Computational Approaches to the Development of Advanced Mercury Control Technologies

Alexander Calder: The Mercury Fountain Joan Miro Museum, Barcelona, Spain

Jan Steckel National Energy Technology Laboratory Mercury Control Technology Research and Development Program Review

Motivation for Theoretical Work

Macroscopic:

Activated Carbon + Hg

Coal + Hg (spectroscopy)

Kinetic modeling, Hg oxidation

Heterogeneous model for Hg oxidation

Metal Hg sorbents

Atomistic description:

Hg – arene interactions

Hg – arene interactions

Gas phase *ab initio* modeling of Hg oxidation subreactions Hg on metal surfaces

Hg on metal surfaces

This is no longer recommended:

From the website of Theodore Gray, the maker of the Periodic Table Table (www.theodoregray.com/PeriodicTable)

Computational Challenges, Theoretical Methods

- VDW → covalent → metallic w/size of Hg clusters
 - Subtle interplay between types of bonding
 - Requires method in which both are well described
- Ψ based methods (CC or QMC)
- Relativistic effects
- Spin-orbit corrections
- Methods not well developed, tested
- → "notorious"…

- HF
 - 1st approximation for wavefunction based methods
 - Will not model weakly bound systems.
- DFT
 - Well known deficiency for dispersion interactions.
 - Might be ok for metallic interactions
- MP2
 - Models dispersion and electron correlation for many compounds but not highly accurate for Hg₂
- CCSD(T)
 - More accurate wavefunction-based technique
 - Need adequate basis set, high angular momentum functions

Software:

MOLPRO - Mol Phys. 74, 1245 (1991)

Gaussian03 – Frisch et al., Gaussian Inc. (2003)

VASP – Vienna Ab Initio Simulations Package

Stuttgart ab initio pseudopotential for Hg

- Ion core = core electrons (60 or 78) plus nucleus
- Valence system treated in non-relativistic manner
- (For Hg) neutral atom used as the reference system for generating the pseudopotential
- All electron relativistic (Dirac-Fock), quasirelativistic (Wood-Boring) or non-relativistic calculations used for Hg atom to generate the pseudopotentials
- Contributions of most important relativistic operators are transferred to the pseudopotential
- Core-valence correlation accounted for by semi-empirical polarization potential (cpp) for 78 e⁻ pp

Nicklass, Dolg, Stoll, Pruess J. Chem. Phys. **102**, 8942 (1995). Stoll, Metz, Dolg, J. Comput. Chem. **23**, 767 (2002).

Basis Sets

ecp78mwb 'library' basis: (4s4p1d)/[2s2p1d]

Kuechle, Dolg, Stoll, Preuss, Mol. Phys. 74, 1245 (1991).

ecp60mwb 'library' basis: (8s7p6d)/[6s5p3d]

Andrae, Häussermann, Dolg, Stoll, Preuss, Theor. Chim. Acta. 77, 123 (1990).

ecp60mdf 'library' basis: (8s8p7d)/[6s6p4d]

Häussermann, Dolg, Stoll, Preuss, Schwerdtfeger, Pitzer, Mol. Phys. 78, 1211 (1993).

Czuchaj basis set (ecp78mwb): (9s8p6d)/[8s6p3d]

Czuchaj et al. Chem. Phys. 214, 277 (1997).

Kirk Peterson (KAP) dz (ecp60mdf): (7s7p6d2f)/[4s4p3d2f]

Kirk Peterson in "Recent Advances in Electron Correlation Methodology" (ACS, 2003). (This is part of a series, with TZ, QZ, etc., but DZ was all that we could manage with C_6H_6 -Hg)

Intermediates in Electrophilic Substitution

 Olah *et al.*: NMR study of mercuration of a series of arenes including benzene, toluene, mesitylene; conclusion was that intermediate undergoes rapid exchange of sigma and pi complexes.

J. Org. Chem. 41, 1983 (1976)

- Damude *et al*.: Isolation of a wide range of arene complexes of mercury; conclude that arenes bound to Hg in η¹ manner.
 J. Organomet. Chem. 181, 1 (1979).
- Haneline: Methyl substituted benzene adducts of trimeric perfluoro-o-phenylene mercury Dalton 2686 (2003).

Hg - Benzene η^6 Interaction – Improved Basis

Hg η^5 Complexes: Furan and Thiophene

Thiophene: CPC E_{bind} = -0.13 eV

CCSD(T), ecp78mwb, Czucaj plus f and g, VTZ The presence of the heteroatom in the ring does not essentially change the interaction

(Benzene – Hg)⁺ Interaction

- Pi complex: η^2 minimum on the PES E_{bind} = -2.18 eV
- Mulliken outer pi complex: η^6 Saddle point $E_{act} = 0.79 \text{ eV} \text{ (wrt pi)}$
- •Sigma bonded configuration: η¹ TS
 - $E_{act} = 0.3 \text{ eV} \text{ (wrt pi)}$

MP2, ecp60mdf, KAP DZ, 6-311G(d)

Frequencies of Benzene Breathing Mode

Level of theory: MP2 6-311G(d) ecp60mdf DZ KAP

B3LYP (Hg₂Cl₂/GaCl₃/C₆H₆), Ulvenlund *et al.*

- Hg₂²⁺ in Hg₂Cl₂/GaCl₂/C₆H₆ b)
- C) Hg₃²⁺ in Hg/Hg₂Cl₂/GaCl₃/C₆H₆

B3LYP Optimized structures of benzene with Hg_2^{2+} and Hg_3^{2+}

Raman Spectroscopy: totally symmetric band at 991 cm-1 is split and new peak appears at 978 for Bz_2 -Hg₂²⁺ and 982 cm⁻¹ for Bz_2 -Hg₃²⁺.

Ilvenlund, Schwerdtfeger et al. Eur J. Inorg. Chem. 1999

Surface Cells and Adsorption Sites

fcc metal: (111) surface

Hg Adsorption on Au(111) and Pt(111)

Plane-wave DFT, 280 eV cutoff, ($\sqrt{3}x3$) surface cell

4 layers, 24 Au or Pt atoms in supercell, Two layers fixed at bulk positions, 4 x 6 x 1 k point mesh

Pt(111)		E _{bind} (PW91)				
. (111)	fcc	-0.33	Bulk Properties:	LDA	PW91	Ехр
	hcp	-0.33	Bulk modulus (Gpa)	310	239	278
	bridge	-0.28	Cohesive E (eV)	-7.52	-6.05	-7.52
	top	-0.13	Lattice Constant (Å)	3.99	3.92	3.92

Au(111)	E _{bind} (LDA)						
fcc	-0.64	Bulk Properties:	LDA	PW91	PBE	Exp	Wang
hcp	-0.64	Bulk modulus (Gpa)	189	137	136	170	185
bridge	-0.58	Cohesive E (eV)	-4.40	-3.21	-3.28	-3.8	-4.4
top	-0.36	Lattice Constant (Å)	4.06	4.17	4.17	4.07	4.07
					LDA, War	ng <i>et al.</i> F	PRB 2004

Hg-Au Exchange on the Au(111) Surface

Starting Structure Hg at fcc site on Au(111) surface

Top view:

Ending Structure Hg has exchanged with one of the top layer Au atoms.

Top view:

Side view:

Side view:

AFS Merit Review - June 2004

AFS Merit Review - June 2004

Conclusions

- Basis sets published for Hg are either not adequate for CCSD(T) calculations on weakly bound complexes or too computationally demanding.
- η^6 Interaction between benzene and Hg with binding energy of 0.15 eV, Hg 3.2 Å from the plane of the ring
- Analogous η^{5} interactions exist for furan and thiophene
- Heteroatom does not influence the η^{6} interaction
- (Hg-benzene)⁺ complex predicted at MP2 level with strong binding energy of 2.18 eV for the η^2 interaction
- Analogous compounds predicted for (Hg-furan)⁺ and (Hg-thiophene)⁺
- Essetially no barrier for Hg to move around the ring
- Changes in the IR spectrum of coal seen when Hg is added may be due to the formation of the (Hg-benzene)⁺ complex.
- Au not well-described by GGA functionals.

Hg binds to both Pt(111) and Au(111) with a preference for the hcp and fcc
hollow sites.