Linelists of water vapor parameters from 500 to 8000 cm⁻¹

Robert A. Toth California Institute of Technology Jet Propulsion Laboratory Pasadena Ca. 91109 MS 183/301 toth@caesar.jpl.nasa.gov (818)-354-6860 (818)-354-5148 fax

tables: 8

ABSTRACT

The line parameters of water vapor are given in files that are available to users for the spectral region from 500 to 8000 cm⁻¹. The parameters include computed and observed values of line positions, strengths, self-broadened half-width coefficients, and air-broadened half-width and pressure-induced frequency-shift coefficients. The HITRAN formatted list also includes values of the exponent, η , which relates the air-broadened width coefficient at a temperature, T, to that at 296K. The isotopic species include H₂¹⁶O, H₂¹⁸O, H₂¹⁷O, HD¹⁶O, HD¹⁸O, and HD¹⁷O. This study culminates several years of research by this author.

1. INTRODUCTION

Water vapor is the most important molecule for which an accurate knowledge of the spectroscopic parameters is necessary for the analysis of atmospheric data. Due to the complexity of the quantum theory for H_2O and HDO, results derived from laboratory measurements of these molecules are essential to obtain the line parameters and for application to theory. This study presents measured and computed line parameter values for water vapor transitions located between 500 and 8000 cm⁻¹ that are applicable for atmospheric monitoring. The listings are available to users and this report describes the content of the several listings.

Many studies have been reported on this subject and the relevant publications [1-178] are listed, in the references, in chronological order of publication date. References [179,180] are the previous reports in this edition of this journal. To aid the reader, Table 1 displays the reference numbers given in terms of the type of research and spectral coverage of the study. The spectral coverage displayed in the table for the references may be limited in some cases and for those, a study mainly covers the region shown in the table as well as part of one or more other region(s). The region listed in the table as "higher" pertains to studies covering the spectral region above

8000 cm⁻¹. These studies were included in the references because part of their research reported parameters that are related to the lower spectral region. One example is energy levels of upper rotation-vibration states derived from measured transitions originating from the ground state and these upper states levels are the same as those involved in hot band transitions in the 1.4 μ m region. Reports labeled in the table as line position studies may include experimental and/or theoretical results of energy level values. Other reports given in the table for the region above 8000 cm⁻¹ involve pressure-broadening studies. The pressure-broadening parameters obtained in those studies relate to the parameters (self- and air-broadened half-width coefficients) measured in the lower spectral regions since these parameters are slightly influenced by vibration.

2. PARAMETER LISTINGS

Two related formats are used to list the line parameter values. One list is labeled SISAM.H2O which gives computed as well as experimental values of line positions and strengths. The listing includes rotational quantum assignments and the associated band with band notation showing the upper and lower states in the $v_1v_2v_3$ nomenclature. Other entries include broadening parameters: smoothed values of self- and air-broadened half-width coefficients and air-broadened pressure-induced frequency shift coefficients. The other listing is given in the HITRAN [177] format including values of the exponent, η . η is defined in the expression:

$$b^{o}(T) = b^{o}(T^{o})[T^{o}/T]^{\eta}, \qquad (1)$$

where $b^{o}(T)$ and $b^{o}(T^{o})$ are pressure broadened half-width coefficients for a given transition at sample temperature of T and T^o, respectively.

Table 2 outlines the frequency and strength information given in the SISAM.H2O compilation. The table gives the molecule (H₂O or HDO) and oxygen isotopic species, band, number of lines, frequency extent and minimum and maximum strengths and maximum J value for all of the assigned transitions. Line strength values are given in cm⁻²/atm. at 296K. Several bands given are not included in the present HITRAN compilation, HITRAN2000 [177], and are denoted in the table by an asterisk placed between the molecule and isotopic species entries. Table 3 gives information of the measured H₂O and HDO broadening parameters. The air- and self-broadened half-width measurements above 4300 cm⁻¹ are discussed in the previous report [180]. The smoothed values of the broadening parameters given in SISAM.H2O and the HITRAN formatted listings were derived from the measured values as described in the previous report [180].

The computed and measured values given in SISAM.H2O were mainly derived in previous studies by this author [84,90,93,94,95,105,106,107,122,123,135,141,142143,146,179,180] along with co-authors [59,63,134,171]. The early HD¹⁶O studies [59,63] were reanalyzed using more recent data including oxygen-enriched-18 spectra covering the 2450 to 4435 cm⁻¹ for the (100)-(000), (020)-(000), (001)-(000), (110)-(000) and (030)-(000) bands with inclusions of the (011)-(010) band and the HD¹⁸O bands: (100)-(000) and (001)-(000). The line strengths of the HD¹⁶O bands were fitted to a quantum model that included perturbation theory for the (100)-(000) and (020) bands and the (110)-(000) and (030)-(000) bands using the technique presented for the hot band pair: (020)-(010), (100)-(010) [141]. The HD¹⁸O analysis involved quantum assignments, line position measurements and determination of rotational energy levels. The HD¹⁸O study covered more bands than reported in the line parameter listings and the energy level values for these upper states are given in Table 4. The values were derived from the measured transition

frequencies and the ground state energy levels given in ref. [141]. The results obtained in this manner were weighted and average for each level. The highest weight was given for an observed, unblended transition of moderate or strong intensity (not saturated). The uncertainties, un, given in the table were determined from the averaging program.

Table 5 shows a small portion of the SISAM.H2O listing. The format is similar in some ways to that of the HITRAN format. One of the differences is the molecule and isotopic species codes for HDO. As shown in the table the molecule code for HDO is 49 with the same codes for the oxygen isotopic species. Another difference is the band notation. The table labels the bands with upper and lower states given in the usual $v_1v_2v_3$ fashion whereas HITRAN gives codes for the upper and lower states. The line strengths are given in cm⁻²/atm. at 296K whereas HITRAN list the strengths in mol.cm⁻²cm⁻¹ at 296K. The conversion between the two types of units is:

$$S(cm^{-2}/atm.) = S(mol.cm^{-2}cm^{-1}) \times 2.48 \times 10^{19} \text{ at } 296K.$$
(2)

The strength entry given in the table after the lower state quantum assignment is the computed or observed value. The computed strengths were derived from a quantum model and discussed in previous reports. When such analyses were not performed, the observed strength was inserted in that location. For the spectral region above 4300 cm⁻¹, a quantum model was used to fit the strength data of the (030)-(000), (110)-(000), and (011)-(000) bands of H₂¹⁶O and H₂¹⁸O (H₂¹⁷O was derived from the H₂¹⁶O values for like transitions) and the (021)-(010) bands of H₂¹⁶O [179]. Therefore the strengths of transitions of other bands of H₂O in this spectral region along with transitions of HDO in the region above 4800 cm⁻¹ were not computed and the strength given in that location in the table was the observed value.

Features that SISAM.H2O has that the HITRAN compilation does not include are the following: uncertainties in the computed line positions, un, the difference between the observed

and computed position, o-c, from which the observed value can be determined, and the measured line strength with the associated estimated uncertainty given in percent, $\Delta s\%$. un for a given transition was derived from the expression:

$$un(position) = \{ un(upper state level)^2 + un(lower state level)^2 \}^{\frac{1}{2}},$$
 (3)

where the upper and lower state values of un are given in the energy level listings for the various vibrational states of the molecular species. These listings are also available to the users. A study of Table 5 shows that some lines contain a "9" located between the molecule and isotope codes. This means that the line is doubled with the stronger of the two comparable, unresolved, transitions given for the H_2O species and either given for the two equal strength lines of HDO. The listed strength represents the sum of the two strengths. The values of Δ s% go from 1 to 15% in the total listing with Δs %=15% meaning that the observed absorption is either weak or blended from which an accurate determination of the measured strength could not be derived and the uncertainty of the strength could be even higher than 15%: to possibly over 50%. This reflects into the values of o-c for these lines in which for many cases, $o-c > 100 \times 10^{-5} \text{ cm}^{-1}$. Other factors can cause high values for o-c such as blending with other lines that are not reported or the line is assigned incorrectly. These conditions may occur more frequently in the higher spectral region than in the lower (below 6000 cm⁻¹) region because computed line strengths for the higher region were not derived and if more than one transition was determined to lie within the location of an absorption, only the quantum assignment of the strongest transition was given unless information for the weaker transition(s) was obtained elsewhere, for example $H_2^{17}O_1$, H2¹⁸O, and HDO line positions and strengths were mainly derived from spectra of enriched samples of those species.

Other situations given in Table 5 shows that a few lines were not measured and this is indicated by the omission of the values of o-c, observed strength, and Δ s%. For situations like this, the HITRAN2000 [177] line strength value is inserted in the observed strength location if the transition is included in the HITRAN listing. For the three entries with this condition shown in Table 5, HITRAN2000 did not contain these lines. It should be noted that this condition occurs for lines with computed line strength values. Another condition observed in the table is that four lines do not have quantum assignments. In all about 160 lines (of over 39,000) were not assigned in the listing with all but two located above 6000 cm⁻¹. The four in the table are located at 7478.983, 7480.400, 7639.02, and 7639.489 cm⁻¹. The parameters assumed for these measured absorptions are the following: lower state energy of 1500 cm⁻¹, b°(air)=.035cm⁻¹/atm. and b°(self)=.25cm⁻¹/atm. As noted in the previous report [179], impurities due to NH₃, CO, and N₂O were found in the H₂O samples for this spectral region, however their spectral features were accounted for in the data. This does not dismiss the possibility that some of the unknown absorptions were due to other impurities that were not accounted for.

The listing is also given in the HITRAN format and includes values of η derived from unpublished work [180] covering transitions in the 6 µm region and the values may be in error by 15% or a little more. For the purpose of this work, the results were analyzed only in terms of J or more specifically, |m|. These values are given in Table 6. A sample of the HITRAN formatted listing is given in Table 7. It is assumed that the reader is familiar with the HITRAN format for H₂O and additional information is not required. However, additional data are included and located in the last rows of the table. These are the measured line strengths (converted to mol cm⁻¹ cm⁻² at 296K) and uncertainties. The last row specifies were the values come from. "meas." means that the strength was measured whereas "HITRAN" denotes that the strength value is the same as given in HITRAN2000 [177]. If no entry is given means that the transition was not measured and not included in the present HITRAN listing.

3. AVAILABLE FILES

A total of 12 files are available from the website (<u>http://www.mark4sun.jpl.nasa.gov</u>) which are listed in Table 8. The table also gives the descriptions of the files.

4. CONCLUSIONS

This study and the previous two studies [179,180] represent the culmination of several years of research by this author on the spectral parameters of water vapor between 500 and 8000 cm⁻¹. The listings resulting from this work of which samples are given in Tables 6 and 7, can be obtained from a website (http://www.mark4sun.jpl.nasa.gov). Additional listings of energy levels, width, and shift coefficients are also available. The listings provide a more accurate representation of the parameters than is presently available from HITRAN [177] however improvements will be forthcoming from the scientific community. For example, the method used in this work to derive computed line strengths has been improved in the theory proposed by Mikhailenko et al. [174]. In addition, the analyses of the measured line strengths for the 6×6 (or higher) bands located above 5800 cm⁻¹ were not attempted here but a theory for this is continuing by several scientists. The measurements provided in this study should be of great help for these and other studies.

6. ACKNOWLEDGMENTS

The author thanks the National Solar Observatory at Kitt Peak for the use of the FTS and C.

Plymate and L. Brown for assistance in obtaining the H₂O spectra. This research was performed

at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the

National Aeronautics and Space Administration.

REFERENCES

- 1. W. S. Benedict, N. Gailar, and E. K. Plyler, J. Chem. Phys. 1956;24:1139-1165.
- 2. W. S. Benedict and L. D. Kaplan, J. Chem. Phys. 1959;30:388-399.
- 3. L. Galatry, Phys. Rev. 1961;122:1218-1223.
- 4. W. S. Benedict and L. D. Kaplan, J. Quant. Spectrosc. Rad. Transfer 1964;4:453-469.
- 5. J. K. G. Watson, J. Chem. Phys. 1967;46:1935-1949.
- 6. W. S. Benedict and R. F. Calfee, ESSA Prof. Paper 2 1967.
- 7. P. E. Fraley, K. N. Rao, and L. H. Jones, J. Mol. Spectrosc. 1969;29:312-347.
- 8. P. E. Fraley and K. N. Rao, , J. Mol. Spectrosc. 1969;29:348-364.
- 9. G. Steenbeckeliers and J. Bellet, C. R. Acad. Sc. Paris 1971;273:471-474.
- 10. J. G. Williamson, K. N. Rao, and L. H. Jones, J. Mol. Spectrosc. 1971;40:372-387.
- 11. R. S. Eng, A. R. Calawa, T. C. Hartman, P. L. Kelley, and A. Javan, *Appl. Phys. Lett.*1972; 21:303-305.
- 12. A. H. Brittain, A. P. Cox, G. Duxbury, and T. G. Hersey, Mol. Phys. 1972;24:843-851.
- 13. R. S. Eng, P. L. Kelley, A. Mooradin, A. R. Calawa, and T. C. Harman, *Chem. Phys. Lett.* 1973;19:524-528.
- 14. J. Bellet, W. J. Lafferty, and G. Steenbeckeliers, J. Mol. Spectrosc. 1973;47:388-402.
- 15. J.-M. Flaud and C. Camy-Peyret, Mol. Phys. 1973;26:811-823.
- 16. L. A. Pugh and K. N. Rao, J. Mol. Spectrosc. 1973;47:403-408.
- 17. C. Camy-Peyret, J.-M. Flaud, G. Guelachvili, and C. Amiot, Mol. Phys. 1973;26:825-855.
- 18. R. A. Toth, J. Quant. Spectrosc. Rad. Transfer 1973;13:1127-1142.
- 19. J. M. Flaud and C. Camy-Peyret, J. Mol. Spectrosc. 1974;51:142-150.
- 20. R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, and K. W. Nill, *Mol. Phys.* 1974;28:653-664.
- 21. F. C. DeLucia and P. Helminger, J. Mol. Spectrosc. 1975;56:138-145.
- 22. R. A. Toth and C. B. Farmer, J. Mol. Spectrosc. 1975;55:182-191.
- 23. R. A. Toth and J. S. Margolis, J. Mol. Spectrosc. 1975;55:229-251.
- 24. R. A. Toth and J. S. Margolis, J. Mol. Spectrosc. 1975;57:236-245.
- 25. J.-M. Flaud and C. Camy-Peyret, J. Mol. Spectrosc. 1975;55:278-310.
- 26. C. Camy-Peyret and J.-M. Flaud, J. Mol. Spectrosc. 1976;59:327-337.
- 27. J.-M. Flaud, C. Camy-Peyret, and J. P. Maillard, Mol. Phys. 1976;32:499-521.
- 28. J. W. Fleming and M. J. Gibson, J. Mol. Spectrosc. 1976;62:326-337.
- 29. C. Camy-Peyret and J.-M. Flaud, Mol. Phys. 1976;32:523-537.
- 30. F. Winther, J. Mol. Spectrosc. 1977;65:405-419.
- 31. J.-M. Flaud, C. Camy-Peyret, J.-P. Maillard, and G. Guelachvili, *J. Mol. Spectrosc.* 1977;65:219-228.
- 32. J.-M. Flaud, C. Camy-Peyret, J.-Y. Mandin, and G. Guelachvili,

Mol. Phys. 1977;34:413-426.

- C. Camy-Peyret, J.-M. Flaud, J.-P. Maillard, and G. Guelachvili, Mol. Phys. 1977;33:1641-1650.
- 34. C. Camy-Peyret, J.-M. Flaud and R. A. Toth, J. Mol.Spectrosc. 1977;67:117-131.
- 35. R. A. Toth, J.-M. Flaud and C. Camy-Peyret, J. Mol. Spectrosc. 1977;67:185-205.
- 36. R. A. Toth, J.-M. Flaud and C. Camy-Peyret, J. Mol. Spectrosc. 1977;67:206-218.
- 37. R. A. Toth, C. Camy-Peyret and J.-M. Flaud, J. Quant. Spectrosc. Rad. Transfer 1977;18:515-523.
- 38. J.-M. Flaud, C. Camy-Peyret and R. A. Toth, J. Mol.Spectrosc. 1977;68:280-287.
- 39. Y. S. Chang and J. H. Shaw, J. Quant. Spectrosc. Rad. Transfer 1977;18:491-499.
- 40. P. Helminger and F. C. DeLucia, J. Mol. Spectrosc. 1978;70:263-269.
- 41. C. Camy-Peyret, J.-M. Flaud, J.-Y. Mandin and R. A. Toth, *J. Mol. Spectrosc.* 1978;70:361-373.
- 42. Y. Y. Kwan, J. Mol. Spectrosc. 1978;71:260-280.
- 43. R. W. Davis and B. A. Oli, J. Quant. Spectros. Rad. Transfer 1978;20:95-120.
- 44. J.-M. Flaud, C. Camy-Peyret, and J.-P. Maillard, J. Mol. Spectrosc. 1979;75:339-362.
- 45. R. S. Eng and A. W. Mantz, J. Mol. Spectrosc. 1979;74:388-399.
- 46. T. D. Wilkerson, G. Schwemmer, B. Gentry, and L. P. Giver, J. Quant. Spectrosc. Rad. Transfer 1979;22:315-331.
- 47. C. Camy-Peyret, J.-M. Flaud, and J.-P. Maillard, J. Physique-Letters 1980;41:L-23 to L-26.
- 48. H. Kuze, Astrophys. J. 1980;239:1131-1133.
- 49. J. Kauppinen and E. Kyro, J. Mol. spectrosc. 1980;84:405-423.
- 50. C. Camy-Peyret, J.-M. Flaud, and N. Papineau, C. R. Acad. Sc. Paris 1980;290:537-540.
- 51. J.-M. Flaud, C. Camy-Peyret and R. A. Toth, Can. J. Phys. 1980;58:1748-1757.
- 52. E. Kyro, J. Mol. Spectrosc. 1981;88:167-174.
- 53. J.-M. Flaud, C. Camy-Peyret, and R. A. Toth, "ATLAS, H₂¹⁶O, H₂¹⁷O, H₂¹⁸O, line positions and intensities between 0 and 4350 cm⁻¹," *Pergamon Press, Great Britain* 1981.
- 54. C. Camy-Peyret, J.-M. Flaud and R. A. Toth, Molecular Physics 1981;42:595-604.
- 55. C. Camy-Peyret, J.-M. Flaud and R. A. Toth, J. Mol. Spectrosc. 1981;87:233-244.
- 56. J.-Y. Mandin, J.-M. Flaud, and C. Camy-Peyret, J. Quant. Spectrosc. Rad. Transfer 1981;26:483-494.
- 57. J. A. Mucha, Appl. Spectrosc. 1982;36:141-147.
- 58. N. Papineau, C. Camp-Peyret, J.-M. Flaud, and G. Guelachvili, *J. Mol. Spectrosc.* 1982;92:451-468.
- 59. R. A.Toth, V. D. Gupta, and W. Brault, Appl. Optics 1982;21:3337-3347.
- 60. M. E. Thomas and R. J. Nordstrom, J. Quant. Spectrosc. Rad. Transfer 1982;28:103-112.
- 61. L. P. Giver, B. Gentry, G. Schwemmer, and T. D. Wilkerson,
- J. Quant. Spectrosc. Rad. Transfer 1982;27:423-436.
- 62. G. Guelachviv, J. Opt. Soc. Am. 1983;73:137-150.
- 63. R. A. Toth, and W. Brault, Appl. Optics 1983;22:908-925.
- 64. S. Salimian and R. K. Hanson, J. Quant. Spectrosc. Rad. Transfer 1983;30:1-7.
- 65. J. K. Messer, F. C. DeLucia, P. Helminger, J. Mol. Spectrosc. 1984;105:139-155.
- 66. J.-P. Chevillard, J.-Y. Mandin, J.-M. Flaud, and C. Camy-Peyret, *Can. J. Phys.* 1985;63:1112-1127.
- 67. J. W. C. Johns, J. Opt. Soc. Am. B 1985;2:1340-1354.
- 68. A. Perrin, J.-M. Flaud, and C. Camy-Peyret, J. Mol. Spectrosc. 1985;112:153-162.

- 69. A. Bauer, M Godon, and B. Duterage, J. Quant. Spectrosc. Rad. Transfer 1985;33:167-175.
- 70. O. N. Ulenikov and G. A. Ushakova, J. Mol. Spectrosc. 1986;117:195-205.
- 71. J.-P. Chevillard, J.-Y. Mandin, C. Camy-Peyret, and J.-M. Flaud, *Can. J. Phys.* 1986;64:746-761.
- 72. J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, and J.-M. Flaud, *J. Mol. Spectrosc.* 1986;118:96-102.
- 73. J.-M. Flaud, C. Camy-Peyret, A. Mahmoudi, and G. Guelachvili, International J. of Infrared and Millimeter Waves 1986;7:1063-1090.
- 74. A. Perrin, C. Camy-Peyret, and J.-M. Flaud, Can. J. Phys. 1986;64:736-742.
- 75. S. P. Belov, I. N. Kozin, O. L. Polyansky, M. Yu. Tretyakov, and N. F. Zobov, *J. Mol. Spectrosc.* 1987;126:113-117.
- 76. P. Varanasi and S. Chudamani J. Quant. Spectrosc. Rad. Transfer 1987;38:407-412.
- 77. A. Bauer, M. Godon, M. Kheddar, J. H. Hartmann, J. Bonamy, and D. Robert, *J. Quant. Spectrosc. Rad. Transfer* 1987;37:531-539.
- 78. G. D. T. Tejwani, J. Quant. Spectrosc. Rad. Transfer 1988;40:605-612.
- 79. B. E. Grossmann and E. V. Browell, J. Mol. Spectrosc. 1989;138:562-595.
- 80. B. E. Grossmann and E. V. Browell, J. Mol. Spectrosc. 1989;136:264-294.
- 81. T. Ohshima and H. Sasada, J. Mol. Spectrosc. 1989;136:250-263.
- 82. C. P. Rinsland, A. Goldman, M. A. Smith, and V. M. Devi, Appl. Opt. 1991;30:1427-1438.
- 83. J. C. Pearson, T. Anderson, E. Herbst, F. C. DeLucia, and P. Helminger, Astrophys. J. 1991;379:L41-l43.
- 84. R. A. Toth, J. Opt. Soc. Am. B 1991;8:2236-2255.
- 85. T. Giesen, R. Schieder, G. Winnewisser, and K. M. T. Yamada, J. Mol. Spectrosc. 1992;153:406-418.
- J.-Y. Mandin, V. Dana, C. Camy-Peyret, and J.-M. Flaud, J. Mol. Spectrosc. 1992;152:179-184.
- V. M. Devi, D. C. Benner, M. A. H. Smith, and C. P. Rinsland, J. Mol. Spectrosc. 1992;155:333-342.
- 88. C. P. Rinsland, M. A. H. Smith, V. M. Devi, and D. C. Benner, J. Mol. Spectrosc. 1992;156:507-511.
- 89. L. H. Coudert, J. Mol. Spectrosc. 1992;154:427-442.
- 90. R. A. Toth, J. Opt. Soc Am. B 1992;9:462-482.
- 91. S. Adler-Golden, J. Lee, and N. Goldstein, J. Quant. Spectrosc. Rad. Transfer 1992;48:527-535.
- 92. T. M. Goyette, F. C. DeLucia, J. M. Dutta, and C. R. Jones, J. Quant. Spectrosc. rad. Transfer 1993;49:485-489.
- 93. R. A. Toth, J. Opt. Soc. Am. B 1993;10:1526-1544.
- 94. R. A. Toth, J. Mol. Spectrosc. 1993;162:20-40.
- 95. R. A. Toth, J. Opt. Soc. Am. 1993;10:2006-2029.
- 96. G. R. Davis, J. Quant. Spectrosc. Rad. Transfer 1993;50:673-694.
- 97. A. Bauer. M. Godon, J. Carlier, Q. Ma, and R. H. Tipping, J. Ouant. Spectrosc. Rad. Transfer 1993;50:463-475.
- 98. V. G. Avetisov, A. i. Nadezhdinskii, A. N. Khusnutdinov, P. M. Amarova, and M. V. Zyrianov, *J. Mol. Spectrosc.* 1993;160:326-334.

- 99. J. M. Hartmann, M. Y. Perrin, Q. Ma, and R. H. Tipping, J. Quant. Spectrosc. Rad. Transfer 1993;49:675-691.
- 100. K. M. T. Yamada, M. Harter, and T. Giesen, J. Mol. Spectrosc. 1993;157:84-94.
- 101. S. Langlois, T. P. Birbeck, and R. K. Hanson, J. Mol. Spectrosc. 1994;167:272-281.
- 102. K. Singh and J. J. Obrien, J. Mol. Spectrosc. 1994;167:99-108.
- 103. L. H. Coudert, J. Mol. Spectrosc. 1994;165:406-425.
- 104. V. N. Markov, J. Mol. Spectrosc. 1994;164:233-238.
- 105. R. A. Toth, Appl. Opt. 1994;33:4851-4867.
- 106. R. A. Toth, Appl. Opt. 1994:33:4868-4879.
- 107. R. A. Toth, J. Mol. Spectrosc. 1994;166:184-203.
- 108. S. Langlois, T. P. Birbeck, and R. K. Hanson, J. Mol. Spectrosc. 1994;163:27-42.
- 109. F. Matsushima, H. Odashima, T. Iwasaki, S. Tsunekawa, and K. Takagi, J. Mol. Struct. 1995;352/353:371-378.
- 110. V. N. Markov and A. F. Krupnov, J. Mol. Spectrosc. 1995;172:211-214.
- 111. R. Paso and V.-M. Horneman, J. Opt. Soc. Am. B 1995;12:1813-1838.
- 112. A. E. Lynasgray, S. Miller, and J. Tennyson, J. Mol. Spectrosc. 1995;169:458-467.
- 113. L. R. Brown and C. Plymate, J. Quant. Spectrosc. Rad. Transfer 1996;56:263-282.
- 114. W. F. Wang, T. L. Tan, and P. P. Ong, J. Mol. Spectrosc. 1996;176:226-228.
- 115. O. L. Polyansky, J. R. Busler, B. Guo, K. Zhang, and P. F. Bernath, *J. Mol. Spectrosc.* 1996;176:305-315.
- 116. O. L. Polyansky, J. Tennyson, and P. F. Bernath, J. Mol. Spectrosc. 1997;186:213-221
- 117. O. L. Polyansky, N. F. Zobov, S. Viti, J. Tennyson, P. F.Bernath, and L. Wallace, *J. Mol. Spectrosc.* 1997;186:422-447.
- 118. V. Nagali, S. L. Chou, D. S. Baer, and K. Hanson, J. Quant. Spectrosc. Rad. Transfer 1997;57:795-809.
- 119. S. Viti, J. Tennyson, and O. L. Polyansky, Mon. Not. T. Astron. Soc. 1997;287:79-86.
- 120. O. L. Polyansky, N. F. Zobov, S. Viti, J. Tennyson, P. F. Bernath, and L. Wallace, *Science* 1997;277:346-348.
- 121. H. Partridge and D. W. Schwenke, J. Chem. Phys. 1997;106:4618-4639.
- 122. R. A. Toth, J. Mol. Spectrosc. 1997;186:66-89.
- 123. R. A. Toth, J. Mol. Spectrosc. 1997;186:276-292.
- 124. O. L. Polyansky, N. F. Zobov, J. Tennyson, J. A. Lotoski, and P. F. Bernath, *J. Mol. Spectrosc.* 1997;184:35-50.
- 125. S. N. Mikhailenko, VI. G. Tyuterev, K. A. Keppler, B. P. Winnewisser, M. Winnewisser, G. Mellau, S. Klee, and K. N. Rao, *J. Mol. Spectrosc.* 1997;184:330-349.
- 126. N. Schmucker, Ch. Trojan, T. Giesen, R. Schieder, K. M. T. Yamada, and G. Winnewisser, *J. Mol. Spectrosc.* 1997;184:250-256.
- 127. P. L. Ponsardin and E. V. Browell, J. Mol. Spectrosc. 1997;185:58-70.
- 128. L. H. Coudert, J. Mol. Spectrosc. 1997;181:246-273.
- 129. D. W. Schwenke, J. Mol. Spectrosc. 1998;190:397-402.
- 130. M. P. Esplin, R. B. Wattson, M. L. Hoke, and L. S. Rothman, J. Quant. Spectros. Rad. Transfer 1998;60:711-739.
- 131. B. L. Upschulte and M. G. Allen, J. Quant. Spectrosc. Rad. Transfer 1998;59:653-670.
- 132. A. Valentin, F. Rachet, A. D. Bykov, N. N. Lavrentieva, V. N. Saveliev, and L. N. Sinitsa, J. Quant. Spectrosc. Rad. Transfer 1998;59:165-170.
- 133. R. R. Gamache, R. Lynch, and S. P. Neshyba,

J. Quant. Spectrosc. Rad. Transfer 1998;59:319-335.

- 134. R. A. Toth, L. R. Brown and C. Plymate, J.Quant. Spectrosc. Rad. Transfer 1998;59:529-562.
- 135. R. A. Toth, J. Mol. Spectrosc. 1998;190:379-396.
- 136. F. Matsushima, H. Nagase, T. Nakauchi, H. Odashima, and K. Takagi, *J. Mol. Spectrosc.* 1999;193:217-223.
- 137. A. Valentin, Ch. Claveau, A. D. Bykov, N. N. Lavrentieva, V. N. Saveliev, and L. N. Sinita, *J. Mol. Spectrosc.* 1999;198:218-229.
- 138. G. Avila, J.-M. Fernandez, B. Nate, G. Tejeda, and S. Montero, J. Mol. Spectrosc. 1999;196:77-92.
- 139. N. Zobov, O. L. Polyansky, J. Tennyson, J. A. Lotoski, P. Colarusso, K.-Q. Ahang, and P. F. Bernath, *J. Mol. Spectrosc.* 1999;193:118-136.
- 140. J.-M. Colmont, D. Priem, G. Wlodarczak, and R. R. Gamache, *J. Mol. Spectrosc.* 1999;193:233-243.
- 141. R. A. Toth, J. Mol. Spectrosc. 1999;195:73-97.
- 142. R. A. Toth, J. Mol. Spectrosc. 1999;194:28-42.
- 143. R. A. Toth, J. Mol. Spectrosc. 1999;198:358-370.
- 144. Shui-Ming Hu, O. N. Ulenikov, G. A. Onopenko, E. S. Bekhtereva, S.-G. He, X.-H. Wang, H. Lin, and Q.-S. Zhu, J. Mol. Spectrosc. 2000;203:228-234.
- 145. K. J. Siemsen, J. E. Bernard, A. A. Madej, and L. Marmet, *J. Mol. Spectrosc.* 2000;991:144-145.
- 146. R. A. Toth, J. Mol. Spectrosc. 2000;201:218-243.
- 147. L. Moretti, A. Sasso, L. Gianfrani, and R. Ciurylo, J. Mol. Spectrosc. 2001;205:20-27.
- 148. R. Lanquetin, L. H. Coudert, and C. Camy-Peyret, J. Mol. Spectrosc. 2001;206:83-103.
- 149. C. Claveau, A. Henry, D. Hurtmans, and V. Valentin, J. Quant. Spectrosc. Rad. Transfer 2001;68:273-298.
- 150. R. R. Gamache and J. Fischer, J. Mol. Spectrosc. 2001;207:254-262.
- 151. R. Schermaul, R. C. M. Learner, D. A. Newnham, R. G. Williams, J. Ballard, N. F. Zobov, D. Belmiloud, and J. Tennyson, *J. Mol. Spectrosc.* 2001;208:32-42.
- 152. R. Schermaul, R. C. M. Learner, D. A. Newnham, J. Ballard, N. F. Zobov, D. Belmiloud, and J. Tennyson, *J. Mol. Spectrosc.* 2001;208:43-55.
- 153. M. Lepere, A. Henry, A. Valentin, and C. Camy-Peyret, *J. Mol. Spectrosc.* 2001;208:25-31.
- 154. J. Tennyson, N. F. Zobov, R. Williamson, O. L. Polyansky, and P. F. Bernath, J. Phys. Chem. Ref. Data 2001;30:735-740.
- 155. B. Parvitte, V. Zeninari, I. Pouchet, and G. Durry, J. Quant. Spectrosc. Rad. Transfer 2002;75:493-505.
- 156. T. Kuhn, A. Bauer, M. Gofon, S. Buhler, and K. Kunzi, J. Quant. Spectrosc. Rad. Transfer 2002;74:545-562.
- 157. P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Hermans, and A. C. Vandaele, *J. Quant. Spectrosc. Rad. Transfer* 2002;74:493-510.
- 158. D. W. Steyert, W. F. Wang, J. M. Sirota, N. M. Donahue, and D. C. Reuter, J. Quant. Spectrosc. Rad. Transfer 2002;72:775-782.
- 159. R. Schermaul, R. C. M. Learner, A. A. D. Canas, J. W. Brault, O. L. Polyansky, D. Belmiloud, N. F. Zobov, and J. Tennyson, *J. Mol. Spectrosc.* 2002;211:169-178.
- 160. C. Claveau, A. Henry, M. Lepere, A. Valentin, and D. Hartmans,

J. Mol. Spectrosc. 2002;212:171-185.

- 161. S. N. Mikhailenko, NL. G. Tyuterev, V. I. Starikov, K. K. Albert, B. P. Winnewisser, M. Winnewisser, G. Mellau, C. Camy-Peyret, R. Lanquetin, J.-M. Flaud, and J. W. Brault, J. Mol. Spectrosc. 2002;213:91-121.
- 162. R. N. Tolchenov, J. Tennyson, J. W. Brault, A. A. D. Canas, and R. Schermaul, J. Mol. Spectrosc. 2002;215:269-274.
- 163. A. Bruno, G. Pesce, G. Rusciano, and A, Sasso, J. Mol. Spectrosc. 2002;215:244-250.
- 164. L. R. Brown, T. A. Toth, and M. Dulick, J. Mol. Spectrosc. 2002;212:57-82.
- 165. Q. Zou and P. Varanasi, J. Quant. Spectrosc. Rad. Transfer 2003;82:45-98.
- 166. M.-F. Merienne, A. Jenouvrier, C. Hermans, A. C. Vandaele, M. Carleer, C. Clerbaux, P.-F. Coheur, R. Colin, S. Fally, and M. Bach, *J. Quant. Spectrosc. Rad. Transfer* 2003;82:99-117
- 167. K. M. Smith, I. Ptashnik, D. A. Newnham, and K. P. Shine, J. Quant. Spectrosc. Rad. Transfer 2004;83:735-749.
- 168. R. R. Gamache and J. Fischer, J. Quant. Spectrosc. Rad. Transfer 2003;78:289-304.
- 169. S. Fally, P.-F. Coheur, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Hermans, and C. Vandaele, J. Quant. Spectrosc. Rad. Transfer 2003;82:119-131.
- 170. R. R. Gamache and J.-M. Hartmann, J. Quant. Spectrosc. Rad. Transfer 2004;83:119-147
- 171. R. A. Toth and L. R. Brown, J. Mol. Spectrosc. 2003;218:135-150.
- 172. A. Janca, K. Tereszchuk, P. F. Bernath, N. F. Zobov, S. V. Shirin, O. L. Polyansky, and J. Tennyson, *J. Mol. Spectrosc.* 2003;219:132-135.
- 173. M. Yu. Tretyakov, V. V. Parshin, M. A. Koshelev, V. N. Shanin, S. E. Myasnikova, and A. F. Krupnov, J. Mol. Spectrosc. 2003;218:239-245.
- 174. S. N. Mikhailenko, VI. G. Tyuterev, and G. Mellau, J. Mol. Spectrosc. 2003:217:195-211.
- 175. R. N. Tolchenov, J. Tennyson, S. V. Shirin, N. F. Zobov, O.L. Polyansky, and A. N. Maurellis, *J. Mol. Spectrosc.* 2003;221:99-105.
- 176. E. Bertseva, O. Naumenko, and A. Camparque, J. Mol. Spectrosc. 2003;221:38-46.

177. L.S. Rothman, A. Barbe, D.C. Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A.Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino,"The HITRAN molecular spectroscopic database: Edition of 2000 including updates of 2001" *J. Quant. Spetrosc. Rad. Transfer* 2003;82:5-44.

178. N. Jacquinet-Husson, E. Arie, J. Ballard, A. Barbe, G. Bjoraker, B. Bonnet, L. R. Brown, C. Camy-Peyret, J. P. Champion, A. Chedin, A. Chursin, C. Clerbaux, G. Duxbury, J.-M. Flaud, N. Fourrie, A. Fayt, G. Graner, R. Gamache, A. Goldman, V. Golovko, G. Guelachvili, J.-M.Hartmann, J. C. Hilico, J. Hillman, G. Lefevre, L. Lellouch, S. N. Mikhailenko, O. V.Naumenko, V. Nemtchinov, D. A. Newnham, A. Nikitin, J. Orphal, A. Perrin, D. C. Reuter, C. P. Rinsland, L. Rosenmann, L. Rothman, N. A. Scott, J. Selby, L. N. Sinitsa, J. M. Sirota, MAH Smith, K. M. Smith, V. G. Tyuterev, R. H. Tipping, S. Urban, P. Varanasi, and M. Weber,

GEISA-97, J. Quant. Spectrosc. Rad. Transfer 1999;62:205-254.

179. R. A. Toth, J. Quant. Spectrosc. Rad. Transfer 2004.

180. R. A. Toth, J. Quant. Spectrosc. Rad. Transfer 2004.

- 181. R. A. Toth, L. R. Brown, V. M. Devi, M. A. H. Smith, and D. C. Benner (in preparation).
- 182. P. L. Varghese and R. K. Hanson, Appl. Opt. 1984;23:2376-2385.

Table 1.	Reference numbers and	type of research that	applies for $H_2^{16}O_2$, H ₂ ¹⁸ O, H	$H_2^{17}O, HD^{16}O,$	and HD ¹⁸ O
----------	-----------------------	-----------------------	---------------------------	-------------------------------------	------------------------	------------------------

	rotational	1000-2000 cm ⁻¹	2000-4000 cm ⁻¹	4000-6000 cm ⁻¹	6000-8000 cm ⁻¹	higher
$H_2^{16}O$						C
positions	9,48,49,52,53,67,75 83,109,115,117,119,120	6,15,29,32,53,62,84 89,93,95,103,111,116 128,130,135,142,148,154	8,16,17,19,27 51,53,93,95,125	6,16,26,27,31 34,125,154 161 179	23,33,42,47,105 154,159,159,179	44,70,154 159,175 176
strengths	53,135,165	6,22,29,39,53,84,93,95 124,128,135,142,165	18,25,51,53,93 95,142,165,179	6,37,98,167 179	72,105,108,131 155,159,167,179	TIO
widths,	3,60,69,77,92,97	2,4,6,11,13,20,39,43	18,87,163,165	6,98,168,170	101,118,153	46,61,79
foreign	113,140,158,168,170	45,57,64,76,78,82,85 100,113,146,149,165 168,170,171,180	168,170,180	180	168,170,180	127,150,151 152,164
widths, self	69,77,86,97,104,173	11,39,43,56,76,133 134,147,160,165	165,179 180	98,179 180	108,118,131 159,179,180	61,80,102 157,159
freqency shifts	104,110,173	20,126,132,133,134 137,146,165,171	165			61,127 150,169
theory	3,5,112,121,129 140,168,170	3,5,29,84,89,103,112 121,128,129,133,135 142,168,170	3,5,25,51,112 121,129,142 168,170,179	3,5,26,34,112 121,129,161 168,170,179	3,5,42,112 121,129 168,170	129,150
emission	86,115,117,119	116,124,130	27	27,31	33	
continuum	96,156	60	60	99		
$H_2^{18}O$						
positions	9,10,28,30,40,49 52,67,136,174	50,62,90,93	7,24,55,93 107	35,38,41,66	36,71,106	
strengths width,		90,93	93,107	41,66	106	
foreign		147	55 101	66 121	101	
emission	174	50,121	55,121	00,121	121	
$H_{2}^{17}O$						
positions	8,21,28,30,40 49,52,136	50,62,90,93	54,55,93,107	35,179	36,106	
strengths	100	90,93	54,93,107	179	106	
theory	130	90,121	54,55,121	121	121	
$HD^{16}O$						
positions	65,67,141	1,62,68,73,94,141 145,172	1,59,63,172	74,123	81,122,144	
strengths	12,14,141	68,94,141	58,59,63	74,123	122	
widths, foreign	168	143,168	88,168			
theory emission	168	68,73,168 172	58,168 172	74		
HD ¹⁸ O						
positions	67	94,114				
strengths	14	24				

Table 2. Frequency and strength extent of transitions given in the SISAM.H2O listing

					all transi	tions]	measured tra	nsitions		
M 1	b	and	no.	min. freq.	max. freq.	min. str.	max. str. J _{max}	no.	min. freq.	max. freq.	min. str.	max. str.	J _{max}
1 1	000	000	627	500.0350	1743.9773	5.09E-08	4.07E-01 21	307	590.3311	1285.6899	1.67E-07	9.54E-02	19
1 1	010	010	202	502.1937	1029.4600	5.17E-08	2.08E-04 18	49	590.6003	851.2487	4.72E-07	8.10E-05	15
1 1	010	000	1903	701.9643	2819.8482	5.01E-08	7.41E+00 21	1282	783.2109	2582.6184	1.72E-07	7.40E+00	20
1 1	020	010	872	877.3133	2628.5774	5.07E-08	6.88E-03 16	505	995.9774	2276.5521	1.24E-07	6.82E-03	14
1 1	100	010	532	1221.4102	2611.6646	5.01E-08	9.66E-05 14	255	1247.8814	2423.0689	1.51E-07	9.68E-05	12
1 1	001	010	484	1298.1172	2716.1280	5.15E-08	2.33E-04 14	229	1298.1172	2571.9108	1.56E-07	2.35E-04	13
1 1	030	020	215	1223.6274	2017.9823	3.58E-08	5.47E-06 11	33	1293.6548	1841.5484	4.42E-07	5.46E-06	6
1 1	020	000	1135	2565.2831	4402.7739	2.05E-09	7.35E-02 17	660	2622.5755	4402.7739	7.60E-08	7.40E-02	15
1 1	030	010	313	2813.5890	3916.7097	2.69E-07	5.34E-05 12	96	2926.4559	3375.7254	5.59E-07	5.45E-05	10
1 1	100	000	1326	2823.0743	4495.9911	3.43E-08	5.58E-01 17	876	2912.3764	4495.9911	3.59E-08	5.50E-01	17
	110	010	372	31/2.339/	41/3.8405	1.95E-10	3.41E-04 12	1000	3325.6623	41/3.8405	1.15E-07	2.30E-04	10
1 1	001	010	1020 533	2894.05//	4040.3009	2.33E-13	0.00E+00 20 2 00E-03 15	200	2992.1094	4040.3009	1.00E-07	0.13E+00	11
1 1	021	010	10	3570 3193	3969 3010	2.008-07	1 27E-06 9	200	3331.2012	4525.1554	1.926-07	2.026-05	14
1 1	021	020	49 655	/331 3505	5031 0501	2.JIE-07	1.27E-00 0	500	1359 3120	5924 1403	2 368-08	1 188-04	15
1 1	110	000	921	4568 0670	6071 3992	9 01E-08	8 98E-02 17	803	4568 0670	6071 3992	2.30E 00 2 14E-08	8 93E-02	17
1 1	011	000	1221	4608,2066	6227.1887	1.16E-07	6.99E-01 19	1095	4608.2066	6227.1887	1.00E-07	6.95E-01	19
1*1	120	010	146	4884.9663	5524.2168	2.30E-08	6.92E-05 12	134	4884.9663	5524.2168	8.17E-08	6.95E-05	12
1 1	021	010	348	4833.6529	5791.0001	2.01E-07	6.89E-04 13	314	4833.6529	5791.0001	3.40E-08	6.77E-04	13
1*1	040	010	5	4862.0731	5437.9696	3.00E-07	1.05E-05 9	5	4862.0731	5437.9696	1.71E-07	1.05E-05	9
1*1	200	010	37	5472.1938	5824.8819	1.70E-07	1.70E-06 8	36	5472.1938	5824.8819	1.70E-07	1.70E-06	8
1*1	101	010	26	5146.4168	5760.9331	2.21E-07	9.50E-07 9	26	5146.4168	5760.9331	9.87E-08	9.50E-07	9
1*1	002	010	3	5930.2897	5990.0362	2.00E-07	3.36E-07 5	3	5930.2897	5990.0362	2.00E-07	3.36E-07	5
1 1	040	000	260	5904.1890	7460.3308	1.36E-07	5.90E-04 14	260	5904.1890	7460.3308	1.36E-07	5.90E-04	14
1 1	120	000	496	6301.9499	7761.6665	2.00E-07	4.25E-03 13	496	6301.9499	7761.6665	2.00E-07	4.25E-03	13
1 1	021	000	757	5962.3431	7804.6095	1.20E-07	3.48E-02 15	757	5962.3431	7804.6095	1.20E-07	3.48E-02	15
1 1	200	000	774	6421.3968	7939.5930	3.00E-07	6.60E-02 18	774	6421.3968	7939.5930	3.00E-07	6.60E-02	18
1 1	101	000	901	6441.9552	7971.9153	3.00E-07	4.60E-01 17	901	6441.9552	7971.9153	3.00E-07	4.60E-01	17
1 1	002	000	590	6552.7186	7973.0819	2.22E-07	5.26E-03 14	590	6552.7186	7973.0819	2.22E-07	5.26E-03	14
1 1	050	000	150	/195.2892	7653.7109	2.00E-06	6.64E-05 5	150	/195.2892	7653.7109	2.00E-06	6.64E-05	10
1 1	210	010	103	6932.331/	7360 2054	3.30E-07	2.0/E-04 12	153	6932.351/ 6527 2221	7360 2954	3.30E-07	2.0/E-04	12
1 1	0.21	010	122	6572 1130	7370 5624	2.00E-07	9.10E-05 0	133	6572 1130	7370 5624	3.80E-07	9.10E-05	0
1 * 1	130	010	26	6531 0242	7371 8907	2.99E-07	4.20E-05 11 4 40E-06 10	26	6531 0242	7371 8907	2.99E-07	4.20E-05	10
1*1	012	010	20	7044.4791	7639.4968	2.91E-07	4.90E-05 6	20	7044.4791	7639.4968	2.91E-07	4.90E-05	- 6
1 2	000	000	199	500.7524	1107.8835	5.04E-08	7.32E-04 17	76	595.5295	943.9840	3.90E-07	1.20E-04	16
1 2	010	010	20	501.6760	674.0171	5.08E-08	4.45E-07 12						
1 2	010	000	1031	893.5514	2310.5115	5.04E-08	1.50E-02 18	731	1009.5539	2219.1683	2.06E-07	1.52E-02	17
1 2	020	010	303	1203.3157	2014.5525	5.02E-08	1.45E-05 12	167	1284.7791	1934.9395	8.93E-08	1.52E-05	11
1 2	100	010	63	1807.7876	2248.8805	5.12E-08	2.61E-07 8						
1 2	001	010	59	2004.6187	2305.8356	5.14E-08	4.87E-07 8						
1 2	020	000	388	2806.9048	4045.9928	1.92E-07	1.34E-04 13	330	2892.7951	3981.5073	1.81E-07	1.40E-04	13
1 2	100	000	572	3001.8909	4193.4293	4.97E-09	2.24E-03 13	472	3001.8909	4193.4293	8.11E-08	2.44E-03	13
1 2	001	000	721	3160.6760	4290.8130	1.23E-07	1.26E-02 16	594	3160.6760	4290.8130	2.57E-07	1.26E-02	16
1 2	110	010	4	3624.2062	4024.2763	3.00E-07	8.75E-07 8	1	4024.2763	4024.2763	9.27E-07	9.27E-07	8
1 2	011	010	101	3525.8313	3911.0661	2.50E-07	4.79E-06 9	1	4661 7760	4661 7760	2 075 07	2 075 07	~
1 2	110	000	24	44/6.435/	5584./154	9.41E-08	5.49E-06 10	162	4661.7763	4661.//63	3.0/E-0/	3.0/E-0/	11
1 2	011	000	582	4070.0000	5010 2108	9.51E=08	2.04E-04 13 1 39E-03 15	102	4934.3400	5869 1798	2 28E-08	2.IIE=04	11 11
1*2	021	010	89	5082 4704	5465 4576	9 43E-08	1 41E-06 9	402	5232 5519	5420 5897	2.20E 00 2.79E-07	1 11E-06	8
1*2	120	010	3	5140,9614	5375.5935	1.02E-07	1.41E-07 4	0	0202.0019	0120.0007	2.751 07	1.110 00	0
1*2	040	000	3	6630.6781	6999.4815	2.18E-07	1.08E-06 9	.3	6630.6781	6999.4815	2.18E-07	1.08E-06	9
1*2	120	000	125	6540.4462	7137.1483	8.48E-08	4.81E-05 9	125	6540.4462	7137.1483	8.48E-08	4.81E-05	9
1*2	021	000	250	6481.3641	7507.8576	8.16E-08	7.35E-05 10	250	6481.3641	7507.8576	8.16E-08	7.35E-05	10
1*2	200	000	317	6530.1832	7622.8460	8.36E-08	1.63E-04 11	317	6530.1832	7622.8460	8.36E-08	1.63E-04	11
1*2	101	000	419	6739.6970	7696.8481	8.99E-08	9.04E-04 12	419	6739.6970	7696.8481	8.99E-08	9.04E-04	12
1*2	002	000	152	6700.0517	7732.0894	9.05E-08	1.23E-05 8	152	6700.0517	7732.0894	9.05E-08	1.23E-05	8
1 3	000	000	129	500.8874	976.2445	5.11E-08	1.53E-04 15	31	598.9986	797.3165	3.00E-07	2.25E-05	14
1 3	010	010	4	502.7523	559.2258	5.04E-08	7.94E-08 10						
1 3	010	000	841	1007.7228	2260.6045	5.04E-08	3.00E-03 17	660	1063.7848	2224.1543	4.48E-08	2.78E-03	17
13	020	010	190	1270.3185	TA3A.8008	5.11E-08	2.61E-06 11	109	1314.1474	1939.9008	5.67E-08	2.40E-06	9
1 3	020	000	292	2887.1297	3993.9411	1.94E-11	1./UE-05 12	264	2927.2546	3944.7876	1.12E-07	1./UE-05	12
⊥ づ 1 つ	100	000	433	3163 3004	4131.1924	5.29E-11	2.00E-04 12	382 501	32UL.0439	4131.1924	1 000 07	2 2017 02	⊥∠ 1 ⊑
⊥ づ 1 つ	001 011	000	500 21	3501 5001	3257 3357	0.02E-12 2 /8E-07	2.24E-U3 13 9 00E-07 7	554	5105.3984	4290.2334	T.00E-0/	2.20E-U3	тЭ
J	レエエ	0 T U	74	JJJT.JUUL		2.705-0/	J. UU - UI /						

Table 2 continued

					all transi	tions			r	neasured tra	nsitions			
M I	b	and	no.	min. freq.	max. freq.	min. str.	max. str.	J _{max}	no.	min. freq.	max. freq.	min. str.	max. str.	J _{max}
1*3	110	000	213	4940.9761	5664.1062	4.79E-08	6.11E-05	11	180	4940.9761	5664.1062	7.00E-08	6.11E-05	11
1 3	011	000	440	4909.0652	5838.2591	2.36E-08	2.60E-04	15	390	4909.0652	5818.9367	7.34E-08	2.60E-04	15
1*3	021	010	26	5142.8754	5412.8427	9.00E-08	2.56E-07	7						
1*3	120	000	53	6616.7594	7056.0842	6.68E-08	3.20E-06	6	53	6616.7594	7056.0842	6.68E-08	3.20E-06	6
1*3	021	000	191	6502.2778	7380.5257	9.00E-08	1.24E-05	12	191	6502.2778	7380.5257	9.00E-08	1.24E-05	12
1*3	200	000	261	6826.4499	7781.9979	7.50E-08	2.70E-05	11	261	6826.4499	7781.9979	7.50E-08	2.70E-05	11
1*3	101	000	335	6686.3614	7604.9751	4.63E-08	1.72E-04	11	335	6686.3614	7604.9751	4.63E-08	1.72E-04	11
1*3	002	000	58	7033.1997	7639.2273	9.00E-08	1.32E-06	6	58	7033.1997	7639.2273	9.00E-08	1.32E-06	6
49 1	000	000	123	504.5735	834.7326	5.01E-08	7.74E-06	17	56	651.0778	834.7326	4.74E-08	1.74E-06	16
49 1	010	000	1710	917.3648	1921.2779	5.01E-08	6.21E-04	20	1413	917.3648	1921.2779	3.66E-08	6.24E-04	19
49 1	020	010	435	1145.2243	1695.0543	5.01E-08	1.61E-06	13	325	1155.8371	1695.0543	4.80E-08	1.66E-06	13
49 1	100	010	33	1230.7725	1574.1042	5.01E-08	9.72E-08	7	24	1230.7725	1574.1042	4.65E-08	9.45E-08	6
49 1	020	000	610	2575.2579	3262.6872	4.78E-09	2.87E-05	15	420	2591.8247	3262.6872	1.11E-07	2.91E-05	15
49 1	100	000	812	2450.3977	3059.2576	2.40E-09	2.34E-04	16	494	2453.0028	3059.2576	1.13E-07	2.35E-04	16
49 1	001	000	1257	3289.0747	4103.0239	7.02E-08	4.34E-04	17	1019	3304.2474	4103.0239	7.02E-08	4.42E-04	17
49*1	011	010	174	3530.7092	3816.2754	7.07E-08	5.34E-07	10						
49 1	110	000	585	3825.6065	4426.4111	2.12E-08	2.10E-05	16	555	3825.6065	4426.4111	4.28E-08	2.21E-05	16
49 1	030	000	376	3950.3362	4435.0167	5.98E-08	1.99E-05	14	357	3950.3362	4435.0167	7.99E-09	2.00E-05	14
49 1	200	000	252	5118.8720	5595.5566	6.90E-08	1.85E-05	14	225	5118.8720	5595.5566	6.90E-08	1.85E-05	14
49*1	120	000	28	5400.6167	5607.6961	1.93E-07	7.92E-07	6	27	5400.6167	5607.6961	1.70E-07	4.10E-07	6
49 1	011	000	526	4814.1532	5366.4719	1.33E-07	9.06E-05	14	498	4814.1532	5366.4719	1.29E-07	3.66E-05	14
49*1	101	000	337	6151.2972	6687.4862	6.71E-08	2.43E-06	11	317	6151.2972	6640.3680	5.28E-08	2.43E-06	11
49*1	021	000	144	6266.6580	6634.3342	9.77E-08	1.92E-06	11	140	6266.6580	6634.3342	6.93E-09	1.57E-06	11
49*1	210	000	138	6586.7469	6912.2570	5.61E-08	1.59E-06	11	135	6601.9203	6912.2570	8.88E-09	9.90E-07	11
49*1	002	000	629	6895.8667	7571.5864	9.58E-08	2.50E-05	15	614	6895.8667	7513.7914	4.20E-08	2.50E-05	15
49 2	010	000	438	1173.7720	1684.2263	5.04E-08	1.26E-06	13	410	1173.7720	1684.2263	4.83E-08	1.28E-06	13
49*2	100	000	73	2586.9104	2812.0584	1.50E-07	4.93E-07	8	62	2586.9104	2812.0584	1.59E-07	4.75E-07	8
49*2	001	000	148	3568.3434	3824.7175	1.51E-07	8.84E-07	10	131	3568.3434	3824.7175	1.53E-07	8.68E-07	9
49 3	010	000	175	1234.2347	1598.7655	5.04E-08	2.31E-07	10	137	1234.2347	1598.7655	4.50E-08	2.28E-07	10

M= molecule, 1=H₂O, 49=HDO I=oxygen isotopic species, 1=16, 2=18, 3=17 no.=number of vibration-rotation transitions

freq. is the frequency in cm^{-1} str. is the strength in $\text{cm}^{-2}/\text{atm.}$ at 296K

 J_{max} is the maximum upper state J value an asterisk, *, between molecule and isotopic species codes denotes that transitions of the band are not contained in HITRAN2000.

		air-	-broadening				self-bro	adening	
ΜI	band	no.	min. frq.	max. frq.	Jmax	no.	min. frq.	max. frq.	Jmax
1 1	000-000	149	604.4482	1153.1903	18	106	600.6621	1153.1903	17
1 1	010-010	1	676.5496		12	2	609.7160	676.5496	12
1 1	010-000	792	896.5048	2271.7235	18	800	897.6940	2281.7859	17
1 1	020-010	113	1207.2742	2026.1207	11	204	1207.2742	2026.1207	11
1 1	100-010	13	1956 8087	2227 4019	4	31	1933 5548	2251 8697	8
1 1	001-010	27	1981 0268	2289 8940	6	0	1,00,000		Ũ
1 1	020-000	367	2864 3511	4260 4087	15	0			
1 1	030-010	5	2981 3638	3174 6872	5	0			
1 1	100-000	368	2912 3764	4304 4911	16	0			
1 1	001-000	494	3013 2146	4339 9831	18	10	4356 2226	4448 2253	13
1 1	011-010	9	3572 2124	3912 3372	10	0	1550.2220	1110.2235	15
1 1	030-000	61	4405 9842	5562 6989	14	167	4428 4819	5643 5839	12
1 1	110-000	171	4900 7207	5753 4196	13	423	4761 5976	5840 4648	13
1 1	011_000	458	4901 3357	6018 0629	18	624	4787 8768	5992 4248	16
1 1	$120_{-}010$		4701.5557	0010.002)	10	5	5137 8365	5/05 7198	5
1 1	021 010	25	5045 8230	5/37 06/3	10	118	5067 7014	5/00 8687	11
1 1	021-010	23 5	6011 4863	7031 4738	0	118	5007.7714	7031 4738	12
1 1	120 000	130	6505 4840	7/38 2301	11	324	6301 0/00	7640 5650	12
1 1	021 000	220	6442 0852	7438.2301	11	520	6271 0228	7804 6005	12
1 1	200,000	239	6641 2667	7541.9944	13	562	6516 2772	7020 5020	13
1 1	200-000	219	0041.2007	7020.8433	15	202	6441 0552	7959.3930	13
11	101-000	520 125	0000./348	1120.0300	13	200	0441.9333	7010 9760	17
1 1	111 010	123	7003.1043	7201 4240	11	390 57	0/10.4/81	7919.8709	12
	210.010	5	/091.4203	/301.4349	/	2/	/00/.0034	/489.39/9	12
	210-010	0				20	6900./38/	/288./380	/
	031-010	0	(20, 4212	742 2072	14	45	6645.8556	6942.6383	8 12
12	000-000	174	639.4312	/42.20/2	14	4	617.3500	/02.5895	12
12	010-000	1/4	11/0.0349	20/8.16/0	15	261	1242.2439	20/8.16/0	13
12	020-000	4	2982.6360	3165.1023	1	0			
12	100-000	5	3350.0442	3541.6190	6	0			
12	001-000	23	3376.2887	3961.1484	13	0	5 001 0 (2 0		0
12	110-000	0				24	5081.0632	5517.6333	8
12	011-000	0				162	5061.9475	5580.5284	11
12	120-000	0				2	66/0.56//	6852.4753	4
12	021-000	0				7	6481.3641	6986.6457	8
12	200-000	0				15	7158.7137	7474.2564	8
1 2	101-000	12	7060.3074	7372.2612	9	60	7060.3074	7398.2435	11
1 3	010-000	69	1359.0129	2058.5764	12	142	1315.6066	2010.9119	12
1 3	001-000	15	3581.5092	3939.4868	11	0			
1 3	011-000	4	5214.5816	5482.7397	6	82	5131.2366	5540.7963	9
1 3	200-000	1	7099.3683		1	0			
1 3	101-000	2	7060.8160	7154.7658	7	20	7153.4683	7370.2193	8
49 1	000-000	15	709.8113	825.9693	15	0			
49 1	010-000	549	931.5905	1936.0780	19	0			
49 1	020-010	4	1186.7011	1403.7577	4	0			
<u>49 2</u>	010-000	41	1173.7720	1713.3820	12	0			

Table 3. Frequency extent of H₂O and HDO broadening measurements

M=molecule, 1=H₂O, 49=HDO frq.=frequency in cm⁻¹ Jmax is the maximum upper state J I=oxygen isotopic species, 1=16, 2=18, 3=17 no.=number of transitions.

Table 4. Experimental vibration-rotation energy level values (cm⁻¹) of the (100), (020), (001), (110) and (030) states of HD¹⁸O

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				(100)		(020)-		(001)		(110)-		(030)	
0 0 2.700.2866 40. 2577.2036 40. 3567.3108 4. 4005.3526 40. 4137.1561 6. 1 1 2.738.5488 50. 2501.01750 25. 3724.6018 7. 4114.30766 15. 4156.43778 25. 2 2.754.37682 10. 283.38861 45. 3744.92433 3. 4126.12810 15. 4156.43778 25. 2 1 2.744.01763 5. 2838.19123 20. 3760.8276 3. 4130.9230 10. 4233.3739 50. 2 1 2.814.1934 15. 2839.0833 25. 300.14426 6. 4203.44800 15. 4230.3323 51. 3 1 2.837.44784 15. 2830.0833 2.5. 300.14426 6. 4203.44800 15. 4231.3323 51. 3 1 2.837.53189 5. 3056.7779 50. 374.1864 7. 4337.44740 70.4409.2924 55.	J	K _a	K_c	Energy	un	Energy	un	Energy	un	Energy	un	Energy	un
1 1	0	0	0	2709.28466	40.	2767.20936	40.	3696.33049	4.	4080.54526	40.	4121.75456	40.
1 1 1 2738.54000 50. 2801.01750 25. 3724.6913 7. 4114.30766 15. 4156.43778 25. 2 2 274.17683 5. 2804.03 30. 372.744905 9. 4117.34444 10. 4156.43778 25. 2 2 766.18129 5. 294.0213 5. 410.34464 10. 4156.43778 25. 2 1 2416.10393 6. 292.7281 15. 379.00272 5. 203.44680 15. 4132.4593 10. 4253.33739 50. 3 1 2937.5191 10. 2989.0622 5. 301.06844 4. 4212.4593.473742 55. 424.34915 60. 3 1 2937.53189 5. 303.677790 90. 391.739172 15. 4337.5011 50. 4409.23920 50. 3 1 2937.53189 5. 303.677790 90. 391.739172 15. 4337.5011 50.4	1	0	1	2724.42956	6.	2782.72628	50.	3711.66184	4.	4095.86026	8.	4137.19681	8.
1 0 2741.17633 5. 2604.09643 30. 3727.44095 9. 4117.34448 10. 4159.5237 45. 2 0 2 2764.3762 10. 2813.886 45. 374.19433 4126.1280 15. 4159.42500 10. 4193.42500 10. 4193.4251192 5. 2 1 2744.17631 5. 2829.72839 15. 3799.80272 5. 4203.09273 10. 4293.139213 8. 2 2 261.43944 15. 2870.65076 5. 3704.1887 6. 4129.13923 8. 4255.83122 6. 4225.83152 6. 3 1 2837.5019 7. 2940.96044 40. 397.3127 15. 437.3121 5. 4409.27524 5. 3 1 2837.5019 7. 3036.7524 40. 397.3127 15. 4429.716004 40. 327.24650 4337.3127 15. 427.16004 40. 31.6284512.0 4209.2752	1	1	1	2738.54080	50.	2801.01750	25.	3724.69134	7.	4114.30766	15.	4156.43778	25.
2 2 2/254.37682 10. 2813.38861 45. 3741.92433 3. 4126.1210 5. 4184.2805 30. 2 1 2/74.08105 10. 2838.19123 20. 3760.85276 3. 4150.92500 10. 4438.24050 30. 2 1 2816.43348 15. 2893.06313 25. 4201.44590 10. 4253.13923 8. 4212.0122 412.91160 40. 422.83152 20. 3 13 2800.44429 15. 2840.66076 7. 496.3784 40. 3974.18667 7. 442.91160 40. 422.91162 40. 422.91312 20. 422.91312 41. 422.91312 41. 422.91312 41. 422.91312 41. 422.91312 41. 422.91312 41. 422.91312 41. 422.923.92313 50. 5377.51519 5. 4257.4460 50. 427.12004 40. 423.1224 41.8. 420.92364 40. 420.9237.53189 50.	1	1	0	2741.17653	5.	2804.09643	30.	3727.44905	9.	4117.34448	10.	4159.52537	45.
2 1 2 2766.18229 5. 22828.95916 30. 3752.28655 6. 4141.83000 10. 4438.2000 30. 2 1 22774.08105 10. 2388.50410 20. 2888.50410 10. 3766.3708 6. 4203.09221 10. 4255.3739 50. 3 2378.47684 15. 2886.50440 10. 3766.37086 6. 4170.65598 4. 4212.70029 8. 3 1 2823.18791 10. 2889.06628 55. 3810.66644 4. 4201.07162 15. 4299.373042 50. 3 1 2853.9420 30. 39.3779864 93.3844.1171 14.374516 70. 4403.18644 40. 4256.45764 55. 3806.63736 15. 4207.13145 14. 431.62663 4. 41.41.8969 40. 41.41.8161 40. 4256.3766 55. 3804.976643 14. 437.56694 50. 447.126004 40. 47.7278660 55.	2	0	2	2754.37682	10.	2813.38861	45.	3741.92433	З.	4126.12810	15.	4167.73382	15.
2 1 2774.08105 10. 2838.19123 20. 3760.85276 3. 4150.92200 10. 423.19923 8. 2 2 2 2816.43948 15. 2883.08313 25. 3800.19420 6. 4203.44890 10. 423.170429 8. 3 13 2807.43429 15. 2870.65076 25. 3794.18867 7. 4182.91180 0. 4225.83152 20. 3 1 2837.5519 7. 2939.22185 10. 3847.63933 9. 4206.71522 429. 4408.13824 50. 3 1 2937.5519 7. 3036.75254 40. 3917.35125 5. 4337.1183 20. 4808.24843 41. 4 4 2855.92420 30. 2917.18844 29. 3844.11270 9. 4228.50444 4285.92463 3. 427.1183 20. 480.86844 40. 4 1 3 2888.6142 40. 3917.35172 5. 430.9173 5. 430.9173 5. 430.91735.44830 4441.15869	2	1	2	2766.18129	5.	2828.95916	30.	3752.58655	6.	4141.83600	15.	4184.28050	30.
2 1 2816.10393 6. 2892.72819 15. 3799.62272 5. 4203.09923 10. 4255.19923 8. 3 2 20 2816.43948 15. 2898.59440 10. 3796.37088 6. 4170.65598 8. 4212.00229 8. 3 1 3 2807.48429 15. 2870.65598 5. 4201.0765 3. 4244.34915 40. 3 1 2863.05516 7. 2980.6628 55. 3810.66844 4. 4210.0765 3. 4244.34915 40. 3 1 2337.5519 7. 3036.77790 90.3977.35172 15. 4337.5013 50. 4409.27964 4409.27964 40. 4 4 2662.08745 5. 2925.66269 95. 3849.26643 18. 4237.31165 20. 4462.49091 444.1220 4 1 2926.42033 10. 905.64378 5. 4309.23017 35. 4361.48092 446.27034 40. 4 1 3102.2992.64203 10. 997.131517	2	1	1	2774.08105	10.	2838.19123	20.	3760.85276	З.	4150.92500	10.	4193.54715	25.
2 0 0 2316,43946 15. 2883,08313 25. 3800,19420 6. 4720,65598 4. 4212,0429 8. 3 1 2823,18731 10. 2887,05076 2766,37086 6. 4720,65598 8. 4212,03125 20. 3 1 2823,18731 10. 2884,05016 4. 4.221,010765 30. 4244,43415 40. 3 1 2837,0519 7. 2304,7730 90. 3917,3164 17. 4337,47450 70. 4409,77324 50. 4 4 2855,82240 30. 2917,18644 91. 844,11270 9. 4228,50244 428,50244 43. 4271,28004 41. 3 2868,1642 40. 396,637930 60. 3876,50001 5. 4267,21324 45. 4314,126463 41. 41. 3 2888,1642 40. 3914,4563 5. 4304,19904 40. 4 3 2926,92055 5. 2324,44030	2	2	1	2816.10393	6.	2892.72819	15.	3799.80272	5.	4203.09923	10.	4253.19923	8.
3 3 2798.47664 15. 2855.50440 10. 3766.37088 6. 4212.0429 8. 4222.83152 20. 3 1 2 283.18791 10. 2889.06828 55. 3810.66804 4. 4201.00765 30. 4224.34915 40. 3 2 2 2861.45764 7. 2932.22185 10. 3845.73341 9. 4250.43224 55. 30. 4409.27524 50. 3 3 0 2937.5519 7. 3036.77790 90. 3917.31517 9. 4225.65094 50. 4409.27524 50. 4 1 2865.92420 0. 255.57590 60. 39676.50001 5. 4267.121324 15. 431.162465 30. 4 2 2996.45480 20. 3997.39384 2. 438.413865 20. 4364.27031 40. 4 1 3102.92421 15. 3977.45584 20. 4364.202116 438.416552 4	2	2	0	2816.43948	15.	2893.08313	25.	3800.19420	6.	4203.44890	15.	4253.53739	50.
3 1 2 2407,43429 15. 2870.66072 25. 3794.18867 7. 4482.91180 40. 4225.81152 20. 3 2 2 2861.45764 7. 2933.22185 10. 3847.6333 9. 4250.43224 25. 4293.13042 50. 3 3 2937.55189 7. 2303.67724 40. 3917.3112 15. 4337.47450 70. 4409.29800 50. 4 4 2855.92420 30. 2917.18864 29. 3844.21270 9. 4223.56945 50. 4271.26004 40. 4 1 3288.16142 40. 2956.37590 60. 3876.50001 5. 430.20.80444 40. 4351.48095 30. 431.415865 20. 4366.27031 40. 4 3 22986.34302 10. 3005.91875 10.3979.5137 13.4388.67419 40. 4342.61443 20. 4366.27031 40. 4342.61443 20. 4314.444.44.44.44.44.44.44.44.44.44.44	3	0	3	2798.47684	15.	2858.50440	10.	3786.37088	6.	4170.65598	8.	4212.70429	8.
3 1 2 2823.16791 10. 2889.06828 55. 3845.73341 9. 4244.341152 15. 4243.24915 40. 3 2 2863.09516 7. 2940.96040 40. 3845.73341 9. 4248.71522 15. 4301.38245 45. 3 3 0 2937.5319 5. 3036.77790 90. 3917.31517 15. 4337.747450 70. 4409.27524 50. 4 4 4285.027420 50. 2921.66145 50. 2221.66260 95. 3844.1270 4. 4.37.7.1152 15. 4314.15665 20. 4260.66644 40. 4 1 3000.56900 60. 3979.3175 15. 4314.15865 20. 4361.48095 20. 4 4 1302.92955 25. 3323.28424 50. 4077.54344 20. 4516.89910 90. 4 4 1302.92955 25. 3323.28424 50. 4077.54344 20. 4516.89910 90. 5 1 52926.02612 6. 2988.	3	1	3	2807.43429	15.	2870.65076	25.	3794.18867	7.	4182.91180	40.	4225.83152	20.
3 2 2 2861.45764 7. 2939.22185 10. 3847.6333 9. 4226.13224 15. 4299.73042 50. 3 3 1 2937.50519 7. 2303.67254 40. 3917.3117 18. 4337.47450 70. 4409.29860 50. 4 0 4285.92420 30. 2917.1864 29. 3844.11270 9. 4228.56094 50. 4271.26004 40. 4 1 2888.16142 40. 2956.37590 60. 3876.50001 5. 4302.23017 35. 4361.462465 30. 4 2 2926.32033 10. 3005.91195 4077.54344 20. 4351.48069 90. 4 4 13102.99122 15. 2323.28930 50. 4077.5444 20. 4346.1804924 20. 4344.1458 20. 4344.1458 20. 4344.1459 20. 4344.1459 25. 23.300.48070 40. 399.734955 5. 4348.899174	3	1	2	2823.18791	10.	2889.06828	55.	3810.66844	4.	4201.00765	30.	4244.34915	40.
3 1 22863.09516 7. 2940.96040 40. 3847.63933 9. 4250.43224 25. 4301.38245 45. 3 3 0 2937.5518 9. 397.735172 15. 4337.47450 70. 409.27524 50. 4 0 2285.59242 0. 2917.18864 29. 3844.11270 9. 2282.55094 50. 4209.27524 50. 4 1 2865.09240 0. 2917.18864 29. 3844.11270 9. 4237.31185 20. 421.126004 40. 421.4260.4265 30. 431.62455 30. 431.62455 30. 431.62455 30. 436.148095 20. 436.27031 436.44805 20. 4309.23017 432.61443 430. 432.61443 20. 431.624691 436.44859 20. 436.44859 25. 436.26491 90. 432.61443 20. 431.62481 20. 432.61443 20. 432.61443 20. 432.61443 20. 434.64859 25. 433.3996 30. 4342.61443 20. 434.48979405. 25.	3	2	2	2861.45764	7.	2939.22185	10.	3845.73541	9.	4248.71522	15.	4299.73042	50.
3 1 2937.5019 7. 3036.72524 40. 3917.31654 17. 4337.47450 70. 4409.27524 50. 4 0 2855.92420 30. 2917.18864 29. 3844.11270 9. 4228.56945 50. 4271.26004 40. 4 1 2868.16142 40. 2915.64157 5. 3267.55081 5. 4267.21324 15. 4311.62465 30. 4 2 2926.22033 10. 3005.91195 40. 3921.04137 15. 4314.15665 20. 4366.27031 40. 3 1 2988.45840 20. 3099.46120 90. 3979.15715 15. 4396.87419 40. 436.27031 40. 4 1 3102.29255 2323.28830 50. 4077.544103 5. 4516.9809 90. 4342.61443 20. 51 5 233.004.49105 5. 4316.9819 90. 4342.61443 20. 51 4 296.02612 5. 333.017.53645 40. 3987.75863 4. 4349.91459 25. 53.3 </td <td>3</td> <td>2</td> <td>1</td> <td>2863.09516</td> <td>7.</td> <td>2940.96040</td> <td>40.</td> <td>3847.63933</td> <td>9.</td> <td>4250.43224</td> <td>25.</td> <td>4301.38245</td> <td>45.</td>	3	2	1	2863.09516	7.	2940.96040	40.	3847.63933	9.	4250.43224	25.	4301.38245	45.
3 0 2937.53189 5. 3036.77790 90. 3917.35172 15. 4337.50151 50. 409.29980 50. 4 1 2855.92220 30. 2917.18864 29. 3844.11270 9. 2228.56094 50. 420.2865094 50. 421.126004 40. 4 1 3288.16142 40. 2956.37590 60. 3906.64378 5. 4309.23171 35. 4361.46805 20. 4362.27031 40. 4 2 29296.42331 10. 3009.291195 40. 3979.15175 15. 4398.67419 40. 4 1 3102.93122 15. 3232.28230 50. 4077.54414 35. 4299.4398 40. 5 1 2996.63781 15. 3917.55175 5. 4384.99174 15. 4349.14559 25. 5 1 2996.41482 15. 3917.551745 5. 4434.99174 15. 4348.99174 15. 4348.99174 15. 4438.91459 25. 33 3074.74305 2. 4363.99174 15.	3	3	1	2937.50519	7.	3036.75254	40.	3917.31654	17.	4337.47450	70.	4409.27524	50.
4 0 4 2855.92220 30. 2917.18864 29. 3844.11270 9. 4228.56094 50. 4271.26004 40. 4 1 3 2868.16142 40. 2956.37590 60. 3876.50001 5. 4267.21324 15. 4311.62465 30. 4 2 2.926.32033 10. 3005.91195 40. 3971.5175 15. 4314.15865 20. 4366.27031 40. 4 3 1.2998.63802 0. 3979.33984 23. 4398.67419 40. 4 4 1.3102.92955 5. 3222.28424 50. 4077.544103 5. 4516.98809 90. 5 1 2.926.02612 6. 2988.63807 40. 3914.64543 5. 4348.91974 10. 4342.61443 20. 5 1 2.926.02612 5. 3077.73610 80. 3984.24665 10. 4348.91974 15. 4349.41452 20. 320.4488.21027 85. <td>3</td> <td>3</td> <td>0</td> <td>2937.53189</td> <td>5.</td> <td>3036.77790</td> <td>90.</td> <td>3917.35172</td> <td>15.</td> <td>4337.50151</td> <td>50.</td> <td>4409.29980</td> <td>50.</td>	3	3	0	2937.53189	5.	3036.77790	90.	3917.35172	15.	4337.50151	50.	4409.29980	50.
4 1 2262.08745 5. 2225.88260 95. 3849.25643 18. 427.712185 20. 4280.66142 42 4 1 3 2288.16142 40. 3956.637590 60. 3876.64378 5. 4301.415865 20. 4366.27031 40. 4 2 22926.32031 0. 3005.91195 40. 3921.64137 15. 4314.15865 20. 4366.27031 40. 4 3 3102.9322.15. 3232.28424 50. 4077.54344 20. 4516.98600 90. 5 0 5 2226.90651 15. 2944.34153 15. 3917.45632 6. 4304.78979 40. 4342.61443 20. 5 1 2968.49892 5. 303.58875 15. 397.74955 5. 4348.99174 15. 4394.90524 25. 5 1 2968.41492 15. 307.45859 15. 477.8684 7. 4393.08498 4448.73266 40. 5 3 3074.45859 15. 377.876545 40. 4	4	0	4	2855.92420	30.	2917.18864	29.	3844.11270	9.	4228.56094	50.	4271.26004	40.
4 1 3 2888.16142 40. 2956.37590 60. 3876.50001 5. 4267.1324 15. 4311.62465 30. 4 2 22221.64137 10. 3005.91195 40. 3912.04139 15. 4314.15865 20. 4366.27031 40. 4 3 22984.5480 20. 3099.46020 90. 3979.39384 23. 4398.8700 40. 4 4 3102.92955 25. 3232.28930 50. 4077.54610 35. 4516.98600 90. 5 5 2926.02612 6. 2984.45405 51. 3937.74555 5. 4348.9174 15. 4342.61443 20. 5 1 5 2926.02612 6. 3093.58875 15. 3957.74955 5. 4348.9174 15. 4341.90524 22. 22. 30307.474305 20. 3337.75807 40. 4384.38995 30. 4448.73286 40. 5 3 3074.74305 20. 317.75864 40. 4057.48908 5. 4477.3580 40. <td< td=""><td>4</td><td>1</td><td>4</td><td>2862.08745</td><td>5.</td><td>2925.86260</td><td>95.</td><td>3849.25643</td><td>18.</td><td>4237.31185</td><td>20.</td><td>4280.86844</td><td>40.</td></td<>	4	1	4	2862.08745	5.	2925.86260	95.	3849.25643	18.	4237.31185	20.	4280.86844	40.
4 2 2 2921.44157 10. 3000.56900 60. 3916.64378 5. 4391.415865 20. 436.27031 40. 4 3 2 2926.32033 10. 3005.591195 60. 3979.15175 15. 4398.65800 40. 4 4 1 3102.93122 15. 3222.2424 50. 4077.54344 20. 4516.98910 90. 5 0 5 2929.91065 15. 2944.34153 15. 3917.5862 6. 4304.78979 4. 4342.61442 20. 5 1 5 2929.91065 15. 3944.4503 5. 4177.5862 6. 4304.78979 4. 4342.61442 20. 5 1 4 296.44462 15. 307.732160 80. 3937.74855 5. 4438.38955 30. 4438.21027 85. 5 3 3074.44305 20. 317.92860 15. 4777.43806 5. 4438.38955 30. 4438.21027 85. 5 3 3074.4448.73286 40. 4935.74890 <t< td=""><td>4</td><td>1</td><td>3</td><td>2888.16142</td><td>40.</td><td>2956.37590</td><td>60.</td><td>3876.50001</td><td>5.</td><td>4267.21324</td><td>15.</td><td>4311.62465</td><td>30.</td></t<>	4	1	3	2888.16142	40.	2956.37590	60.	3876.50001	5.	4267.21324	15.	4311.62465	30.
4 2 22226.32033 10. 3005.91195 40. 3912.04139 15. 438.67619 20. 4366.27031 40. 4 3 2298.64360 20. 3099.46020 90. 3979.39384 23. 4398.6719 40. 4 4 1 3102.9255 25. 3232.28242 60. 4077.54344 20. 4516.98610 90. 5 0 5 2266.02612 6. 2988.63070 40. 4146333 5. 4299.03024 10. 4342.6143 20. 5 1 4 2966.49892 5. 3039.58875 15. 3917.73652 6. 4344.99174 15. 4349.490524 25. 5 2 3006.52018 15. 3071.72160 80. 392.74664 7. 4395.08498 8. 4448.73286 40. 5 4 3317.89263 20. 317.55645 4. 4057.48908 5. 4741.2470 40. 5 5 3310.4681 50. 397.73500 40. 4741.24870 40.	4	2	3	2921.64157	10.	3000.56900	60.	3906.64378	5.	4309.23017	35.	4361.48095	20.
4 3 2 2998.6373 10. 3999.4620 90. 397.93384 23. 438.8500 40. 4 4 1 3102.9312 15. 3232.28424 50. 4077.54514 20. 4516.98690 90. 5 0 5 2926.02612 6. 2988.63070 40. 3914.4533 5. 4590.90124 10. 4342.61443 20. 5 1 5 2929.91065 15. 2994.4155 15. 3977.74555 5. 4348.99174 15. 4394.90524 25. 5 2 4 2966.4482 15. 3077.32160 80. 3982.24865 10. 4384.3995 30. 4438.1027 85. 5 3 3074.74305 15. 3177.55645 40. 405.54777 15. 4476.00410 15. 5 4 3178.94235 5. 310.48841 50. 4154.68262 5. 4593.25180 30. 5 1 3178.94235 5. 3178.74305 10. 4741.24870 40. 4247.373500 <td>4</td> <td>2</td> <td>2</td> <td>2926.32033</td> <td>10.</td> <td>3005.91195</td> <td>40.</td> <td>3912.04139</td> <td>15.</td> <td>4314.15865</td> <td>20.</td> <td>4366.27031</td> <td>40.</td>	4	2	2	2926.32033	10.	3005.91195	40.	3912.04139	15.	4314.15865	20.	4366.27031	40.
4 4 1 2998.63378 10. 3099.46020 90. 397.39384 23. 438.85800 40. 4 4 0 3102.2925 25. 3232.28242 407.54344 20. 4516.98690 90. 5 0 5 2266.02612 6. 288.63070 407.545410 35. 4516.98690 90. 5 1 5 2266.02612 6. 288.63070 40. 3414.54333 5. 4348.99174 15. 4349.49552 25. 5 2 4 2966.44822 15. 3077.31260 80. 3982.24865 10. 4384.39975 30. 4438.21027 88. 5 2 3074.74305 20. 3178.528301 15. 4057.48908 5. 4475.28377 25. 5 4 3178.92835 20. 310.46840 309. 4154.70569 15. 4593.23783 40. 5 5 1 3178.92835 20. 310.46841 30.97.48908 4412.42870 40. 6 1 3178.9790<	4	3	2	2998.45480	20.	3099.28198	60.	3979.15175	15.	4398.67419	40.		
4 1 3102.92255 25. 3222.28824 50. 4077.54410 20. 4516.98690 90. 5 0 5 2926.02612 6. 2988.63070 40. 3914.45433 5. 4299.03024 10. 4342.61443 20. 5 1 5 2929.9105 15. 2994.34153 15. 3917.13562 6. 4349.9174 15. 4349.0524 25. 5 2 4 2966.41482 15. 307.32160 80. 3982.24865 10. 4384.38995 30. 4438.1027 85. 5 2 3006.52018 15. 3075.46505 15. 4175.28337 25. 5 3 3074.74305 20. 3177.55645 40. 4154.68262 5. 4539.23783 40. 5 4 3178.92835 50. 397.07714 8. 4381.56044 35. 4426.24435 40. 6 0 6 3008.40320 30. 3072.32380 50. 3970.0714 8. 4381.56044 35. 4426.24435 <td< td=""><td>4</td><td>3</td><td>1</td><td>2998.63978</td><td>10.</td><td>3099.46020</td><td>90.</td><td>3979.39384</td><td>23.</td><td>4398.85800</td><td>40.</td><td></td><td></td></td<>	4	3	1	2998.63978	10.	3099.46020	90.	3979.39384	23.	4398.85800	40.		
4 0 3102.93122 15. 3222.28930 50. 4077.34610 35. 4251.99910 90. 5 1 5 2926.02612 6. 2988.63070 40. 391.44503 5. 4299.03024 10. 4342.61443 20. 5 1 4 2968.03970 40. 391.4553 5. 4299.040174 15. 394.74655 5. 4348.99174 15. 4394.90524 25. 5 2 4 2966.41482 15. 307.732160 80. 3982.24665 10. 4384.3895 30. 4438.21027 85. 5 2 3005.52018 15. 3178.5545 40. 405.65477 15. 4475.2037 25. 5 4 3178.9285 20. 3310.4684 50. 4279.7350 40. 4741.24870 40. 5 5 1 311.59960 50. 4279.7350 40. 4741.24870 40. 6 0 6 3004.6431 5. 3075.84344 40. 3998.79600 7. 4381.50644 <td>4</td> <td>4</td> <td>1</td> <td>3102.92955</td> <td>25.</td> <td>3232.28424</td> <td>50.</td> <td>4077.54344</td> <td>20.</td> <td>4516.98690</td> <td>90.</td> <td></td> <td></td>	4	4	1	3102.92955	25.	3232.28424	50.	4077.54344	20.	4516.98690	90.		
5 0 5 2926.02612 6. 2988.63070 40. 3914.43933 5. 4299.03024 10. 4342.61443 20. 5 1 4 2928.91065 15. 2994.34153 15. 3977.735632 6. 4340.1879 40. 4349.14559 25. 5 2 4 2966.41482 15. 3077.12160 80. 3982.24865 10. 4348.19895 30. 44382.102624 25. 5 2 3 3006.52018 15. 3077.4505 15. 4175.28337 25. 5 3 3074.64559 15. 3177.55645 40. 4154.68622 5. 4553.23783 40. 5 4 3178.92835 20. 301.48200 30. 414.471.24870 40. 6 0 6 3008.4320 30. 4279.73500 40. 471.24870 40. 6 1 5 3031.48200 30. 3997.07714 8. 4385.1	4	4	0	3102.93122	15.	3232.28930	50.	4077.54610	35.	4516.98910	90.		
5 1 5 2929.91065 15. 2991.3315. 3917.33632 6. 4308.78979 40. 4349.14559 25. 5 1 4 2968.48922 5. 3039.58875 15. 3957.74955 5. 4348.38995 30. 4438.21027 85. 5 2 3 3006.52018 15. 3077.35645 40. 4056.54777 15. 4476.00410 15. 5 4 2 3178.2535 20. 3177.55645 40. 4056.54777 15. 4476.00410 15. 5 4 2 3178.2530 20. 310.46841 50. 4154.68262 5. 4953.25180 30. 5 4 1 3178.5960 50. 4279.73500 40. 4741.24870 40. 6 6 308.40320 30. 3072.32380 50. 3997.0714 8. 4381.56044 35. 4426.24435 40. 6 1 5 3063.50552 10. 3137.98790 50. 4052.59311 10. 4445.59176 50.	5	0	5	2926.02612	6.	2988.63070	40.	3914.45433	5.	4299.03024	10.	4342.61443	20.
5 1 4 2986.44882 15. 3037.32160 80. 3987.74955 5. 4348.99174 15. 4348.99174 15. 4348.99174 15. 4348.99174 15. 4348.99174 15. 4348.99174 15. 4388.995 30. 4438.21027 85. 5 3 3 3075.46559 15. 3177.55645 40. 4065.64777 15. 4475.28337 25. 4448.73286 40. 5 4 3178.92835 20. 3310.46841 50. 4154.76569 15. 4593.23783 40. 5 5 1 3311.59960 50. 4279.73500 40. 4741.24870 40. 6 1 6 3008.40320 30. 3072.32380 50. 3997.07714 8. 4381.50644 35. 4426.24435 40. 6 1 5 3063.50552 10. 3137.93790 50. 4053.59311 10. 4443.4262.4435 40. 6 2 3063.50521 10. 317.93790 50. 4053.59312 10. 4442	5	1	5	2929.91065	15.	2994.34153	15.	3917.53632	6.	4304.78979	40.	4349.14559	25.
5 2 4 2996.41482 15. 3077.32160 80. 3992.76684 7. 4335.08498 30.4438.21027 85. 5 3 3066.52018 15. 3088.44506 50. 3993.76684 7. 4355.08498 8. 4448.73286 40. 5 3 2 3075.46559 15. 3178.92335 20. 3177.755645 40. 4056.54777 15. 4475.28337 25. 5 4 1 3178.92335 25. 3310.46841 50. 4154.68262 5. 4593.25180 30. 5 5 1 311.59960 50. 4279.73500 40. 4741.24870 40. 6 0 6 3010.64643 15. 3075.84434 40. 3987.9660 7. 4385.10952 25. 4430.42034 40. 6 1 6 3010.64643 15. 3167.98790 50. 4035.19311 10. 44435.9176 50. 4438.2602 50. 6 1 5. 3665.48942 6. 3168.76595 50.	5	1	4	2968.49892	5.	3039.58875	15.	3957.74955	5.	4348.99174	15.	4394.90524	25.
5 2 3 3006.52018 15. 3088.44506 50. 3993.76684 7. 4395.08498 8. 4448.73286 40. 5 3 2 3075.46559 15. 3177.55645 40. 405.54777 15. 4475.28337 25. 5 4 2 3178.92835 20. 3310.46841 50. 4154.70569 15. 4593.25180 30. 5 5 1 3117.9960 50. 4279.73500 40. 4741.24870 40. 6 0 6 3008.40320 30. 3072.32380 50. 3997.07714 8. 4381.56044 35. 4426.24435 40. 6 1 6 3010.68643 15. 3075.84434 40. 3998.79680 7. 4385.10952 25. 4430.42034 40. 6 1 5 3063.50552 10. 3179.87979 50. 4053.59311 10. 4448.9976.26302 50. 4453.27272 70. 4548.96906 20. 6 4 3162.70538 30. 1647.22	5	2	4	2996.41482	15.	3077.32160	80.	3982.24865	10.	4384.38995	30.	4438.21027	85.
5 3 30/4.4305 20. 317.35645 40. 4056.34777 15. 4475.02810 15. 5 4 2 3178.92835 20. 3310.46841 50. 4154.68262 5. 4593.23783 40. 5 4 1 3178.92835 20. 3310.46841 50. 4154.76569 15. 4593.23783 40. 5 5 1 3311.59960 50. 4279.73500 40. 4741.24870 40. 6 0 6 3008.40320 30 3075.84434 40. 3998.79680 7. 4381.55044 35. 4426.24435 40. 6 1 6 3010.68643 15. 3075.84434 40. 3998.79680 7. 4385.10952 25. 4430.42034 40. 6 1 3010.68643 15. 3075.84434 40. 3998.79680 7. 4385.10952 25. 4430.42034 40. 6 1 306.35052 10. 3168.7655 5. 4072.1917 10. 44473.88815 20. 4529.	5	2	3	3006.52018	15.	3088.44506	50.	3993.76684	7.	4395.08498	8.	4448.73286	40.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	3	3	3074.74305	20.	3177.55645	40.	4056.54777	15.	4475.28337	25.		
5 4 2 3178.92835 20. 3310.46424 50. 4154.68262 5. 4593.23783 40. 5 5 1 3311.59960 50. 4279.73500 40. 4741.24870 40. 5 5 0 3311.59960 50. 4279.73500 40. 4741.24870 40. 6 1 6 3008.40320 30. 3072.32380 50. 3997.07714 8. 4381.56044 35. 4426.24435 40. 6 1 6 3010.68643 15. 3075.84434 40. 3998.79680 7. 4385.10952 25. 4430.42034 40. 6 2 5 3085.49842 6. 3168.7595 5. 4072.70893 30. 4493.27272 70. 4548.96906 20. 6 2 3168.41497 45. 3271.55325 50. 4149.43832 6. 4567.26348 33. 6 4 3270.27580 30. 4247.42960 16. 4684.96983 50. 6 5 1 3402.	5	3	2	30/5.46559	15.	31/8.25301	15.	4057.48908	5.	44/6.00410	15.		
5 4 1 318.94235 35. 351.48200 300. 4124.70560 15. 4593.25180 30. 5 5 1 3311.59960 50. 4279.73500 40. 4741.24870 40. 6 0 6 3008.40320 30. 3072.3280 50. 3997.07714 8. 4381.56044 35. 4426.24435 40. 6 1 5 3063.50552 10. 3137.98790 50. 4053.59311 10. 4445.59176 50. 4493.54863 30. 6 2 3037.0948 18. 3186.8600 300. 4092.70893 30. 4493.27272 70. 4548.96906 20. 6 3 3166.41497 45. 3273.56557 130. 4152.13394 10. 4569.3532 20. 6 4 2 3270.27580 30. 4247.52261 10. 4684.96983 50. 6 5 3402.46220 40. 4372.00213 25. 4832.3930 200. 6 1 3562.49320 20.	5	4	2	3178.92835	20.	3310.46841	50.	4154.68262	5.	4593.23/83	40.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	4	1	31/8.94235	35.	3310.48200	300.	4154.70569	15.	4593.25180	30.		
5 5 0 3311.59460 50. 42/9.7350 40. 4/41.24870 40. 6 0 6 3008.40320 30. 3072.32380 50. 3997.07714 8. 4381.56044 35. 4426.24435 40. 6 1 6 3010.68643 15. 3075.84434 40. 3998.79680 7. 4385.10952 25. 4430.42034 40. 6 2 5 3085.48942 6. 3168.76595 25. 4072.21917 10. 4445.59176 50. 4493.54863 30. 6 2 5 3085.48942 6. 3168.76595 25. 4072.21917 10. 4445.59176 50. 4493.54863 30. 6 3 3166.32669 20. 3270.7580 30. 41247.42960 16. 4684.9635 40. 6 4 2 3270.7580 30. 4247.42960 16. 4684.96983 50. 50. 6 5 3402.45990 10. 4272.00440 35. 4832.39017 30. 4521.92950<	5	5	Ţ	3311.59960	50.			42/9./3500	40.	4/41.248/0	40.		
6 0 6 3012.40320 3012.42380 301. 3997.0714 8. 4381.50044 35. 4426.24435 400. 6 1 6 3010.68643 15. 3075.84434 40. 3998.79680 7. 4385.10952 25. 4420.42043.54463 400. 6 1 5 3063.50552 10. 3137.98790 50. 4053.59311 10. 4445.59176 50. 4493.54863 30. 6 2 3103.70948 18. 3188.6600 300. 4092.70893 30. 4493.27272 70. 4548.96906 20. 6 3 3168.41497 45. 3273.56557 130. 4152.13394 10. 4569.35332 20. 6 4 3270.35282 15. 4247.42960 16. 4684.96935 40. 6 4 3270.35282 15. 4222.87150 60. 5009.23476 50. 7 0 73104.2930 15. 3170.15800 4019.93777 10. 4475.98410 50. 4521.92950 50.	5	5	0	3311.59960	50.	2070 20200	F 0	42/9./3560	40.	4/41.248/0	40.	4406 04405	4.0
0 1 0 3010.08043 15. 3075.84344 40. 3936.79860 7. 4385.10952 25. 4443.42134 40. 6 1 5 3065.552 10. 317.98790 50. 4053.59311 10. 4445.59176 50. 4493.4425.8463 30. 6 2 4 3103.70948 18. 3188.68600 300. 4092.70893 30. 4493.27272 70. 4548.96906 20. 6 3 3166.32869 20. 3271.55325 50. 4149.43832 6. 4567.26348 33. 6 4 3 3270.27580 30. 4247.54263 10. 4684.96983 50. 6 4 3 3270.35282 15. 4247.54263 10. 4684.96983 50. 6 5 3402.46220 40. 4372.00213 25. 4832.39350 200. 6 6 3562.49320 20. 4522.87150 60. 5009.23476 50. 7 7 3104.22930 15. 3170.15800 40. </td <td>6</td> <td>1</td> <td>6</td> <td>3008.40320</td> <td>3U.</td> <td>3072.32380</td> <td>50.</td> <td>3997.07714</td> <td>8.</td> <td>4381.56044</td> <td>35.</td> <td>4426.24435</td> <td>40.</td>	6	1	6	3008.40320	3U.	3072.32380	50.	3997.07714	8.	4381.56044	35.	4426.24435	40.
6 1 5 3063.50352 10. 313.98790 50. 4033.5911 10. 4445.59176 50. 4445.59176 50. 4445.59176 50. 4445.59176 50. 4493.27272 70. 4529.65202 50. 6 2 4 3103.70948 18. 3188.68600 300. 4092.70893 30. 4493.27272 70. 4548.96906 20. 6 3 3 3166.41497 45. 3271.55325 50. 4149.43832 6. 4567.26348 33. 6 4 3 3270.27580 30. 4247.42960 16. 4684.89635 40. 6 4 2 3270.35282 15. 4247.42960 16. 4684.89635 50. 6 4 2 3270.35282 15. 4247.42960 16. 4684.96983 50. 6 5 2 3402.46220 40. 4372.00213 25. 4832.39350 200. 6 6 0 3562.49320 20. 4522.87150 60. 5009.23476 50.	ю С	1	ю Г	3010.08643	15.	30/5.84434	40.	3998./9680	1.0	4385.10952	23.	4430.42034	40.
6 2 3 3103.48342 6. 3108.703948 18. 3188.68600 300. 4092.70893 30. 4493.27272 70. 4548.96906 20. 6 3 4 3166.32869 20. 3271.55325 50. 4149.43832 6. 4567.26348 33. 6 4 3 3270.27580 30. 4247.42960 16. 4684.89635 40. 6 4 3 3270.27580 30. 4247.54263 10. 4569.35332 20. 6 4 3 3270.27580 30. 4247.54263 10. 4684.96983 50. 6 5 2 3402.46220 40. 4372.00213 25. 4832.39350 200. 6 6 1 3562.49320 20. 4522.87150 60. 5009.23476 50. 7 0 7 3104.22930 15. 3170.15800 40. 4092.84985 15. 4475.98410 50. 4524.48144 50. 7 1 6 3172.32250 8. 3250.6685	6	1	5	3063.50552	10.	3137.98790	5U. 2E	4053.59311	10.	4445.591/6	50.	4493.54863	30.
6 2 4 3105.70946 18. 3188.86800 300. 4093.27272 70. 4548.96906 20. 6 3 3166.41497 45. 3271.55325 50. 4149.43832 6. 4567.26348 33. 6 4 3 3270.27580 30. 4247.42960 16. 4684.86635 40. 6 4 3270.35282 15. 4247.42960 16. 4684.96983 50. 6 5 2 3402.45290 10. 4372.00213 25. 4832.39350 200. 6 6 1 3562.49320 20. 4522.87150 60. 5009.23476 50. 7 0 7 3104.22930 15. 3168.09267 60. 4092.84985 15. 4478.06794 30. 4524.48144 50. 7 1 6 3172.32250 8. 3250.66850 50. 4163.05044 5. 4556.08808 50. 4606.73420 50. 7 1 6 3172.32250 8. 3250.66850 50.	6	2	5	3085.48942	ю. 10	3168./6595	25.	40/2.2191/	10.	44/3.88815	23.	4529.62502	50.
6 3 4 3160.32809 20. 3271.53323 30. 4152.13394 10. 4569.35332 20. 6 4 3 3270.27580 30. 41427.42960 16. 4684.89635 40. 6 4 2 3270.35282 15. 4247.42960 16. 4684.96983 50. 6 5 2 3402.45290 100. 4372.00213 25. 4832.39350 200. 6 6 1 3562.49320 20. 4522.87150 60. 5009.23476 50. 7 0 7 3104.22930 15. 3170.15800 40. 4092.84985 15. 4478.06794 30. 4524.48144 50. 7 1 6 3172.32250 8. 3250.66850 50. 4163.05044 5. 4556.08808 50. 4606.73420 50. 7 2 6 3188.54295 10. 3274.28302 40. 4176.19152 21. 4577.38282 40. 4635.39332 50. 7 2 5 3217.525	6	2	4	3103.70948	18.	3188.08000	500.	4092.70893	3U.	4493.27272	70.	4548.96906	20.
6 4 3 3273.363.7130. 4122.13394 10. 4363.3332 20. 6 4 3 3270.35282 15. 4247.42960 16. 4684.89635 40. 6 4 2 3270.35282 15. 4247.42960 16. 4684.89635 40. 6 5 2 3402.45990 100. 4372.00213 25. 4832.39017 300. 6 5 1 3402.46220 40. 4372.00213 25. 4832.39350 200. 6 6 1 3562.49320 20. 4522.87150 60. 5009.23476 50. 7 0 7 3104.2930 15. 3170.15800 40. 4092.84985 15. 4478.06794 30. 4524.48144 50. 7 1 6 3182.54295 10. 3274.28302 40. 4163.05044 5. 4556.08808 50. 4606.73420 50. 7 2 6 3188.54295 10. 3274.28302 40. 4257.65862 10. 4674.50032 <t< td=""><td>6</td><td>ン つ</td><td>4</td><td>2160.32009</td><td>20.</td><td>3271.33323</td><td>120</td><td>4149.43032</td><td>10</td><td>4307.20340</td><td>20</td><td></td><td></td></t<>	6	ン つ	4	2160.32009	20.	3271.33323	120	4149.43032	10	4307.20340	20		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1	3	3270 27590	30	5275.50557	130.	4152.15594	16	4509.55552	20.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	-	2	3270.27300	15			4247.42500	10.	4004.05055	50		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	5	2	3/02 /5990	100			4247.04203	25	4004.90903	300.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	5	2	3402.45990	100.			4372.00213	2J. 35	4032.39017	200.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	6	1	3562 19320	20			4572.00440	55. 60	5009 23476	50		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	6		3562 49320	20.			4522.07150	60.	5009.23476	50.		
7 1 7 3102.9354 15. 3100.0507 60. 4091.8377 10. 4478.06794 30. 4524.48144 50. 7 1 6 3172.32250 8. 3250.66850 50. 4163.05044 5. 4478.06794 30. 4524.48144 50. 7 1 6 3172.32250 8. 3250.66850 50. 4163.05044 5. 4556.08808 50. 4606.73420 50. 7 2 6 3188.54295 10. 3274.28302 40. 4176.19152 21. 4577.38282 40. 4635.39332 50. 7 2 5 3217.52514 5. 3306.28002 50. 4208.36444 15. 4608.37502 40. 4666.76642 50. 7 3 5 3273.08923 15. 3381.13442 40. 4257.65862 10. 4674.50032 60. 7 3 4 3278.01088 15. 3385.92378 40. 4263.91537 25. 4679.43792 50. 7 4 3 <	7	0	7	3102 95394	15	3168 09267	60	4001 03777	10	1175 98110	50.	1521 02050	50
7 1 7 3104.22930 13. 3170.1300 4092.04930 13. 4478.06794 30. 4324.40144 30. 7 1 6 3172.32250 8. 3250.66850 50. 4163.05044 5. 4556.08808 50. 4606.73420 50. 7 2 6 3188.54295 10. 3274.28302 40. 4176.19152 21. 4577.38282 40. 4635.39332 50. 7 2 5 3217.52514 5. 3306.28002 50. 4208.36444 15. 4608.37502 40. 4636.73642 50. 7 3 5 3273.08923 15. 3381.13442 40. 4257.65862 10. 4674.50032 60. 7 3 4 3278.01088 15. 3385.92378 40. 4263.91537 25. 4679.43792 50. 7 4 3 3377.03160 30. 4355.83857 6. 4792.02457 50. 7 4 3 3308.59320 45. 4479.78634 18. 4938.83800 <td>7</td> <td>1</td> <td>7</td> <td>3104 22030</td> <td>15</td> <td>3170 15900</td> <td>40</td> <td>4091.93777</td> <td>15</td> <td>1179 06704</td> <td>30.</td> <td>4524 49144</td> <td>50.</td>	7	1	7	3104 22030	15	3170 15900	40	4091.93777	15	1179 06704	30.	4524 49144	50.
7 1 0 3172.52250 0. 3250.00050 30. 4101.00044 5. 4350.00050 30. 4000.13420 50. 7 2 6 3188.54295 10. 3274.28302 40. 4176.19152 21. 4577.38282 40. 4665.39332 50. 7 2 5 3217.52514 5. 3306.28002 50. 4208.36444 15. 4608.37502 40. 4666.76642 50. 7 3 5 3273.08923 15. 3381.13442 40. 4257.65862 10. 4674.50032 60. 7 3 4 3278.01088 15. 3385.92378 40. 4263.91537 25. 4679.43792 50. 7 4 3377.03160 30. 4355.83857 6. 4792.02457 50. 7 4 3377.30815 15. 4356.24188 15. 4792.28851 15. 7 5 3 508.59320 45. 4479.78634 18. 4938.83800 300. 7 5 3 508.59959 50. <td>7</td> <td>1</td> <td>6</td> <td>3172 32250</td> <td>тЭ. 8</td> <td>3250 66850</td> <td>40. 50</td> <td>4092.04905</td> <td>1J. 5</td> <td>4478.00794</td> <td>50.</td> <td>4524.40144</td> <td>50.</td>	7	1	6	3172 32250	тЭ . 8	3250 66850	40. 50	4092.04905	1J. 5	4478.00794	50.	4524.40144	50.
7 2 6 3100.3274.2002 40. 4170.13132 21. 4377.3022 40. 4666.76642 50. 7 3 5 3273.08923 15. 3381.13442 40. 4257.65862 10. 4674.50032 60. 7 3 4 3278.01088 15. 3385.92378 40. 4263.91537 25. 4679.43792 50. 7 4 3377.03160 30. 4355.83857 6. 4792.02457 50. 7 4 3377.30815 15. 4356.24188 15. 4792.28851 15. 7 5 3 3508.59320 45. 4479.78634 18. 4938.83800 300. 7 5 3 3668.07266 50. 4630.12080 50. 5114.50576 300. 7 6 1 3668.07266 50. 4805.81902 25. 4805.81902 25. 7 7 3854.27382 50. 4805.81902 25. 4805.81902 25.	7	2	6	3188 5/295	10	3274 28302	40	4105.05044	21	4550.000000	10	4000.73420	50.
7 3 5 3273.08923 15. 3381.13442 40. 4257.65862 10. 4674.50032 60. 7 3 4 3278.01088 15. 3381.13442 40. 4257.65862 10. 4674.50032 60. 7 4 3278.01088 15. 3385.92378 40. 4263.91537 25. 4679.43792 50. 7 4 3377.03160 30. 4355.83857 6. 4792.02457 50. 7 4 3377.30815 15. 4356.24188 15. 4792.28851 15. 7 5 3 3508.59320 45. 4479.78634 18. 4938.83800 300. 7 5 3 3668.07266 50. 4630.12080 50. 5114.50576 300. 7 6 1 3668.07266 50. 4630.12080 50. 5114.50576 300. 7 7 1 3854.27382 50. 4805.81902 25. 4805.81902 25.	7	2	5	3217 52514	5	3306 28002	50	4208 36444	15	4608 37502	40.	4666 76642	50.
7 3 4 3278.01088 15. 3385.92378 40. 4263.91537 25. 4679.43792 50. 7 4 4 3377.03160 30. 4355.83857 6. 4792.02457 50. 7 4 3 3377.30815 15. 4356.24188 15. 4792.28851 15. 7 5 3 3508.59320 45. 4479.78634 18. 4938.83800 300. 7 5 2 3508.59959 50. 4479.79737 12. 4938.84200 300. 7 6 2 3668.07266 50. 4630.12080 50. 5114.50576 300. 7 6 1 3654.27382 50. 4805.81902 25. 5114.50576 300. 7 7 0 3854.27382 50. 4805.81902 25. 50.	7	∠ २	5	3273 08923	15	3381 134/2	40.	4257 65862	10	4674 5002	-0. 60	-000./0042	50.
7 4 4 3377.03160 30. 4355.83857 6. 4792.02457 50. 7 4 3 3377.30815 15. 4356.24188 15. 4792.28851 15. 7 4 3 3508.59320 45. 4479.78634 18. 4938.83800 300. 7 5 3 508.595959 50. 4479.79737 12. 4938.84200 300. 7 6 2 3668.07266 50. 4630.12080 50. 5114.50576 300. 7 6 1 3668.07266 50. 4630.12080 50. 5114.50576 300. 7 7 1 3854.27382 50. 4805.81902 25. 7 7 0 3854.27382 50. 4805.81902 25.	7	ר ר	4	3278 01088	15 15	3385 92378	40.	4263 01527	25	4679 43792	50.		
7 4 3 3377.30815 15. 4356.24188 15. 4792.28851 15. 7 5 3 3508.59320 45. 4479.78634 18. 4938.83800 300. 7 5 2 3508.59959 50. 4479.79737 12. 4938.84200 300. 7 6 2 3668.07266 50. 4630.12080 50. 5114.50576 300. 7 6 1 3668.07266 50. 4630.12080 50. 5114.50576 300. 7 7 1 3854.27382 50. 4805.81902 25. 7 7 0 3854.27382 50. 4805.81902 25.	7	Δ	<u>т</u> Д	3377 03160	30	5555.52570	10.	4355 83857	6	4792 02457	50.		
7 5 3 3508.59320 45. 4479.78634 18. 4938.83800 300. 7 5 2 3508.59959 50. 4479.78634 18. 4938.83800 300. 7 5 2 3508.59959 50. 4479.79737 12. 4938.84200 300. 7 6 2 3668.07266 50. 4630.12080 50. 5114.50576 300. 7 6 1 3668.07266 50. 4630.12080 50. 5114.50576 300. 7 7 1 3854.27382 50. 4805.81902 25. 7 7 0 3854.27382 50. 4805.81902 25.	7	- Д	-π -7	3377 30815	15			4356 24188	15	4792 28851	15		
7 5 2 3508.59959 50. 4479.79737 12. 4938.84200 300. 7 6 2 3668.07266 50. 4630.12080 50. 5114.50576 300. 7 6 1 3668.07266 50. 4630.12080 50. 5114.50576 300. 7 7 1 3854.27382 50. 4805.81902 25. 7 7 0 3854.27382 50. 4805.81902 25.	7	7 5	с ч	3508.59320	45			4479 78634	18	4938 83800	300		
7 6 2 3668.07266 50. 4630.12080 50. 5114.50576 300. 7 6 1 3668.07266 50. 4630.12080 50. 5114.50576 300. 7 7 1 3854.27382 50. 4805.81902 25. 7 7 0 3854.27382 50. 4805.81902 25.	7	5	2	3508.59959	50.			4479.79737	12	4938.84200	300.		
7 6 1 3668.07266 50. 4630.12080 50. 5114.50576 300. 7 7 1 3854.27382 50. 4805.81902 25. 7 7 0 3854.27382 50. 4805.81902 25.	7	6	2	3668.07266	50.			4630.12080	50.	5114.50576	300.		
7 1 3854.27382 50. 4805.81902 25. 7 7 0 3854.27382 50. 4805.81902 25.	7	6	1	3668.07266	50.			4630.12080	50.	5114.50576	300.		
7 7 0 3854.27382 50. 4805.81902 25.	7	7	1	3854.27382	50.			4805.81902	2.5				
	7	7	0	3854.27382	50.			4805.81902	25.				

Table 4 continued

			(100)		(020)-		(001)-		(110)-		(030)	
J	K _a	K_c	Energy	un	Energy	un	Energy	un	Energy	un	Energy	un
8	0	8	3209.70825	10.	3275.94150	50.	4199.08880	6.	4582.31910	50.	4629.63940	40.
8	1	8	3210.39562	10.	3277.11191	40.	4199.55602	9.	4583.50038	30.	4631.14676	50.
8	1	7	3294.06360	30.	3376.64425	25.	4285.19844	14.	4679.49155	40.	4733.52986	50.
8	2	7	3305.23755	30.	3393.71895	20.	4293.79586	8.	4694.51772	40.	4755.16822	50.
8	2	6	3347.35378	15.	3440.57208	300.	4339.98275	8.	4739.75318	50.		
8	3	6	3394.81815	30.			4380.94633	29.	4796.77546	50.		
8	3	5	3404.72586	30.			4393.29536	40.	4806.77882	20.		
8	4	5	3499.21686	15.			4479.92172	28.	4914.64641	50.		
8	4	4	3500.02095	30.			4481.08400	12.	4915.41657	50.		
8	5	4	3630.02750	55.			4603.14226	30.				
8	5	3	3630.05360	60.			4603.18928	29.				
8	6	3	3788.80987	50.			4752.78200	40.				
8	6	2	3/88.8098/	50.			4/52./8200	40.				
8	7	1					4927.87870	15.				
0	0	1					4927.87870	200				
0	0	1					5127.39110	200.				
0	0	0	3320 71667	15	3305 031/3	50	JIZ7.39110 4310 50337	300.	4700 63012	50	17/0 11070	5.0
9	1	a	3320.71007	20	3396 58122	50.	4318 81500	20	4700.03012	50.	4749.41272	50.
g	1	8	3428 03283	40.	3515 06208	300.	4419 42460	30	4814 97978	50.	4873 07388	60
9	2	8	3435 25113	30	3526 78411	300.	4424 68308	20	4824 94391	50	4073.07300	00.
9	2	7	3492 41512	30	5520.70411	500.	4486 63268	20.	4886 58398	50		
9	3	7	3531,23097	25.			4518.95842	15.	4933.85200	300.		
9	3	6	3548.79307	25.			4540.34850	35.	4951.66378	300.		
9	4	6	3636.80708	15.			4619.62323	50.	1902.00070	000.		
9	4	5	3638.80487	50.			4622.47576	60.				
9	5	5	3766.80403	70.			4742.12222	300.				
9	5	4	3766.90309	50.			4742.28248	15.				
9	6	4					4890.88400	200.				
9	6	3					4890.88700	200.				
9	7	3					5065.24626	80.				
9	7	2					5065.24626	80.				
9	8	2					5264.06863	300.				
9	8	1					5264.06863	300.				
10	0	10	3460.01012	5.	3528.11600	300.	4450.44258	15.	4830.98671	50.	4881.29261	50.
10	1	10	3460.19593	15.	3528.46811	50.	4450.55715	15.	4831.34456	50.	4881.78796	50.
10	1	9	3574.24940	15.			4565.50415	10.	4962.07728	50.		
10	2	9	3578.28154	40.			4568.55209	15.				
10	2	8	3651.79004	15.			4647.24589	15.				
10	3	8	3681.98546	40.			4671.28800	60.				
10	3		3710.03650	30.			4/04.66655	35.				
10	4	G	3791.00003	50.			4//4./9803	40. 50				
10	4	6	3/94.0/400	50.			4/00.92090	50.				
10	5	5					4890.70088	50.				
11	0	11	3603 59612	10			4594 67237	25	4973 41452	50		
11	1	11	3603.69115	20.			4594.72784	45.	4973.60665	50.		
11	1	10	3731,49273	50.			4723.46099	15.	1979.00000	00.		
11	2	10	3734.07725	40.			4725.15720	50.				
11	2	- 9	0,01,07,20	10.			4820.73799	50.				
11	3	9					4837.52855	50.				
11	3	8					4885.47486	50.				
12	0	12	3759.46655	50.			4751.25688	50.				
12	1	12	3759.51460	50.			4751.28350	50.				
12	1	11					4893.43740	50.				
12	2	11					4894.31414	50.				
13	0	13	3927.45855	300.			4920.16705	50.				
13	1	13	3927.45855	300.			4920.18796	50.				
13	1	12					5075.54074	300.				
13	2	12					5075.88863	50.				
14	0	14					5101.38118	50.				
14	1	14					5101.38753	300.				
15	0	15					5294.88155	300.				
15	1	15					5294.88155	300.				

un is the estimated uncertainty of the energy level value in cm⁻¹ \times 10⁵

Table 5. Extract from SISAM.H2O compilation

	computed		upp	ber	1	ow	er		lower	linev	vidth	shift					measured	l
Ml	position	J	Ka	K _c	J	Ka	Kc	strength	energy	air	self	air	ba	ind	un	0-с	strength	$\Delta s\%$
1 3	5476.94385	7	2	6	6	2	5	5.45E-05	551.60934	.0652	.377	01820	011	000	4.	-3.	5.41E-05	з.
1 2	5477.33424	6	4	3	5	4	2	3.91E-05	604.54412	.0638	.358	01050	011	000	6.	7.	3.96E-05	2.
1 2	5477.49300	11	2	9	11	2	10	1.38E-07	1518.78785	.0430	.272	01800	011	000	40.			
4991	5477.76551	10	6	5	9	6	4	1.99E-07	1244.43726	.0530	.283	.00000	200	000	15.	199.	1.99E-07	3.
1 2	5477 79945	5	4	8	4	3 3	2	9.90E-07	2439.95442	.0724	.304 365	- 00840	200	000	8. 26	_13	9.90E-07 1 07E-06	10.^
1 1	5477.86421	4	3	1	4	1	4	1.68E-06	1821.59680	.0845	.434	.00210	021	010	9.	46.	1.50E-06	10.
1 1	5477.93537	5	4	1	5	1	4	3.68E-04	399.45752	.0870	.415	00100	110	000	1.	1.	3.66E-04	2.
1 1	5478.03172	11	2	9	10	3	8	4.66E-05	1446.12824	.0465	.280	02200	110	000	17.	10.	4.77E-05	1.
1 2	5478.19009	6	4	2	5	4	1	1.17E-04	604.79280	.0654	.370	00910	011	000	17.	7.	1.16E-04	1.
11	5478.47116	10	2	8	10	2	9	5.68E-04	1293.63404	.0540	.312	01860	011	000	9.	7.	5.65E-04	2.
13	5478.55731	9	1	9	8	⊥ ⊥	8	2.91E-05 9 73E-06	742.49066	.0395	300	- 01020	011	000	27.	-28.	2.98E=05	з. З
1 2	5478.69012	6	3	3	5	2	4	1.24E-06	414.16812	.0860	.430	00300	110	000	33.	38.	1.24E-06	10.
1 1	5479.03183	13	2	12	12	1	11	7.95E-06	1774.61629	.0160	.173	00600	110	000	50.	Ο.	7.86E-06	5.
1 1	5479.16758	7	4	4	7	2	5	9.94E-07	2392.59252	.0764	.392	00260	021	010	34.	-18.	1.05E-06	10.
1 1	5479.24580	8	3	6	7	3	5	1.12E-05	2439.95442	.0637	.340	01200	021	010	8.	-10.	1.05E-05	4.*
1 1	5479.33740	11	5	.7	10	2	8	2.76E-06	1437.96860	.0660	.325	.00000	030	000	60.	62.	2.77E-06	7.
1 1	5479.58664	7	4	3	2	T T	6 2	1.12E-07 7.26E-03	70 09081	.0830	.391	00100	011	000	6U. 2	-2	7 /3〒-03	1
1 2	5479.83532	4	3	1	4	1	4	4.45E-06	223.82849	.0890	.434	.00210	011	000	17.	48.	3.90E-06	10.
1 1	5479.85016	4	3	2	3	0	3	3.60E-06	1731.89669	.0960	.456	00100	120	010	9.	600.	3.60E-06	15.
1 1	5479.87866	6	4	2	6	1	5	1.55E-04	542.90577	.0830	.404	00100	110	000	З.	4.	1.55E-04	1.
192	5480.13460	7	7	0	7	6	1	1.02E-07	1204.17475	.0440	.210	01590	110	000	33.			
49 1	5480.31811	10	2	9	9	2	8	1.90E-06	743.09739	.0676	.285	.00000	200	000	10.	-11.	1.90E-06	4.
49 1	5480.33751	ΤΤ	1	ΤΤ	10	1	10	1.82E-06	769.11689	.0509	.250	.00000	200	000	20.	-11.	1.82E-06	5.
1 2	7007.11385	4	1	4	2	2	2	8.95E-07	445.79341 740 91225	.0950	.488	- 01780	200	000	23. 28	15.	8.95E-07	10. 3
1 2	7007.27629	7	3	5	8	3	6	2.42E-05	1001.70568	.0680	.363	00880	101	000	36.	-9.	2.42E-05	3.
1 1	7007.31986	8	5	4	9	6	3	2.36E-05	1631.38300	.0565	.300	01200	002	000	7.	4.	2.36E-05	з.
1 1	7007.39738	6	2	4	7	2	5	2.70E-06	2392.59252	.0779	.425	00730	111	010	31.	-38.	2.70E-06	15.*
1 2	7007.43529	3	1	3	4	2	2	5.20E-06	314.45943	.0995	.445	00580	200	000	37.	-9.	5.20E-06	4.
1 1	7007.48606	9	3	6	9	5	5	3.66E-05	1474.98078	.0758	.332	.00000	101	000	10.	-16.	3.66E-05	3.
1 2	7007 79207	7	1 2	6	8 Q	1 2	6	3.12E-06	2490.35404	.0613	.30/	01370	101	010	10. 20	7.	3.12E-06 8 56E-06	4.
1 1	7008.04530	6	1	6	7	2	5	2.02E-06	2392.59252	.0893	.428	00700	060	010	100.	0.	2.02E-06	10.*
1 1	7008.07888	7	2	6	8	2	7	9.00E-06	2495.16582	.0579	.343	01350	111	010	60.	12.	9.00E-06	5.
1 2	7008.12241	6	5	1	7	5	2	9.18E-06	1051.20304	.0567	.290	01160	101	000	23.	4.	9.18E-06	з.
1 3	7008.24681	6	1	5	7	2	6	8.13E-07	708.01628	.0750	.415	01300	200	000	61.	74.	8.13E-07	7.
1 2	7008.30762	6	5	2	7	5	3	3.10E-06	1050.99014	.0567	.290	01090	101	000	11.	18.	3.10E-06	7.
1 1	7008.31540	9	1	9	9	1	8 2	3.85E-04 1 32E-05	757 78018	.0498	.290	01180	200	000	6. 10	-10.	3.85E-04 1 32E-05	3. 15
1 1	7008.40020	4	1	3	5	3	2	2.06E-03	508.81205	.0916	.460	01100	101	000	±0. 6.	-3.	2.06E-03	3.
1 1	7008.44079	5	3	2	5	0	5	9.50E-05	325.34790	.0915	.442	00300	120	000	12.	41.	9.50E-05	5.
1 1	7008.68391	8	5	3	9	6	4	7.20E-06	1631.24548	.0540	.296	01200	002	000	20.	-11.	7.20E-06	з.
1 1	7008.73749	10	1	9	10	2	8	4.02E-05	1437.96860	.0560	.328	00400	200	000	20.	35.	4.02E-05	2.
1 2	7008.83621	3	2	1	4	3	2	3.40E-05	379.29154	.0894	.469	00400	200	000	25.	-31.	3.40E-05	4.
1 3	7008.8/102	4	1	3	5	2	4	2.18E-06	2024.15264	.08/4	.469	00900	210	010	202.	-202.	2.18E-06	10.
1 1	7008.98648	11	6	6	11	6	5	4.80E-06	2144.04627	.0424	.249	01100	021	000	97.	252	4.80E-06	15.
1 2	7009.06050	5	3	3	4	3	2	1.94E-05	379.29154	.0761	.382	01230	021	000	10.	0.	1.94E-05	3.
1 1	7009.50720	9	4	6	10	5	5	2.16E-06	1724.70541	.0680	.364	.00000	002	000	31.	-190.	2.16E-06	5.
1 1	7194.57595	7	1	6	7	4	3	1.00E-03	931.23710	.0840	.399	.00000	002	000	9.	13.	1.00E-03	з.
1 1	7194.68594	3	2	2	3	2	1	7.90E-05	1819.33510	.0903	.456	01050	111	010	21.	16.	7.90E-05	5.
	7194.80522	Ţ	1	0	2	1	1	7.60E-02	95.17593	.1001	.460	00400	101	000	3. 20	3. 26	7.60E-02	2.
1 2	7195 06226	5	2 2	2	5	4	1	1 34E-04	604 79280	.0700	365	- 01030	101	000	59	20. 64	1 34E-04	5
1 1	7195.28917	4	1	4	5	4	1	2.00E-06	610.34116	.0905	.407	01200	050	000	48.	-66.	2.00E-06	10.*
1 1	7195.45621	3	0	3	4	3	2	2.00E-05	382.51688	.0945	.456	01600	002	000	14.	-41.	2.00E-05	5.
49 1	7195.51216	10	5	6	10	5	5	1.02E-07	1239.08924	.0507	.343	.00000	002	000	15.	-16.	1.02E-07	10.
49 1	7195.56658	7	1	6	7	2	5	2.29E-06	520.12352	.0902	.442	.00000	002	000	12.	12.	2.29E-06	3.
49 1	7195.67424	2	0	2	3	1	3	7.76E-06	155 29000	.0995	.439	.00000	002	000	16. 15	9.	7.77E-06	2.
1 cr	7195 83976	∠ 5	∠ ۵	⊥ 1	د ج	∠ ⊿	2 2	4.62E-05	100.00900 604 54410	.0902	.365	00790	101	000	⊥J. 29	-2. -30	4.62E-05	ა. ვ
1 3	7196.37970	4	2	3	3	3	0	1.47E-07	283.76774	.0888	.428	01000	200	000	47.	-270.	1.47E-07	15.
49 1	7196.40721	10	5	5	10	5	6	1.07E-07	1238.79446	.0507	.343	.00000	002	000	20.	-1.	1.07E-07	10.
1 1	7196.63208	9	5	5	8	5	4	3.04E-04	1255.16675	.0527	.308	01200	021	000	20.	-3.	3.04E-04	2.
1 1	7196.66664	10	0	10	11	1	11	3.88E-05	1327.11762	.0252	.265	01900	002	000	11.	-14.	3.88E-05	2.
1 1	7196.68339	10	1	10	11	0	11	1.16E-04	1327.10996	.0266	.266	02000	002	000	30.	211.	1.16E-04	2.
1 1 20 1	7196 60700	⊥3 ∩	ک ج	μŢ	τ2 Ω	ک ج	ν LU	4.00E-06 2 QAF-06	1082 88662	.0290	.21/ 310	UI/UU	0021 002	000	⊥4⊥. 2∩	169. -60	4.00E-06 2 QAF-06	тр. З
1 1	7196.82650)]3	2	11	12	2	10 1	6.80E-06	1960.20733	.0288	.228	01000	021	000	150	0.	6.80E-06	10.
1 1	7196.84967	9	5	4	8	5	3	1.10E-04	1255.91153	.0565	.321	01200	021	000	13.	-7.	1.10E-04	2.

Table 5 continued

	computed		upp	er	1	low	er		lower	linev	vidth	shift					measured	1
Ml	position	J	Ka	Kc	J	Ka	Kc	strength	energy	air	self	air	ba	nd	un	0-с	strength	$\Delta s\%$
1 1	7196.96042	4	3	1	5	4	2	1.02E-04	610.11442	.0784	.415	00800	002	000	19.	-22.	1.02E-04	2.
1 3	7197.01149	6	3	4	6	3	3	2.11E-06	659.98667	.0839	.436	00670	101	000	46.	1.	2.11E-06	5.
1 1	7228.79668	6	3	3	5	4	2	8.83E-06	610.11442	.0850	.417	00600	200	000	6.	-28.	8.83E-06	З.
1 1	7228.85376	4	4	1	3	2	2	9.00E-06	206.30142	.0845	.416	00600	021	000	22.	54.	9.00E-06	6.
1 3	7229.13305	5	2	ح 1	6	3	4	3.22E-04	648.9/869 135 /3110	.0885	.459	00590	101	000	8.	-5.	3.22E-04	2.*
49 1	7229.34738	2 5	2	4	2 5	2	3	3.16E-05	303 99483	.0924	400	00000	002	000	10	21	3.15E-05	১. ব
1 1	7229.57071	5	0	5	6	3	4	2.13E-05	648.97869	.0828	.422	01400	050	000	44.	28.	2.13E-05	3.*
1 3	7229.66403	2	2	0	3	0	3	4.18E-07	136.53762	.1000	.490	00930	101	000	44.	-603.	4.18E-07	15.
1 1	7229.78276	11	5	6	11	4	7	4.10E-05	1899.00816	.0700	.390	00800	200	000	45.	74.	4.10E-05	7.
1 1	7229.82028	3	2	1	4	0	4	1.47E-04	222.05276	.0970	.473	00930	101	000	5.	18.	1.47E-04	3.
49 1	7229.88062	2	0	2	2	1	1	9.17E-06	66.18451	.1032	.460	.00000	002	000	16.	21.	9.18E-06	2.
1 1	7229.89946	2	5	3	2	6 1	2	3.65E-05	1216.189/6	.0540	.240	00800	101	000	4.	4.	3.65E-05	۲. ۱
1 1	7230.21638	2	5	2	2	6	1	1 13E-04	1216 19450	0540	290	- 00800	002	000	15	52	1 13E-04	⊥. २
1 2	7230.23920	4	1	3	4	0	4	1.20E-05	221.23399	.0930	.490	00400	200	000	58.	20.	1.20E-05	8.
1 1	7230.31561	4	2	2	4	1	3	1.23E-02	275.49704	.0961	.479	00330	200	000	з.	-2.	1.23E-02	1.
1 1	7230.56289	5	2	3	6	0	6	3.10E-05	446.69659	.0881	.437	00930	101	000	14.	211.	3.10E-05	7.
1 1	7230.62720	9	4	5	9	3	6	6.00E-04	1282.91910	.0800	.402	00500	200	000	21.	20.	6.00E-04	7.
1 1	7230.91394	4	3	1	4	3	2	1.34E-01	382.51688	.0816	.441	00850	101	000	2.	-2.	1.34E-01	1.
49 1	7230.96010	3 1	1	3	ے 1	1	2	3./4E-06	116.46133	.0956	.499	.00000	101	000	8.	30.	3./5E-06	10.
1 J 19 1	7231.20142	1	⊥ २	2	1 4	⊥ २	1	9 25E-06	42.18695	.1021	.495	00900	002	000	ა. 5	-2. 4	9 24E-04	2.
1 1	7231.35875	5	3	2	5	3	3	1.77E-02	503.96809	.0825	.437	00850	101	000	10.	-9.	1.77E-02	1.
49 1	7231.77478	4	3	1	4	3	2	9.48E-06	295.48727	.0830	.441	.00000	002	000	9.	7.	9.48E-06	7.
1 1	7231.79368	4	1	3	3	3	0	8.10E-04	285.41857	.0910	.438	01000	101	000	6.	16.	8.10E-04	5.
1 1	7231.87230	3	2	1	3	1	2	4.90E-02	173.36580	.0944	.470	00300	200	000	6.	10.	4.90E-02	1.
1 1	7478.22400	17	3	15	16	3	14	8.00E-07	3211.21261	.0140	.164	02000	101	000	300.	0.	8.00E-07	15.
1 1	7478.30108	9	4	6	8	5	3	1.67E-05	1255.91153	.0610	.317	.00000	002	000	31.	-8.	1.67E-05	2.
1 1	7478.52193	ン 5	2	2	2 5	2	1	1.61E-05 1.02E-03	134.90164 300 /5752	.0981	.486	00900	002	000	6. g	-53.	1.61E-05	2. 3 *
1 1	7478.71763	7	3	4	7	2	5	2.75E-04	782.40982	.0910	.439	00300	002	000	19.	-3.	2.75E-04	2.
1 1	7478.86493	14	3	11	13	3	10	1.90E-05	2414.72341	.0398	.276	01000	101	000	7.	-3.	1.90E-05	2.
99	7478.98338	9	9	9	9	9	9	5.40E-06	1500.00000	.0300	.250	.25000	999	999	Ο.	Ο.	5.40E-06	5.
1 1	7479.09189	5	0	5	5	1	4	6.64E-05	399.45752	.0970	.453	00879	050	000	44.	-58.	6.64E-05	2.*
1 1	7479.47380	11	4	7	11	3	8	4.20E-06	1813.22339	.0800	.415	.00000	002	000	52.	-80.	4.20E-06	5.
1 1	7479.54433	6 1	ے 1	ح 1	6	2	4	1.64E-04	602.77349	.0860	.429	00500	002	000	32.	15.	1.64E-04	2.
1 1	7479.03334	1 6	4	⊥ 3	6	1	6	4 35E-05	447 25235	.1030	.490	- 00220	2002	000	9. 11	ъ. Зб	4 35E-04	১. ব
4991	7479.80506	9	8	2	8	7	1	1.01E-07	1294.83641	.0347	.229	.00000	002	000	11.	14.	1.01E-07	3.
1 1	7479.81008	10	3	8	9	4	5	3.20E-05	1360.23533	.0720	.384	.00000	002	000	25.	22.	3.20E-05	2.
1 1	7479.95535	4	3	2	5	0	5	8.44E-07	325.34790	.0890	.426	.00000	002	000	30.	-211.	8.44E-07	15.*
99	7480.40080	9	9	9	9	9	9	2.49E-06	1500.00000	.0300	.250	.25000	999	999	0.	0.	2.49E-06	2.
1 2	7480.61582	4	2	3	4	1	4	2.26E-06	223.82849	.0910	.465	00470	002	000	29.	-32.	2.26E-06	10.
49 I	7480.8026/	9	3	6	8	2	2	1.69E-07	609.94656	.0880	.389	.00000	002	000	9.	ئ. 15	1.68E-07	2.
1 2	7481 20321	9 5	י ז	2	0 5	2	4	2.10E-07 4 69E-07	414 16812	0400	.245	- 00330	002	000	40. 30	-31.	2.10E-07 4 69E-07	2. 15
1 2	7481.23554	5	4	1	5	3	2	6.71E-07	505.72873	.0805	.417	00880	002	000	28.	27.	6.71E-07	15.
1 1	7481.53120	15	5	11	14	5	10	1.66E-06	2918.24498	.0272	.244	02000	101	000	150.	Ο.	1.66E-06	7.
1 2	7481.86155	5	3	3	4	1	4	5.00E-06	223.82849	.0891	.439	00200	101	000	47.	-55.	5.00E-06	15.
1 2	7481.88638	5	1	4	5	0	5	1.45E-06	324.04672	.0895	.457	00890	002	000	80.	-98.	1.45E-06	10.
1 1	7482.09050	15	3	12	14	3	11	1.46E-06	2739.42833	.0300	.247	01000	101	000	150.	0.	1.46E-06	6.
1 1 10 1	7504.71476	с С	3	3	4	1	4	2.42E-03	224.83838	.0891	.439	00200	101	000	10.	20.	2.42E-03	Z.
1 1	7504 94097	4	4	2	4	2	3	9.87E-08 8 40E-04	300 36228	0850	440	- 00580	002	000	30	-30. 3	9.90E-08 8 40E-04	э. २ *
191	7504.94262	8	7	2	7	6	1	5.00E-05	1216.19450	.0418	.235	01800	200	000	20.	788.	5.00E-05	5.
1 1	7505.09225	12	5	8	11	4	7	6.54E-05	1899.00816	.0690	.370	.00000	200	000	13.	-5.	6.54E-05	2.
1 1	7505.26805	4	1	4	4	2	3	8.40E-06	300.36228	.0840	.444	00580	050	000	48.	-35.	8.40E-06	2.*
1 1	7505.71657	7	5	3	7	2	6	1.70E-06	709.60821	.0685	.317	00700	200	000	12.	763.	1.70E-06	10.
1 3	7506.55923	7	3	4	6	1	5	3.68E-07	541.99675	.0915	.466	00460	101	000	44.	-123.	3.68E-07	15.
1 1	7506.77997	12	1	3	10	2	2	2.33E-05	206.30142	.0956	.485	00900	101	000	20.	-27.	2.33E-05	خ. ۲
1 1	7507 10906	13	4	4	12	1	7	5 17E-06	586 47918	0780	362	00000	200	000	590.	40J. 24	5 17E-06	у. Ч
1 2	7507.31301	5	1	4	4	2	3	2.90E-07	298.62009	.0885	.468	00860	002	000	80.	47.	2.90E-07	15.
1 1	7507.46553	4	2	3	4	1	4	1.06E-03	224.83838	.0910	.465	00470	002	000	9.	4.	1.06E-03	3.
1 2	7507.72222	2	2	0	1	1	1	1.00E-06	36.74866	.1000	.509	00160	002	000	18.	-22.	1.00E-06	15.
1 2	7507.85753	6	5	2	5	1	5	4.65E-07	325.21571	.0840	.460	00250	021	000	26.	86.	4.65E-07	15.
1 1	7508.04764	5	1	4	5	0	5	8.51E-04	325.34790	.0895	.457	00890	002	000	22.	31.	8.51E-04	3.
1 1	7508.15382	8	5	3	8	4	4	1.00E-05	1621 20200	.0740	.359	01500	002	000	20.	-22.	1.00E-05	2.
1 1	7508.30131 7508 30010	9	2	2	9	ю С	3 1	1./4E-06 2 30F-04	116 20072	.U4/U	.239 /11	.00000	002		⊥⊥. 1⁄	19. 19	1./4E-U6 2 30F-04	ь. २
1 2	7508.72492	5	0	5 5	5 4	∠ 1	4	1.34E-06	223.82849	.0807	.471	01170	002	000	⊥±• 31.	10. 308.	1.34E-06	10.
1 1	7508.78631	5	4	2	4	1	3	9.45E-05	275.49704	.0920	.437	00500	200	000	6.	29.	9.45E-05	2.

Table 5 continued

	computed		upp	er	1	ower		lower	linev	vidth	shift					measured	1
Μ	I position	J	Ka	Kc	J	K _a K _c	strength	energy	air	self	air	ba	ind	un	0-с	strength	$\Delta s\%$
1 1	1 7509.15754	5	4	1	5	3 2	3.29E-04	508.81205	.0805	.417	00880	002	000	14.	16.	3.29E-04	2.
1 3	3 7510.19553	6	4	2	5	23	7.50E-07	445.79341	.0890	.433	00660	101	000	30.	25.	7.50E-07	4.
1 1	1 7510.41650	7	2	5	6	16	1.50E-05	447.25235	.0893	.445	00400	200	000	9.	-60.	1.50E-05	5.
1 1	1 7510.52505	5	4	1	4	2 2	5.90E-04	315.77953	.0885	.446	00660	101	000	10.	10.	5.90E-04	2.
1 1	1 7591.17111	11	1	10	11	0 11	1.50E-05	1327.10996	.0320	.240	.00000	002	000	6.	9.	1.50E-05	4.
1 1	1 7591.18543	5	5	1	4	2 2	1.68E-06	315.77953	.0860	.375	00600	200	000	4.	737.	1.68E-06	10.*
1 1	1 7591.32573	9	0	9	8	1 8	9.80E-06	744.16266	.0436	.320	01500	002	000	12.	-3.	9.80E-06	з.
1 2	2 7591.35234	8	4	5	7	26	4.45E-07	706.59776	.0730	.399	00150	101	000	58.	105.	4.45E-07	15.
1 1	1 7591.39460	11	2	10	11	1 11	5.43E-06	1327.11762	.0310	.214	.00000	002	000	150.	25.	5.43E-06	5.
1 1	1 7591.47633	9	1	9	8	0 8	2.90E-06	744.06366	.0440	.344	01400	002	000	30.	-122.	2.90E-06	10.
1 2	2 7592.18006	6	3	4	5	2 3	9.80E-07	445.15854	.0885	.459	01040	002	000	34.	-6.	9.80E-07	15.
1 1	1 7592.43037	7	5	3	6	16	3.82E-05	447.25235	.0750	.360	00200	021	000	8.	63.	3.82E-05	2.
1 1	1 7592.55887	7	5	2	6	3 3	1.49E-04	661.54890	.0825	.402	01050	101	000	9.	9.	1.49E-04	2.
1 1	1 7593.14689	4	3	2	3	2 1	1.26E-03	212.15636	.0894	.469	00740	002	000	30.	-1.	1.26E-03	3.*
1 1	1 7593.47397	4	1	4	3	2 1	1.26E-05	212.15636	.0892	.453	00740	050	000	48.	53.	1.26E-05	2.*
1 3	3 7594.01561	5	3	3	4	2 2	1.28E-07	315.07850	.0902	.448	00730	002	000	150.	-1.	1.28E-07	15.
1 2	2 7594.40859	10	5	5	9	36	3.45E-07	1279.79752	.0797	.437	00670	101	000	13.	90.	3.45E-07	15.
1 2	2 7594.91875	8	2	6	7	0 7	1.08E-06	583.77780	.0800	.439	00880	101	000	30.	-5.	1.08E-06	10.
1 3	3 7597.30220	4	4	1	3	3 0	6.15E-07	283.76774	.0725	.405	01240	002	000	80.	0.	6.15E-07	10.
1 1	1 7597.53423	8	2	7	7	1 6	8.69E-05	704.21404	.0690	.376	00570	002	000	2.	-3.	8.69E-05	2.
1 1	1 7598.42859	8	7	2	8	4 5	1.25E-06	1122.70853	.0758	.260	.00000	200	000	2.0	441.	1.25E-06	10.
1 2	2 7599.35981	9	4	6	8	1 7	1.88E-07	879.49476	.0730	.357	00410	200	000	70.	88.	1.88E-07	15.
1 1	1 7599 57652	ģ	3	6	8	1 7	1 03E-04	882 89032	0820	414	- 00240	101	000	10	8	1 03E-04	2
1 -	1 7599 70751	10	3	7	g	4 6	7 70E-07	1340 88487	0733	404	00000	002	000	10	-891	7 70E-07	10
1 2	2 7600 03827	7	3	5	6	2 4	1 79E-07	601 23777	0877	462	- 01300	002	000	 	12	1 79E-07	15
1 -	1 7600 77342	4	3	1	Ř	2 2	4 45E-04	206 30142	0844	425	- 00530	002	000	19	23	4 45E-04	
1 1	1 7601 29475	6	1	2	5	1 5	2 298-05	326 62546	0865	300	- 00120	200	000	10	15	2 29E-05	2
1 1	1 7602 14676	12	1	11	12	0 12	1 60F-06	1557 84446	0260	192	.00120	002	000	12	24	1 60F-06	5
1 1	1 7602 21545	12	2	11	12	1 1 2	5 20E-06	1557 84778	0260	186	.00000	002	000	100	55	5 20E-06	3.
1 1	1 7638 12392	10	2	2 T T	12	2 7	1 60F-06	1201 92150	0630	360	- 00300	002	000	25	108	1 60F-06	10
1 1	1 7638 16116	10	6	1	6	1 2	1 71E-05	757 78018	0692	324	- 02000	101	000	23.	-6	1 71E-05	2 *
1 1	1 7638 60903	11	3	۵ ۲	10	2 8	1 35E-05	1/37 96860	0570	330	- 00300	002	000	35	-33	1 35F-05	2.
1 1	7639 00660	11	5	2	5	1 1	1 508-06	604 70200	0650	.550	- 01520	002	000	100		1.50E_06	15
1 4 0 0	2 7030.99000	0	0	2	0	4 1	1.JUE-00	1500 00000	0200.	.304	01320	002	000	100.	0.	1.JUE-00	1J.
9 :	1 7639.01999	9 7	9	9	9	1 2	Z.02E-07	756 72470	.0300	.230	.23000	101	999	17	0.	2.02E-07	1J. 2 *
1 1	2 7620 227/2	/	2	2	0	4 3	1 20E 07	130.12410	.0000	.310	01800	101	000	1/. 210	210	1 20E 07	3." 15
1 1	5 7639.22742 5 7630 31331	G	2	1	4	1 2	1.20E-07	224.30423	.0900	.4//	00420	002	000	200	-312.	1.20E-07	1J.
1 4	7620 40000	0	5	T	5	4 Z	1.00E-07	1500 00000	0200	.339	01720	002	000	200.	-1.	1.00E-07	1J.
1 -	1 7620 40900	G	5	1	F	1 2	4.00E-07	2251 60520	.0300	.230	.23000	999	999	200	0	4.00E-07	1J.
1 -	1 7639.49814	0	2	1	5	4 2	2.91E-07	2251.09528	.0579	.306	01720	100	010	300.	100	2.91E-07	12.
1 -	1 7639.50960	2	2	1	0	4 2	2.77E-06	70,0001	.0726	.328	.00000	120	000	22.	180.	2.77E-06	3.^
1 -	1 7639.57588	3	3	Ţ	2	0 2	7.40E-06	/0.09081	.09/0	.44/	00200	1002	000	19.	-28.	7.40E-06	3.
1 -	1 7640.36300	10	/	0	0	4 3	9.97E-06	1070.07050	.0715	.298	.00000	120	000	22.	-20.	9.9/E-06	2.^
1 -	1 7640.76422	TO	4	/	9		4.33E-05	10/9.0/958	.0630	.326	.00100	200	000	32.	48.	4.33E-05	2.
1 .	1 7641.93813	9	3	/	8	2 0	1./IE-05	982.911/1	.0760	.383	00800	002	000	150	-13.	1./IE-05	∠. 1 ⊑
1 4	2 7643.82400	6	6	Ţ	5	5 0	1.40E-06	/33.68293	.0463	.290	01/80	101	000	150.	0.	1.40E-06	15.
1.	1 /644.32669	6	4	2	5	0 5	2.91E-05	325.34/90	.0868	.399	00010	101	000	12.	21.	2.91E-05	2.
1.	1 /644.56369	5	5	T	4	4 0	3.14E-04	488.13416	.0595	.332	01650	002	000	43.	43.	3.14E-04	2.
1.	1 /644.59644	5	5	0	4	4 1	8.70E-04	488.10/69	.0595	.328	01650	002	000	13.	-14.	8.70E-04	3.
1 2	2 7644.68808	10	3	1	9	1 8	2.94E-07	1074.76293	.0720	.367	00940	101	000	41.	84.	2.94E-07	15.
19.	1 /645./2160	14	1	14	13	0 13	1.20E-06	1806.67004	.0110	.204	02500	002	000	200.	0.	1.20E-06	15.
1 2	2 7646.85532	9	2	7	8	0 8	1.69E-07	740.91225	.0725	.404	01300	101	000	44.	136.	1.69E-07	15.
1 1	1 7647.25135	8	5	4	7	1 7	1.23E-06	586.47918	.0700	.300	.00000	021	000	20.	7.	1.23E-06	10.
1 1	1 7648.47886	11	4	7	10	28	1.27E-05	1437.96860	.0785	.376	00020	101	000	67.	-26.	1.27E-05	2.
1 1	1 7648.66442	12	3	10	11	2 9	1.04E-06	1690.66441	.0445	.266	.00000	002	000	38.	-42.	1.04E-06	10.
1 1	1 7649.34179	7	4	3	6	1 6	3.43E-05	447.25235	.0845	.391	00200	200	000	9.	-37.	3.43E-05	2.
1 1	1 7650.12754	9	4	6	8	2 7	2.97E-04	885.60021	.0665	.354	00120	101	000	27.	31.	2.97E-04	з.
1 1	1 7650.88093	11	7	5	10	56	1.42E-06	1718.71880	.0530	.352	02000	021	000	64.	-43.	1.42E-06	10.
1 1	1 7651.37974	12	5	7	11	38	2.17E-05	1813.22339	.0800	.429	00150	101	000	5.	-4.	2.17E-05	2.
1 1	1 7651.79444	9	5	5	8	36	1.76E-04	1006.11593	.0630	.331	00580	101	000	13.	6.	1.76E-04	2.
1 1	1 7653.07562	6	4	3	5	3 2	5.90E-04	508.81205	.0819	.430	01130	002	000	16.	З.	5.90E-04	4.
1 1	1 7653.27336	5	2	3	4	1 4	2.72E-04	224.83838	.0980	.477	00420	002	000	8.	-6.	2.72E-04	3.*
1 1	1 7653.71102	5	0	5	4	1 4	1.44E-05	224.83838	.0990	.456	00428	050	000	44.	38.	1.44E-05	2.*
1 1	1 7654.15554	8	6	2	7	4 3	6.30E-05	931.23710	.0735	.337	01420	101	000	11.	2.	6.30E-05	2.

M=molecule, $1=H_2O$ 49=HDO. I=oxygen isotopic species, 1=16, 2=18, 3=17. 9 between M and I means the line is doubled and the strength pertains to the sum of the strengths of the two comparable transitions and the computed position represents the transition given.

strength in cm⁻²/atm. at 296K. If measured strength given but $\Delta s\%$ not given means that strength not measured and value taken from the HITRAN compilation. un is the estimated uncertainty in the computed line position in cm⁻¹ × 10⁵. o-c is the observed minus computed line position in cm⁻¹ × 10⁵.

linewidth and shift in cm⁻¹/atm. at 296K

 $\Delta s\%$ is the estimated uncertainty in the measured strength value in percent.

an asterisk, *, in the last column denotes a perturbed transition

• m •	η	•m•	η	•m•	η	•m•	η
1	0.78	6	0.64	11	0.41	16	0.38
2	0.78	7	0.59	12	0.39	17	0.41
3	0.77	8	0.53	13	0.37	18	0.41
4	0.73	9	0.49	14	0.36	19	0.41
5	0.69	10	0.45	15	0.36	20	0.41

Table 6. Values of η for air-broadening used in the HITRAN listing

m = -J'' for P-branch transitions, m = J' for R- branch transitions and m=J for Q-branch transitions. Prime and double prime denote upper and lower states, respectively.

 η is used in the expression:

 $b^{o}(T) = b^{o}(T_{o}) [T_{o}/T]^{\eta}$ where b^{o} is the half-width coefficient

Table 7	Extract	ofwater	vonor	licting	airon	in	LITD	ANT	format
	EXHACI	of water	vapor	nsung	given	ш	TIIK	AIN	Iomat

	computed		t	°		d°		upper	lower	observed	
М	freq. (cm^{-1})	strength	R air	self	E″	η air	band	$J K_a K_c$	$J \ K_a \ K_c$	strength	Δ s%
13	3503.473130	1.638E-26	7.013E-06.1000	.4950	283.7677	.77009000	4 1	303	3 3 0	1.81E-26	10. meas.
12	3503.579610	7.020E-27	7.499E-03.0240	.1730	2238.0319	.37005000	5 1	13 212	13 211	2.98E-25	4. meas.
11	3503.580790	7.060E-24	1.901E-03.0580	.3450	1813.2234	.41002000	4 1	11 2 9	11 3 8	6.90E-24	2. meas.
12	3503.615750	3.837E-26	1.521E-03.0580	.3400	1334.4792	.49014000	4 1	937	946	3.72E-26	10. meas.
14	3503.669530	1.501E-26	1.074E-02.0460	2620	1587.7405	.45 .000000	5 L 5 1	972	10 7 4	1.53E-26	HITRAN
11	3503.009700	7 947E-26	2 988E-04 0731	3430	2129 6186	73- 002000	8 2	223	4 4 0	1.336-20	IU. meas.
13	3503.775670	2.183E-25	4.703E-02.0610	.3400	1337.4894	.49002800	5 1	845	946	2.21E-25	3. meas.
11	3503.959720	4.962E-26	6.335E-05.0912	.4590	1907.4514	.77007000	8 2	2 2 1 2	331	5.16E-26	HITRAN
11	3504.165280	1.146E-21	8.910E-02.0200	.2400	1557.8478	.39013100	51	.11 111	12 112	1.15E-21	3. meas.
11	3504.166140	3.599E-22	8.396E-02.0225	.2200	1557.8445	.39013100	5 1	11 011	12 012	3.25E-22	HITRAN
14	3504.261910	6.293E-25	3.389E-03.0861	.4550	581.9621	.59 .000000	5 1	- 6 2 5	734	6.41E-25	2. meas.
11	3504.340000	4.006E-25 5.365E-23	2.1//E-02.0460	3130	1399.4632	.53010800 59- 003000	5 I 1 1	- 7 6 L 7 4 4	862 753	4.UIE-25 5.37E-23	5. meas.
12	3504 366980	1 202E-24	2 178E-02 0460	2530	1399 4278	53- 010800	5 1	762	863	1 20E-24	2 meas
11	3504.466880	7.302E-23	6.402E-04.0580	.3670	882.8903	.53001000	4 1	808	817	6.78E-23	3. meas.
11	3504.674480	9.884E-24	1.967E-03.0590	.2500	1525.1360	.41 .000000	3 1	10 5 5	11 210	1.37E-23	10. meas.
11	3504.750060	2.606E-21	1.250E-03.0841	.4690	285.2193	.77005600	4 1	220	331	2.54E-21	5. meas.
12	3504.866840	8.956E-26	8.786E-04.0700	.3600	1047.3285	.53 .000000	3 1	762	835	9.92E-26	3. meas.
14	3504.888360	1.811E-26	9.920E-03.0650	.2310	1532.7322	.37 .000000	5 1	12 310	13 211	1.83E-26	10. meas.
11	3504.972900	4.196E-26	7.129E-04.0654	.3500	2439.9544	.59011000	7 2	2726	735	6.21E-26	HITRAN
11 11	3505.270220	2 320E-25	2 906E-04 0756	3550	2129 5992	73- 003900	4 1	2 2 3 2	/ _ / 1	2 49E-25	4. meas.
11	3505.554890	3.909E-23	1.070E-02.0382	.2650	1590.6908	.53012700	5 1	770	871	3.89E-23	HITRAN
11	3505.555230	1.174E-22	1.071E-02.0382	.2650	1590.6901	.53012700	5 1	771	872	1.18E-22	2. meas.
12	3505.603760	3.272E-24	1.478E-03.0907	.4690	414.1681	.69007100	4 1	4 1 3	524	3.26E-24	2. meas.
13	3505.736870	6.253E-26	3.006E-04.0838	.4380	781.3773	.59001300	4 1	634	725	5.93E-26	2. meas.
11	3505.865600	2.695E-22	8.094E-04.0700	.3230	888.5987	.64002800	4 1	643	652	2.54E-22	5. meas.
13	3505.951420	1.832E-24	3.388E-03.0595	.3910	584.9409	.59009800	4 1	616	707	1.88E-24	3. meas.
11 11	3505.953510	4.196E-23	6./13E-06.1000	1.4950	285.4186	69-003700	4 1 5 1	532	330 551	4.16E-23 7 95E-23	5. meas.
12	3506.101980	1.852E-25	1.260E-03.0655	.3600	1198.1995	.49001200	4 1	918	927	1.86E-25	2. meas.
11	3506.178220	4.680E-26	3.106E-05.0690	.3370	1998.9953	.41 .000000	3 1	11 6 5	11 5 6	6.29E-26	HITRAN
14	3506.185430	5.325E-26	1.579E-02.0490	.1730	1406.6568	.37 .000000	51	12 111	13 212	5.28E-26	4. meas.
11	3506.225300	1.037E-26	2.473E-03.0435	.3230	2983.3963	.36 .000000	4 1	14 410	14 5 9	1.40E-26	HITRAN
13	3506.408220	8.028E-27	1.729E-03.0580	.3400	1337.4894	.49014000	4 1	937	946	1.17E-26	10. meas.
11	3506.585340	2.170E-26	5.521E-05.0515	.3310	2275.3729	.37 .000000	3 1	13 4 9	12 5 8	3.11E-26	HITRAN
11	3506.702950	2.134E-22 1 540E-25	6 233E-03 0925	3600	005 7034	.64002500	5 1	043	532 1039	2.20E-22	3. meas.
13	3506.819690	2.380E-25	1.632E-04.0940	4500	380.8059	.73007900	5 1	313	4 3 2	2.48E-25	2. meas.
12	3507.012220	4.478E-24	1.052E-03.0916	.4600	505.7287	.69007800	5 1	413	532	4.56E-24	2. meas.
14	3507.023780	1.049E-25	3.097E-02.0465	.1980	1405.8184	.37 .000000	51	12 111	13 112	1.10E-25	3. meas.
14	3507.196390	1.041E-25	3.086E-02.0454	.1850	1406.6568	.37 .000000	5 1	12 211	13 212	1.04E-25	HITRAN
14	3507.207110	6.818E-26	2.295E-02.0310	.2040	1432.7584	.36 .000000	5 1	13 013	14 114	6.82E-26	HITRAN
14	3507.218870	9.964E-26	3.354E-02.0277	.2000	1432.7466	.36 .000000	5 1	13 013	14 014	1.07E-25	6. meas.
14 17	3507.220070	9.924E-26	2 281E-02.0260	2070	1432.7584	.36 .000000	5 1	13 113	14 114	1.0/E-25 6 78F-26	6. meas.
14	3507.245200	1.481E-26	1.306E-04.0740	. 3820	683.6101	.59 .000000	5 1	726	743	1.48E-26	HITRAN
11	3507.247320	1.799E-26	2.886E-03.0160	.2180	3127.8619	.37 .000000	4 1	12 9 4	13 8 5	1.86E-26	HITRAN
12	3507.288330	5.446E-26	9.536E-06.0850	.4300	445.3462	.59 .004200	3 1	725	616	4.76E-26	3. meas.
13	3507.329820	7.383E-27	4.355E-03.0253	.2110	1770.8349	.39012500	51	12 012	12 211	7.42E-27	10. meas.
11	3507.447190	1.323E-26	7.163E-04.0586	.2600	2904.4283	.45 .000000	6 2	2954	10 2 9	3.03E-26	HITRAN
14	3507.636580	6.979E-26	2.116E-02.0649	.3480	1411.3201	.41 .000000	5 1	10 5 5	11 5 6	6.66E-26	4. meas.
17	3507.606370	1.295E-25	4.312E-04.0720 2.901E-02.0745	2590	1051.2030	.59002700	4 1 5 1	11 2 9	/ 5 2	1.2/E-25	3. meas.
12	3507.099790	6 334E-25	2.901E-02.0743 2.754E-04.0674	3410	880 1145	.39 .000000	4 1	642	651	1.49E-25 6 17E-26	2. Illeas. 2 meas
11	3507.826150	4.478E-25	7.688E-02.0228	.2500	2915.8943	.41011000	8 2	210 110	11 111	4.88E-25	5. meas.
11	3507.835090	1.339E-24	7.665E-02.0228	.2400	2915.8743	.41013000	8 2	210 010	11 011	1.42E-24	5. meas.
12	3507.874130	6.616E-26	9.799E-05.0820	.3840	658.6100	.59001000	3 1	744	633	6.33E-26	5. meas.
11	3507.921620	5.083E-26	3.860E-03.0450	.3650	2748.0995	.37 .000000	51	13 4 9	13 6 8	5.16E-26	HITRAN
14	3507.961130	6.979E-26	2.109E-02.0643	.3050	1410.5667	.41 .000000	5 1	10 5 6	11 5 7	7.34E-26	3. meas.
14	3508.034740	5.285E-26	1.56UE-02.0469	.1610	1405.8184	.37 .000000	5 1	112 211	13 112	5.93E-26	3. meas.
⊥3 11	3508.249910	3.635E-26	T . ASTE-03 .081.	.4180	18/3 0207	.33004800	4 1 1 1	1055	835 11 / 9	3.69E-26 9 //F-24	4. meas.
1.3	3508.414000	5.890E-24	1.431E-03.0907	.4690	415.1280	.69007100	4 1	413	524	5.93E-25	2. meas
12	3508.604580	2.344E-25	1.667E-04.0707	.3200	733.6829	.69002000	4 1	541	5 5 0	2.30E-25	4. meas.

If 2 3508.604580 2.344E-25 1.667E-04.0707.3200 733.6829 .69-.002000 4 1 5 4 1 5 5 0 2.30E-25 4. meas.M represents the molecule and isotopic codes. Strengths in molecules⁻¹ cm⁻² cm⁻¹ at 296K. b^o and d^o are the half-width and pressure-induced frequency-shift coefficients, respectively, in cm⁻¹/atm. Values given in the last two columns are the observed strength and estimated uncertainties, Δs %. If no value is given for Δs %, then the value for the strength was taken from the HITRAN2000 [177] listing and if no value is given for the observed strength, then the vibration-rotation transition for the molecular species is not given in the HITRAN2000 listing.

Table 8. File names and descriptions available on website (<u>http://mark4sun.jpl.nasa.gov</u>)

File name	Description
SISAM.H2O	Listing of $H_2^{16}O$, $H_2^{17}O$, $H_2^{18}O$, $HD^{16}O$, $HD^{17}O$, and $HD^{18}O$ parameters in a format similar to HITRAN, 500-8000 cm ⁻¹
HITTOTH.H2O	Listing of $H_2^{16}O$, $H_2^{17}O$, $H_2^{18}O$, $HD^{16}O$, $HD^{17}O$, and $HD^{18}O$ parameters in HITRAN format. 500-8000, 500-8000 cm ⁻¹
LEVELS.H2O	$H_2^{16}O$, $H_2^{17}O$, and $H_2^{18}O$ rotational energy levels with uncertainties for
LEVELS.HDO	Vibrational states that are involved in bands in the 500-8000 cm ⁻¹ region HD ¹⁶ O, HD ¹⁷ O, and HD ¹⁸ O rotational energy levels with uncertainties for vibrational states that are involved in bands in the 500-8000 cm ⁻¹ region
WIDTOTH.TRA	Air-and self-broadened width coefficients and air-broadened pressure-
	induced frequency shifts for A-type transitions of H_2O . Measured and smoothed values
WIDTOTH.TRB	Air-and self-broadened width coefficients and air-broadened pressure- induced frequency shifts for B-type transitions of H ₂ O. Measured and smoothed values
WIDV20.TRA	Air-and self-broadened width coefficients for A-type transitions of H_2O . fitted values for bands with upper state $v_2 = 0$
WIDV21.TRA	Air-and self-broadened width coefficients for A-type transitions of H ₂ O. fitted values for bands with upper state $v_2 > 0$
WIDV20.TRB	Air-and self-broadened with upper state $v_2 = 0$
WIDV21.TRB	Air-and self-broadened width coefficients for B-type transitions of H_2O .
HDOWID.AIR	Air-broadened width coefficients for transitions of HDO in then v_2 band. Smoothed and measured values with measured uncertainties
HDOSHFT.AIR	Air-broadened pressure-induced frequency shift coefficients for transitions of HDO in the v_2 band