Pentaquarks

Shoichi Sasaki
Univ. of Tokyo

Outline of this talks

(] Brief review of the pentaquarks
O Theoretical interests
O Experimental facts
(] Survey of available lattice results
O Strategy of studying pentaquarks
O Five studies, all quenched
[] Summary and Outlook

Multi-quark hadrons

Q QCD (color confinement) may not exclude the presence of the multi-quark hadrons such as

$$
Q \bar{Q} Q \bar{Q}, \quad Q Q Q Q \bar{Q}, \quad(Q Q Q)^{2}, \quad Q \bar{Q} Q \bar{Q} Q \bar{Q},
$$

Q "Exotic" multi-quark hadrons should have quantum numbers which can not be accommodated by $Q \bar{Q}$ or $Q Q Q$

Pentaquark baryons

Flavor structure (SU(3) case)
$3_{f} \otimes 3_{f} \otimes 3_{f} \otimes 3_{f} \otimes \overline{3}_{f}$

Exotic anti-decuplet baryons

SU(3) Skyrmion in the rigid rotator approach
\square The third baryons in the ($10^{*}, 1 / 2+$) as "Rotational Band" cf. ($8,1 / 2+$), ($10,3 / 2+$) Manohar(84), Chemtob(85)
A narrow exotic $S=+1$ baryon $\Theta^{+}\left(Z^{+}\right)$predicted by the chiral quark-soliton model

Diakonov et al. Z. Phys. A359 (97) 305

- Exotic: $\mathrm{S}=+1$ in the10* $(\mathrm{I}=0)$
\square Low mass:1530 MeV
Narrow width: $<15 \rightarrow \underset{\text { (Jaffe) }}{30 \mathrm{MeV}}$
[.] $J^{P}=1 / 2^{+}$

Discovery of Exotic S=+1 Baryon

T. Nakano et al.

Phys.Rev.Lett. 91 (2003) 012002
Laser-Electron Photon facility (LEPS)@Spring-8

$$
\gamma n \rightarrow \Theta^{+} K^{-} \rightarrow n K^{+} K^{-}
$$

$\boxed{\square}$ Positive Strangness (uudd \bar{s})
\square Very narrow width
区 $=0$ (no pK^{+}partner)
$\boxed{\square}$ Spin and Parity are undetermined.

Confirmation from other experiments

DIANAIITEP (hep-ex/0304040)
Mass $=1539 \pm 2 \mathrm{MeV}$,
Width < 9 MeV
CLAS/JLAB (hep-ex/0307018)
Mass $=1542 \pm 5 \mathrm{MeV}$, Width < 21 MeV

SAPHIR/ELSA (hep-ex/0307083)

Mass $=1540 \pm 4 \mathrm{MeV}$, Width < 25 MeV

HERMES/DESY (hep-ex/0312044)
Mass $=1528 \pm 2.6 \mathrm{MeV}$, Width < $19 \pm 5 \mathrm{MeV}$

Summary of Experiments

Where	Reaction	Mass	Width	$\sigma^{\prime} s^{*}$
LEPS	$\gamma C \rightarrow K^{+} K^{-} X$	$1540+-10$	<25	4.6
DIANA	$K^{+} X e \rightarrow K^{0} p X$	$1539+-2$	<9	4.4
CLAS	$\gamma d \rightarrow K^{+} K^{0} p(n)$	$1542+-5$	<21	5.2
SAPHIR	$\gamma p \rightarrow K^{+} K^{0}(n)$	$1540+-6$	<25	4.8
ITEP	$\gamma A \rightarrow K^{0} p X$	$1533+-5$	<20	6.7
CLAS	$\gamma p \rightarrow \pi^{+} K^{-} K^{+}(n)$	$1555+-10$	<26	7.8
HERMES	$e^{+} d \rightarrow K^{0} p X$	$1528+-3$	$13+-9$	~ 5
ZEUS	$e^{+} p \rightarrow e^{\prime} K^{0} p X$	$1522+-3$	$8+-4$	~ 5
COSY	$p p \rightarrow K^{0} p \Sigma^{+}$	$1530+-5$	<18	$4-6$

*Gaussian statistical significance: estimated background fluctuation
The existence of the Θ has been established.

Correlated quark (diquark) model

(V) Quark models for Θ^{+}: natural JP-assignment $\rightarrow 1 / 2^{-}$ but, "fall-apart" into KN in a S-wave
(V) Diquark correlation: $\mathrm{I}=\mathrm{J}=0$, diquark $\left(3_{\mathrm{c}}{ }^{*}, 3_{\mathrm{f}}{ }^{*}\right)$

Jaffe-Wilczek, Phys.Rev.Lett. 91 (03) 232003

Relative P-wave is necessary between the pairs of diquarks $[\mathrm{ud}]_{0} \Leftrightarrow[\mathrm{ud}]_{0}$

$$
L=1
$$

$$
\Rightarrow J^{P}=1 / 2^{+}
$$

$$
\left(3_{f} \otimes 3_{f}\right) \otimes\left(3_{f} \otimes 3_{f}\right) \otimes \overline{3}_{f} \rightarrow \overline{3}_{f} \otimes \overline{3}_{f} \otimes \overline{3}_{f}=1_{f}+8_{f}+8_{f}+\overline{10}_{f}
$$

Diquark Model vs. Chiral Soliton

$$
\Theta(1540) \Leftrightarrow J^{\pi}=1 / 2^{+}, I=0, S=+1 \text { pentaquark }
$$

Diquarks: $8_{f} \oplus 10_{f}^{*}$
Ideally Mixed

$$
\begin{array}{ll}
q q s s \bar{s}-\Sigma_{s} & -\sum \overline{10} \\
q q q s \bar{s}-N_{s}, \Xi_{3 / 2} \Rightarrow 1.75 \mathrm{GeV} & -N_{\overline{10}} \Leftarrow \mathrm{~N}(1710) \\
q q q q \bar{s}-\Theta, \Sigma, \Lambda & -\Theta \\
q q q q \bar{q}-N \Rightarrow \operatorname{Roper}: \mathrm{N}(1440) &
\end{array}
$$

The linear-in-ms treatment

Ξ^{--}(ddss ${ }^{\text {bar }} \mathbf{u}$) baryon candidate

NA49/CERN SPS

Phys.Rev.Lett.92:042003,2004
Exotic $\mathrm{S}=-2$ and $\mathrm{Q}=-2$ baryon resonance in $\equiv^{-} \pi^{-}$

Charm (bottom) pentaquarks

$(u u d d \bar{s}) \rightarrow(u u d d \bar{c})$ or $(u u d d \bar{b})$

- Very simple mass estimations:

$$
\begin{aligned}
M\left(\Theta_{c}^{0}\right) & =M\left(\Theta^{+}\right)+M\left(\Lambda_{c}\right)-M(\Lambda) \\
& \approx 2710 \mathrm{MeV}<M(D)+M(N) \approx 2810 \mathrm{MeV} \\
M\left(\Theta_{b}^{+}\right) & =M\left(\Theta^{+}\right)+M\left(\Lambda_{b}\right)-M(\Lambda) \\
& \approx 6050 \mathrm{MeV}<M(B)+M(N) \approx 6200 \mathrm{MeV}
\end{aligned}
$$

Suggest: charm (bottom) pentaquarks may be bound states ???

Θ_{c} (uudd $^{\text {bar }}$ c) baryon candidate

H1/DESY (hep-ex/0403017)

Exotic $C=-1$ and $Q=0$ baryon resonance in D*p

$$
\begin{aligned}
& M=3.099 \mathrm{GeV} \\
& \Gamma<12 \mathrm{MeV}
\end{aligned}
$$

Negative carit \rightarrow (uudd \bar{c})
Note:

DN threshold $=2.808 \mathrm{GeV}$
D*N threshold $=2.948 \mathrm{GeV}$

What can lattice QCD do?

Does the spectrum of QCD possess the $\Theta^{+}(1540) ?$

What is spin and parity of the $\Theta^{+}(1540) ?$

Are there other pentaquark baryons?
Maximal knowledge about those matters is essential to understanding the structure of the pentaquark state.

Lattice QCD has a chance to answer
the last two questions before experimental efforts.

Lattice studies of pentaquarks

Four studies posted to HEP-archive
Q Csikor-Fodor-Katz-Kovacs, hep-lat/0309090, JHEP 0311 (03) 070.
Q Sasaki, hep-lat/0310014.
Q Chiu-Hsieh, hep-lat/0403020, 0404007.
Q Kentucky Collab., hep-ph/0406196.
One preliminary result reported at some conferences

- Sigaev-Jahn-Negele (MIT Collab.), Quark-Nuclear-Physics04 etc.

New results will be presented at this conference

Q Chiu-Hsieh,
Q Mathur et al. (Kentucky Collab.),
. Koutsou,

June 24 (Thu) 9:20
June 24 (Thu) 9:40
June 24 (Thu) 10:00
Poster

Main difficulty in lattice study

A simple minded study of pentaquark state with

$$
\Theta^{+} \sim \frac{\varepsilon_{a b c} d_{a} d_{b} u_{c}}{\mathrm{~N}} \times \frac{\overline{\bar{s}}_{e} u_{e}}{\mathrm{~K}}
$$

How can we distinguish between
the mass of the pentaquark state
 and
the total energy of the interacting KN two-body system
Choose aspecifitioperator with as littlo
with the KN scattering state as possible dominated by the latter if $\left\langle M_{R}>M_{N}+M / 0 k\right.$

KN threshold (1)

$\boldsymbol{\Theta}\left(1 / 2^{+}\right) \rightarrow(\mathrm{KN})_{\text {P-wave }}: \sqrt{M_{N}^{2}+p_{\text {min }}^{2}}+\sqrt{M_{K}^{2}+p_{\text {min }}^{2}}$
$\Theta\left(1 / 2^{-}\right) \rightarrow(\mathrm{KN})_{\mathrm{S} \text {-wave }}: \quad M_{N}+M_{K} \quad$ non-interacting

All momentum are quantized $|\vec{p}|=\sqrt{n}\left|\vec{p}_{\text {min }}\right|, \quad\left|\vec{p}_{\text {min }}\right|=2 \pi / L$
\Rightarrow the P-wave KN threshold can be lifted by changing spatial size L

KN threshold (2)

How valid is the previous estimation?

- Energy shift in the finite volume:

$$
\Delta M=E_{K N}-\left(M_{N}+M_{K}\right)
$$

$$
\begin{gathered}
=-\frac{2 \pi\left(M_{N}+M_{K}\right) a_{0}}{M_{N} M_{K} L^{3}}\left[1-2.834 * \frac{a_{0}}{L}+6.375 *\left(\frac{a_{0}}{L}\right)^{2}\right] \\
L \gg a_{0} \quad \text { Lüscher formula }
\end{gathered}
$$

[J KN scattering length(volume) is quite small in I=0 channel

	I=0	I=1
S-wave (fm)	0.0 ± 0.03	-0.32 ± 0.02
P-wave $\left(\mathrm{fm}^{3}\right)$	0.08 ± 0.01	-0.16 ± 0.1

Choice of operator (1)

Nucleon spectroscopy

$$
\begin{aligned}
\mathcal{O}_{1} & =\varepsilon_{a b c}\left[u_{a}^{T} C \gamma_{5} d_{b}\right] u_{c} \\
\mathcal{O}_{2} & =\varepsilon_{a b c}\left[u_{a}^{T} C d_{b}\right] \gamma_{5} u_{c}
\end{aligned}
$$

The second operator vanishes in the non-relativistic limit.
\Rightarrow small overlap with the nucleon

$$
\left.\left|\langle N| \mathcal{O}_{2}\right| 0\right\rangle \mid \approx 0
$$

Bowler et al:, Nucl. Phys. B240 (1984) 213.
Leinweber, Phys. Rev. D51 (1995) 6383.
Sasaki-Blum-Ohta, Phys. Rev. D65 (2002) 074503.

Choice of operator (1)

Nucleon spectroscopy

$$
\begin{aligned}
\mathcal{O}_{1} & =\varepsilon_{a b c}\left[u_{a}^{T} C \gamma_{5} d_{b}\right] u_{c} \\
\mathcal{O}_{2} & =\varepsilon_{a b c}\left[u_{a}^{T} C d_{b}\right] \gamma_{5} u_{c}
\end{aligned}
$$

The second operator vanishes in the non-relativistic limit.
\Rightarrow small overlap with the nucleon

$$
\left.\left|\langle N| \mathcal{O}_{2}\right| 0\right\rangle \mid \approx 0
$$

The cross correlation suggests that it is evident in the heavy quark regime, but it might be no longer robust in light quark regime.

Choice of operator (2)

D Simple minded operator as Nucleon \otimes Kaon

$$
\mathcal{O}_{I=0 / 1}=\varepsilon_{a b c}\left[u_{a}^{T} C \gamma_{5} d_{b}\right]\left\{u_{c}\left(\bar{s}_{e} \gamma_{5} d_{e}\right) \mp(u \leftrightarrow d)\right\} \quad \text { Kentucky }
$$

D Color variant of Nucleon \otimes Kaon

$$
\mathcal{O}_{I=0 / 1}=\varepsilon_{a b c}\left[u_{a}^{T} C \gamma_{5} d_{b}\right]\left\{u_{e}\left(\bar{s}_{e} \gamma_{5} d_{c}\right) \mp(u \leftrightarrow d)\right\} \quad \text { Csikor et al. }
$$

Exotic description as diquark-diquark-antiquark

$$
\mathcal{O}_{I=0}=\varepsilon_{a b c} \varepsilon_{a e f} \varepsilon_{b g h}\left[u_{e}^{T} C \Gamma_{1} d_{f}\right]\left[u_{g}^{T} C \Gamma_{2} d_{h}\right] C \bar{s}_{c}^{T}
$$

$$
\Gamma_{1} \neq \Gamma_{2}, \quad \Gamma_{1,2}=1, \gamma_{5}, \gamma_{\mu} \gamma_{5}
$$

Choice of operator (2)

\square Simple minded operator as Nucleon \otimes Kaon

$$
\mathcal{O}_{I=0 / 1}=\varepsilon_{a b c}\left[u_{a}^{T} C \gamma_{5} d_{b}\right]\left\{u_{c}\left(\bar{s}_{e} \gamma_{5} d_{e}\right) \mp(u \leftrightarrow d)\right\} \quad \text { Kentucky }
$$

(I) Color variant of Nucleon \otimes Kaon

$$
\mathcal{O}_{I=0 / 1}=\varepsilon_{a b c}\left[u_{a}^{T} C \gamma_{5} d_{b}\right]\left\{u_{e}\left(\bar{s}_{e} \gamma_{5} d_{c}\right) \mp(u \leftrightarrow d)\right\} \quad \text { Csikor et al. }
$$

(J) Exotic description as diquark-diquark-antiquark

$$
\mathcal{O}_{I=0}=\varepsilon_{a b c} \varepsilon_{a e f} \varepsilon_{b g h}\left[u_{e}^{T} C \Gamma_{1} d_{f}\right]\left[u_{g}^{T} C \Gamma_{2} d_{h}\right] C \bar{s}_{c}^{T}
$$

In the non-relativistic limit (heavy quark regime),
$\rightarrow \rightarrow$ Small overlap with KN two-hadron state is expected.

Csikor-Fodor-Katz-Kovacs (1)

Wilson fermions (Quench) + Wilson gauge action

- $L \sim 2.0 \mathrm{fm}, a=0.17,0.12,0.09 \mathrm{fm}(\beta=5.7,5.85,6.0)$
- linear continuum extrapolation
- m_{π} from $0.4-0.6 \mathrm{GeV}$
- $J=1 / 2, I=0,1$, parity projection
- Color variant of N times K

Csikor-Fodor-Katz-Kovacs (2)

hep-lat/0309090, JHEP 0311 (03) 070

(V) All analysis is done by single-exp. fits and single operator

$$
\frac{M_{5 Q}}{M_{K}+M_{N}}=1.073(34) \quad \text { at } \beta=6.0
$$

Csikor-Fodor-Katz-Kovacs (2)

(8) All analysis is done by single-exp. fits and single operator

$$
\frac{M_{5 Q}}{M_{K}+M_{N}}=1.073(34) \text { at } \beta=6.0
$$

negative parity
■
Variational approach (at the heaviest quark mass)

- Mix two operators $\mathcal{O}_{1}+\alpha \mathcal{O}_{2} \quad\left\{\begin{array}{l}\mathcal{O}_{1}: \text { color variant of } \mathcal{O}_{K} \times \mathcal{O}_{N} \\ \mathcal{O}_{2}: \\ \mathcal{O}_{K} \times \mathcal{O}_{N}\end{array}\right.$
- Choose α to isolate the first excited state
- At the optimized α

$$
\frac{E_{0}}{M_{K}+M_{N}}=0.994(18) \quad \frac{E_{1}}{M_{K}+M_{N}}=1.074(20)
$$

KN scattering state

Sasaki (1)

hep-lat/0310014

Wilson fermions (Quench) + Wilson gauge action

- $L \sim 2.2 \mathrm{fm}\left(32^{3} \times 48\right), a=0.07 \mathrm{fm}(\beta=6.2)$
- m_{π} from $0.6-1.0 \mathrm{GeV}$
$J=1 / 2, I=0$, parity projection
- Includes charm sector
- Diquark-diquark-antiquark

$$
\begin{array}{ll}
J^{\pi}=1 / 2 & J^{\pi}=1 / 2^{+} \\
M_{\Theta^{+}}=1.76(9) \mathrm{GeV} & M_{\Theta^{+}}=2.62(9) \mathrm{GeV}
\end{array}
$$

Sasaki (2)

hep-lat/0310014
(I) Test diquark-diquark-antiquark op. in heavy quark regime

- Anti-charmed pentaquarks $u u d d \bar{c}$

$q q q q \bar{c} \longleftrightarrow q q q q \bar{s}$

Sasaki (3)

hep-lat/0310014
I] Double-exp. fits accept the presense of two indep. states, which are close to each other. ($A_{5 Q} \gg A_{K N}$)

- Ground state should be the S-wave KN scattering state.

- First excited state might be the pentaquark state. (need confirmation)

Summary of exploratory studies

9
CFKK and Sasaki both claim :
IV Can not accommodate the pentaquark state near the KN threshold in the positive parity channel
(1) Some indications for the presence of the pentaquark state near the KN threshold in the negative parity channel
(I] The spin-parity of the $\Theta^{+}(1540)$ is most likely $1 / 2^{-}$

Chiu-Hsieh (1)

hep-lat/0403020, 0404007

Chiral fermions (Quench) + Wilson gauge action

- $L \sim 1.6 \mathrm{fm}\left(20^{3} \times 40\right), a=0.08 \mathrm{fm}(\beta=6.1)$
- m_{π} from $0.4-1.0 \mathrm{GeV}$
- $\mathrm{J}=1 / 2, \mathrm{I}=0$, parity projection
- Includes charm sector
- Same operator as Sasaki

Chiu-Hsieh (2)

They claim:
hep-lat/0403020, 0404007
(J) the lower-lying pentaquark; positive parity

Chiu-Hsieh (2)

hep-lat/0403020, 0404007
They claim:
(J) the lower-lying pentaquark; positive parity

- In contradiction to Wilson results (CFKK/Sasaki)

Chiu-Hsieh (2)

hep-lat/0403020, 0404007

They claim:

[J] the lower-lying pentaquark; positive parity

- In contradiction to Wilson results (CFKK/Sasaki)
- The discrepancy is due to the lattice artifacts of the Wilson fermion

Chiu-Hsieh (2)

hep-lat/0403020, 0404007

They claim:

(J) the lower-lying pentaquark; positive parity

- In contradiction to Wilson results (CFKK/Sasaki)
- The discrepancy is due to the lattice artifacts of the Wilson fermion
(I) Any NK scattering state is not seen

Chiu-Hsieh (2)

hep-lat/0403020, 0404007
They claim:
(V) the lower-lying pentaquark; positive parity

- In contradiction to Wilson results (CFKK/Sasaki)
- The discrepancy is due to the lattice artifacts of the Wilson fermion
(V) Any NK scattering state is not seen

区
Strongly support the Jaffe-Wilczek model
the $N(1440)$ can be identified with a pentaquark

Comments on Chiu-Hsieh

(] The lightest pion mass $\sim 0.4 \mathrm{GeV}$

- One would not expect any qualitative difference between Wilson and Chiral fermions in their quark mass range.

Comments on Chiu-Hsieh

(] The lightest pion mass $\sim 0.4 \mathrm{GeV}$

- One would not expect any qualitative difference between Wilson and Chiral fermions in their quark mass range.
(] Really observe the N-type lightest pentaquark?

Kentucky Collab. (1)

Mathur et al., hep-ph/0406196
Q
Overlap fermions (Quench) + Iwasaki gauge action

- $L \sim 2.4$ and $3.2 \mathrm{fm}\left(12^{3} \times 40,16^{3} \times 40\right), a=0.20 \mathrm{fm}$
- m_{π} down to 0.18 GeV from 1.0 GeV
- $J=1 / 2, I=0,1$, parity projection
- Simple minded operator as N times K
- Sequential empirical Bayes method
- Check the volume dependence of spectral weight.

Kentucky Collab. (2)

They claim:

IV See only KN scattering state in negative parity

- Ground state in either parity channel has a characteristic volume dependence on the spectral weight.

$$
|N, \vec{p}, s\rangle_{\mathrm{latt}} \propto \sqrt{\frac{M}{V E}}|N, \vec{p}, s\rangle_{\mathrm{cont}}
$$

The spectral weight should have 1/V dependence for two particles

$$
W_{12} / W_{16}=16^{3} / 12^{3}=2.37
$$

Kentucky Collab. (2)

They claim:

I- See only KN scattering state in negative parity

- Ground state in either parity channel has a characteristic volume dependence on the spectral weight.
(I. Confirm the ghost KNn ' state in positive parity channel at $\mathrm{M}_{\boldsymbol{\pi}}<266 \mathrm{MeV}$

Kentucky Collab. (3)

They claim:

Mathur et al., hep-ph/0406196
(- No sign of pentaquark signal in either parity channel at present.

Sigaev-Jahn-Negele (1)

Eight possible local sources: extention of Sasaki's proposal

$$
\mathcal{O}=\varepsilon_{a b c} \varepsilon_{a e f} \varepsilon_{b g h}\left[u_{e}^{T} C \Gamma_{1} d_{f}\right]\left[u_{g}^{T} C \Gamma_{2} d_{h}\right] \Gamma_{3} C \bar{s}_{c}^{T}
$$

$\mathbf{I}=\mathbf{0} \quad$| 1 | Γ_{1} | Γ_{2} | Γ_{3} | Isospin | Lorentz |
| :--- | :--- | :--- | :--- | :---: | :---: |
| 2 | γ_{5} | γ_{5} | 1 | S | P |
| 3 | $\gamma_{5} \gamma_{\mu}$ | $\gamma_{5} \gamma_{\mu}$ | S | V | |
| 4 | $\gamma_{5} \gamma_{\mu}$ | γ_{μ} | S | A | |
| y^{2} | $\gamma_{5} \gamma_{\mu}$ | $\gamma_{5} \gamma_{\nu}$ | $\epsilon_{\mu \nu \rho \lambda} \sigma_{\rho \lambda}$ | S | T |
| 5 | $\gamma_{\nu} \tau_{n}$ | $\sigma_{\mu \nu} \tau_{n}$ | $\gamma_{5} \gamma_{\mu}$ | V | V |
| 6 | $\gamma_{\mu} \tau_{n}$ | $\epsilon_{\mu \nu \rho \lambda} \sigma_{\nu \lambda} \tau_{n}$ | γ_{μ} | V | A |
| 7 | $\gamma_{\mu} \tau_{n}$ | $\gamma_{\nu} \tau_{n}$ | $\epsilon_{\mu \nu \rho \lambda} \sigma_{\rho \lambda}$ | V | T |
| 8 | $\sigma_{\mu \nu} \tau_{n}$ | $\sigma_{\nu \lambda} \tau_{n}$ | $\epsilon_{\mu \nu \rho \lambda} \sigma_{\rho \lambda}$ | V | T |

\Rightarrow Compute 4×4 cross correlator in each isospin channel.

Sigaev-Jahn-Negele (2)

The results are currently from double-exp. fits to each operator.

Presented at QNP2004 by Negele

Comparison of lattice results

Q1: Observe pentaquarks in lattice QCD?
Q2: Which parity is assigned to the lowest state of the pentaquark?
Q3: Find anti-charmed pentaquark as bound state or near threshold?

	A1	A2	A3	Op.
Csikor et al.	YES	negative	-	color variant of KN
Sasaki	YES	negative	NO	diquark-diquark- antiquark
Kentucky	NO	not positive	-	simple KN
Chiu-Hsieh	YES	positive	YES	diquark-diquark- antiquark
MIT	YES	negative	-	diquark-diquark- antiquark

Comparison of lattice results

Q1: Observe pentaquarks in lattice QCD?
Q2: Which parity is assigned to the lowest state of the pentaquark?
Q3: Find anti-charmed pentaquark as bound state or near threshold?

	A1	A2	A3	Op.
Csikor et al.	YES?	negative	-	color variant of KN
Sasaki	YES?	negative	NO	diquark-diquark- antiquark
Kentucky	NO?	not positive	-	simple KN
Chiu-Hsieh	YES?	positive	YES	diquark-diquark- antiquark
MIT	YES?	negative	-	diquar--aiquark- antiquark

Summary (1)

All results should be regarded as exploratory at present.
To confirm the presence of the pentaquarks
(] Try some other possible operators
(- The $M \times M$ correlation matrix analysis is required to separate the KN scattering state

To disentangle the pentaquark signal from the KN scattering states
(I Identify the lowest few scattering states in both parity channels
[] Verify the volume dependence
Detail studies are in progress by CFKK, Sasaki, Chiu-Hsieh, Kentucky, MIT

Summary (2)

(I) The following questions still remain open:

Does the spectrum of QCD possess the $\Theta^{+}(1540) ?$

What is spin and parity of the $\Theta^{+}(1540) ?$
Are there other pentaquark baryons?

- other member of the anti-decuplet, especially $\Xi_{3 / 2}$
- the charm (bottom) pentaquark
the spin-orbit partner of the $\Theta^{+}(1540) ; J=3 / 2$
There are many exciting issues to be explored.

Many thanks to

- Zoltan Fodor \& Sandor Katz
- Keh-Fei Liu \& Nilmani Mathur
- Ting-Wai Chiu
- John Negele
for their correspondences

