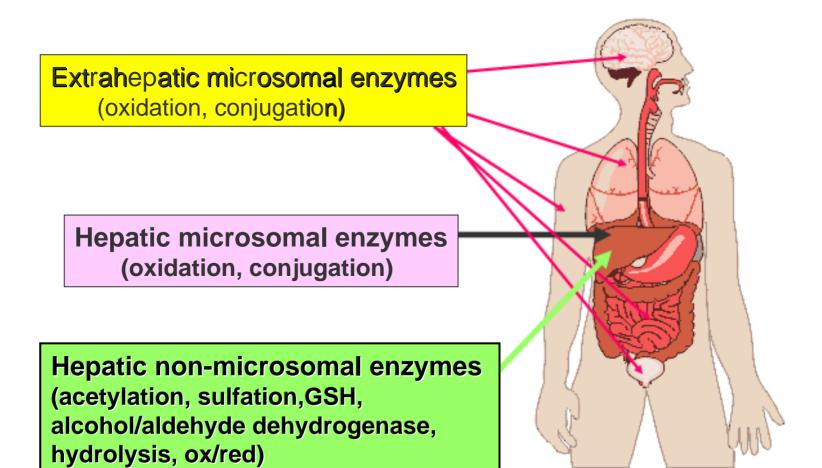
Drug Metabolism

November 1, 2007

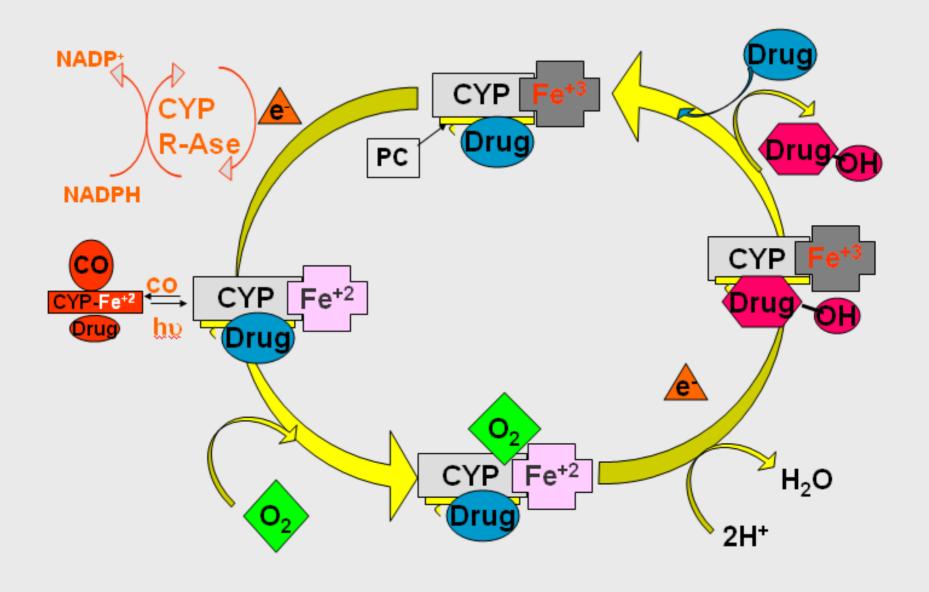
S.P. Markey
Laboratory of Neurotoxicology
NIMH, NIH


Evolution of Drug Metabolism As a Science Post WWII Pioneers

- * Richard Tecwyn Williams Great Britain
 - 1942, worked on the metabolism on TNT with regard to toxicity in munitions workers; due to the war he assembled teams to work on metabolism of sulfonamides, benzene, aniline, acetanilide, phenacetin, and stilbesterol
 - Developed concept of Phase 1 & Phase 2 Reactions.
 - * Biotransformation involves metabolic oxygenation, reduction, or hydrolysis; result in changes in biological activity (increased or decreased)
 - * Second phase, conjugation, in almost all cases resulted in detoxification.

Evolution of Drug Metabolism As a Science Post WWII Pioneers

- * Bernard B. Brodie, U.S.
 - NYU and Laboratory of Industrial Hygiene, NYC 1949 Metabolic fate of acetanilide and phenacetin in man (with Julius Axelrod as pre-doc; later an NIMH Nobel laureate)
 - 1950s, NIH pioneering studies on all aspects of drug metabolism; esp. reserpine, serotonin;hexobarbital tolerance
 - 1952 R.T. Williams spent 6 months at NIH; subsequently many students went between both labs (Richard Adamson, James Gillette, and Sidney Udenfriend)
 - 1950s, Brodie lab developed the spectrophotofluorimeter (Robert Bowman)


Drug Metabolism

Liver Microsomal System

Oxidative Reactions: Cytochrome P450 mediated

- * Examples
 - Formation of an inactive polar metabolite
 - * Phenobarbital
 - Formation of an active metabolite
 - * By Design: Purine & pyrimidine chemotherapy prodrugs
 - * Inadvertent: terfenadine fexofenadine
 - Formation of a toxic metabolite
 - * Acetaminophen NAPQI

Electron flow in microsomal drug oxidizing system

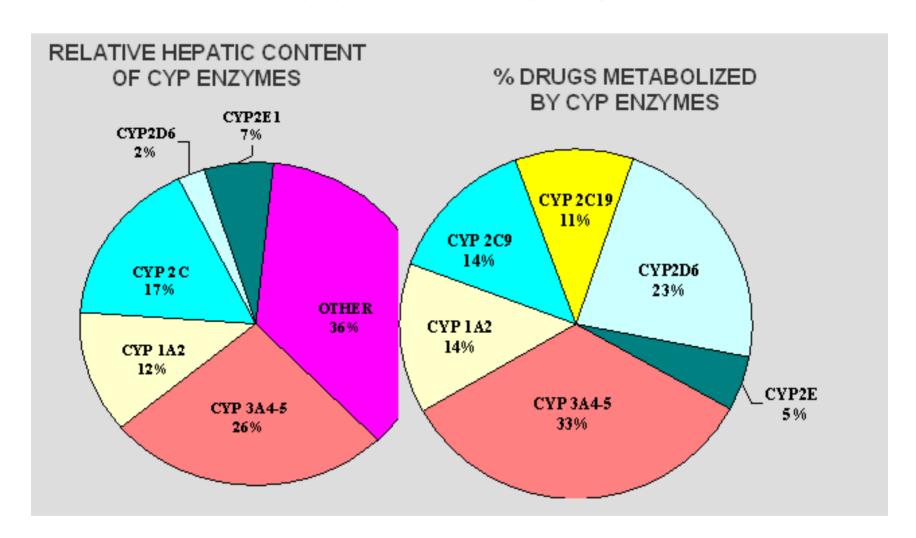
Cytochrome P450 Isoforms (CYPs) - An Overview

- * NADPH + H⁺ + O₂ + Drug \rightarrow NADP⁺ + H₂O + Oxidized Drug
- * Carbon monoxide binds to the reduced Fe(II) heme and absorbs at 450 nm (origin of enzyme family name)
- * CYP monooxygenase enzyme family is major catalyst of drug and endogenous compound oxidations in liver, kidney, G.I. tract, skin, lungs
- * Oxidative reactions require the CYP heme protein, the reductase, NADPH, phosphatidylcholine and molecular oxygen
- * CYPs are in smooth endoplasmic reticulum in close association with NADPH-CYP reductase in 10/1 ratio
- * The reductase serves as the electron source for the oxidative reaction cycle

CYP Families

- * Multiple CYP gene families have been identified in humans, and the categories are based upon protein sequence homology
- * Most of the drug metabolizing enzymes are in CYP 1, 2, & 3 families.
- * CYPs have molecular weights of 45-60 kDa.
- * Frequently, two or more enzymes can catalyze the same type of oxidation, indicating redundant and broad substrate specificity.
- * CYP3A4 is very common to the metabolism of many drugs; its presence in the GI tract is responsible for poor oral availability of many drugs

CYP Nomenclature


- Families CYP plus arabic numeral (>40% homology of amino acid sequence, eg. CYP1)
- * Subfamily 40-55% homology of amino acid sequence; eg. CYP1A
- * Subfamily additional arabic numeral when more than 1 subfamily has been identified; eg. CYP1A2
- * Italics indicate gene (CYP1A2); regular font for enzyme
- * Comprehensive guide to human Cyps http://drnelson.utmem.edu/human.P450.table.html

CYP Tables

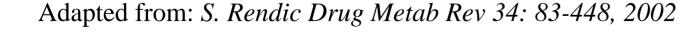
- Human CYPs variability and importance in drug metabolism
- * Isoforms in metabolism of clinically important drugs
- * Factors that influence CYP activity
- * Non-Nitrogenous CYP inhibitors
- * Extrahepatic CYPs

ROLE OF CYP ENZYMES IN HEPATIC DRUG METABOLISM

Human Liver Drug CYPs

CYP	Level	Extent of
enzyme	(%total)	variability
1A2	~ 13	~40-fold
1B1	<1	
2A6	~4	~30 - 100-fold
2B6	<1	~50-fold
2C	~18	25-100-fold
2D6	Up to 2.5	>1000-fold
2E1	Up to 7	~20-fold
2F1		
2J2		
3A4	Up to 28	~20-fold
	30-60*	90-fold*
4A, 4B		

S. Rendic & F.J. DiCarlo, Drug Metab Rev 29:413-80, 1997 *L. Wojnowski, Ther Drug Monit 26: 192-199, 2004

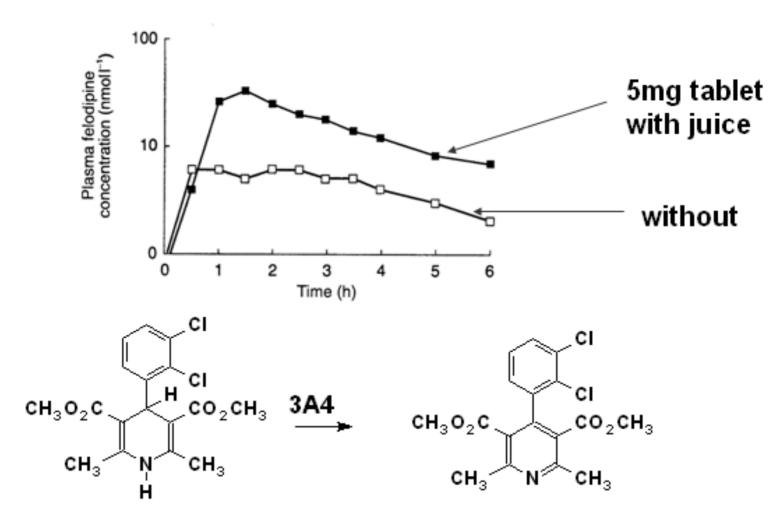

Participation of the CYP Enzymes in Metabolism of Some Clinically Important Drugs

CYP Enzyme	Examples of substrates
1A1	Caffeine, Testosterone, R-Warfarin
1A2	Acetaminophen, Caffeine, Phenacetin, R-Warfarin
2A6	17β-Estradiol, Testosterone
2B6	Cyclophosphamide, Erythromycin, Testosterone
2C-family	Acetaminophen, Tolbutamide (2C9); Hexobarbital, S- Warfarin (2C9,19); Phenytoin, Testosterone, R-Warfarin , Zidovudine (2C8,9,19);
2E1	Acetaminophen, Caffeine, Chlorzoxazone, Halothane
2D6	Acetaminophen, Codeine, Debrisoquine
3A4	Acetaminophen, Caffeine, Carbamazepine, Codeine, Cortisol, Erythromycin, Cyclophosphamide, S- and R-Warfarin, Phenytoin, Testosterone, Halothane, Zidovudine

Factors Influencing Activity and Level of CYP Enzymes

Nutrition	1A1;1A2; 1B1, 2A6, 2B6, 2C8,9,19; 2D6, 3A4,5
Smoking	1A1;1A2, 2E1
A Icohol	2E1
Drugs	1A1,1A2; 2A6; 2B6; 2C; 2D6; 3A3, 3A4,5
En vironment	1A1,1A2; 2A6; 1B; 2E1; 3A3, 3A4,5
Genetic Pol y morphism	1 A; 2 A 6; 2C9,19; 2 D6; 2E1

Red indicates enzymes important in drug metabolism

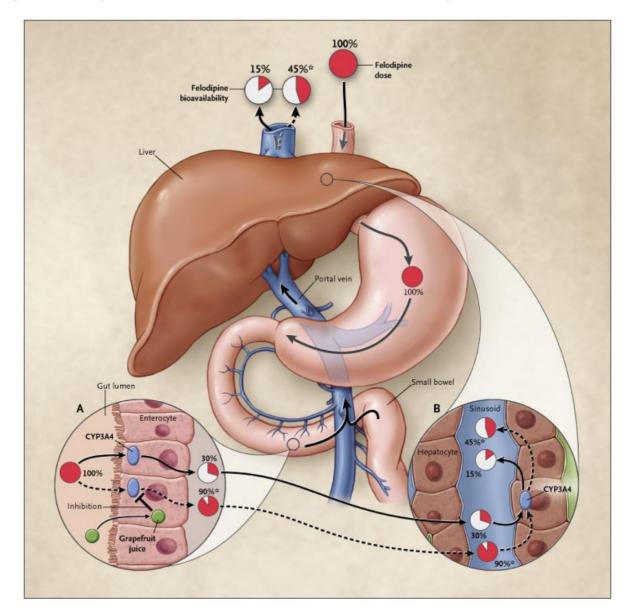

Non-nitrogenous Substances that Affect Drug Metabolism

- * Grapefruit juice CYP 3A4 inhibitor; highly variable effects; fucocoumarins
 - Bailey, D.G. et al.; Br J Clin Pharmacol 1998, 46:101-110
 - Bailey, D.G et al.; Am J Cardiovasc Drugs 2004, 4:281-97.
- * St John's wort, other herbal products
 - Tirona, R.G and Bailey, D.G.; Br J Clin Pharmacol. 2006,61: 677-81
- * Isosafrole, safrole
 - CYP1A1, CYP1A2 inhibitor; found in root beer, perfume

Overheard Conversation

* At a B&B breakfast table, after grapefruit juice was served, someone remarked "A friend read the package insert with her prescription and the fine print warned against drinking grapefruit juice...is this true? Should it be avoided with all medications? How about grapefruit itself? How about orange juice?"

Effect of Grapefruit Juice on Felodipine Plasma Concentration



Review- D.G. Bailey, et al.; Br J Clin Pharmacol 1998, 46:101-110

Grapefruit Juice Facts

- * GJ or G, lime, or Sun Drop Citrus soda, Seville OJ(not most OJ) elevates plasma peak drug concentration, not elimination $t_{1/2}$
- * GJ reduced metabolite/parent drug AUC ratio
- * GJ caused 62% reduction in small bowel enterocyte 3A4 and 3A5 protein; liver not as markedly affected (i.v. pharmacokinetics unchanged)
- * GJ effects last ~4 h, require new enzyme synthesis
- * Effect cumulative (up to 5x C_{max}) and highly variable among individuals depending upon 3A4 small bowel basal levels

First-Pass Metabolism after Oral Administration of a Drug, as Exemplified by Felodipine and Its Interaction with Grapefruit Juice

Human Drug Metabolizing CYPs Located in Extrahepatic Tissues

CYP	Tissue	
Enzyme	i issue	
1A1	Lung, kidney, GI tract, skin, placenta, others	
1B1	Skin, kidney, prostate, mammary,others	
2A6	Lung, nasal membrane, others	
2B6	GI tract, lung	
2C	GI tract (small intestine mucosa) larynx, lung	

Human Drug Metabolizing CYPs Located in Extrahepatic Tissues (cont'd)

CYP	Tissue	
Enzyme		
2E1	Lung, placenta, others	
2F1	Lung, placenta	
2J2	Heart	
3A	GI tract, lung, placenta, fetus, uterus,	
	kidney	
4B1	Lung, placenta	
4A11	Kidney	

CYP Biotransformations

- * Chemically diverse small molecules are converted, generally to more polar compounds
- * Reactions include:
 - Aliphatic hydroxylation, aromatic hydroxylation
 - Dealkylation (N-,O-, S-)
 - N-oxidation, S-oxidation
 - Deamination
 - Dehalogenation
- * Examples see *Principles of Clinical Pharmacology*, Chapter 11

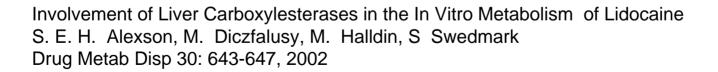
Non-CYP Drug Biotransformations

- * Oxidations
- * Hydrolyses
- * Conjugation (Phase 2 Rxs)
 - Major Conjugation Reactions
 - * Glucuronidation (high capacity)
 - * Sulfation (low capacity)
 - * Acetylation (variable capacity)
 - * Examples:Procainamide, Isoniazid
 - Other Conjugation Reactions: O-Methylation, S-Methylation, Amino Acid Conjugation (glycine, taurine, glutathione)
 - Many conjugation enzymes exhibit polymorphism

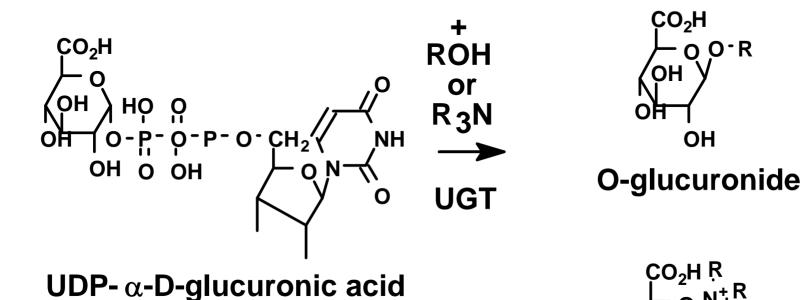
Non-CYP drug oxidations (1)

- * Monoamine Oxidase (MAO), Diamine Oxidase (DAO) MAO (mitochondrial) oxidatively deaminates endogenous substrates including neurotransmitters (dopamine, serotonin, norepinephrine, epinephrine); drugs designed to inhibit MAO used to affect balance of CNS neurotransmitters (L-DOPA); MPTP converted to toxin MPP+ through MAO-B. DAO substrates include histamine and polyamines.
- * Alcohol & Aldehyde Dehydrogenase non-specific enzymes found in soluble fraction of liver; ethanol metabolism
- * Xanthine Oxidase converts hypoxanthine to xanthine, and then to uric acid. Drug substrates include theophylline, 6-mercaptopurine. Allopurinol is substrate and inhibitor of xanthine oxidase; delays metabolism of other substrates; effective for treatment of gout.

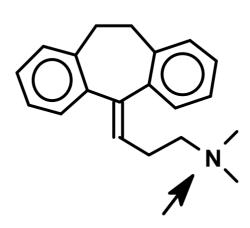
Non-CYP drug oxidations (2)

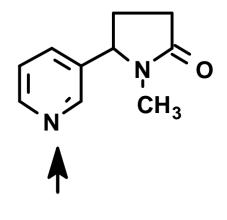

* Flavin Monooxygenases

- Family of enzymes that catalyze oxygenation of nitrogen, phosphorus, sulfur particularly facile formation of N-oxides
- Different FMO isoforms have been isolated from liver, lung (S.K. Krueger, et al. Drug Metab Rev 2002; 34:523-32)
- Complete structures defined (Review: J. Cashman, 1995, Chem Res Toxicol 8:165-181; Pharmacogenomics 2002; 3:325-39)
- Require molecular oxygen, NADPH, flavin adenosine dinucleotide (FAD)
- Single point (loose) enzyme-substrate contact with reactive hydroperoxyflavin monoxoygenating agent
- FMOs are heat labile and metal-free, unlike CYPs
- Factors affecting FMOs (diet, drugs, sex) not as highly studied as CYPs


Hydrolysis secondary to Cyp Metabolism

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this p cture.




Conjugation Reactions Glucuronidation

N+-glucuronide

Liver has several soluble UDP-Gluc-transferases

Morphine

Amitriptyline

Cotinine

Glucuronic acid conjugation to phenols, 3°-amines, aromatic amines

Conjugation Reactions Sulfation

Examples: ethanol, p-hydroxyacetanilide, 3-hydroxycoumarin

Minoxidil

Minoxidil-sulfate

Sulfation may produce active metabolite

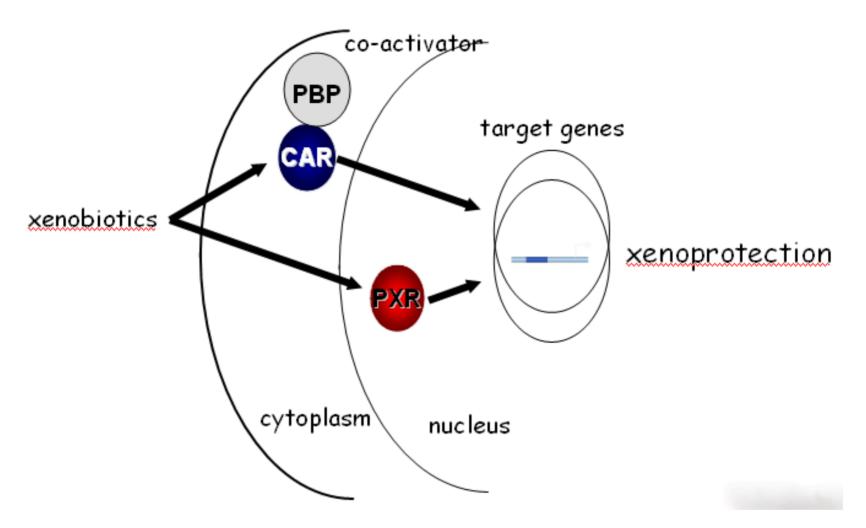
Conjugation Reactions Acetylation

Examples: Procainamide, isoniazid, sulfanilimide, histamine

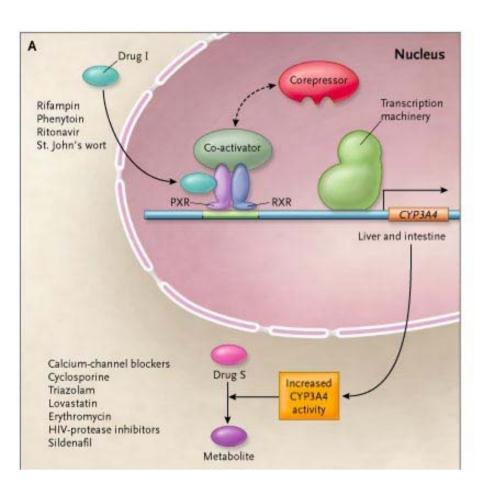
NAT enzyme is found in many tissues, including liver

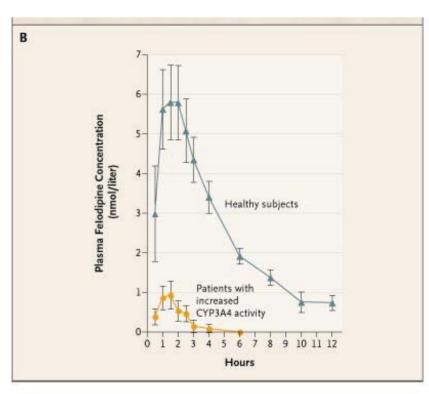
Procainamide

Procainamide

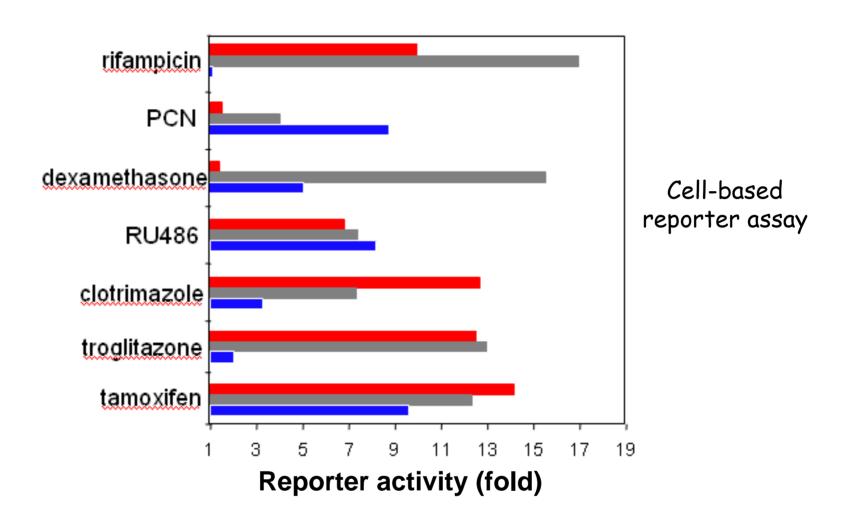

Additional Effects on Drug Metabolism

- * Species Differences
 - Major differences in different species have been recognized for many years (R.T. Williams).
 - * Phenylbutazone half-life is 3 h in rabbit, ~6 h in rat, guinea pig, and dog and 3 days in humans.

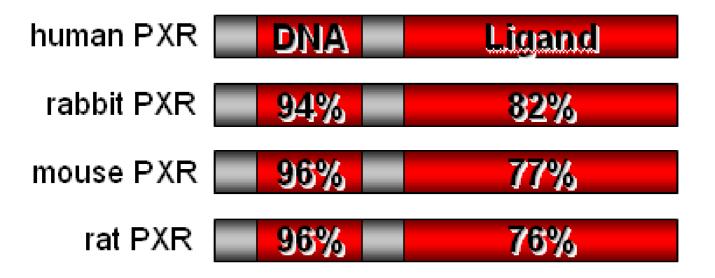

* Induction


- Two major categories of CYP inducers
 - * Phenobarbital is prototype of one group enhances metabolism of wide variety of substrates by causing proliferation of SER and CYP in liver cells.
 - * Polycylic aromatic hydrocarbons are second type of inducer (ex: benzo[a]pyrene).
- Induction appears to be environmental adaptive response of organism
- Orphan Nuclear Receptors (PXR, CAR) are regulators of drug metabolizing gene expression

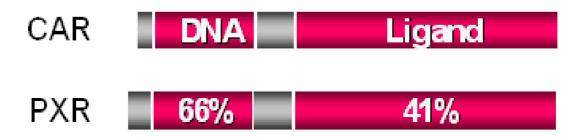
PXR and CAR Protect Against Xenobiotics



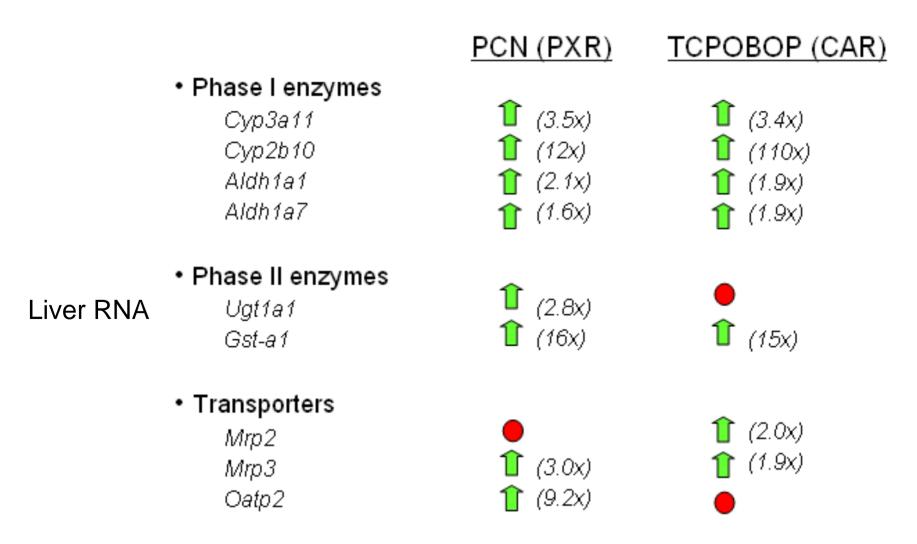
Mechanism of Induction of CYP3A4-Mediated Metabolism of Drug Substrates (Panel A) and the Resulting Reduced Plasma Drug Concentration (Panel B)



CYP3A Inducers Activate Human, Rabbit, and Rat PXR

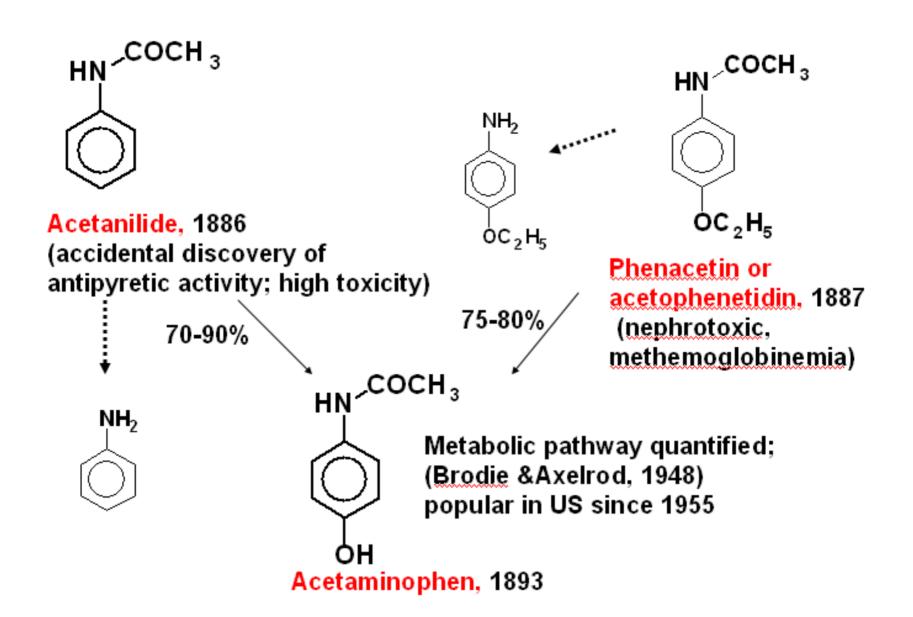


Pregnane X Receptor (PXR)


- PXR is one of Nuclear Receptor (NR) family of ligand-activated transcription factors.
- * Named on basis of activation by natural and synthetic C21 steroids (pregnanes), including pregnenolone 16α -carbonitrile (PCN)
- * Cloned due to homology with other nuclear receptors
- Highly active in liver and intestine
- * Binds as heterodimer with retinoic acid receptor (RXR)

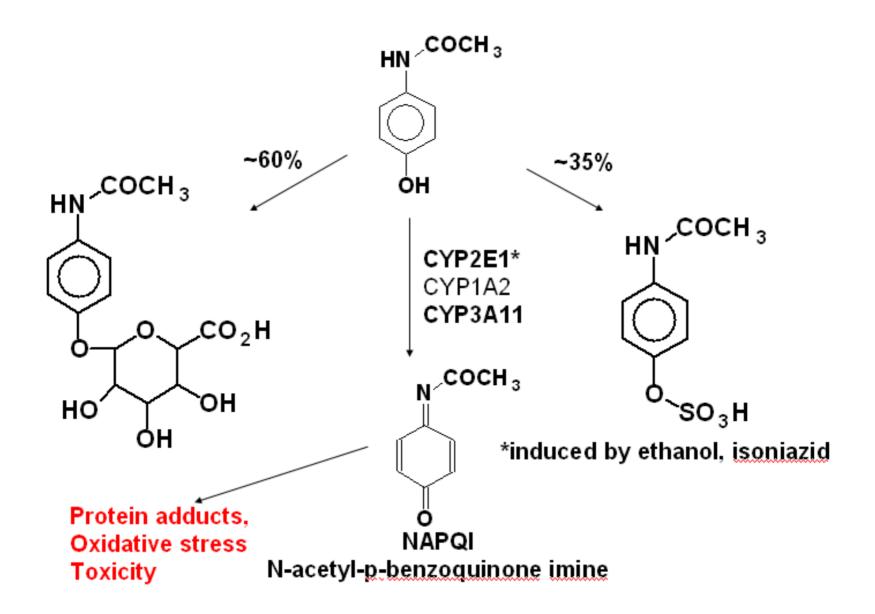
Constitutive Androstane Receptor (CAR)

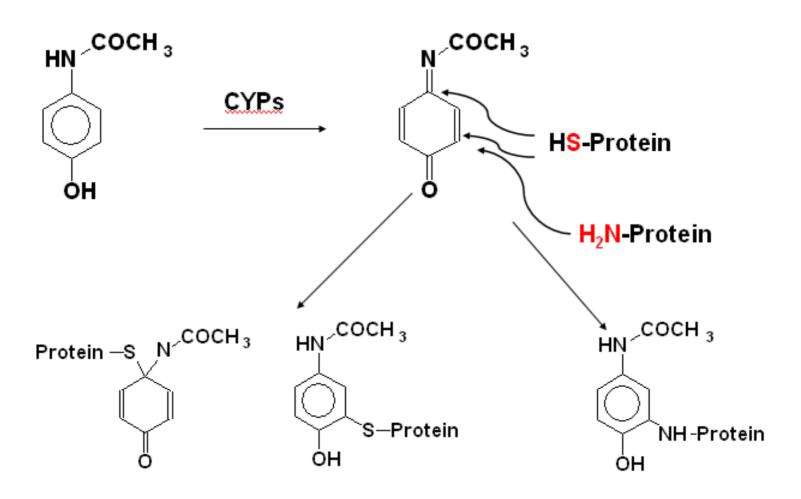
- * Highly expressed in liver and intestine
- * Sequestered in cytoplasm
- Co-factor complex required for activation; anchored by PPARbinding protein (PBP)
- * Binds response elements as RXR heterodimer
- * High basal transcriptional activity without ligand
- * Activated by xenobiotics
 - phenobarbital, TCPOBOP (1,4-bis[2-(3,5-dichloropyridyloxy)]benzene)


PXR and CAR Regulate Overlapping Genes

Acetaminophen (Paracetamol)

- * Acetanilide 1886 accidentally discovered antipyretic; excessively toxic (methemoglobinemia); para-aminophenol and derivatives were tested.
- * Phenacetin introduced in 1887, and extensively used in analgesic mixtures until implicated in analgesic abuse nephropathy
- * Acetaminophen recognized as metabolite in 1899
- * 1948-49 Brodie and Axelrod recognized methemoglobinemia due to acetanilide and analgesia to acetaminophen
- * 1955 acetaminophen introduced in US

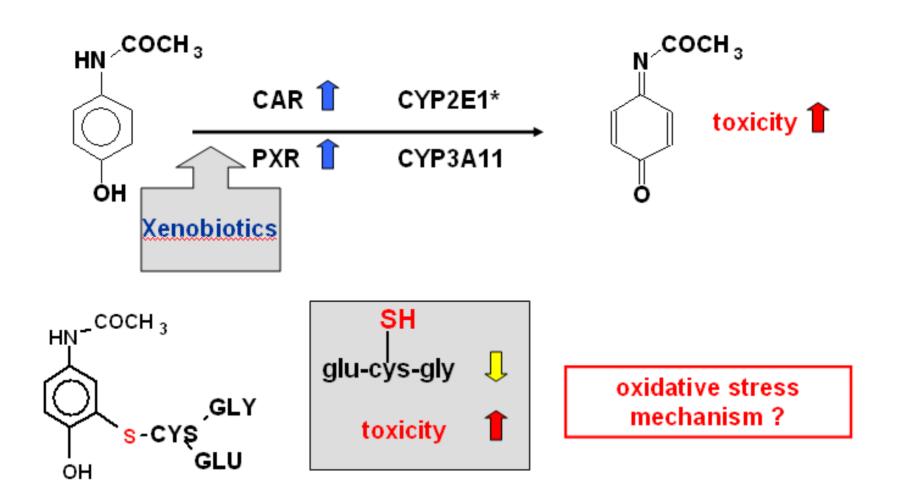

Acetaminophen and p-Aminophenols


Acetaminophen Toxicity

- * Acetaminophen overdose results in more calls to poison control centers in the United States than overdose with any other pharmacologic substance.
- * The American Liver Foundation reports that 35% of cases of severe liver failure are caused by acetaminophen poisoning which may require organ transplantation.
- * *N*-acetyl cysteine is an effective antidote, especially if administered within 10 h of ingestion [NEJM 319:1557-1562, 1988]
- * Management of acetaminophen overdose [Trends Pharm Sci 24:154-157, 2003

Acetominophen Metabolism

Acetaminophen Protein Adducts


S.D. Nelson, *Drug Metab. Rev.* 27: 147-177 (1995) K.D. Welch et al., *Chem Res Toxicol* 18:924-33 (2005)

Acetaminophen toxicity mechanism

- * N-acetyl cysteine is an effective agent to block GSH depletion and rescue from liver damaging toxicity
- * CAR and PXR modulate acetaminophen toxicity (2002, 2004)
- * CAR-null mice are resistant to acetaminophen toxicity
 - hepatic GSH lowered in wild type (but not in KO) after acetaminophen
 - CAR-humanized mice demonstrate same toxicity response
- Activation of PXR induces CYP3A11 and markedly enhances acetaminophen toxicity in wild type mice
- CAR transcription co-activator KO blocks toxicity (2005)

NAPQI toxicity linked to PXR activation

G. Guo et al. 2004, Toxicol Sci 82(2):374-80

Drug Metabolism - WWW Information Resources

* http://www.icgeb.trieste.it/p450/

- Directory of P450 Containing Systems; comprehensive web site regarding all aspects of chemical structure (sequence and 3D) of P450 proteins from all species; steroid ligands; links to related sites including leading researchers on P450

* http://www.fda.gov/cder/guidance/

- Site contains many useful documents regarding drug metabolism and FDA recommendations including "Drug Metabolism/Drug Interaction Studies in the Drug Development Process: Studies in Vitro", FDA Guidance for Industry

- Site has many commercially available drug metabolizing enzymes and useful links to multiple drug metabolism resources

^{*} http://www.sigmaaldrich.com/Area_of_Interest/Biochemicals/Enzyme_Explorer.html