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Simulating cell 
biology

Steven S. Andrews1  
and Adam P. Arkin1,2

Science is an iterative process 
of experiments and hypotheses. 
Experiments produce surprising 
results; hypotheses are created 
to explain the results; new 
experiments are designed to test 
the hypotheses, of which some 
agree, some fail without yielding 
useful information and some 
produce more surprises; and 
the cycle continues. As a field 
matures, knowledge grows and 
the hypotheses become more 
elaborate, eventually exceeding 
the limits of what a scientist can 
mentally grasp. This is where 
computational modeling becomes 
necessary, and where cell biology 
is today.

Modeling serves the same 
purposes as scientific cartoons 
or calculations on the backs of 
envelopes, but is much more 
precise. A model can definitively 
show if an hypothesis can explain 
a set of data, make experimental 
predictions and help identify 
system aspects that are poorly 
understood. After many iterations 
of experiments and theory, 
models are often sufficiently 
supported by evidence that 
they represent the current 
understanding of a system, 
against which new results are 
compared. This primer focuses 
on simulations of biochemical 
reaction networks, which is a 
core component of most cell 
biological models. We leave 
aside the related arts of model 
building, model analysis such as 
sensitivity analysis, and model/
data comparison.

We explore a range of 
simulation methods that 
vary in their level of physical 
approximation and abstraction. 
For concreteness, each is 
presented for the same generic 
elementary reversible chemical 
reaction:
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These molecules might be 
proteins, small molecules, 
DNA, RNA or other species. 
The molecular concentrations, 
denoted below as a, b and c, are 
variables that change over time, 
whereas the system volume, the 
initial concentrations and the 
reaction rate constants kf and 
kr are physical parameters that 
are specified by the modeler 
and kept constant throughout 
the simulation. When these 
parameters have not been 
directly measured and cannot 
be estimated from indirect data, 
model behavior is often explored 
as a function of them. Outputs of 
the simulation methods discussed 
below, applied to a simple 
chemical oscillator, are compared 
in Figure 1. As this is a primer 
rather than a review, we only 
list a few of the many excellent 
references.

ODE models
One of the most approximate 
physical models of biochemical 
networks, the kinetic ordinary 
differential equation (ODE), 
assumes that molecular 
concentrations are continuous 
(it ignores the discrete nature of 
molecules), that reactions occur 
in a homogeneous, well-stirred 
volume and that these reactions 
occur in a deterministic manner. 
This is by far the most common 
form of biological model and 
can represent both the transient 
dynamics and the long-term 
steady-state behavior of a system 
if the above approximations hold.

ODE models of biochemical 
networks have been successfully 
applied to diverse systems. 
Metabolic networks are often 
investigated under constant 
conditions to identify the steady-
state rates of metabolite flux and 
cellular growth [1]. Switch-like 
memories, involving bistability 
and hysteresis, are observed in 
cell cycle models [2]: the division 
control machinery is switched 
from one stable set of chemical 
concentrations during interphase 
to another during early M phase 
by a high concentration of 
cyclin; after division, the cyclin 
concentration crosses a low 
threshold to switch the system 
back to interphase. Oscillations 
are found, not surprisingly, 
in circadian rhythm models 
[3]. Finally, ODEs can display 
deterministic chaos [4], which has 
been found in simulated reaction 
networks but not live cells, 
perhaps because of evolutionary 
selection against it.

In an ODE model, a reaction 
network is expressed as a set 
of differential equations with 
one equation per chemical and 
with terms that represent the 
reactions. Using A+B↔C, and 
assuming mass action kinetics, 
the differential equation for C is:

	 dc
dt

k ab k cf r= −
�

(2)

Equations for a and b are 
analogous: both are the 
negative of equation 2. The time 
dependence of the chemical 
concentrations, and the long-
term states, can be solved 
analytically for very simple cases 
and numerically [5] for more 
typical networks. These numerical 
methods, along with those 
described below, span a wide 
range of sophistication to control 
different sources of numerical 
and approximation error. Simple 
ones are often adequate for initial 
work, but they run slowly and are 
prone to unstable behavior, while 
complex ones can be research 
programs in themselves.

Spatial models
It is becoming increasingly clear 
that, even in bacteria, there is an 
exquisite spatial organization of 
cellular components, and that 
the dynamic localization and 
formation of proteins and cellular 
superstructures plays a key role 
in cellular processes ranging 
from cell shape, to cell cycle, to 
signaling. This organization can 
only be modeled by accounting 
for space as well as reactions.

Spatial models can represent 
the same behaviors listed above, 
plus several new ones. Chemical 
waves are seen in neuroblastoma 
cells [6]: a calcium burst starts 
in the center of a neurite, which 
starts a wave that propagates 
outwards towards the soma and 
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Figure 1. Simulation results for a simple chemical oscillator using different simulation methods. 

The Lotka-Volterra system is shown, which shares key features with cellular oscillators, such as circadian rhythms. Insets show the 
spatial distributions of molecules at the indicated times. In the top panels, note that stochasticity allows the system to drift to large 
amplitude oscillations and that the Langevin and Gillespie methods yield similar results. In the bottom panels, all of which were 
started with nearly homogeneous initial states, differences arise from the approximations: the PDE simulation has predictable oscil-
lations due to the minimal stochasticity (which is only in the initial state); the Gillespie simulation has larger peaks than the Langevin 
one because it only allows integer numbers of molecules in each bin; and the particle tracking simulation shows larger and fewer 
bursts than does the Gillespie simulation because it accurately treats diffusion at all length scales (this difference was reduced with 
a spatial Gillespie simulation that used smaller subvolumes). Parameters: rate constants are 10 min–1, 8000 nm3molec–1min–1, and 10 
min–1, for the respective reactions shown in the top-right corner, systems start with 100 of each blue and red molecules, their diffu-
sion coefficients are 100 nm2min–1, the volume is 100 nm high and wide by 10 nm deep, and the first three spatial simulations divide 
this volume into cubic subvolumes that are 10 nm on a side. Simulations were performed with the Smoldyn program, which can be 
downloaded from http://genomics.lbl.gov/~sandrews/software.html.
growth cones. Spatial oscillations 
are used by Escherichia coli to 
center the cell division site [7]: 
oscillation of MinC protein back 
and forth in the cell, arising from 
dynamics of the MinD and MinE 
proteins, causes its time-averaged 
concentration to be high at the 
cell poles and low at the center; 
this directs the division apparatus 
to the center. Spontaneous 
pattern formation [8] arises in 
the development of an embryo 
from an egg: a reaction network 
of morphogens is sufficiently 
unstable in the initial symmetric 
system that random perturbations 
trigger pattern formation, which 
is used to position the head, tail, 
front, and back of the embryo. 
Each of these models showed 
how the known biochemistry 
for the system could lead to the 
observed dynamics.

Spatial phenomena arise when 
the timescales of diffusion are 
somewhat slower than those for 
reactions. Diffusion timescales 
are about L2/D, where D is a 
molecule’s diffusion coefficient 
and L is a characteristic length 
such as the cell length or the 
distance between concentration 
waves. Reaction timescales, using 
A+B↔C, are (a+b)/(kf ab) for the 
forward reaction and kr

–1 for the 
reverse reaction.

If the system consists of 
several compartments, for 
example nucleus and cytoplasm, 
and there is rapid mixing within 
compartments, then simulation 
is easiest with a compartmental 
model. The dynamics are treated 
with the same ODEs as for 
non-spatial models, but now 
with a set of equations for each 
compartment and also terms for 
transport between compartments.

To model continuous space, 
concentrations become functions 
of the position. For A+B↔C, the 
concentrations are a(x), b(x), and 
c(x), where x is a position vector. 
The time dependence of C is 
given with the partial differential 
equation (PDE)

	
∂

∂
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t
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x
x x x x= − + 2

� (3)
The first terms represent the 
formation and dissociation of C, 
now at position x, and the last 
term accounts for diffusion of C 
into and away from x, where DC 
is the diffusion coefficient for C. 
Numerical integrations [8,9] treat 
the space by partitioning it into 
subvolumes. They are particularly 
challenging for spatial systems 
because instabilities arise when 
the time step exceeds about ∆x2/D, 
where ∆x is the partition width and 
D is the diffusion coefficient of the 
fastest diffusing species. Thus, 
high spatial resolution with low 
prediction error requires both small 
subvolumes and short time steps, 
which make these simulations 
computationally intensive.

http://genomics.lbl.gov/~sandrews/software.html.


Magazine
R525
Stochastic models
ODE and PDE models are 
approximate because they treat 
molecules with continuously 
variable concentrations rather 
than the discrete entities that 
they actually are [10]. In reality, 
reactions occur as a rapid 
succession of separate elementary 
events, the exact timing of which 
is effectively random because 
of the Brownian motion of the 
reactants. This stochasticity is 
most important when the reaction 
network is poised near a threshold. 
For example, biochemical 
oscillators often have a sharp 
transition between concentrations 
that produce oscillations and 
those that do not. Just outside 
an oscillating regime, relatively 
minor stochasticity can trigger and 
maintain regular oscillations, called 
stochastic resonance, which has 
been found in calcium oscillations 
[11] and circadian clocks [12]. 

Some genetic switches 
have evolved to be sensitive 
enough for naturally stochastic 
gene expression to produce 
phenotypically diverse 
populations, which in some 
cases are more evolutionarily 
fit than their deterministic 
counterparts. These include the 
lysis–lysogeny switch in λ phage 
[13] and pili phase variation 
in parasitic bacteria. In some 
cases, stochasticity simply adds 
noise to otherwise deterministic 
dynamics, while in others it can 
fundamentally alter the types of 
dynamics that are possible [14].

For most systems, if there 
are about n molecules of some 
species, this value will fluctuate 
with standard deviation of 
about n½. These fluctuations are 
typically negligible for millions 
of molecules in a cell (as in the 
case of metabolites), significant 
for thousands of molecules (as 
with signaling proteins), and very 
important for tens of molecules 
(for example mRNA). Naturally 
sporadic DNA transcription 
causes there to be few mRNA 
molecules in a cell of a given type; 
the consequent stochasticity 
is amplified during translation 
and sometimes again during 
downstream gene regulation. 
This stochastic gene expression 
is likely to be a primary cause of 
endogenous non-genetic variation 
between cells.

Stochastic simulation theory 
typically starts with the chemical 
master equation [10], which tracks 
the probabilities of all possible 
system states over time. Even 
for trivial reaction networks, 
it becomes so unwieldy that 
modelers generally choose a 
Monte Carlo method, in which the 
simulation makes random choices 
as it progresses, thus producing 
a single stochastic time course. A 
different time course is produced 
on every run, so stochastic 
simulations are interpreted by 
analyzing statistics on the results, 
as one does with experiments.

Rather than presenting the 
defining equations, we show two 
stochastic simulation algorithms 
because they are more instructive 
in this case. The Gillespie 
algorithm [15] is exact, meaning 
that statistics collected from 
simulations have been proven to 
be identical to those calculated 
from the master equation. For 
A+B↔C, the algorithm updates 
the numbers of molecules — given 
by A, B, and C, as they are 
numbers of molecules rather 
than concentrations — and the 
simulation time according to:

(1) s = kf AB/V + kr C
(2) ∆t = {exponentially 

distributed random number with 
mean 1/s}

(3) µ = {‘f’ with probability 
kf AB/(Vs), and otherwise ‘r’}

(4) increase t by ∆t and 
{decrement A and B and 
increment C if µ =‘f’}, or {increment 
A and B and decrement C if µ = ‘r’}

(5) repeat from step (1)
(Minor changes are required for 

reactions with identical reactants.) 
In a faster but more approximate 
method, random noise is added 
to the deterministic ODEs to 
yield a form of the chemical 
Langevin equation [16]. A simple 
implementation for species C is
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In the noise term, Nf (t) and Nr(t) 
are normally distributed random 
numbers (Gaussian with mean 
0 and standard deviation 1) that 
are statistically independent of 
each other and of all Nf (t) and Nr (t) 
with other t values. This is fairly 
accurate if molecule counts are 
not too low (below ~100) and the 
system is not too close to a critical 
point in its dynamics.

Spatial-stochastic models
Even more detailed simulations 
account for both space and 
individual molecules, which can 
be done with either of two general 
schemes. The spatial Langevin and 
spatial Gillespie methods combine 
techniques listed above by running 
the stochastic algorithms in each 
of many subvolumes [17]. Diffusion 
is simulated by defining new 
‘reactions’ in which molecules 
move between neighboring regions 
with rate constants D/∆x2. These 
are refinements of algorithms 
described previously, so models 
can be developed incrementally, 
which simplifies both model 
parameterization and interpretation 
of results. 

In contrast, the particle tracking 
scheme [18] approaches a similar 
level of simulation detail from 
the other direction, by being an 
approximation of a molecular 
picture. Simulated molecules 
are represented as point-like 
particles with continuously variable 
positions. Diffusion is simulated 
by displacing molecules by small 
random amounts at each time 
step; pairs of molecules react 
when they approach each other to 
within a ‘binding radius’ or when 
ligands diffuse into a surface that 
is covered with cognate receptors.

All of these methods can be 
valuable for systems that require 
spatial resolution and accurate 
stochastics, such as cell signaling, 
although their predictions can 
vary significantly (Figure 1). 
Particle tracking is typically 
the most accurate of these 
methods because it addresses 
the correlations that occur 
between reactions: ligands bind 
to clustered receptors repeatedly 
and in localized patches to create 
intermittent bursts of signaling 
activity [19], and the dissociation 
of a C molecule in the A+B↔C 
reaction leads to products that 
often recombine soon after their 
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Figure 2. The E. coli chemotaxis signaling network, which has revealed many insights 
into cell biology through modeling research. 

An increase of the repellent concentration promotes cell tumbling by: repellent mol-
ecules bind to receptors, they transmit a conformational shift through CheW to CheA, 
the activity of CheA increases, active CheA is phosphorylated, the phosphate is trans-
ferred to CheY, CheYp diffuses and binds to a motor (there are usually several flagella), 
the motor is biased towards clockwise rotation, and the previously bundled flagella 
become disordered. Dephosphorylation of CheYp by CheZ resets the system. Mean-
while, the system adapts to the repellent so that it can sense the gradient even as the 
concentration decreases. This happens by phosphorylation of CheB by CheAp and 
demethylation of receptors by CheBp, which decreases their activity; these methyls 
are replaced by CheR.
formation [18]. Particle tracking is 
also useful for simulating diffusion 
among inert macromolecules and 
convoluted membranes, which 
can affect biochemical signal 
transmission [20,21].

Mechanical models
A tremendous diversity of 
mechanical models have been 
designed, using a comparable 
diversity of methods. Topics that 
have been modeled include: 
actin and other polymers used 
in cell motility; polymers that 
form bacterial or eukaryotic 
cytoskeletons; interactions 
between extracellular fluid flow 
and cell chemotaxis; the dynamics 
of motor proteins; and many 
others. These mechanical models 
introduce additional variables to 
the chemical concentrations and 
chemical positions described 
previously, such as deformations 
and motions of polymers and 
membranes. 

In many cases, mechanical 
processes may be simulated using 
technologies similar to those 
above, including ODEs, PDEs and 
stochastic methods, although 
they often require specialized 
approaches. The coupling of these 
processes to chemical ones can be 
subtle. As an example, a monomer 
might add to a polymer with a 
chemical reaction; if the polymer is 
in contact with a membrane, this 
will distort the membrane, which 
might then affect the growth or 
shrinkage rates of neighboring 
polymers.

Case study: chemotaxis
The E. coli chemotaxis signaling 
network (Figure 2) has been 
uniquely well modeled, so it is 
informative to trace its history and 
to consider a few modeling results. 
Briefly, E. coli cells are observed to 
swim by alternating straight runs 
and randomizing tumbles. Bacteria 
avoid a nearby repellent source 
by tumbling more often when 
they sense an increasing repellent 
concentration and less often when 
the concentration decreases. 
The signaling network that 
drives this behavior was largely 
figured out from experiments in 
the 1970s and 1980s, but was 
not quantitatively investigated 
as a system until a simulation 
for the initial response portion 
of the network was published 
in 1993 [22]. This model was 
based on ODEs, with a stochastic 
component for the motor complex. 
Some model parameters had been 
experimentally measured, some 
were found indirectly from other 
experiments, and others were 
adjusted by hand until simulation 
results were similar to experimental 
ones. The model accurately 
represented the phenotypes of 33 
out of 41 chemotaxis mutants, but 
could not capture the observed 
high sensitivity. This landmark 
achievement was a typical first 
model: it was based on a highly 
simplified network, it used simple 
methods, and the results agreed 
qualitatively, but not quantitatively, 
with experimental ones.

Later models filled in various 
gaps, including the adaptation 
portion of the network and 
reactions in the receptor 
cluster. With the many unknown 
parameters, which was especially 
true with the newer models, 
parameterization became a major 
question. Some models optimized 
parameters using automated 
search methods, others showed 
that natural variability in protein 
concentrations can predict the 
phenotypic diversity found in 
clonal populations [23], and yet 
others showed that chemotaxis 
adaptation is remarkably 
insensitive to parameter values 
[24]. Stochastic, spatial, and 
particle tracking simulations 
have been developed for the 
chemotaxis network: a stochastic 
one explained the large temporal 
variations that are observed in 
single cells [25], a spatial one 
showed that the intracellular CheZ 
distribution affects transmitted 
signals [26], and a particle tracking 
one demonstrated the importance 
of macromolecular crowding [20]. 
Several disagreements between 
models and experiments have 
been investigated with specialized 
models that focused on portions of 
the network. In particular, receptor 
cluster and motor complex models 
showed that the high sensitivity of 
the network is likely to arise from 
allostery [27].

While all of these results 
were found specifically for the 
chemotaxis signaling network, 
they are likely to apply much more 
broadly. Thus, these models are 
revealing how cell biology works 
at a much deeper level than 
would have been possible from 
experiments alone.

Future directions
As with the experimental sciences, 
the cell simulation field is largely 
driven by the development of new 
techniques, and of new tools that 
implement those techniques. Many 
techniques under development 
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Elephants 
avoid costly 
mountaineering
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Understanding the behavioural 
decisions underlying animal 
movements is a major challenge. 
Here we report evidence for the 
importance of the abiotic terrain 
feature ‘gradient’ in guiding the 
movements of African savannah 
elephants (Loxodonta africana). 
Global Positioning System (GPS) 
tracking data overlaid onto digital 
elevation and surface gradient 
models show that elephants tend 
to avoid steep slopes. Energy 
calculations suggest that even 
minor hills are considerable 
energy barriers for heavy animals.

Elephants are keystone animals 
in Africa and Asia [1], and effective 
conservation planning strategies 
must integrate a thorough 
knowledge of the range use and 
spatial requirements of these 
magnificent animals. Only with 
such knowledge can we ensure 
that elephants will be able to 
survive despite increasingly 
aggressive human encroachment 
into their traditional territory 
[2]. Moreover, there is much to 
be learned scientifically from 
understanding the ecological 
requirements — as well as 
limitations — of the last remaining 
representatives of a once 
cosmopolitan and ecologically 
critical megafauna.

Early studies of elephant 
movements deployed radio 
tracking from the air and provided 
rather infrequent ‘fixes’ which 
painted an incomplete picture 
of spatial utilisation [3]. Modern 
GPS collars using a satellite 
and/or cell-phone link allow us to 
collect movement data with high 
temporal and spatial resolution 
[4], reflecting true range use by 
also mapping areas not visited. 
Long-term elephant tracking 
studies are beginning to show 

Correspondences
are working to increase simulation 
accuracy while reducing the 
computational burden. A central 
challenge concerns simulation of 
interacting processes that occur 
on different time scales; the fast 
scale imposes a short simulation 
time step, but that makes the 
simulation too slow to observe 
the slow scale. This is being met 
with new algorithms and hybrid 
simulations that treat space and 
stochasticity only as required. Also, 
given the size and the possible 
nonlinearity and non-determinism 
represented by biological models, 
tools for analysis of models, such 
as those that provide parametric 
sensitivity analysis, and for 
comparing models to data for 
parameterization and (in)validation 
are both profoundly needed and in 
a relatively primitive state.

It is easy to describe the ideal 
simulation tool: it should be able to 
simulate reactions and diffusion as 
accurately as needed, account for 
all relevant mechanical processes, 
help with model parameterization, 
validate and discriminate between 
models using data, and be easy 
to use. Many modeling tools are 
aiming towards this goal but it 
remains elusive, in part because of 
the extraordinary speed with which 
improved analysis methods and 
cellular measurements are being 
developed.
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