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Abstract

Checkpoint/restart is a general idea for which par-
ticular implementations enable various functionalities
in computer systems, including process migration, gang
scheduling, hibernation, and fault tolerance. For fault
tolerance, in current practice, implementations can be
at user-level or system-level. User-level implementations
are relatively easy to implement and portable, but suffer
from a lack of transparency, flexibility, and efficiency,
and in particular are unsuitable for the autonomic
(self-managing) computing systems envisioned as the
next revolutionary development in system management.
In contrast, a system-level implementation can exhibit
all of these desirable features, at the cost of a more
sophisticated implementation, and is seen as an essential
mechanism for the next generation of fault tolerant—and
ultimately autonomic—large-scale computing systems.
Linux is becoming the operating system of choice for the
largest-scale machines, but development of system-level
checkpoint/restart mechanisms for Linux is still in its
infancy, with all extant implementations exhibiting serious
deficiencies for achievingtransparentfault tolerance. This
paper provides a survey of extant implementations in a
natural taxonomy, highlighting their strengths and inherent
weaknesses.

Keywords: Fault tolerance, checkpoint/restart, autonomic
computing, Linux.

1 Introduction

Checkpointingrefers to the action of recording the state
of a computational process such the process could be
restarted at the point of progress represented by this state.
Checkpointing, in various forms, is useful for process mi-
gration (e.g. for load balancing), gang scheduling, ‘hiber-
nation’ (to preserve an entire machine state across power-

downs), or ‘suspension’ (as implemented in the commer-
cial virtual machine software VMware Workstation (tm),
to save memory space or to allow rolling back to known
states), and as a mechanism for enabling fault tolerance.

The need for fault tolerance in the largest-scale current
and proposed parallel computers is becoming critically im-
portant. Such machines are built primarily forcapability
computing, that is, with the intention of dedicating all or
most of the computational capacity to a single application
at any given time. For scientific computing, such applica-
tions may run for days, weeks, or longer until completion;
examples include the US DOE ASC codes [2] among in-
numerable others. However, because of the extraordinar-
ily large component count of such machines—for instance,
the IBM’s BlueGene/L supercomputer currently under con-
struction will have 65,536 nodes—their mean time between
failures (MTBF) may be orders of magnitude shorter than
the execution times of the applications they are intended to
run [1]. The current state of practice with such systems is
that in the absence of some mechanism for fault tolerance
a component failure is catastrophic for the running applica-
tion; it is all-too-common practice to run an application, or
a part of it, many times to achieve one successful comple-
tion.

In this scenario checkpoint/restart mechanisms are ad-
vocated as a straightforward solution for providing fault
tolerance. They are based on periodically saving the pro-
cess state to stable storage so that in the event of a fail-
ure the application can be restarted, on a functioning set of
nodes, at the point of the most recent checkpoint. These
mechanisms are quite promising assumingfail-stop seman-
tics [33] where faults can always be detected—a reasonable
assumption in practice.

Additionally, it is implicit in the goals of proposed au-
tonomic computing systems [14]—systems that are self-
managing—that a checkpoint/restart mechanism be com-
pletely transparent to the application programmer and ap-
plication user, that is, that the application source code need
not be modified, recompiled, or relinked. Such a sys-
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tem should be capable of both automatic and user-initiated
checkpoint and restart operations at any time during the
execution of the application. For example, checkpointing
could be initiated at regular fixed intervals, or in a more so-
phisticated scheme the interval could be automatically and
dynamically optimized with respect to a number of param-
eters, such as the failure rate of the system. User-initiated
checkpointing would allow a system administrator to safely
suspend a process to allow another to run, or to accommo-
date repair or maintenance.

In its simplest form checkpointing saves the entire state
of a process. Incremental checkpointing[27] is a well-
known optimization wherein only that part of a process’s
state that has changed since the last checkpoint operation
is saved. Optimization is achieved when the size of the
delta—the subset of the application’s memory that changed
since the last checkpoint operation—is small compared to
its entire memory. The page protection mechanism im-
plemented in virtual memory systems is commonly used
to keep track of the modifications to the process state, so
changes in the application memory are traced at the page
granularity. This technique has been recently evaluated
with respect to current hardware performance at user level
(specifically that of the current bottlenecks, namely I/O bus,
disk, and interconnection network) [31]. Experimental re-
sults show that the reduction in the size of the checkpoint
data depends strongly on the application, but for most rel-
evant scientific applications current hardware is adequate
to provide feasible (efficient) solutions. To the best of our
knowledge, this technique has seen very few implementa-
tions in Linux at user level, and never before at the operat-
ing system level. As will be discussed, a system-level im-
plementation allows a number of essential advantages over
a user-level implementation.

The primary contribution of this paper is to provide a
comprehensive survey of existing checkpoint/restart mech-
anisms in a natural taxonomy that exposes the fundamental
reasons for their potential strengths and unavoidable weak-
nesses, and in so doing argues that a particular subspace of
the taxonomy represents the most desirable area for further
development.

The remainder of this paper is organized as follows. Sec-
tion 2 describes a useful taxonomy for implementations.
Sections 3 and 4 analyzes current user- and system-level
checkpoint/restart mechanisms, respectively. Section 5
concludes.

2 Checkpoint/Restart Implementations

Checkpoint/restart mechanisms can be roughly classi-
fied along three dimensions: the context, the agent that
provides the checkpoint/restart functionality, and particular
specifics of implementation. To illustrate this classification,
Figure 1 depicts the space of checkpoint/restart implemen-
tations. In the coarsest dimension, context, an implementa-
tion may beuser-levelor system-level.

A user-level implementations may be directly pro-
grammed in the application’s source code by the user or
automatically inserted by a pre-compiler. Usually in these
cases a specific checkpointing library provides the neces-
sary checkpoint/restart primitives, eliminating the need to
directly program them. Alternatively, instead of modifying
the source code of the application, the checkpoint/restart
primitives may be invoked by signal handlers defined at
user level. Another implementation is based on the use
of the LD−PRELOAD environment variable wherein sig-
nal handlers are installed and the checkpoint library loaded
without recompilation or relinking of the application.

In contrast, system-level implementations may be in the
operating systemor in hardware. In the operating system
there are various techniques for implementing the check-
point/restart mechanisms: as akernel-mode signal handler,
system call, or kernel thread. In principle the classification
may not be entirely clear-cut, but in practice the taxonomy
is useful.

3 User-level Implementations

As has been discussed in detail elsewhere [31], imple-
mentations at user-level suffer from lack of transparency
because the application needs to be modified and recom-
piled, or relinked against a checkpoint library. However,
the upside of these schemes is that the implementation is
both simpler and more portable than modifying the kernel.
Some representative examples are libckpt [27], libckp [38],
Thckpt [39], Esky [15], and Condor [21] to checkpoint
simple single-threaded processes; libtckpt [10] for multi-
threaded processes; and the Pittsburgh Supercomputing
Center’s checkpoint library [35], PM2 [37], Dynamite [19],
CoCheck [28], CLIP [7], and CCIFT [4] for parallel appli-
cations. Most of them are automatically initiated at user-
level because the application itself is periodically check-
pointed when somecheckpointcalls are executed. There-
fore, the lack of flexibility is a principal concern on these
implementations. On the other hand, only a few of these
implement automatic-initiated at system-level, and imple-
ment incremental checkpointing.

A common scheme is to install a signal handler for a de-
fault signal offered by the kernel to automatically initiate
the checkpoint operation at system level. The signal han-
dlers are defined at user level and invoked by the kernel.
This signal can be triggered by a timer that periodically in-
terrupts the application with the default signalSIGALARM;
libckpt and Esky use this approach. Others, like Condor,
may use some general purpose signals such asSIGUSR1,
SIGUSR2, andSIGUNUSED. While they were primary de-
signed for automatic initiation, they may be invoked by the
user by explicit use of thekill command. Unfortunately
these solutions are not general because in many cases sig-
nal handlers interfere with the application or the resource
manager. Another problem inherent with checkpointing in
user space is efficiency: it entails much context switching
between user and kernel modes because of the number of
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Figure 1. Classification of the checkpoint/restart implementations.

system calls needed to extract from the kernel certain infor-
mation about the process’s state. Though context switching
has been highly optimized in Linux [20] it still represents
a more costly solution than directly accessing kernel data
structures because most CPU registers must be saved and
restored every time a system call is performed. For exam-
ple, in Linux thesbrk(0)system call is used to extract the
heap boundaries,lseek()is used to extract the file indexes,
andsigispending()is used to extract the signals pending on
the process. All of this information is directly accessible in
the kernel’s process state structure.

Even worse is the fact that some kernel data structures
embodying process state are not accessible even indirectly
at user level. Short of making extensive kernel modifica-
tions it is necessary to replicate these structures in the user
space by intercepting system calls, for examplemmap()
and unmmap()to trace the dynamic memory,dlopen() to
trace the dynamic shared libraries, andopen()or dup() to
extract file attributes. This approach is extremely undesir-
able because of added run-time overhead. Moreover, user-
level implementations are limited to applications that do
not depend on persistent state belonging to the operating
system, for example sockets, shared memory, PIDs, and IP
addresses. In contrast, a system-level approach can virtu-
alize these resources, implementing completely transparent
checkpointing [24]. Further, theuser signalingscheme rep-
resents a more complex scenario in which to program be-
cause the use of non-reentrant functions in the signal con-
text can cause deadlock or corruption of the system. For
example, some functions of the C library suchmalloc()and
free()are not reentrant. In contrast, the kernel is designed
to be reentrant.

In a user-level implementation incremental checkpoint-
ing is realized by tracing modifications to the process’s state
at the page granularity [27]. The protection of each page in
memory is set to read-only using themprotectsystem call at
the beginning of the checkpoint interval. When the appli-

cation attempts a write access the operating system sends
a SIGSEGVsignal to the process which can then be used
to track page modifications. Recently, a novel technique
called probabilistic checkpointing[23] allows the imple-
mentation of incremental checkpointing at a finer granu-
larity. Changes in the application memory are tracked at
the granularity of a memory block whose size can be much
lower than the size of a entire page. A further development
of this scheme is based on using different block sizes in
order to provide an attractive compromise between perfor-
mance and efficiency [1].

4 System-level Implementations

There are two main approaches to checkpointing at sys-
tem level: an implementation entirely performed by the op-
erating system, and a hardware/software co-design that in-
volves the operating system and special-purpose hardware.
In the former, incremental checkpointing is implemented
by using the page protection mechanism: when the process
tries to access the write-protected page a page fault excep-
tion is generated, and changes to application memory are
traced at page granularity. As will be explained later, with
support by special-purpose hardware modifications of the
process’s state can be traced at much finer granularity.

4.1 Operating System

In kernel space every data structure relevant to a pro-
cess’s state is readily accessible: these include registers,
memory regions, file descriptors, signal state, and more.
This accessibility enormously simplifies the implementa-
tion of checkpoint/restart operations, though it requires
somewhat more knowledge of kernel internals. On bal-
ance, though, decreased complexity and increased effi-
ciency practically mandate this approach if the goals of ef-
ficiency, transparency, and generality are to be achieved.
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There are three main approaches to providing check-
point/restart functionality at system-level: via asystem call,
akernel signal, or akernel thread.

• System call. This approach entails introducing new
system calls into the operating system to invoke the
checkpoint and restart operations [17, 18, 5]. The
common practice is to perform the automatic initia-
tion at user level, that is, the application directly in-
vokes the system calls, thus lack of transparency and
flexibility are major concerns.

• Kernel-mode signal handler.This approach is based
on the signaling mechanism offered by the kernel, but
now rather than using a general purpose signal at the
user level, a new specific signal is added to the ker-
nel for this purpose [6, 36]. The default action of this
signal is to checkpoint the application. The advantage
is that the checkpoint is performed at system level in-
stead of the user level. The signal may be generated
with thekill command at user level or directly at sys-
tem level.

• Kernel thread. Here a kernel thread is created to per-
form the checkpoint/restart activities [40, 13, 32, 24,
11]. The interaction with the kernel thread can be per-
formed at user level through three possible interfaces:
(1) using the standard file operations likeread, write,
and ioctl to communicate with a device file (usually
in /dev); (2) via the /proc pseudo file system using
the read and write operations; or, (3) a new system
call that may be invoked by another user-level process
(like a process monitor) to inform the kernel thread
to checkpoint a specific process. Alternatively, check-
point operations can be initiated at system level using
internal mechanisms to start the kernel thread.

All of these approaches require some changes to the ker-
nel, though often it is possible to write most of the code as
a kernel module. This improves portability and modularity,
and is helpful during development because a module can be
loaded and unloaded dynamically.

The system call and kernel-mode signal handler ap-
proaches have the advantages of being executed in kernel
mode behind the process that is to be checkpointed. Thus
the current process address space is that of the process to be
checkpointed. In contrast the kernel thread does not have
the correct process address space (because kernel threads
always use kernel addresses that are independent of pro-
cesses’), and it uses the page tables of the task it interrupted,
which may not be the process that is to be checkpointed. In
such a case a process address space switch is required and
this may invalidate the TLB cache and so decrease perfor-
mance.

In the first two approaches the application is executing
the checkpointing code (either the system call or the sig-
nal handler), so data do not change during the checkpoint
operation. A kernel thread, instead, is a different process

that in a multiprocessor system might run in parallel with
the application. That application could change data while
the kernel thread is saving it. In this case a mechanism to
stop the application is necessary (like removing the appli-
cation from the run queue) in order to guarantee data con-
sistency. An alternative approach is to fork (duplicate) the
process and let the parent process run while saving the (not
yet started) child process before destroying it.

A process may be in a state that is difficult to record or
reproduce, for example it could be waiting for an external
event such as an interrupt from a device. This problem af-
fects the kernel mode signal handler but not the system call
mechanism (if the process is not using some asynchronous
function) because in that case it is the application itself that
calls the checkpoint function.

The system call approach requires some changes in the
application source code in order to call the checkpoint func-
tion, resulting in a loss of transparency. Flexibility is also
lost with this approach: given that it is the application that
invokes the system call, there is little control of when the
checkpoint will actually occur. This may introduce unde-
sired delays, and global control of large scale parallel com-
putations could be difficult to implement. The kernel mode
signal handler method is more transparent than the system
call approach but the execution of the signal handler is de-
ferred until next transition from kernel mode to user mode
in the process context. Given that it is difficult to provide
accurate estimates on how many processes will be running
at any given time, there is no way to know when the signal
handler will be executed.

Another problem is related to the time-sharing schedul-
ing algorithm: the process could be suspended by the ker-
nel because there is another process with a higher priority
waiting for the CPU (the priority is dynamic and changes
during the process execution). Interrupts could also stop
the checkpointing. A new scheduler algorithm could alle-
viate this problem but all the computing processes should
have the same (high) priority.A kernel thread is a differ-
ent process that can have a higher priority policy (like the
SCHED−FIFO priority), this will ensure that the thread
will be executed as soon as it wakes up and it will run until
it has completed its work. Processes can not interrupt a ker-
nel thread with this schedule priority if they do not have the
same priority. A new priority can be introduced in order to
make sure that the kernel thread will not be interrupted. In-
terrupts can still stop the thread and a mechanism to delay
these events is needed in order to be sure the kernel thread
will never be interrupted.

The development of system-level checkpoint/restart
functionality for Linux is a relatively recent phenomenon,
first appearing around 2001. The first implementations
were deployed primarily to provide process migration in
clusters. Later implementations provided more advanced
functionalities for gang scheduling, hibernation, and fault
tolerance. They are briefly described in the following para-
graphs.

The original implementations are VMADump [17],
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EPCKPT [26], and CRAK [40]. The VMADump (Virtual
Memory Area Dumper) provides checkpoint/restart capa-
bilities to individual Linux processes via system calls. Ap-
plications directly invoke these system calls to checkpoint
themselves by writing the process state to a file descriptor.
Thus, this approach lacks transparency and flexibility. One
advantage of this tool is that the relevant data of the process
can be directly accessed through thecurrent kernel macro
because VMADump is called by the process to be check-
pointed. VMADump was designed as a part of the BProc
project [18] which is an implementation in the static part of
the kernel. This project aims to implement single system
image and process migration facilities in clusters.

In EPCKPT the checkpoint/restart operation is also
provided through system calls and is very similar to
the VMADump scheme; like the VMADump scheme,
EPCKPT is also implemented in the static part of the ker-
nel. EPCKPT provides more transparency than VMAD-
ump because the process to be checkpointed is identified
by the process ID (pid) rather than directly by thecurrent
macro. A new default kernel signal is created to invoke the
checkpoint operation. EPCKPT provides some command
line tools to user-initiate the checkpoint operations. Appli-
cation must be launched via one of these tools in order to
initialize the checkpoint and trace some information about
the application’s execution at run time.Then, checkpoints
are performed using another tool, passing as parameter the
process’s pid corresponding to the application to be check-
pointed.

CRAK [40] is a process migration utility implemented
as a kernel thread. Unlike the previous schemes CRAK is
a kernel module. To communicate with the kernel thread
CRAK creates a new device in/devand theioctl device-file
interface is used. The pid of the application to be check-
pointed is passed as parameter in theioctl call. The process
migration operation can also be disabled by users. In this
case, it stores the process’s state locally or remotely with-
out performing a process migration. A later development of
this tool is ZAP [24]. ZAP improves on CRAK by provid-
ing a virtualization mechanism calledPod to cope with re-
source consistency, resource conflicts, and resource depen-
dencies that arise when migrating processes between ma-
chines with different persistent states, as commented ear-
lier in Section 3. However, that virtualization introduces
some run-time overhead because system calls must be in-
tercepted.

Other checkpoint/restart mechanisms have been subse-
quently developed, such as the BLCR, the Berkeley Lab’s
Linux Checkpoint/Restart project [11]. This is a kernel
module implementation that, unlike prior schemes, also
checkpoints multithreaded processes. Like CRAK it is
based on kernel threads and uses theioctl device-file in-
terface to specify the pid’s process to be checkpointed. But
BLCR needs an initialization phase to register a signal han-
dler for an available general purpose signal and also re-
quires to load a shared library, hence it is not totally trans-
parent. Also, users can specify whether the process state

is saved locally or remotely via theioctl system call. A
further development of this tool, LAM/MPI [32], allows
checkpointing of MPI parallel applications. But, although
it is completely transparent to the application, is not trans-
parent to the MPI library because some MPI functions must
be modified in order to make the initialization phase of the
BLCR scheme automatic.

Another checkpoint/restart package is UCLiK [13]
which inherits much of the framework of CRAK, but ad-
ditionally introduces some improvements like restoring the
original process ID and file contents, and identifies deleted
files during restart. Process states are saved only locally.

CHPOX [36] is a checkpoint/restart package very simi-
lar to EPCKPT, but is implemented as a kernel module that
stores the process state locally. It creates a new entry in
the /proc pseudo file system and also a new kernel signal
(SIGSYS). The user application must be registered by send-
ing thepid to the new created entry in/proc. Then, check-
points are initiated by sending the new signal to the pro-
cess. This package has been tested and tuned as part of the
MOSIX project [3].

PsncR/C [22] is another checkpoint/restart package for
SUN platforms. It is a kernel thread implemented as a ker-
nel module which saves process state to local disk. A new
entry in /proc is created and all checkpoint operations are
realized via theiotcl interface. Unlike other packages it
does not perform any data optimization to reduce the check-
point data size, so all of the code, shared libraries, and open
files are always included in the checkpoints.

Software Suspend [6] is a hibernation mechanism imple-
mented in the official Linux kernel source code. Software
Suspend provides a script to start this operations at user-
level. A new default kernel signal initiates the hibernation,
and is delivered to every process in the system to freeze
their execution. When all processes are stopped the image
of the RAM is saved on the swap partition in the local disk.
After that, the system is powered down. At start-up the im-
age is restored from disk and all the processes are restarted.
Additionally, it also provides some standby functionality by
saving the image to memory rather to disk.

Finally, there is a recent proposal for checkpoint/restart
of multithreaded processes that we will refer to asCheck-
point [5]. Checkpoint/restart operations are provided
through system calls implemented in the kernel static part.
The innovation of this approach is that the checkpoint oper-
ations are performed by a thread running concurrently with
the application. Thefork mechanism is used to guarantee
the consistency of data between the thread and the applica-
tion process. However, this approach is not transparent—it
requires direct invocation of system calls.

Table 1 summarizes the main features of these mecha-
nisms. As can be seen, most provide full transparency—
the application source code needs not be modified, recom-
piled, or relinked. By counterpart, most of them are totally
transparent to the kernel static part. They are implemented
as a kernel module, which increases portability.

Most of the implementations provide a user-initiated
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TABLE 1. Comparison of Linux System-level Checkpoint/Restart Packages
Name Incremental Transparency Stable Initiation kernel

checkpointing storage module

VMADump no no local,remote automatic no
BPROC no no none automatic no
EPCKPT no yes local,remote user no
CRAK no yes local,remote user yes
UCLik no yes local user yes

CHPOX no yes local user yes
ZAP no yes none user yes

BLCR no no local,remote user yes
LAM/MPI no no local,remote user yes
PsncR/C no yes local user yes

Software Suspend no yes local user no
Checkpoint no no local automatic no

checkpoint that relegates the management of the checkpoint
operations to system administrators. Thus, they provide
rudimentary flexibility and little self-managing capabilities.
The common practice to provide flexibility is by integrat-
ing the user-initiation operations within a batch manage-
ment software such as LSF [9] that initiates the checkpoint
operations automatically. This system software is layered
on top of the operating system providing a set of tools to
allocate, monitor, and manage the networked resources in
a cluster. In addition, some self-management capabilities
are recently incorporated in those software packages [8].
Although, these tools provide flexibility and self-managing
capabilities at user-level, we believe that the lack of these
capabilities at system-level is a limiting factor for two main
reasons: (1) they are relegated to systems that support this
special software reducing the applicability of autonomic
computers; and (2) reduces the scalability and fault toler-
ance of autonomic computers because the management is
centralized to this software.

In addition, these solutions typically provide only rudi-
mentary support for fault tolerance. Most store the check-
point locally instead of remotely, thus checkpointed data
cannot be retrieved in case of a failure of the machine. Fault
tolerance is limited to the case of restarts in the event of
power outages or reboots.

Further, incremental checkpointing has not yet been im-
plemented in any of the packages. It has been implemented
at system-level in other operating systems like Genesis [30]
and V-System [12], but as far as we know, there is no im-
plementation of incremental checkpointing for Linux at the
time of this writing.

4.2 Hardware

Checkpointing may be supported by purpose-designed
hardware. As with operating-system-level implementa-
tions, this approach can be entirely transparent to users. But
hardware-level checkpointing is of limited importance pre-
cisely because it relies on custom hardware, in contrast to

the trend of building clusters from commodity components.
Hardware-based schemes typically implement incre-

mental checkpointing at much finer granularity than is done
at the operating system level: modifications of the address
space of the application are traced at the granularity of
cache lines. There are two recent proposals for hardware-
supported checkpointing for shared-memory multiproces-
sors,Revive[29] andSafetynet[34]. In Revivecheckpoint-
ing is supported by modifications of the hardware related
to the directory controller of the machine. In comparison,
Safetynetrequires more hardware resources thanRevive.
The processor’s caches must be modified, and it also re-
quires an additional buffer to store the checkpointing data.

5 Conclusions

We have surveyed the current state of the art of check-
point/restart mechanisms, identifying the significant advan-
tages and disadvantages of each.

Unlike user-level schemes, those at operating system
level can provide the flexibility, transparency, and effi-
ciency required to support the envisioned paradigm of au-
tonomic computing, even on commodity hardware. The
checkpoint/restart functionality implemented at the operat-
ing system level can be automatically invoked without user
intervention and can be integrated with the system manage-
ment tools. We believe that the automatic-initiated func-
tionality at system-level brings new management capabili-
ties in large scale computers.
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