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Executive Summary 

Population viability analysis (PVA) has quickly become a widespread component of 
conservation planning for at-risk species.  However, the quantitative utility of the PVA toolkit 
remains a strongly contested issue, with recent efforts turning from pure simulation studies to 
include direct assessments of the predictability of the dynamics of real populations. 

To explore further the efficacy of such extinction risk modeling, we employed a cross-
validation approach with long-term population censuses from 271 time series representing 46 
taxa, most of which were of past or present conservation concern (including 7 populations that 
actually went extinct).  We used diffusion-approximation methods to estimate quasi-extinction 
risks for each population via two parameter-estimation techniques: the classical Dennis approach 
and the recently developed Dennis-Holmes approach.  The latter technique can partition process 
error (environmental stochasticity) from nonprocess error (such as observation error). 

We found that quasi-extinction modeling that accounted for nonprocess error via the 
Dennis-Holmes approach more accurately matched realized population minima evident in the 
time series.  Overall diffusion modeling correctly predicted the fraction of populations crossing 
quasi-extinction thresholds (>0 individuals).  We also found little degradation of the 
predictability of quasi-extinction risks with lengthening prediction time horizons—from 10 to 30 
year horizons.  At the same time, we found relatively low predictive ability for complete 
extinction events.  With the exception of sockeye salmon, these events appeared to be due to 
declines that were well outside the normal distribution of year-to-year growth rates (i.e., some 
anomalous event).  For PVAs based on diffusion approximations, these results highlight both 
shortcomings (such as an absence of case-by-case certainty and the unpredictability of 
extinction) and successes (the ability to describe well the behavior of a collection of populations 
and species). 
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Introduction 

An estimated 1,100–11,500 extinctions occur each year from a multitude of causes, most 
of which can be traced back to human impacts (Cox 1997).  This loss of biodiversity has been 
called an “extinction crisis” (Soulé 1986), and in response to this crisis ecology has seen a surge 
of interest in the characterization of population vulnerability.  However, biologists trying to 
develop ways to estimate extinction risks have encountered several logistical roadblocks.  Most 
notably, we have precious few studies that provide long-term data detailing fluctuations in total 
population counts (Lawton 1996).  Most population censuses have been conducted over a 
relatively short period (e.g., Orell 1989, Pistorius et al. 2000) or have been conducted only 
intermittently (e.g., Pierson and Turner 1998, Robertson and Jarvis 2000).  As a consequence, 
long-term censuses of complete populations are relatively rare, meaning that conservation 
biologists must often use relatively short-term data to forecast population fates over longer time 
spans.  Such forecasting has proved challenging because of the difficulties inherent in the 
accurate estimation of parameters underlying the dynamics of biological populations (Ludwig 
1996, Ludwig 1999, Fieberg and Ellner 2000, Holmes 2001, Ellner et al. 2002). 

Despite these difficulties, population viability analyses (PVAs) have now become a 
standard tool in conservation biology, with goals ranging from providing detailed guidance on 
management actions (Crouse et al. 1987) to simply characterizing the degree or nature of risk 
faced by populations (Morris et al. 1999, Fagan et al. 2001).  Obtaining sufficiently detailed field 
data to parameterize models of population viability involves a challenging amount of work.  
Consequently, but unfortunately, for most species and situations, we lack the data required for all 
but the crudest PVAs.  Indeed, it is telling that a recent synthesis found only 21 data sets (19 
species) with sufficient data for full PVA assessments (Brook et al. 2000).  These data sets, 
which contained substantial detail on population size- or age-structure, life history, and 
demography, are far more characteristic of focused efforts by academic researchers than of the 
cash-strapped monitoring efforts by governmental wildlife agencies and nongovernmental 
organizations upon which so much modern conservation action depends.  Though helpful when 
available, such detailed demography and basic population biology data are often lacking for 
species of conservation concern.  As a result, any full assessment of the utility of PVAs must 
examine their performance when faced with less detailed information. 

Though still uncommon, long-term studies providing a continuous record of censuses, 
population counts, or estimates of population size occur more frequently than do in-depth 
demographic studies.  Diffusion approximations (DAs) (e.g., Dennis et al. 1991, Holmes 2001) 
are one set of techniques that researchers have developed to estimate population vulnerability 
and extinction risk from limited data.  The key to such approaches is the assumption of a simple 
stochastic exponential growth model and the estimation of the population growth rate and its 
variability from the year-to-year (or census-to-census) transitions in population size associated 
with such a model.  These parameters, in combination with the most recent known population 
size, are then used to calculate the probability that a population will decline to extinction within a 
specified time frame.  These models can also be used to discern additional information as well 



(Dennis et al. 1991), including profiles of quasi-extinction risk.  Such profiles define the 
probability that a population will decline to each of a series of population sizes, of which 
extinction, or Nt=1, is but one of many potential values of interest (hence, “quasi-extinction”). 

Diffusion-approximation models provide a tool for estimating quasi-extinction risk, although 
such models may be constructed and parameterized in a variety of ways (Dennis et al. 1991, 
Lande et al. 1998, Engen and Saether 2000, Holmes 2001).  One method of assessing the 
accuracy of DA models is to evaluate their performance in quantifying risk in real populations, 
as Ludwig (1999), Brook et al. (2000), and Ellner et al. (2002) have done.  The general approach 
taken is a cross-validation analysis in which the first portion of a time series is used for 
estimating parameters, then the predictions of those parameterized models are evaluated by 
comparing them to the realized dynamics evident in the remaining portion of the time series.  
Brook et al. (2000) outlined the utility of applying cross-validation techniques to issues of 
extinction risk.  They concluded that the good agreement between model predictions and realized 
dynamics evident in the evaluation portion of their time series was a strong endorsement of 
PVAs as a conservation tool.  Ellner et al. (2002) criticized this conclusion, arguing that the 
results of Brook et al. (2000) fell far short of “predictive accuracy” and instead merely 
demonstrated an absence of bias in ensemble—rather than species-level—estimates of 
probabilities of quasi-extinction. 

Although one could take issue with Brook et al. (2000) for the inclusion of populations of 
relatively abundant species such as white-tailed deer (Odocoileus virginianus) and domestic 
sheep (Ovis aries) that are very well-studied ecologically but of much less interest from an 
extinction-risk perspective (Coulson et al. 2001), we find other details of their approach to be 
problematic.  For example, the small size of their data set forced Brook et al. (2000) to combine 
evaluations of the performance of population viability models over different time frames within 
the same analysis.  Specifically, by examining model performance on the basis of “halves” of 
time series, Brook et al. (2000) combined extinction risk evaluations spanning only 6 years of 
data with evaluations spanning 28 years of data.  Using half the data to parameterize and the 
other half to evaluate without regard for differences in time span (and hence variability) 
represented by those halved data sets complicates overall assessments of model performance.  In 
addition, their method cannot be applied to species with nonoverlapping generations or other 
complicated life histories; these require a different approach (see Holmes 2001).  A third and 
perhaps most important issue is that the analysis of Brook et al. (2000) involved only one species 
that actually went extinct.  This limitation introduces a potential bias in that the dynamics of 
populations going extinct may differ from those that decline but do not go extinct.  Despite these 
difficulties, Brook et al. (2000) provided a significant introduction to the issue of assessing the 
utility of extinction risk models via real data.  Using data sets involving fewer species, Ludwig 
(1996) and Fieberg and Ellner (2000) have also conducted explorations of the utility of 
extinction risk modeling.  These papers contrast with the optimistic conclusions of Brook et al. 
(2000), arguing that observation error and other uncertainties that plague real data make 
determinations of extinction risks rather futile exercises.  In response to such criticisms, Brook 
et al. (2002) argue that despite its quantitative weaknesses, PVA remains a useful tool for 
conservation that is superior to alternative, often ill-formed resource management approaches 
that neglect potentially valuable data. 
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In this technical memorandum, we seek to contribute to a resolution of these PVA 
conflicts in six ways: 1) by using a substantially larger data set of populations, including several 
that have gone extinct; 2) by placing a greater emphasis on species that are of conservation 
interest; 3) by using a “sliding window” approach that standardizes the length of time series used 
in cross validation (instead of halving sets of varying lengths); 4) by contrasting two alternative 
approaches for parameter estimation (one of which can be used on species with nonoverlapping 
cohorts); 5) by restricting ourselves to the kinds of data (i.e., time series of counts) that are more 
typically available from monitoring programs; and 6) by studying the performance of DA 
techniques for data with high sampling error. 
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Methods 

We conducted extensive literature searches to identify 49 time series of population 
censuses (representing 43 taxa) containing at least 21 years (20 transitions) of data (Appendix 
A).  Gaps in the sequence of censuses were permissible.  For this data set, we included only time 
series resulting from the application of standardized census techniques that provided an estimate 
of total size for wild populations.  Six of these time series were from populations that were 
monitored as they actually went extinct.  For populations monitored to extinction, we relaxed our 
restriction on time series length; the shortest such series we found involved an extinction in its 
14th year of monitoring.  Seven of these 49 time series were also included in the analysis of 
Brook et al. (2000). 

An additional 222 time series (including one extinction) for four salmon species 
(Chinook, coho, steelhead, and sockeye) were collected from databases maintained by the 
National Marine Fisheries Service and the Pacific States Marine Fisheries Commission 
(Appendix B).  Many of these time series involved species and stocks of conservation concern 
(Kareiva et al. 2000).  These time series differ from the nonsalmon time series in a number of 
ways.  First, salmon life history is characterized by long delays between birth and reproduction, 
combined with semelparity by most adults.  These traits mean that counts of spawners in one 
year have no direct relationship with counts the next year.  Second, the life history of salmon 
leads to striking boom-bust cycles in spawner count numbers—cycles that would be reflected to 
a much lesser degree in a total population count representing an integration of many age classes.  
Thus the variability in the censused class, spawners, is higher than that in the total population, 
and spawner variability does not directly reflect the underlying environmental variability 
affecting the total population’s trajectory.  Third, salmon data are also plagued by unusually high 
observation error due not only to human variability, but also to variability in climate and run-
timing that affect census accuracy (Hilborn et al. 1999, Dunham et al. 2001).  For these reasons, 
the salmon time series include error structures considerably different than those present in the 
nonsalmon time series of Appendix A.  We have therefore analyzed the two groups separately in 
order to contrast the accuracy of PVA predictions for data sets with high and low error. 

Observation error and cycles linked to age structure or other factors constitute types of 
“nonprocess” error.  Historically, the need to disentangle such nonprocess errors from process 
errors (i.e, variability extrinsic to the population, such as environmental stochasticity) has 
represented a major stumbling block to conservation risk assessment and other areas of ecology 
(e.g., Carpenter et al. 1994, Ludwig 1996, Fieberg and Ellner 2000).  To cope with highly 
corrupted data, Holmes (2001) developed a method to facilitate partitioning of the different error 
types from population time series.  We compare this new method with more traditional DA 
approaches in our analyses, exploring their relative performance in data sets both with and 
without substantial nonprocess errors. 

Following Brook et al. (2000), we analyzed the time series using a cross-validation 
approach.  We parameterized our extinction risk models from one portion of a time series, the 
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estimation period, and then evaluated model performance over a subsequent portion, the 
evaluation period (Figure 1).  We altered our methods of handling time series from those of 
Brook et al. (2000) in several key ways to increase standardization and internal consistency of 
our comparisons.  Rather than halve each time series, we adopted a “sliding window” of 21 or 26 
years for the nonsalmon and salmon species, respectively.  The difference in window size arose 
because of the need to filter the time series with high error, as detailed below.  The first 11 years 
(16 years for salmon) in each window was the estimation period and was used to estimate model 
parameters.  We then used the remaining years in the window to evaluate model performance.  
Note that our approach means that the estimation and evaluation periods of each window were 
effectively independent, because the only connection between the two fractions was that the final 
population size during the estimation period became the initial population size during the 
evaluation period.  Sliding windows in which the evaluation period had missing data were 
excluded from analysis, but windows with missing data in the estimation period were allowed 
since the parameterization methods could cope with missing census years.  To limit 
disproportionate representation by long time series, we used at most 10 sliding windows (picked 
at random) from any time series.  To increase the independence of windows within a time series, 
we separated the start years of adjacent windows by at least 5 years (Figure 1).  For example, a 
1960–1990 time series would be divided into 3 windows: 1960–1980, 1965–1985, 1970–1990. 

Estimating Parameters from Time Series of Counts: The Dennis 
Method 

Dennis et al. (1991) present a diffusion approximation approach for estimating extinction 
risks using time-series data.  Diffusion approximations of population data derive from work on 
stochastic age-structured models (see Tuljapurkar 1982 and Dennis et al. 1991).  Theory 
demonstrates that in the absence of density-dependence, changes in the size of a structured 
population behave asymptotically according to a stochastic discrete time model: 

( )
( )ωσε

εωµω

pp

ptt

,0Normal is    where

NN ,exp +=+   (1) 

where Nt is the population size at time t, ω is the time gap between censuses (ω = 1 for annual 
censuses), µ is the underlying mean year-to-year population growth rate, and σp is the standard 
deviation of the distribution of year-to-year fluctuations in growth rate, termed the process error.  
Equation 1 can be approximated by a diffusion process; the diffusion process can then be used to 
estimate the statistical properties of the stochastic trajectories (such as distributions of extinction 
times, probability of reaching population thresholds, etc.) as a function of µ and σp (Tuljapurkar 
1982, Lande and Orzack 1988, Dennis et al. 1991).  Dennis et al. (1991) discuss parameter 
estimation for the diffusion model and introduce a new estimation method that allows for 
missing years in the census time series used for parameterization.  With the parameter estimates, 
a variety of extinction-related metrics can be calculated.  One of these metrics, the probability 
that a population will reach a specified quasi-extinction threshold within a certain time frame, is 
widely used and forms the basis for our cross-validation analysis.  Following prior usage, we 
refer to the combination of the Dennis et al. (1991) method for estimating parameters combined 
with DA for estimating risk metrics as the “Dennis method.” 
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Figure 1.  Schematic of a time series of population counts identifying data and population sizes utilized 
in cross-validation analyses.  For nonsalmon time series (A), we used an “estimation period” 
and an “evaluation period” that were both 11 consecutive years in length (10 consecutive 
transitions).  These two periods together form a “sliding window” that provides a snapshot of 
the population’s dynamics.  Population size A1 is the initial population size for the first 
evaluation period, whereas population size B1 is the minimum population attained during the 
first evaluation period.  In long time series, where it was possible to obtain more than one 
sliding window, windows were selected at random but always began at least 5 years later than 
its nearest neighbor (resulting in initial population size A2 and attained minimum population 
size B2).  For salmon time series (B), we extended the estimation period to 16 years to 
accommodate the need to calculate running sums of population size. 
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Estimating Parameters Using Running Sums: The Dennis-Holmes 
Method 

The Dennis method was developed for population processes of the form of Equation 1 
where the true population numbers, Nt, are observed.  However, in many cases the observed 
counts are corrupted to some degree by nonprocess error (such as observation error) and 
researchers record instead a corrupted count, Ot, of the form: 

),(f is  and         

),0(Normal is   where

,)exp(

npnpnp

pp

tnpt

ptt

NO

σµε

ωσε

ε

),exp(NN εµωω

=
+ +=

   (2) 

where Nt and Ot are the true and observed population numbers, respectively, and εp and εnp are 
the process and nonprocess error respectively.  The distribution of εnp is unknown, and it has 
some unknown mean, µnp, and variance, . 2

npσ

One of the key differences between process and nonprocess error is that the nonprocess 
error does not feed back into the population process.  Thus the variance due to nonprocess error 
does not grow with time.  The most common example of nonprocess error is observation error in 
the counts themselves.  However, other types of variability also act much like the model of 
Equation 2.  For example, when the census includes only an age- or stage-specific subset of the 
population, the variance in this subset does not necessarily reflect the variance at the population 
level.  Another example occurs when a clear relationship does not exist between the census count 
one year versus the next year, such as for insects with alternate-year cohorts or for sea-run 
salmon where the counts of returning adults in a given year are only weakly related to 
comparable counts the next year.  A third common example of nonprocess error occurs when the 
population age structure has been perturbed, and the population is undergoing damped 
nonequilibrium cycles. 

When nonprocess error is present at high levels within a time series, the Dennis method 
highly overestimates the process error variance,  (Holmes 2001).  To circumvent these 
problems and generalize the DA approach for cases where nonprocess error is high, an 
alternative parameter estimation method (Holmes 2001, Holmes and Fagan 2002) was developed 
that separates process and nonprocess error.  The method as presented in Holmes and Fagan 
(2002) involves an ad hoc running sum transformation of the data that is used to improve 
parameter estimation when working with the short time series (15–50 years) that are typical for 
real data.  The appendix in Holmes and Fagan (2002) provides a more rigorous statistical 
discussion, without the transformation, for infinite time series.  Tests of the running-sum method 
using simulated data (Holmes 2001, Hinrichsen 2002, Morris and Doak 2003, Holmes 2004) 
indicate that it can provide parameter estimates that are relatively unbiased even in the face of 
high sampling error and relatively short time series. 

2
pσ
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Here, we merely outline the method’s key features.  The reader is referred to previous 
papers (Holmes 2001, Holmes and Fagan 2002, Holmes 2002) for more in-depth discussions.  
Central to the method is the translation of a time series of counts into a time series of running 
sums by adding together several consecutive counts to yield 

∑
=

−+=
i

itt NR
1

1

L

  (3) 

where L is the filter length, and should take values between 3 to 6.  We used L = 4 for both 
salmon and nonsalmon time series.  For consistency with established usage among salmon 
conservation biologists, we refer to the application of DA using this method as the “Dennis-
Holmes method.”  The calculations of the risk metrics are essentially those in Dennis et al. 1991, 
whereas the parameter estimation methods are those in Holmes and Fagan (2002). 

Because they interfere with the calculation of the running sums, missing data (i.e., years 
with no census) require a different treatment in the Dennis-Holmes method than in the Dennis 
method.  First, we eliminated from consideration all sliding windows in which data for 3 or more 
consecutive census years were missing.  However, if one or two consecutive censuses were 
missing in the estimation period, the counts for those dates were linearly interpolated.  This 
interpolation constitutes a standard step in the application of the Dennis-Holmes technique 
(Holmes and Fagan 2002).  In contrast, sliding windows with missing data in the evaluation 
period were always excluded, because the missing data point could have been the population 
minimum for that window.  In all cases, any analyses that compared the Dennis-Holmes and 
Dennis methods used identical sets of estimation and evaluation periods. 

Cross-validating Predicted Declines Against Observations 

Our cross-validation analyses addressed whether the predicted probability of reaching a 
given threshold within the evaluation period matched the frequency of declines actually 
observed.  This probability is similar to the probability of extinction (to 1 individual) except that 
we instead used a series of quasi-extinction thresholds (xN0) where N0 is the population size at 
the start of the evaluation period and x is a proportion from 0 to 1.  Lande and Orzack (1988) and 
Dennis et al. (1991) give analytical solutions for the probability of crossing a quasi-extinction 
threshold before some time horizon t.  However, these analytical solutions implicitly assume that 
the time series is observed continuously.  For cross-validation purposes we had to adjust these 
analytical solutions, because the actual time series are only observed at discrete times—generally 
once a year (Holmes and Fagan 2002). 

The Dennis method assumes that nonprocess error variability is minimal and attributes all 
variability to process error.  In contrast, the Dennis-Holmes method assumes that some of the 
variability is nonprocess error, and partitions the variability between process and nonprocess 
error.  These differences in the treatment of variability engender different predictions concerning 
the probability of observing quasi-extinction.  To the extent that the nonprocess error in the data 
represents sampling error, the Dennis-Holmes method allows us to contrast the probability of 
observing quasi-extinction in our corrupted counts with the probability of true quasi-extinction 
(due to process error alone).  When the observations are corrupted by sampling error, the 
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probability of observing quasi-extinction is greater than the probability of actual quasi-
extinction. 

Using the estimated probabilities of observing declines, denoted  and  (from the 
Dennis and Dennis-Holmes methods respectively), we compared curves describing the fraction 
of windows that actually crossed various quasi-extinction thresholds during the evaluation period 
versus the fraction expected to do so given the estimated probabilities.  We calculated the 
expected fractions by summing the estimated probabilities for all evaluation periods divided by 
the number of periods, m: 

DP̂ HP̂

∑
=

=
i

iP
m 1

ˆ fraction  expected
m1  (4) 

where  is the  or  estimate for the i-th evaluation period. iP̂ DP̂ HP̂

Our study included three additional analyses addressing prominent issues in the study of 
extinction risk.  For these comparative analyses, we used only the salmon data set because it had 
a sufficient number of long time series.  First, we explored whether the accuracy of estimated 
quasi-extinction risks was influenced by the overall trend of the time series.  We did this by 
examining separately those 62 salmon populations with overall declining trends and another 143 
salmon populations best described as fluctuating.  We characterized those time series with an 
estimated median rate of growth 1.05 > exp( µ̂ ) > 0.95 over the entire length of the time series as 
“fluctuating,” whereas “declining” time series were those with exp( µ̂ ) < 0.95.  Populations that 
were generally increasing (exp( µ̂ ) > 1.05) were excluded. 

Second, to explore how the predictability of quasi-extinction risks degraded over time, 
we examined whether the bias in the estimated probability of quasi-extinction increased as one 
projected over longer periods of time.  It is well known that the confidence intervals around 
probability of extinction estimates widen as the projection period increases (Dennis et al. 1991, 
Fieberg and Ellner 2000).  Our analysis looked instead at whether there was a change in the 
mean tendency to overestimate or underestimate declines.  For this analysis, we selected those 
salmon time series for which 46-year windows were available.  These windows were divided 
into a 16-year estimation period, as before, followed by a 30-year period for evaluation.  We 
compared the predicted versus observed fraction of windows that reached quasi-extinction in the 
10, 20, or 30 years after the prediction period.  In this way, the same estimation period was used 
for comparing 10-, 20-, and 30-year evaluation periods. 

Third, we expanded our analysis of estimation bias to examine the predictability of severe 
declines (defined as ≥95%) and extinctions.  To do this, we examined the mean risk estimates for 
the subset of time series that experienced a severe decline or extinction during the evaluation 
period.  Note that this analysis does not address the accuracy or precision of our probability 
estimates: that is something we cannot address without knowing the true underlying probabilities 
of decline (see Discussion section).  Instead, this analysis addresses whether these severe events 
are unpredictable—whether because of the difficulties of estimating parameters for stochastic 
processes or simply because severe declines happen by chance. 
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Results 

Unbiased Quasi-extinction Estimates 

For the nonsalmon time series, with low nonprocess error, parameters estimated via either 
the Dennis or the Dennis-Holmes approach gave good estimates of the frequency with which 
thresholds of various magnitudes were observed during the evaluation period (Figure 2).  
However, for the data with high nonprocess error (the salmon data set) the Dennis method 
underestimates the frequency of small and moderate declines and overestimates the frequency of 
large decline (Figure 2).  This is the pattern expected when process error is severely 
overestimated (Holmes and Fagan 2002), as we would expect the Dennis method to do when 
nonprocess is high.  By separating the process and nonprocess error, the Dennis-Holmes method 
provided an improved match for this data set.  The Dennis-Holmes predictions followed the 
shape of the observed curve more closely, although there was a slight (though uniformly present) 
underestimation of the observed risk of quasi-extinction.  This pattern is suggestive of a slight 
underestimation of µ. 

Analyses of the fluctuating and declining subsets of salmon stocks yielded similar results 
(Figure 3).  In both types of time series, the Dennis method tended to underestimate the 
frequency of small and moderate declines and overestimate the frequency of large declines, 
whereas the Dennis-Holmes method more accurately captured the likelihood of both small and 
large declines.  As the duration of the evaluation period was lengthened (Figure 4), we found no 
evidence that the bias in the predictability of quasi-extinction changed.  Note that this is an 
analysis of bias only, it does not address the variability of the estimates, which theory indicates 
will increase with lengthened evaluation periods. 

Severe Declines and Actual Extinction Events Had Low 
Predictability 

When we examined those time series segments actually exhibiting severe declines during 
the evaluation period, we found that we would have predicted relatively few of them to 
experience such declines on the basis of their dynamics during the preceding estimation period.  
For the trajectories that experienced a 95% decline in the evaluation period, the mean estimated 
probability of such a decline was only 9% with the Dennis-Holmes method.  With the Dennis 
method, mean probability was 23%, but this method overestimated risks for the salmon data (see 
Figure 2), from which came the vast majority of our data on severe declines.  There was a close 
correspondence between the Dennis-Holmes estimated probability and the fraction of evaluation 
periods that actually experienced a 95% decline (also 9%).  This suggests that in our data set, the 
majority of severe declines were low probability events that do occur in populations that are 
otherwise at low risk.  In other words, if the true risk of 95% decline were 9%, we would expect 
(as we did) that 9% of evaluation periods would experience such decline.  Supporting this  
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Figure 2. Observed and predicted fraction of trajectories that are observed to reach quasi-extinction 
thresholds.  The evaluation periods were 10 years long for both data sets.  The estimation 
periods were 11 years for the nonsalmon time series and 16 years long for the salmon time 
series. 

 

Figure 3. Observed and predicted fraction of trajectories that reach quasi-extinction thresholds for 
fluctuating versus declining time series from the salmon data set.  Fluctuating time series 
were characterized as having an estimated median rate of growth (exp( µ̂ )) between 1.05 and 
0.95 over the entire length of the time series.  Declining time series were characterized by an 
estimated median rate of growth of less than 0.95.  Windows were 26 years long with a 16-
year estimation period and 10-year evaluation period. 
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Figure 4. Change in the predictability of population declines as the duration of the evaluation periods 
was increased.  Only those salmon time series with at least 46 years of data were used.  For 
each plot, the same estimation periods were used but the evaluation period was extended from 
10 to 20 to 30 years. 

 

 12



interpretation, we found that the yearly declines (the ln(Nt+1/Nt) ratios) of the trajectories which 
experienced a 95% decline did not have obvious outliers. 

Seven of our time series captured actual extinction of a population (six nonsalmon 
populations plus Snake River sockeye).  Like the estimates of severe decline, the estimated 
probabilities of extinction were very low for all species except sockeye salmon (Table 1).  To 
examine whether the extinctions were outlier events, we examined the ln(Nt+1/Nt) ratios up to 
and including the extinction events.  For all seven populations, the population dynamics were 
indicative of generally declining (or at least not increasing) populations (Figure 5).  For six of the 
seven, the actual transitions to extinction were characterized by anomalously small ln(Nt+1/Nt) 
ratios (Figure 5).  Since the estimated distribution of ln(Nt+1/Nt) is used to forecast declines, if the 
extinction event is anomalous, extinction itself will not be predicted based on the information in 
the estimation period. 

Table 1. Estimated probabilities of observing a decline to one individual within the 10-year evaluation 
period for the populations that actually went extinct during the evaluation period. 

Species 
Probability of Observing 

Extinction (Dennis) 
Probability of Observing 

Extinction (Dennis-Holmes) 
African wild dogs (Lycaon pictus) 0.103 0 
Middle spotted woodpecker 
(Dendrocopos medius) 

0 0 

Golden plover (Pluvialis 
apricaria) 

0 0 

Wood turtle (ALC) (Clemmys 
insculpta) 

0 0 

Wood turtle (BLC) 0 0 
Snake River sockeye salmon 
(Oncorhynchus nerka) 

0.33 0.095 

Red-cockaded woodpecker 
(Picoides borealis) 

0.002 0 

 

Salmon and Nonsalmon Time Series Differ 

Compared with the nonsalmon time series, salmon time series are substantially more 
variable and more likely to exhibit large percentage declines (Figure 2).  The potential for 
precipitous declines underscores the extensive degree to which salmon data sets contain 
nonprocess error.  The median nonprocess error variance for the salmon windows was 0.35 (with 
75% of the estimates between 0.11 and 1.26), compared to a median nonprocess error variance of 
0.006 for the nonsalmon windows with (75% of the estimates between 0.0008 and 0.15). 
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Figure 5.   Distribution of ln(Nt+1/Nt) ratios for populations that went extinct.  The crossed-through ratios 
denote the final declines that marked the extinction events.  The parameter µ is the underlying 
mean year-to-year population growth rate from the diffusion approximation. 
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Discussion 

Overall, our cross-validation analysis highlights several key results pertaining to the use 
of diffusion approximation methods for evaluating population vulnerability.  Foremost, the 
relative matches between the diffusion approximation models and observed declines are a strong 
endorsement of this general approach to risk assessment.  If diffusion approximations were poor 
descriptors of the underlying population processes, or if our conceptualization of process and 
nonprocess errors as drivers of population dynamics were inappropriate, this diffusion 
approximation with two parameters would not have allowed us to recapitulate the collection of 
population declines as closely as we did (Figure 2).  From a practical perspective, this success is 
especially noteworthy in that we used only count data.  This paucity of data, which contrasts 
strongly with the extensive life history and detailed demography needed for full population 
viability analyses like those conducted by Brook et al. (2000), is fairly typical of the data 
limitation facing many species of conservation concern.  Consequently, being able to use such 
limited data to forecast the expected frequency of population declines for a collection of species 
suggests that diffusion approximation techniques can aid conservation planning at the 
multispecies/multipopulation level. 

Both the Dennis and Dennis-Holmes parameterization methods are useful for predicting 
risk of decline to quasi-extinction levels, but for different kinds of species and data sets.  The 
Dennis method performed well for time series with low nonprocess error; whereas for time series 
with high nonprocess error, it tended to underestimate the probability that small declines will be 
observed and overestimate the probability of large declines.  This is the expected pattern if 
process error variance is overestimated for these data sets and suggests that indeed, because the 
Dennis method combines nonprocess error and process error variance together, it overestimates 
the process error variance when nonprocess error is high.  In contrast, the Dennis-Holmes 
method, which separates process and nonprocess error variance, yielded close estimates of the 
observed declines for the salmon data — but with a tendency toward slight underestimation.  
Close fits were also observed for the collection of nonsalmon time series with relatively low 
nonprocess error.  It should be noted that our analyses cross-validated the probability of 
observing a decline.  The Dennis-Holmes method makes a distinction between declines due to 
process error alone versus due to both process error and nonprocess error.  To the extent that the 
nonprocess error represents some type of observation error, this is the distinction between the 
probability of observing quasi-extinction and the probability of actual quasi-extinction.  The 
Dennis method does not make such a distinction since all variability is attributed to process error.  
When observation error is high, the difference between the actual versus observed declines is 
significant (Figure 2, dotted versus solid black lines). 

Choosing between the different DA parameterization methods requires some judgment 
about the level of nonprocess error in the data.  In those cases featuring relatively little 
nonprocess error (e.g., the nonsalmon time series in Appendix A), the Dennis-Holmes method 
yielded decline curves that closely matched the observed declines across species.  However, this 
is an indication of a lack of bias and it does not address the level of variability in the estimates.  
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In fact, the Dennis-Holmes parameterization method trades an improvement in bias problems for 
an increase in the variability of the parameter estimates.  Simulations indicate that when the 
nonprocess error variance is less than the process error variance, the Dennis et al. (1991) 
parameterization methods will provide tighter—although slightly biased—estimates.  But when 
nonprocess error is high, the biases become severe and trading lack of bias for increased 
variability is warranted.  See Holmes (2002) for a discussion on selecting parameterization 
methods for a particular population using sensitivity analyses based on age-structured models. 

Our analyses looked primarily at whether our probability estimates were biased.  It would 
have been interesting and compelling to examine the precision of the estimated probabilities, P̂ , 
directly using our data set (i.e., to look at the relationship between the estimated and true risks).  
Unfortunately, this is not possible unless the underlying true parameters of each time series are 
known (i.e., the true P) or unless it is known that the collection of time series all have very 
similar, albeit unknown, underlying parameters (i.e., similar Ps).  Likewise, it is uninformative to 
look for a relationship between specific estimated risk levels and the frequency of actual declines 
(i.e., were declines more likely when the estimated risks were higher), even though this appears 
to be a very natural analysis to do.  To do such an analysis in a meaningful way, the true 
distribution of P (probability of decline) must be known.  To see this, suppose that most of our 
populations have similar true probabilities of decline (we do not know if this is or is not the 
case), then the observed frequency of decline would be similar (i.e., would be approximately the 
true P) regardless of the estimated P̂  and regardless of the precision of the P̂  estimates.  
Although we could not examine precision with our data set, there is ample evidence that 
estimates of the probability of extinction (or quasi-extinction) tend to be highly uncertain with 
wide confidence intervals, particularly when the true probability is intermediate.  This has been 
shown with simulations (Ludwig 1999, Fieberg and Ellner 2000, Ellner et al. 2002) and with 
calculations of the posterior probability distributions for risk metrics from real data (Holmes 
2004). 

However, the lack of bias that we observed in DA quasi-extinction probabilities suggests 
a way to circumvent the uncertainty problem.  Rather than trying to attack the variability 
problem directly, the lack of bias suggests that we can use diffusion approximations to accurately 
estimate risk within groups rather than on a case-by-case basis.  For example, say in a collection 
of 10 populations, we calculate that the mean probability of 90% decline in 10 years is 0.2.  This 
estimate of the mean probability can be quite precise, since the variability of the mean is 10/1  
less variable that the individual estimates.  This analysis indicates that we should expect 2 of the 
10 populations to experience a severe decline in 10 years, although we cannot determine which 
two.  This type of analysis also emphasizes that although mean risk within the collection is low, 
the probability is high that a few of the populations will experience severe declines. 

In contrast to the successes predicting proportional declines, the diffusion approximation 
model appeared to do poorly at predicting complete extinction events.  Examining the population 
trajectories that experienced complete extinction (zero individuals), we found that both 
parameterization techniques (Dennis and Dennis-Holmes) appeared to do a distinctly poor job of 
signaling the real vulnerability of the populations (Table 1).  Typically, the extinction-bound 
species, though declining, were expected to have a less than 1% risk of experiencing the 
pronounced drops they actually registered.  In a collection of 271 time series with a 1% risk of 
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extinction, we would expect approximately 3 extinctions rather than the 7 in our dataset.  This 
might be explained by arguing that extinctions attract attention and thus were more likely to be 
documented.  However, in six of the seven extinctions, the final extinction event, as reflected in 
the final Nt+1/Nt ratio, was of unusual magnitude (Figure 5) and was outside the normal 
distribution of year-to-year variability.  The one exception was sockeye salmon.  For this species, 
the Nt+1/Nt ratio associated with the final extinction event was within the prior range of year-to-
year variability.  This suggests some kind of anomalous final collapse.  Though disconcerting 
from the perspective of population prediction, such sudden, catastrophic events do mirror our 
conceptual understanding of the extinction process (Simberloff 1986, Simberloff 1988, Caughley 
1994).  Given this concept of extinction due to unpredictable catastrophic events, Coulson et al. 
(2001) have suggested that risk analyses should be used to predict decline to quasi-extinction 
levels that represent critical population sizes rather than decline to extinction, per se. 

For severe declines (95%) rather than complete extinction per se, we found that the Nt to 
Nt+1 ratios leading up to and immediately preceding the decline were well within the expected 
distributions and that the frequency of 95% declines in the data (9%) matched the expected 
probability from the DA model (also 9%).  These observations suggest that the DA model was 
appropriately modeling the probability of severe decline.  However, this did not translate into 
predictability of severe declines on a case-by-case basis.  The mean probability of 95% decline 
for the windows that experienced a 95% decline was only 9%.  These results emphasize that the 
very nature of stochastic processes means that the future is unpredictable and that severe declines 
will occur due to chance even when the probability of such events is low.  Obviously severe 
declines will be more common for those populations with higher underlying risks, but if the vast 
majority of populations are at relatively low risk of severe decline, the majority of severe 
declines will be observed to come from populations with low risk and thus appear unpredictable.  
This emphasizes the point that for populations experiencing stochastic growth and decline, low 
estimated risks, no matter how precise, are not a guarantee that severe declines will not occur—
indeed they most certainly will occur for some fraction of populations.  Predicting the fraction of 
populations that will experience a severe decline is possible; determining exactly which 
populations will experience such severe declines will not generally be possible—except in the 
case of populations undergoing rapid and drastic declines or populations with very low year-to-
year variability. 

Overall, the results presented here highlight both successes and shortcomings of PVAs 
based on diffusion approximations.  Clearly, the lack of predictive certainty that these models 
afford on a case-by-case basis could be construed as a limitation of extinction risk modeling.  
However, there are lessons to learn from the general patterns that emerge from multipopulation 
and multispecies analyses for conservation planning (see also Fagan et al. 2001).  In the present 
case, it is worth emphasizing the advantages of being able to describe well the behavior of a 
collection of populations and species.  Conservation biology is increasingly adopting a 
multipopulation, multispecies perspective, a view that is necessitated both by the increasing 
numbers of species of conservation concern and by the general need to act quickly to halt or 
reverse population declines.  Often such action must take place in the absence of solid 
information on each component species, and from a practical perspective, broad brush 
multispecies conservation efforts may trade off case-by-case certainty for time.  Although the 
knowledge that we will guess right “on average” may provide little solace when particular 
species or populations fail to persist, we must keep in mind that real population trajectories are 
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stochastic and by their very nature unpredictable regardless of the sophistication and accuracy of 
one’s models.  Taking a multipopulation approach may be the only viable means to achieve 
predictive power. 
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Appendix A 

Table A-1. Summary of nonsalmon population time series used in cross-validation analyses. 

Species 
Type of 
organism 

Location of study 
population 

Number of 
transitions 

Unit of 
census  References

Minimum 
population 

size 

Maximum 
population 

size 
Connochaetes taurinus  
(Wildebeest) 

Mammal Ngorongoro Crater,
Tanzania 

  21 Total
population 

Runyoro et al. 1995 6,250 18,500 

Ovibos moschatus 
(Musk ox) 

Mammal Nunivak Island, Alaska 24 Total 
population 

  

Spencer and Lensink 1970 31 714 

Ursus arctos horribilis  
(Grizzly bear) 

Mammal   

  

   

   

   

Yellowstone National
Park 

28 Adult
females 

Foley 1994 33 57 

Cervus elaphus 
(Red deer) 

Mammal Isle of Rum, UK 21 Females Milner-Gulland et al. 2000 34 105 

Cervus elaphus 
(Red deer) 

Mammal Isle of Rum, UK 21 Females Milner-Gulland et al. 2000 34 61 

Canis lupus 
(Wolves) 

Mammal Isle Royale National 
Park, Michigan 

24 Total
population 

 

Peterson et al. 1998 12 50 

Panthera leo 
(Lion) 

Mammal Ngorongoro Crater,
Tanzania 

22 Total
population 

Packer et al. 1999 50 109 

Telespiza cantans 
(Laysan finch) 

Bird Laysan Island, Hawaii 24 Total 
population 

 

Dennis et al. 1991 5,500 20,750 

Grus Americana 
(Whooping crane) 

Bird Aransas, Texas 51 Total
population 

Dennis et al. 1991 16 145 

Parus major 
(Great tit) 

Bird Wytham Wood, UK 30 Total 
population 

 

Saether et al. 1998 119 340 

Zosterops lateralis 
chlorocephala 
(Heron Island silvereye) 

Bird Great Barrier Reef,
Australia 

25 Total
population 

Brook and Kikkawa 1998 225 445 
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Table A-1.   Summary of nonsalmon population time series used in cross-validation analyses.  Continued. 
 

Species 
Type of 
organism 

Location of study 
population 

Number of 
transitions 

Unit of 
census References 

Minimum 
population 

size 

Maximum 
population 

size 
Dendroica kirtlandii   
(Kirtland’s warbler) 

Bird Northern half of 
Michigan’s lower 
peninsula 

22 Singing
males 

    Dennis et al. 1991, Solomon 
1998 

168 762

Milvus milvus 
(Red kite) 

Bird   

 

  

    

    

       

      

  

Wales 29 Total
population 

 

Davis and Newton 1981 24 98 

Rostrhamus sociabilis 
(Snail kite) 

Bird Wetlands in central and 
southern Florida 

25 Total
population 

Bennetts et al. 1999 30 780 

Somateria mollissima 
(Eider) 

Bird Wadden Sea Coast, 
Germany 

33 Breeding
pairs 

Becker 1991 40 283 

Tympanuchus cupido 
attwateri 
(Attwater’s prairie 
chicken) 

Bird Coastal Prairie,
Louisiana and Texas 

29 Total
population 

Peterson and Silvy 1996 65 8,730 

Ciconia ciconia 
(White stork) 

Bird Baden-Wurttenberg,
Germany 

38 Breeding
pairs 

Newton 1998, Bairlein 1991 16 163 

Ciconia ciconia 
(White stork) 

Bird Oldenburg/NW
Germany 

60 Breeders Bairlein 1991 17 274

Fulmarus glacialoides  
(Antarctic fulmar) 

Bird Pointe Geologie
Archipelago, Adele 
Land, in Antarctic zone

25 Total
population 

Jouventin and Weimerskirch 
1991 

9 50

Sterna dougallii 
(Roseate terns) 

Bird main colonies in 
Ireland, Britain, and 
France 

34 Breeding
pairs 

Cabot 1996 467 3,304 

Rana temporaria 
(European frog) 

Amphibian Bern, Switzerland 27 Spawn 
clumps 

Meyer et al. 1998 382 1,187 

Cyprinodon diabolis 
(Devils Hole pupfish) 

Fish Devils Hole, Nevada 24 Total 
population 

Andersen and Deacon 2001 127 313 

Euphydryas editha 
bayensis 
(Jasper Ridge checkerspot) 

Butterfly Jasper Ridge, California 26 Females Nicholls et al. 1996 18 2,000 
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Table A-1.   Summary of nonsalmon population time series used in cross-validation analyses.  Continued. 
 

Species 
Type of 
organism 

Location of study 
population 

Number of 
transitions 

Unit of 
census References 

Minimum 
population 

size 

Maximum 
population 

size 
Euphydryas editha 
bayensis 
(Jasper Ridge checkerspot) 

Butterfly Jasper Ridge, California 26 Females Nicholls et al. 1996 40 7,227 

Ischnura elegans 
(Blue-tailed damselfly) 

Odonate    

  

  

  

 

      

   

  

  

  

  

  

Woodwalton Fen,
Cambridgeshire, UK 

 

26 Male
territories 

 

Moore 1991 7 45 

Sympetrum striolatum   
(Common darter) 

Odonate Woodwalton Fen,
Cambridgeshire, UK 

 

26 Male
territories 

 

Moore 1991 2 19 

Coenagrion puella 
(Azure damselfly) 

Odonate Woodwalton Fen,
Cambridgeshire, UK 

 

25 Male
territories 

 

Moore 1991 1 204 

Lestes sponsa 
(Emerald damselfly) 

Odonate Woodwalton Fen,
Cambridgeshire, UK 

24 Male
territories 

Moore 1991 1 188 

Rissa tridactyla 
(Kittiwake) 

Bird North Shields, Tyne and 
Wear, UK 

33 Nests with
eggs 

 Coulson and Thomas 1985 4 104 

Amazona vittata 
(Puerto Rican parrot) 

Bird Puerto Rico 20 Total
population 

Dennis et al. 1991, Christian 
et al. 1996 

14 137

Copsychus seychellarum  
(Seychelles magpie  robin) 

Bird Fregate Is, Seychelles 21 Total 
population 

 

Komdeur 1996 12 70 

Eschrichtium robustus  
(California gray whale) 

Mammal California 23 Total
population 

Gerber et al. 1999 2,894 26,635 

Callorhinus ursinus 
(Northern fur seal) 

Mammal St. George Island, 
Alaska 

43 Pups York et al. 2000, York 1985, 
York and Hartley 1981 

20,775 115,250

Callorhinus ursinus 
(Northern fur seal) 

Mammal St. Paul Island, Alaska 43 Pups York et al. 2000, York 1985, 
York and Hartley 1981 

165,941 461,000

Callorhinus ursinus 
(Northern fur seal) 

Mammal San Miguel Island, 
California 

24 Pups York et al. 2000, York 1985, 
York and Hartley 1981 

200 2,705

Zalophus californianus  
(California sea lion) 

Mammal California 20 Pups York et al. 2000, York 1985, 
York and Hartley 1981 

11,485 36,017

Parus atricapillus 
(Black-capped chickadee) 

Bird Litchfield and Morris, 
Connecticut 

23 Winter
population 

Loery and Nichols 1985 85 328 
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Table A-1.   Summary of nonsalmon population time series used in cross-validation analyses.  Continued. 
 

Species 
Type of 
organism 

Location of study 
population 

Number of 
transitions 

Unit of 
census References 

Minimum 
population 

size 

Maximum 
population 

size 
Monachus shauinslandi  
(Hawaiian monk seal) 

Mammal Hawaiian Islands minus 
Midway 

20 Total
population 
(almost) 

   Gilmartin and Eberhardt 
1995, Ragen and Lavigne 
1997 

392 917

Accipiter nisus 
(Northern sparrowhawk) 

Bird   

 

   

   

  

    

   

   

   

Germany 22 Total
population 

 

 Zollinger and Müskens 1994 2 83 

Himantopus mexicanus 
knudseni 
(Hawaiian stilt) 

Bird Hawaiian Islands minus 
Kauai--Niihau 

22 Total
population 
(almost) 

 

Reed and Oring 1993 320 1,100 

Grus japonesis 
(Red-crowned crane) 

Bird Hokkaido, Japan 35 Total
population 

 

Masatomi 1987 33 365 

Loxodonta africana 
(African elephant) 

Mammal Addo National Park, 
South Africa 

68 Total
population 

Whitehouse and Hall-Martin 
2000 

10 280

Melospiza melodia 
(Song sparrow) 

Bird Mandarte Island, British 
Columbia 

20 Territorial
females 

Ludwig 1999 4 71 

Lycaon pictus 
(African wild dog) 

Mammal Serengeti Plains,
Tanzania 

19 Adults +
yearlings 

Ginsberg et al. 1995 0 77 

Dendrocopos medius 
(Middle spotted 
woodpecker) 

Bird Southern Sweden 14 Adults Pettersson 1985 0 25 

Pluvialis apricaria 
(Golden plover) 

Bird Kerloch, NE Scotland 17 Total 
population 

 

Parr 1992 0 114 

Clemmys insculpta 
(Wood turtle) 

Reptile South-central
Connecticut 

19 Total
population 

 

Garber and Burger 1995 0 51 

Clemmys insculpta 
(Wood turtle) 

Reptile South-central
Connecticut 

19 Total
population 

 

Garber and Burger 1995 0 58 

Picoides borealis 
(Red-cockaded 
woodpecker) 

Bird Tall Timbers Research
Station, Florida 

14 Adults Baker 1983 0 39 

 28



Appendix B 

Table B-1.  Summary of salmon population time series used in cross-validation analyses.  StreamNet (2002) refers to the StreamNet identification 
numbers as of summer 2002. 

Species 
 
Evolutionarily significant unit Stock 

StreamNet # 
or reference 

 Type of 
counta

Length in 
years 

Chinook California Merced River (Fall) 61115  tlc  42
Chinook California Tuolumne River (Fall) 61116  tlc  

  
  
  
  
  
  
  
  
  
  

  
  

  
  

  
  
  

  
  

50
Chinook California Stanislaus River (Fall) 61117  tlc 50
Chinook California Cosumnes River (Fall) 61121  tlc 36
Chinook California American River (Fall) 61122  tlc 54
Chinook California Feather River (Fall) 61123  tlc 44
Chinook California Yuba River (Fall) 61129  tlc 44
Chinook California Butte Creek (Spring) 61131  tlc 37
Chinook California Deer Creek (Fall) 61136  tlc 43
Chinook California Mill Creek (Fall) 61137  tlc 47
Chinook California Battle Creek (Fall) 90010  tlc 53
Chinook California San Joaquin River (Fall) 61118  tlc 42
Chinook Lower Columbia River Big Creek (Fall) 57497  rpm 29
Chinook Lower Columbia River Clackamas River (Spring) 50312  tlc 52
Chinook Lower Columbia River Clackamas River (Fall) 50990  rpm 28
Chinook Lower Columbia River Clackamas River N Fork (Fall) 50010  tlc 35
Chinook Lower Columbia River Clatskanie River (Fall) 50982  peak 51
Chinook Lower Columbia River Cowlitz River (Fall)(tule) 105030  tlc 34
Chinook Lower Columbia River Elochoman River (Fall)(tule) 103050  tlc 34
Chinook Lower Columbia River Gnat Creek (Fall) 50007  peak 35
Chinook Lower Columbia River Kalama River (Fall)(tule) 110050  tlc 34
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Table B-1.  Summary of salmon population time series used in cross-validation analyses.  StreamNet (2002) refers to the StreamNet identification 
numbers as of summer 2002.  Continued. 

 

Species 
 
Evolutionarily significant unit Stock 

StreamNet # 
or reference 

 Type of 
counta

Length in 
years 

Chinook Lower Columbia River Klickitat River (Fall)(tule) 131030  tlc  33
Chinook Lower Columbia River Lewis River (Fall)(bright) 113030  tlc  

  
  

  
  
  

  
  
  
  
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  
  

  

34
Chinook Lower Columbia River Lewis River E Fork (Fall)(tule) 113040  tlc 34
Chinook Lower Columbia River Plympton Creek (Fall) 50005  peak 35
Chinook Lower Columbia River Washougal River (Fall)(tule) 116050  tlc 34
Chinook Lower Columbia River White Salmon River (Fall)(tule) 128050  tlc 33
Chinook Lower Columbia River Wind River (Fall)(tule) 121002  tlc 34
Chinook Lower Columbia River Youngs River (Fall) 50276  peak 51
Chinook Middle Columbia River (Spring) American River (Spring) 61466  rpm 30
Chinook Middle Columbia River (Spring) Beaver Creek (Spring) 50178  rpm 31
Chinook Middle Columbia River (Spring) Bull Run Creek (Spring) 52055  rpm 37
Chinook Middle Columbia River (Spring) Clear Creek (Spring) 52054  rpm 40
Chinook Middle Columbia River (Spring) Granite Creek (Spring) 52053  rpm 40
Chinook Middle Columbia River (Spring) John Day River (Spring) 50148  rpm 40
Chinook Middle Columbia River (Spring) John Day River M Fork (Spring) 50167  rpm 40
Chinook Middle Columbia River (Spring) John Day River N Fork (Spring) 50158  rpm 35
Chinook Middle Columbia River (Spring) Mill Creek (Spring) 50177  rpm 31
Chinook Middle Columbia River (Spring) Warm Springs River (Spring) 50175  rpm 31
Chinook Middle Columbia River (Spring) Wind River (Spring) 122050  tlc 28
Chinook Upper Columbia River (Spring) Chiwack River (Spring) 60044  redds 36
Chinook Upper Columbia River (Spring) Chiwawa River (Spring) 60057  rpm 37
Chinook Upper Columbia River (Spring) Entiat River (Spring) NWFSCb  tlc 39
Chinook Upper Columbia River (Spring) Icicle Creek (Spring) 60063  rpm 31
Chinook Upper Columbia River (Spring) Icicle Creek (Spring) 143031  tlc 41
Chinook Upper Columbia River (Spring) Icicle Creek (Spring) 60827  peak 37
Chinook Upper Columbia River (Spring) Little Wenatchee River (Spring) 60059  rpm 39
Chinook Upper Columbia River (Spring) Little Wenatchee River (Spring) 60826  peak 34
Chinook Upper Columbia River (Spring) Lost River (Spring) 60046  rpm 36
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Table B-1.  Summary of salmon population time series used in cross-validation analyses.  StreamNet (2002) refers to the StreamNet identification 
numbers as of summer 2002.  Continued. 

 

Species 
 
Evolutionarily significant unit Stock 

StreamNet # 
or reference 

 Type of 
counta

Length in 
years 

Chinook Upper Columbia River (Spring) Methow River (Spring) NWFSCb  tlc  39
Chinook Upper Columbia River (Spring)     

  
  

  
  

  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  

Nason Creek (Spring) 60061  rpm 39
Chinook Upper Columbia River (Spring) Twisp River (Spring) 60048  rpm 36
Chinook Upper Columbia River (Spring) Wenatchee River (Spring) NWFSCb  tlc 39
Chinook Upper Columbia River (Spring) White River (Spring) 60058  redds 39
Chinook Upper Columbia River (Spring) White River (Spring) 60825  peak 37
Chinook Upper Columbia River (Summer/Fall) Hanford Reach (Fall) M 1998c  tlc 34
Chinook Upper Columbia River (Summer/Fall) Methow River (Summer) 60042  rpm 41
Chinook Upper Columbia River (Summer/Fall) Okanogan River (Summer) 60040  rpm 37
Chinook Upper Columbia River (Summer/Fall) Similkameen River (Summer) 60041  rpm 40
Chinook Upper Columbia River (Summer/Fall) Wenatchee River (Summer) 60055  rpm 41
Chinook Snake River (Spring/Summer) Alturas Lake Ck (Spring) 41012  rpm 48
Chinook Snake River (Spring/Summer) Bear Creek B 1998d  tlc 34
Chinook Snake River (Spring/Summer) Bear Creek (Clearwater) (Spring) 41068  rpm 29
Chinook Snake River (Spring/Summer) Bear Valley Creek (Spring) 41028  rpm 48
Chinook Snake River (Spring/Summer) Beaver Creek (Spring) 41036  rpm 46
Chinook Snake River (Spring/Summer) Big Creek (Spring) 41044  rpm 40
Chinook Snake River (Spring/Summer) Big Creek Upper 41045  rpm 43
Chinook Snake River (Spring/Summer) Big Sheep Creek (Spring) 50121  rpm 34
Chinook Snake River (Spring/Summer) Brushy Fork (Spring) 41078  rpm 28
Chinook Snake River (Spring/Summer) Camas Creek (Spring) 41048  rpm 46
Chinook Snake River (Spring/Summer) Cape Horn Creek (Spring) 41033  rpm 46
Chinook Snake River (Spring/Summer) Catherine Creek (Spring) 54594  rpm 41
Chinook Snake River (Spring/Summer) Catherine Creek N Fork (Spring) 57510  rpm 31
Chinook Snake River (Spring/Summer) Catherine Creek S Fork (Spring) 57511  rpm 31
Chinook Snake River (Spring/Summer) Crooked Fork (Spring) 41076  rpm 31
Chinook Snake River (Spring/Summer) Elk Creek (Spring) 41030  rpm 48
Chinook Snake River (Spring/Summer) Grande Ronde River (Spring) 57512  redds 38
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Table B-1.  Summary of salmon population time series used in cross-validation analyses.  StreamNet (2002) refers to the StreamNet identification 
numbers as of summer 2002.  Continued. 

 

Species 
 
Evolutionarily significant unit Stock 

StreamNet # 
or reference 

 Type of 
counta

Length in 
years 

Chinook Snake River (Spring/Summer) Hayden Creek (Summer) 41024  rpm  27
Chinook Snake River (Spring/Summer) Herd Creek (Summer) 41018  rpm  

  
  

  
  
  
  
  
  
  
  
  

  
  

  
  

  
  
  
  

  
  
  
  
  
  
  

29
Chinook Snake River (Spring/Summer) Imnaha River (Spring) B 1998d  tlc 47
Chinook Snake River (Spring/Summer) Imnaha River (Spring) 50124  rpm 49
Chinook Snake River (Spring/Summer) Johnson Creek (Summer) B 1998d  tlc 43
Chinook Snake River (Spring/Summer) Johnson Creek (Summer) 41060  rpm 46
Chinook Snake River (Spring/Summer) Knapp Creek (Spring) 41035  rpm 46
Chinook Snake River (Spring/Summer) Lake Creek (Summer) 41059  rpm 46
Chinook Snake River (Spring/Summer) Lemhi River (Spring) 41023  rpm 43
Chinook Snake River (Spring/Summer) Lookingglass Creek (Spring) 57513  rpm 41
Chinook Snake River (Spring/Summer) Loon Creek (Summer) 41038  rpm 43
Chinook Snake River (Spring/Summer) Lostine Creek (Spring) 57514  rpm 34
Chinook Snake River (Spring/Summer) Lower Salmon River NWFSCb  rpm 43
Chinook Snake River (Spring/Summer) Lower Valley Creek NWFSCb  redds 43
Chinook Snake River (Spring/Summer) Marsh Creek (Spring) B 1998d  tlc 43
Chinook Snake River (Spring/Summer) Marsh Creek (Spring) 41031  rpm 44
Chinook Snake River (Spring/Summer) Minam River (Spring) B 1998d  tlc 36
Chinook Snake River (Spring/Summer) Minam River Upper (Spring) 50074  rpm 34
Chinook Snake River (Spring/Summer) Minam River Lower (Spring) 50097  rpm 41
Chinook Snake River (Spring/Summer) Moose Creek (Spring) 41071  rpm 28
Chinook Snake River (Spring/Summer) Newsome Creek (Spring) 41088  rpm 26
Chinook Snake River (Spring/Summer) Poverty Creek B 1998d  tlc 43
Chinook Snake River (Spring/Summer) Red River (Spring) 41084  rpm 26
Chinook Snake River (Spring/Summer) Salmon River E Fork (Spring) 41015  rpm 32
Chinook Snake River (Spring/Summer) Salmon River E Fork (Summer) 41016  rpm 43
Chinook Snake River (Spring/Summer) Salmon River S Fork (Summer) 41056  rpm 43
Chinook Snake River (Spring/Summer) Salmon River Upper (Spring) 41001  rpm 43
Chinook Snake River (Spring/Summer) Salmon River Upper (Summer) 41002  rpm 41
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Table B-1.  Summary of salmon population time series used in cross-validation analyses.  StreamNet (2002) refers to the StreamNet identification 
numbers as of summer 2002.  Continued. 

 

Species 
 
Evolutionarily significant unit Stock 

StreamNet # 
or reference 

 Type of 
counta

Length in 
years 

Chinook Snake River (Spring/Summer) Secesh River (Summer) 41058  rpm  43
Chinook Snake River (Spring/Summer) Selway River (Spring) 41062  rpm  

  
  
  
  
  
  
  
  
  
  

  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  

31
Chinook Snake River (Spring/Summer) Sulphur Ck (Spring) B 1998d  tlc 48
Chinook Snake River (Spring/Summer) Sulphur Creek (Spring) 41026  rpm 48
Chinook Snake River (Spring/Summer) Valley Ck Upper (Spring) 41008  rpm 43
Chinook Snake River (Spring/Summer) Valley Ck Upper (Summer) 41009  rpm 46
Chinook Snake River (Spring/Summer) Wallowa Creek (Spring) 50119  rpm 35
Chinook Snake River (Spring/Summer) Wenaha River S Fork (Spring) 50120  rpm 35
Chinook Snake River (Spring/Summer) White Cap Creek (Spring) 41066  rpm 28
Chinook Snake River (Spring/Summer) Yankee Fork (Summer) 41005  rpm 38
Chinook Snake River (Spring/Summer) Yankee W Fork (Summer) NWFSCb  rpm 38
Chinook Snake River (Spring/Summer) Yankee W Fork (Spring) 41006  rpm 38
Chinook Snake River Basin (Fall) Snake River Basin P 1999e  tlc 33
Chinook Upper Willamette River McKenzie River above Leaburg Dam ODFWf  tlc 29
Chinook Upper Willamette River McKenzie River (Spring) 57319  redds 29
Chinook Upper Willamette River Molalla River (Fall) 50999  rpm 28
Chinook Upper Willamette River Santiam River S (Fall) 50017  rpm 28
Chinook Upper Willamette River Santiam River N (Fall) 50019  rpm 26
Chinook Upper Willamette River Willamette River (Fall) 50987  rpm 28
Chinook Oregon Coast Bear Creek (Chetco) (Fall) 50568  peak 35
Chinook Oregon Coast Buck Creek (Alsea) (Fall) 52076  peak 46
Chinook Oregon Coast Clear Creek (Fall) 50445  peak 51
Chinook Oregon Coast Coquille River S Fork (Fall) 50541  peak 40
Chinook Oregon Coast Coquille River N Fork (Fall) 50549  peak 47
Chinook Oregon Coast Coquille River E Fork (Fall) 53494  peak 38
Chinook Oregon Coast Coquille River M Fork (Fall) 53498  peak 37
Chinook Oregon Coast Cronin Creek (Newhalem) (Fall) 50412  peak 26
Chinook Oregon Coast Deep Creek (Chetco) (Fall) 50569  peak 39
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Table B-1.  Summary of salmon population time series used in cross-validation analyses.  StreamNet (2002) refers to the StreamNet identification 
numbers as of summer 2002.  Continued. 

 

Species 
 
Evolutionarily significant unit Stock 

StreamNet # 
or reference 

 Type of 
counta

Length in 
years 

Chinook Oregon Coast Dry Creek (Sixes) (Fall) 53505  peak  32
Chinook Oregon Coast Emily Creek (Chetco) (Fall) 53516  peak  

  
  
  
  
  
  
  
  
  
  
  

  
  

  
  

  
  

  
  

  
  
  
  

  
  

28
Chinook Oregon Coast Grant Creek (Yaquina) (Fall) 52074  peak 44
Chinook Oregon Coast Humbug Creek (Newhalem) (Fall) 50414  peak 49
Chinook Oregon Coast Lake Creek (Siuslaw) (Fall) 52078  peak 46
Chinook Oregon Coast Middle Creek (Coquille) (Fall) 53492  peak 39
Chinook Oregon Coast Millicoma River W Fork (Coos) (Fall) 52080  peak 38
Chinook Oregon Coast Moon Creek (Nestucca) (Fall) 50452  peak 26
Chinook Oregon Coast Niagara Creek (Nestucca) (Fall) 50570  peak 52
Chinook Oregon Coast Siuslaw River N Fork (Fall) 50498  peak 47
Chinook Oregon Coast Sunshine Creek (Siletz) (Fall) 50572  peak 47
Chinook Oregon Coast Tillamook River (Fall) 50568  peak 47
Chinook Oregon Coast Salmon Creek (Coquille) (Fall) 52082  peak 42
Chinook Oregon Coast Umpqua River S (Fall) 66899  tlc 48
Chinook Oregon Coast Wilson River N Fork (Fall) 50445  peak 52
Chinook Puget Sound Cedar River (Summer) 60645  tlc 36
Chinook Puget Sound Green/Duwamish River NWFSCb  unk 30
Chinook Puget Sound Hood Canal (Summer)/(Fall) 61992  tlc 32
Chinook Puget Sound Hood Canal SE NWFSCb  unk

 
32

Chinook Puget Sound Nisqually River (Summer) 60677+61583  tlc 32 
Chinook Puget Sound Nooksack River 60586  tlc 30
Chinook Puget Sound Puyallup River 60665  tlc 32
Chinook Puget Sound Samish River NWFSCb  unk 32
Chinook Puget Sound Sauk River (Summer) 61470  tlc 26
Chinook Puget Sound Sauk River (Spring) 61471  tlc 33
Chinook Puget Sound Skagit River Lower (Fall) 61475  tlc 26
Chinook Puget Sound Skagit River (Spring) NWFSCb  unk 31
Chinook Puget Sound Skagit River (Spring) HMU NWFSCb  unk 33
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Table B-1.  Summary of salmon population time series used in cross-validation analyses.  StreamNet (2002) refers to the StreamNet identification 
numbers as of summer 2002.  Continued. 

 

Species 
 
Evolutionarily significant unit Stock 

StreamNet # 
or reference 

 Type of 
counta

Length in 
years 

Chinook Puget Sound Skagit River S Fork 60606  tlc  32
Chinook Puget Sound Skagit River Upper (Summer) 61474  tlc  

  
  

  
  

  
  

  
  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

26
Chinook Puget Sound Skokomish River 60689  tlc 32
Chinook Puget Sound Snohomish River 60638  tlc 30
Chinook Puget Sound Sound South NWFSCb  unk 28
Chinook Puget Sound Stillaguamish River 60611  tlc 30
Chinook Puget Sound Suiattle River (Spring) NWFSCb  unk 33
Chinook Puget Sound White River (Spring) NWFSCb  unk 30
Chinook Puget Sound White River 60674  dc 44
Steelhead Lower Columbia River Clackamas River (Summer) (N Fork Dam) 50316  dc 28
Steelhead Lower Columbia River Clackamas River (Winter) (N Fork Dam) 50320  dc 42
Steelhead Middle Columbia River Bear Creek (John Day) 57526  rpm 39
Steelhead Middle Columbia River Beech Creek (John Day) 57530  rpm 33
Steelhead Middle Columbia River Beech Creek E Fork (John Day) 57531  rpm 33
Steelhead Middle Columbia River Big Wall Creek (John Day) 57533  rpm 32
Steelhead Middle Columbia River Camp Creek (John Day) 54587  rpm 32
Steelhead Middle Columbia River Canyon Creek (John Day) 57536  rpm 26
Steelhead Middle Columbia River Cottonwood Creek (John Day) 54597  rpm 38
Steelhead Middle Columbia River Deep Creek (John Day) 57538  rpm 26
Steelhead Middle Columbia River Deer Creek (John Day) 50094  rpm 26
Steelhead Middle Columbia River Fields Creek (John Day) 54598  rpm 40
Steelhead Middle Columbia River Kahler Creek (John Day) 54599  rpm 34
Steelhead Middle Columbia River McClellan Creek (John Day) 50104  rpm 33
Steelhead Middle Columbia River Murderers Creek (John Day) 50106  rpm 38
Steelhead Middle Columbia River Parrish Creek (John Day) 50109  rpm 38
Steelhead Middle Columbia River Riley Creek (John Day) 50111  rpm 39
Steelhead Middle Columbia River Tex Creek (John Day) 50114  rpm 34
Steelhead Middle Columbia River Umtilla River (Summer) 50515+57508  dc 30 
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Table B-1.  Summary of salmon population time series used in cross-validation analyses.  StreamNet (2002) refers to the StreamNet identification 
numbers as of summer 2002.  Continued. 

 

Species 
 
Evolutionarily significant unit Stock 

StreamNet # 
or reference 

 Type of 
counta

Length in 
years 

Steelhead Middle Columbia River Wind Creek (John Day) 50118  rpm  29
Steelhead Upper Columbia River Wenatchee River and Tribs 180072  tlc  

  
  
  
  
  
  
  
  
 30 
  
  
  
  

  
  
  
  

   

   

  
  
  
  

33
Steelhead Snake River Camp Creek (Imnaha) 54589  rpm 33
Steelhead Snake River Crow Creek (Grande Ronde) 54575  rpm 33
Steelhead Snake River Devils Run Creek (Grande Ronde) 54567  rpm 33
Steelhead Snake River Elk Creek (Grande Ronde) 54569  rpm 34
Steelhead Snake River Five Points Creek (Grande Ronde) 50023  rpm 33
Steelhead Snake River Fly Creek (Grande Ronde) 50026  rpm 33
Steelhead Snake River McCoy Creek (Grande Ronde) 50025  rpm 35
Steelhead Snake River Meadow Creek (Grande Ronde) 50024  rpm 35
Steelhead Snake River Peavine Creek (Grande Ronde) 54565  rpm
Steelhead Snake River Phillips Creek (Grande Ronde) 50022  rpm 32
Steelhead Snake River Prairie Creek (Grande Ronde) 54564  rpm 33
Steelhead Snake River Swamp Creek (Grande Ronde) 54573  rpm 34
Steelhead Snake River Wallowa River (Grande Ronde) 54572  rpm 32
Steelhead Upper Willamette River McKenzie River (Summer) 54595  dc 28
Steelhead Upper Willamette River Santiam River N Late (Winter) 51005  dc 27
Steelhead Upper Willamette River Santiam River S (Summer) (Foster Dam) 50902  dc 28
Steelhead Upper Willamette River Santiam River S (Winter) (Foster Dam) 51004  dc 31
Steelhead Upper Willamette River Willamette River (Winter) (Will Falls 

Dam) 
50305  dc 50

Steelhead Upper Willamette River Willamette River (Summer) (Will Falls 
Dam) 

50945  dc 30

Steelhead Klamath Mountains Province Rogue River (Summer) 51222  dc 57
Steelhead Klamath Mountains Province Rogue River (Winter) 51223  dc 57
Steelhead Oregon Coast Umpqua River N (Summer) 50512  dc 53
Steelhead Oregon Coast Umpqua River N (Winter) 50513  dc 54
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Table B-1.  Summary of salmon population time series used in cross-validation analyses.  StreamNet (2002) refers to the StreamNet identification 
numbers as of summer 2002.  Continued. 

 

Species 
 
Evolutionarily significant unit Stock 

StreamNet # 
or reference 

 Type of 
counta

Length in 
years 

Steelhead Puget Sound Baker River (Skagit) (Winter) 60896  dc  55
Steelhead Puget Sound White River (Puyallup) (Winter) 60900  dc  

  
  
  
  

      
  

  

51
Chum Columbia River Grays River W Fork WDFWg  peak 32
Chum Columbia River Grays River WDFW  peak 32
Chum Columbia River Hardy Creek WDFW  peak 33
Chum Columbia River Crazy J WDFW  peak 32
Chum Columbia River Hamilton WDFW  peak 32
Chum Columbia River Hamilton Springs WDFW  peak 33
Sockeye Snake River Snake River mainstem FPCh  dc 16

 
a Type: dc = dam count, peak = one time peak count of spawners or carcasses, redds = redd count along an index reach, rpm = redds per mile, tlc = total live 
count  (an estimate of the total number of spawers), unk = unknown. 
b Northwest Fisheries Science Center 
c Marmorek and Peters 1998 
d Beamesderfer et al. 1998 
e Peters et al. 1999 
f Oregon Dept. of Fish and Wildlife 
g Washington Dept. of Fish and Wildlife 
h Fish Passage Center (2002) 
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