49	5.6	2.0 to 9.0	165
Ca	10	1.4	0.78	4.1	1.2 to 9.8	165
Mn	45	4.2	2.5	65	0.2 to 10,000	149, 158, 167, 168
Fe	30	3.2	2.0	25	1.4 to 1,000	149, 158, 167, 169
Co	57	3.9	1.1	47	0.2 to 3,800	149, 158, 160, 167, 169–171
Cu	55	3.6	0.97	35	1.4 to 333	157, 158
Zn	146	3.6	1.8	38	0.1 to 8,000	149, 157–159, 167
Sr	218	3.6	1.6	37	0.15 to 3,300	149, 152, 154, 160, 167, 169, 171–180
Y	2	6.2	1.7	510	160 to 1,640	154
Mo	17	2.9	2.2	18	0.37 to 400	149
Тс	24	-3.4	1.1	0.033	0.0029 to 0.28	23
Ru	17	5.9	0.75	350	48 to 1,000	154, 160
Ag	16	3.8	1.5	46	10 to 1,000	149, 167
Cd	28	1.9	0.86	6.4	1.26 to 26.8	157
Cs	135	6.9	1.8	1,000	10 to 52,000	149, 160, 167, 169, 171, 173, 175, 177, 178, 180–183
Ce	16	6.7	0.54	840	58 to 6,000	154, 160
Pb	125	6.0	2.1	400	4.5 to 7,640	150, 184
Ро	6	6.3	0.65	520	196 to 1,063	184
Th	17	12	0.57	150,000	2,000 to 510,000	185–187
U	24	6.1	2.5	450	10.5 to 4,400	185–187
Np	44	3.4	2.5	29	0.16 to 929	148, 186, 188, 189
Pu	40	8.4	2.4	4,500	11 to 300,000	151, 152–154, 177, 182, 186, 187, 189
Am	46	6.5	2.4	680	1.0 to 47,230	148, 188–190
Cm	31	7.6	1.6	1,900	99.3 to 51,900	148, 153, 189

Table 2.13. Estimates of the distribution of K_d for various elements in agricultural soils of pH 4.5 to 9.0

^aThe mean of the logarithms of the observed values.

^bThe standard deviation of the logarithms of the observed values.

^cGeometric mean (50% cumulative probability).

generate the distribution, greater assurance can be given that the distribution is a representative distribution because it is not heavily biased by one or two experimental designs or techniques. Where a single or a few references were used, less assurance can be given.

On the basis of distributions computed for cesium and strontium (Fig. 2.33), a lognormal distribution for K_d has been assumed for all elements. Thus, the median value of the assumed lognormal distribution is used as a best estimate default K_d for TERRA (except for lead, and technetium where judgement was exercised). However, if the distribution of K_d computed for cesium and strontium are typical, then K_d may vary by as much as three orders of magnitude in soils of pH 4.5 to 9.0. Such variation in K_d is greater than or equal to the variation in B_v observed for cesium, strontium, and plutonium (Figs. 2.3, 2.7, and 2.22) and suggests the advisability of using site-specific values when available.

available references.

2.4.2 Estimates of K_d based on default B_v values

Although K_d estimates for the 23 above-mentioned elements are subject to great uncertainty, they are based on values reported in the literature. No references are immediately available for the remaining elements of the periodic table. In order to provide a default estimate for these elements, an alternative method is used. In 1979, Van Dorp, Eleveld, and Frissel¹⁹¹ proposed a model for estimation of the soil-plant concentration factor. Their approach was to calculate the solubility of a nuclide in soil water, its ability to transfer across root membranes, and its upward movement with the transpiration stream. They reasoned that measured values of K_d , root selectivity coefficient (S), and transpiration coefficient (T_c) would allow them to predict the soil-plant concentration factor from soil-radionuclide concentration. Their model has not become generally used or accepted for dose calculations, but their implied dependency of B_v on K_d is the basis of our approach for estimating default K_d estimates in lieu of experimental determinations.

Our approach is to presume that the default K_d estimates for elements in Sect. 2.4.1 and their corresponding B_v estimates represent a wide variety of soils and plants. Therefore, a single default estimate for B_v and K_d will reflect soils, plants, and experimental conditions which are "averaged" or "generalized." Thus, any relationship observed between K_d and B_v may be used to predict "average" or "generalized" K_d estimates from our default B_v estimates.

Figure 2.34 shows the correlation found between B_v and K_d . It should be noted that the B_v estimates in Fig. 2.34 are the geometric means determined directly through analysis of reviewed literature, and not necessarily the default values from Fig. 2.1. Technetium is an example. The technetium B_v of 89 is the geometric mean of the geometric means of references 23, 107, 122, and 123. It was felt that although the short-term plant uptake studies represented in references 23, 107, and 122 were inappropriate for long-term B_v estimates, they were appropriately associated with the short-term K_d determinations for technetium (because B_v decreases and K_d increases with time). Thus, these two short-term parameters were used in the definition of the B_v - K_d relationship. However, in Fig. 2.31 we used our best estimate of technetium B_v and the regression equation

$$K_{d} = exp(2.38 - 0.89(\ln B_{v})) \tag{9}$$

to determine our best estimate of technetium K_d of 1.5. In addition to technetium the K_d default estimates for elements not mentioned in Sect. 2.4.1 were determined via Eq. (9) and the best estimate B_y default values in Fig. 2.1.

Figure 2.34. Correlation between B_v , and K_d based on geometric means of available reference geometric means.