

Abstract— A generalized kinematic modeling framework,
called Mechanism_Model, has been developed for use in the
CLARAty robotic reusable software. Mechanism_Model
supports a wide range of systems – from manipulator arms to
legged and wheeled rovers. It also enables the development of
generalized kinematics, dynamics and collision detection
algorithms. In this paper, we describe the unified modeling
approach used in Mechanism_Model and provide details of its
object-oriented implementation in C++. We also present an
example application illustrating use of Mechanism_Model.

I. INTRODUCTION

N this paper, we describe progress we have made [5]
toward a unified modeling and control approach for a wide
variety of robotics systems. We report on implementation

details of the modeling software package and applications
that demonstrate its use. The software, called the
Mechanism_Model package is being developed within the
CLARAty software system [17], [9], [10], [3]. CLARAty is
a collaborative effort among four institutions: Jet Propulsion
Laboratory, NASA Ames Research Center, Carnegie Mellon,
and the University of Minnesota. In this section, we first
motivate the development of Mechanism_Model, describe its
background and discuss its relevance with respect to related
work. We then describe, in Section II, the application
domains that Mechanism_Model is designed to span, the
features of these domains and the challenges they pose in
developing a unified modeling approach. In Section III, we
present the modeling framework used in Mechanism_Model,
its generic kinematic algorithms and its object-oriented
implementation. An example application that demonstrates
the usage of Mechanism_Model is covered in Section IV.
We conclude with a summary of our development and a
description of future plans to incorporate it into a generalized
control paradigm.

A. CLARAty Software
 CLARAty is a framework for reusable robotic software. In
an object-oriented hierarchy, at its lowest level, CLARAty
implements software abstractions for hardware interfaces.
Upon this hardware abstraction layer, re-usable software
components are built to interface to higher levels of control.
As a result, software that implements complex behaviour and
sophisticated operations is platform independent. Examples
of such capabilities implemented in CLARAty include pose
estimation, navigation, locomotion and planning. In addition

to supporting multiple algorithms, CLARAty provides
adaptations to multiple robotic and rover platforms.
CLARAty is a domain-specific robotic architecture designed
with four main objectives:
1. To promote the reuse of robotic software infrastructure

across multiple research efforts
2. To promote the integration of new technologies

developed by the robotics community onto rover
platforms

3. To mature robotic capabilities through reuse and enable
independent formal validation

4. To share the development with the robotic community to
promote rapid advancement and leveraging of
capabilities

The infrastructure to support these objectives has been
developed over several years. This project uses an iterative
development process that captures lessons learned from the
deployment of earlier versions of the framework on real and
simulated platforms. Through this process, both the design
of the interfaces and the implementation of generic
capabilities mature over time. Many elements of CLARAty
are in their third revisions with improved interfaces to
actuators and sensors, camera modelling and image
processing, mechanism modelling, pose estimation,
navigation and interfaces to higher level planners. We
describe our efforts in developing CLARAty’s next
generation mechanism modelling software in this paper.

B. Motivation and Objectives
 The motivation for the development of Mechanism_Model
began with the original need in CLARAty to develop
kinematic and control algorithms that could be applied with
minimal change to the range of robotic vehicles used at JPL.
This goal was successfully accomplished with the
Wheel_Locomotor module in CLARAty. Wheel_Locomotor
consists of a set of classes that plan and execute circular
drive paths for vehicles that are fully-steered, partially-
steered or non-steered (skid-steered) with any number of
wheels. The early implementations in CLARAty had a
separate set of model representations and algorithms for the
control of manipulator arms on the rovers from those used
for the control of the vehicle. However, the similarity
between modeling and control needs for vehicles and the
manipulator arms led our desire to unify the models and
algorithms. Based on the premise that the more generic the
software, the more re-usable it will be, we have attempted to

Re-usable Kinematic Models and Algorithms for Manipulators and
Vehicles

Hari D. Nayar, Issa A.D. Nesnas
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, M/S 82-105 Pasadena CA 91001, USA
Hari.D.Nayar@jpl.nasa.gov, Issa.A.Nesnas@jpl.nasa.gov

I

develop a unified framework for handling kinematics and
control of all articulation on our robotic platforms.
 There are a number of other advantages to be gained from
a unified approach for modeling and control for mobility
systems. One key benefit to a unified representation is the
ability to develop more sophisticated algorithms that treat
appendages as an extension of the mobility enabling greater
flexibility for manipulating arm/vehicle workspaces.
Although requiring greater effort to develop, a unified
implementation results in less management overhead. In a
software system as large and complex as CLARAty, with a
variety of application platforms, a streamlined system for
handling model data and implementation of algorithms that
automatically configure to the platform can simplify system
operation and increase its robustness. Additionally, this
approach:
• Provides centralized storage for managing model

information. This includes creation, deletion, update,
extension and reconfiguration of the mechanical models.

• Ensures consistency of the model information for use by
multiple algorithms. This simplifies the integration of
algorithms into the software architecture. A significant
benefit from this approach is that generalized algorithms
can then be written for these systems because all
mechanisms share a common data structure.

• Reduces duplication in model representation between
rover mobility and manipulation software leading to
reduced model management overhead.

• Enables the development of generic algorithms for
forward, inverse, and differential kinematics. In the
absence of specialized versions, the generic algorithms
provide out-of-the-box functionality.

• Supports specific implementations to override generic
algorithms whenever appropriate for optimal
performance.

• Enables the verification of specialized kinematics
algorithms against their generic counterpart

C. Related Work
 Mechanism_Model uses a kinematics and dynamics
modelling structure similar to the one used in the
DARTS/Dshell development at JPL [6], [16], [4].
DARTS/Dshell and its derived simulators have been used to
simulate, with high-fidelity, the dynamics of robotic systems
and spacecraft modeled as flexible mullti-body systems. It
has also been used for component hardware-in-the-loop
testing, pre-deployment guidance and control algorithm
testing and in stand-alone simulations.
 The Kinematics and Dynamics Library (KDL) component
in the recent software release of Version 1.0 from the Open
RObot COntrol System [13] project has objectives similar to
our Mechanism_Model development. The current release,
KDL 0.2.1, implements many useful utilities for kinematic
computations needed in manipulator control. The highest
level robot model supported in KDL at this time is a serial-
link manipulator. The design approach for the modelling
mechanisms in KDL is different from the approach we have
taken with Mechanism_Model. While Mechanism_Model

breaks down a mechanism model into component bodies and
multiple DOF joints, KDL models a serial-link chain as
composed of single DOF joints. KDL does not currently
have the capability for modelling mobility systems like
legged and wheeled rovers.
 The Operational Software Components for Advanced
Robotics [14], [7], developed by the Robotics Research
Group at the University of Texas at Austin, provides utilities
in the form of libraries for performing computations needed
in analysis, real-time control, and simulation of
manipulators. In addition to math utilities, it contains
algorithms for performing generic forward and inverse
kinematics, motion planning and dynamics. OSCAR offers
many alternative options in its operations. For example, for
motion planning, trajectories can be generated using
trapezoidal, spline or motion blending algorithms. OSCAR
currently appears to allow only the modeling of serial-chain
manipulators. OSCAR’s primary application is robotics
education. While OSCAR provides generic software utilities
for robot arms (serial-chain manipulators) the approach with
Mechanism_Model models more general kinematics systems.
 Other related developments include the RoboML [15],
ORCA [12], [2] and the Nucleus robotic control toolkit [11].

II. APPLICATION DOMAINS AND GOALS
 The wide range of systems to be addressed with our
approach present a number of challenges. In the following
sections, we categorize the types of systems
Mechanism_Model will support and discuss their unique
features.

A. Manipulators
 Serial-link manipulators are the simplest mechanisms we
will model in Mechanism_Model. The range of mechanisms
on rover platforms that can be modeled as serial-link
manipulators include passively set or actively controlled pan-
and-tilt units for cameras, two degrees-of-freedom (DOF),
three or four DOF masts arms mounted with navigation
camera heads and four, five, or six DOF instrument arms.
These mechanisms are all mounted to mobile rover
platforms. Instrument arms have the additional kinematic
feature of typically holding many instruments on a turret at
its end. In research and flight projects at JPL, serial-link
manipulators are also deployed from non-mobile lander
platforms. For example, in addition to a scoop as its end
effector, the four DOF Mars Phoenix Mars manipulator has a
camera attached to its lower arm. It is also desirable that

 a) b) c)
Figure 1.Manipulator examples: a) Modular arm, b)
Manipulator-mounted cameras guiding instrument

placement and c) Rovers cooperatively transporting a
beam.

Mechanism_Model be able to also handle parallel-link (or
closed-chain) kinematic structures. Examples of
manipulators used on research projects at JPL are shown on
Figure 1.

B. Wheeled Rovers
 Most wheeled mobility systems for research and flight
missions at JPL have six wheels and use the passive rocker-
bogie suspension [1]. The rocker-bogie mechanism enforces
a coupling between the left and right sides in the rocker
articulation. This may be modeled as a single independent
joint and a dependent (or constrained) joint with respect to
the rover chassis. Rover wheels may be steered or non-
steered. Rocky 7 rover has two steerable wheels. The Mars
Exploration Rovers (MER) have four steerable wheels while
Rocky 8 and FIDO have six steerable wheels. The K-10
rover at the NASA Ames Research Center has a rocker
mechanism with four steerable wheels and no bogie. At JPL,
we also use commercial-off-the-shelf (COTS) mobility
platforms for research applications. These are typically four
non-steerable wheeled mobility systems with no suspension
mechanism. Vehicle steering is accomplished using skid-
steering with wheels on opposite sides differentially driven
to change vehicle heading. Another feature of some of these
skid-steered rovers is that one controlled motor is used to
drive both wheels on one side through a belt transmission.
Figure 2 shows examples of rovers CLARAty has been
implemented on.

C. Limbed Mobility Systems
 Another class of mobility systems at JPL is the limbed

locomotor. Examples of robots in this category are JPL’s
LEMUR (Limbed Excursion Mechanical Utility Robots)
robots [8]. These are four or six limbed systems that can
walk and climb. The first version of LEMUR has six limbs.

Its two front limbs have a three-fingered gripper, allowing
their use as arms. More recent versions of Lemur have limbs
with interchangeable tools and instruments. The first
prototype of LEMUR is shown on Figure 3a.

D. Hybrid Systems – Wheeled Legs
 The final class of mechanisms we consider is hybrid
mobility systems that drive on wheels but may also walk on
limbs or use limbs as manipulators. The ATHLETE (All-
Terrain Hex-Limbed Extra-Terrestrial Explorer) rover at
JPL [18] has six legs each with six DOF. The legs are
mounted symmetrically around a hexagonal base. Each leg
has a wheel at its tip. With its wheel locked, ATHLETE can
walk using its legs. And on relatively flat terrain, to conserve
power, ATHLETE can drive on its wheels while using its
legs as an active suspension system. Figure 3b shows the
ATHLETE rover climbing a hill. As NASA develops
innovative mobility systems for exploring steeper and
rougher terrain, we will see new hybrid mobility systems that
combine multiple modes of locomotion.

III. MODELING AND ALGORITHMIC FRAMEWORK

A. Design Requirements
 The primary requirement for the development of
Mechanism_Model is a unified modeling data structure for
the variety of mechanisms to allow the interoperability of
models and algorithms. Separation of the kinematics and
dynamics data and algorithms from control software is also
to be enforced so that model-related algorithms can be run
independent of physical systems. For greater efficiency in
real-time control applications, users should have the option
to override generic algorithms and use customized
algorithms for specific systems. Customized algorithms,
however, will use parameters from the common unified
model. Algorithms to be included in Mechanism_Model are
forward and inverse position, and velocity kinematics, quasi-
static computations of forces and torques that include models
of joint flexibility, gravity force and other applied forces,
gravity deflection, environmental contact constraints and
collision detection.

B. Model Framework
 Using the approach in DARTS/Dshell (Rodriguez, 1991,
Jain 1991), Mechanism_Model, models elements of
mechanisms as bodies arranged in a tree structure as
illustrated on Figure 4. Mechanism_Model bodies represent
the rigid or flexible components of a mechanism that
articulate with respect to each other. Articulations are
modeled as joints. A ground body, representing the inertial
frame in the system, is at the base of the tree. Component
bodies have only one parent but may have many child
bodies. The ground body is the only body without a parent.

Bodies are rigid in the current implementation of
Mechanism_Model but may be extended to be flexible.
Bodies have required kinematic attributes for kinematic
algorithms and optional inertial, geometric, and visual
attributes for use in dynamics and collision detection
algorithms and for graphics display.

 a) b) c)
Figure 2. Rover examples: a) Rocky 8, b) Rocky 7

and c) ARTV Jr.

 a) b)
Figure 3. Hybrid and limbed system examples: a)

LEMUR robot, and b)ATHLETE rover.

 Bodies are connected to each other by joints. Joint
articulation between pairs of bodies occurs between an
output frame of the parent body and the reference frame of
the child body. A joint can have multiple degrees of
freedom, may be actively controlled or passive, and may be
constrained to have its articulation state depend on the state
of another previously defined joint. An example of the use of
a constrained joint is in modeling the rocker-bogie
differential with opposite sides having opposite angles.
Joints have type (1 DOF prismatic, 1 DOF revolute, 6DOF
spatial, etc.), offset value (zero joint position offset from the
joint coordinate frame) and home position (joint position at
robot home position) attributes Joints also have optional
articulation limits, stiffness and constraint attributes. The
kinematic relationship between a parent body and a child
body is specified by the type of joint, its attachment on the
parent body and the joint articulation state.
 In Mechanism_Model, frame objects are used to represent
coordinate frames of interest on bodies. There are two types
of frame objects: reference frame objects and local frame
objects. Each body has one reference frame object and may
have multiple local frame objects. In addition to its type, a
frame object has the attributes of a homogenous transform
and a string label. A body’s reference frame object is used to
specify its nominal (zero joint values) pose with respect to its
parent. Local frame objects on a body represent the poses of
coordinate frames of interest on a body with respect to the
body’s reference frame.
 The simplest examples we looked at in Section II are
serial-link manipulators with multiple end effectors or
multiple manipulators attached to a base.
Mechanism_Model’s capability for modeling branching
kinematic chains makes it easy to model these types of
systems. Wheeled, limbed, and hybrid locomotors, discussed
in sections II.C., II.D. and II.E of this paper, are modeled by
inserting a virtual 6 DOF spatial joint between the ground
body and the locomotor chassis. The suspensions, legs or
limbs are then modeled as branches from the chassis body.

For these examples, spatial constraints between wheel or leg
and ground are applied to solve for the chassis pose. Parallel
kinematic structures or closed chain mechanisms can be
modeled similarly with closure constraints used to specify
the attachments of the parallel links to ground or the
mechanism closure respectively. The solution approach will
use a numerical solver to fully determine the parallel-link
manipulator end effector pose or closed chain configuration.

C. Generic Algorithms
 With this model framework in place, it is possible to
develop generic kinematic and other algorithms that can be
re-used for many applications. The most commonly used
algorithms in robot control are the forward and inverse
kinematics algorithms. In Mechanism_Model, these
algorithms are designed to be generalized for the tree
kinematic structure. The implementation of the forward
kinematics allows any frame on the tree to query for its pose
with respect to any another frame on the tree for a given set
of joint values of the elements in the tree. The generic
inverse kinematics algorithm is to be written after we
complete implementing a generic constraint solution
component of Mechanism_Model. This component will
allow multiple spatial constraints to be applied at different
frames on the tree. It will solve for the corresponding joint
values with a constrained optimization algorithm.
 Within the same model framework, generic algorithms
for wheeled locomotors have also been implemented. We
have implemented flat-terrain forward and inverse
kinematics algorithms for position and velocity. The position
and velocity inverse kinematics algorithms compute wheel
steer and drive distances or drive velocities corresponding to
a specified body transformation or body velocity
respectively. The position and velocity forward kinematics
algorithms compute the reverse; they compute the body pose
or velocity corresponding to the set of wheel steer and drive
distances or drive velocities respectively. These algorithms
are parameterized for the number and locations of wheels
and for rover type. Supported rover types include fully-

bodyi+2
bodyi

bodyi+1 jointi+1 jointi+2

to tip (outward) to base (inward)

local_sensor_frame local_actuator_frame

bodyi+3

jointi+3

ref_frame

ground frame

body0

F

ref_frame

Figure 4. Tree kinematic structure to
model mechanisms.

steered, partially-steered and skid-steered rovers. These
vehicle kinematics algorithms are being extended to handle
non-flat terrain and six DOF rover kinematics.

D. Software Implementation
 Mechanism_Model is built upon a hierarchy of
templatized software utility objects that are written in C++.
These objects include a Standard Template Library (STL)-
like tree, one and two dimensional array, three dimensional
vector, matrix, and rotation matrix and quaternion based
homogenous transform classes. Pre-order, post-order, sibling
and chain iterators are implemented in the Tree class to
facilitate tree traversal for kinematics algorithms.
 The Mechanism_Model package is composed of
Mechanism_Model, ME_Body, ME_Joint and Frame
classes. A corresponding set of input-output (I/O) classes,
Mechanism_Model_IO, ME_Body_IO, ME_Joint_IO and
Frame_IO, are used to read and write model data from and to
XML [19] model files. The constraint optimization
component of Mechanism_Model includes
Constraint_Manager, Constraint_Solver,
Cartesian_Constraint, Contact_Constraint, and
End_Effector_Constraint classes. The constraint solution
component of Mechanism_Model has been designed and will
be implemented in the next stage of development. The
relationship between these classes is shown on the UML
diagram on Figure 5.

IV. APPLICATION
 We developed several example applications to validate
this approach and illustrate the use of Mechanism_Model. A
simple 2 DOF planar manipulator is described here to show
how a model is created and used with Mechanism_Model.
There are two ways to create this model. The model can be
created using manually entered lines of code. Alternatively, a
model can be read in from an XML model file. In our
example, the two links of the arm are each 1.0 meter long.
The two joints of the arm rotate about the Z-axis. In its
nominal configuration with its joints at 0 radians, the arm is
aligned along the X-axis.

 A new class, N_2DOF_Planar_Arm was derived from
Mechanism_Model to demonstrate the implementation of a
customized inverse kinematics algorithm. The code below
shows how the two-link planar manipulator is created in
N_2DOF_Planar_Arm.

 N_2DOF_Planar_Arm arm;

 // Create the first link
 ME_Body link1("link1", arm);
 link1.create_frame("ref1");
 link1.get_joint().set_type("revolute");
 link1.get_joint().set_joint_axes(
 Vector3<double>(0.0, 0.0, 1.0));

 // Create the second link and attach to link1
 ME_Body link2("link2", arm, "link1");
 Frame & link2_ref_frame =
 link2.create_frame("ref2");

 link2_ref_frame.set(
 Transform(Vector3<double>(1.0,0.0,0.0)));
 link2.get_joint().set_type("revolute");
 link2.get_joint().set_joint_axes(
 Vector3<double>(0.0, 0.0, 1.0));

 // Create a local frame at the tip
 Frame & link2_tip_frame =
 link2.create_frame("tip");
 link2_tip_frame.set(
 Transform(Vector3<double>(1.0,0.0,0.0)));

 arm.initialize();

A model can, alternatively, be created by reading in the
XML model file shown on Figure 6 as follows:
 N_2DOF_Planar_Arm arm("2dof_planar_arm.xml");

To perform the forward kinematics for a given set of joint
angles, we first set the arm joint angles, then query for the tip
position:
 arm.get_joint(0).set_value(M_PI_2);
 arm.get_joint(1).set_value(0);

 Transform tip_position =
 arm.get_body("link2").get_frame(
 "tip").get_absolute_transform();

Figure 5. Mechanism_Model: class relationships.

Mechanism_Model_IO
Mechanism_Model

1

1, …n

1

1

0, …n

1

Contact_Constraint

Constraint_Manager

End_Effector_Constraint

1 1

1, … n

Vector3
RMatrix/

Quaternion
1

Joint_Constraint
Transform

1, … n

Cartesian_Constraint

Frame

Constraint_Solver

ME_Body_IO 1

ME_Joint_IO 1

Frame_IO 1

Tree<ME_Body>

Main mechanism
classes Support classes
Kinematic solver classes
Math package classes

CLARAty utility classes

ME_Body

ME_Joint

To perform the inverse kinematics is just as easy. We
first specify a desired tip location then query for the
corresponding arm configuration.
 Vector<Vector<double>> joint_values;

 Vector2<double> tip(1.0,1.0);

 arm.inverse_kinematics(tip,joint_values);

The two sets of possible results are contained in the 2-D
vector of 2-D vectors.

V. CONCLUSION
 The Mechanism_Model framework has been successfully
used to model the following manipulator arms and rover
vehicles: 1) Two-dof planar manipulator, 2) Three-dof
modeled with DH parameters, 4) Two-dof Rocky8 mast
camera arm, 5) Four-dof Rocky8 mast camera arm, 6) Five-
dof Rocky8 instrument arm, 7) FIDO rover with rocker-
bogey suspension kinematics, 8) Rocky8 rover with rocker-
bogey suspension kinematics, and 9) Rocky8 rover
kinematics with a 5-dof manipulator arm. We are continuing
its development in a couple of directions. Mechanism_Model
is about to be interfaced to a new generalized trajectory
generation and path planning module and a new generalized
control module.
 Also in the next stage of development, the constrained
solution components of Mechanism_Model will be
implemented. An iterative constrained optimization
algorithm will be used to solve for multiple constraints
acting simultaneously on frames in the model. This
generalized approach will be useful for many applications
including solving the inverse kinematics of manipulator arms
and allow positioning an end effector at a desired pose,
determining legs placement configuration for a walking

machine and determining suspension compliance in a
rover with wheels.
 With the integration of these components in
CLARAty, we will be able to deploy a complete control
software package for any of the platforms listed in
Section II by merely reading in the system XML
configuration files. We expect to see significant
reduction in the time it requires to develop control
software for robotic platforms with this capability. By
end of May 2007, a pilot version of the software
described in this paper will be released with the
CLARAty public release.

ACKNOWLEDGMENT
 This work was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

REFERENCES
[1] Bickler, D. “A New Family of JPL Planetary Surface Vehicles”,

In Missions, Technologies, and Design of Planetary Mobile
Vehicle, pages 301-306, Toulouse, France, September 28-30,

[2] Brooks, A., Kaupp, T., Makarenko, A., Williams, S. & Oreback,
A. (2005). Towards Component-Based Robotics, Principles and
Practices of Software Development in Robotics (SDIR2005),
ICRA2005 Workshop, Barcelona, Spain, April 2005.

[3] CLARAty (2007), http://claraty.jpl.nasa.gov
[4] DARTS Lab (2007) http://dshell.jpl.nasa.gov/
[5] A. Diaz-Calderon, I.A. Nesnas, W.S. Kim, and H. Nayar, "Towards a

Unified Representation of Mechanisms for Robotic Control
Software," International Journal of Advanced Robotic Systems, Vol.
3, No. 1, pp. 061-066, 2006

[6] Jain, A. (1991). Unified Formulation of Dynamics for Serial Rigid
Multibody Systems, Journal of Guidance, Control and Dynamics, vol.
14, pp. 531-542.

[7] Kapoor, C. & Tesar, D. (1998). A reusable operational software
architecture for advanced robotics, Proceedings of the Twelfth CSIM-
IFToMM Symposium on theory and Practice of Robots and
Manipulators, Paris, France, July 1998.

[8] B. Kennedy, H. Agazarian, Y. Cheng, M. Garrett, G. Hickey, T.
Huntsberger, L. Magnone, C. Mahoney, A. Meyer, J. Knight,
Autonomous Robots, Vol. 11, No. 11, 2001, pp. 201-205.

[9] Nesnas, I.A., chapter in Software Engineering for Experimental
Robotics, Springer Tracts on Advanced Robotics, edited by Davide
Brugali, 2006

[10] Nesnas, I.A., Wright, A., Bajracharya, M., Simmons, R. & Estlin, T.
(2003). CLARAty and Challenges of Developing Interoperable
Robotic Software, International Conference on Intelligent Robots and
Systems (IROS), Nevada, October 2003.

[11] Nucleus (2005). http://www.energid.com/site/nucleus.htm
[12] ORCA (2005). http://orca-robotics.sourceforge.net/index.html
[13] OROCOS (2007). http://www.orocos.org/
[14] OSCAR (2005).

http://www.robotics.utexas.edu/rrg/research/oscarv.2/
[15] RoboML (2005). http://www.roboml.org/
[16] Rodriguez, G., Kreutz-Delgado, K. & Jain, A. (1991). A Spatial

Operator Algebra for Manipulator Modeling and Control,
International Journal of Robotics Research, vol. 10, pp. 371-381.

[17] Volpe, R., Nesnas, I.A.D., Estlin, T., Mutz, D., Petras, R. & Das, H.
(2001). The CLARAty Architecture for Robotic Autonomy,
Proceedings of the 2001 IEEE Aerospace Conference, Big Sky
Montana, March 2001.

[18] Wilcox, B., ATHLETE: A Landing, Mobility, and Manipulation
System for the Moon, to be presented at ICRA '07 Space Robotics
Workshop.

[19] The World Wide Web Consortium (2005). Extensible
Markup Language (XML), htttp://www.w3.org/XML

Figure 6. 2dof_planar_arm.xml XML input file for
a 2 dof planar manipulator.

<Mechanism_Model name = "2dof_planar_arm" version = "1.0">
<!-- This body is first link -->
 <ME_Body name= "link1" >
 <ME_Joint name = "joint1" type = "revolute"
 x_axis = "0"y_axis = "0" z_axis = "1">
 </ME_Joint>
 <Frame name="ref1" type="reference">
 <Transform>
 <Position x="0" y="0" z="0" />
 <Quaternion qi="0" qj="0" qk="0"qs="1" />
 </Transform>
 </Frame>
 </ME_Body>

<!-- This body is second link -->
 <ME_Body name= "link2" parent = "link1" >
 <ME_Joint name = "joint2" type = "revolute"
 x_axis = "0"y_axis = "0" z_axis = "1">
 </ME_Joint>
 <Frame name="ref2" type="reference">
 <Transform>
 <Position x="1"y="0" z="0" />
 <Quaternion qi="0" qj="0" qk="0"qs="1" />
 </Transform>
 </Frame>
 <Frame name="tip" type="local">
 <Transform>
 <Position x="1" y="0" z="0" />
 <Quaternion qi="0.0" qj="0" qk="0"qs="1.0" />
 </Transform>
 </Frame>
 </ME_Body>
</Mechanism_Model>

