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Results for semi-leptonic form-factors for processes like D ---, K iv  and the Bethe-SMpeter amplitudes (BSA) for 
pion and rho mesons are presented. The form-factor data is consistent with previous cMculations. We find that 
the long distance fall-off of BSA for both r and p is very well fit by an exponential, but surprisingly the effective 
mass governing this fall-off is lighter than the pion's. Lastly, by studying the dependence of p polarization on 
separation direction we show that there is a measureable 1 = 2 state in addition to i = 0 in the BSA for the rho. 

1. D ~ K l v  S E M I - L E P T O N I C  F O R M -  
F A C T O R  

Form-factors for semi-leptonic decays of heavy- 
light pseudoscalars are expected to provide pos- 
sibly the most stringent constraints on CKM an- 
gles. Over the last few years two groups have 
presented results for D --* K l v  and D -+ I<*lu 
decays [1] [2]. These results have large statisti- 
cal errors, and, in certain instances, are in con- 
flict. To resolve these discrepancies and to check 
for systematic errors, we have undertaken further 
studies using different methods. Here we report 
preliminary results for the case D ---* K lu .  

All results presented in this talk were obtained 
using 35 lattices of size 163 × 40 at /3 = 6.0. The 
Wilson action quark propagators were calculated 
on doubled lattices (163 × 40 --* 163 × 80) using 
Wuppertal sources. The quark masses used are 

= 0.154 and 0.155, corresponding to pions of 
mass 700 and 560 M e V  respectively. (For further 
details see Ref. [3]). In the study of wavefunctions 
the convergence criteria (change per link) used for 
gauge fixing to either Coulomb or Landau gauge 
is 10 -6 . The results are preliminary and need to 
be confirmed on larger spatial lattices. 

The matrix element of the vector current for a 
D --* K transition can be parameterized in terms 
of two form factors: 

H~, = {K-(PK)Ig7~,(1 -- 75)cID°(pD)) 

= p~,f+(q2) + q , f _ ( q 2 ) ,  (1) 

where p = (PD + PK) and q = (PD - - P K )  is the 
momentum carried away by the leptons. For the 
vector current we use three different lattice tran- 
scriptions; the local current, 1-1ink extended cur- 

rent and the conserved current. The non-local 
currents are symmetrized so that they are defined 
at integer values of t. 

Table 1 
Raw lattice data for matrix elements H u with the 
3 different transcriptions of the ve( 

M£~o¢ (v4,~= 
Mc,o¢.(~,g= 

.ME+xt.(y4,~= 
. / ~ e x t  (Y/ ,  ff _~ 

.~Eext (v4,~= 

Mcco. (v,,g= 
. A ~ c ° n  (V/ ,  ff _ - 

M~Cc°n'(w4,  ff = 

~1 ---- 0 .154  

n~ = 0.135 

O) 1.18(11) 

1) 0.51(11) 

1) 0.83(30) 

O) 1.06(10) 

1) 0.40(08) 

1) 0.75(27) 

O) 1.08(10) 

1) 0.35(08) 

i) 0.85(29) 

tor current. 

~¢1 = 0.155 
~2 = 0.135 

1.19(16) 
0.72(25) 
0.84(40) 
1.07(15) 
0.55(19) 
0.76(36) 
1.08(15) 
0.46(16) 
0.87(39) 

The 3-point correlator is evaluated as follows: 
we start with a Wuppertal source light quark 
propagator and make a 75 insertion at zero 3- 
momentum at t = 32. We use the result as 
a source for a second inversion with the charm 
quark mass fixed at n = 0.135. This light- 
heavy propagator with a pseudoscalar insertion at 
t = 32 is then contracted with a light quark prop- 
agator at t = 1 with a 75 to form the kaon. The 
contraction at the other end with the vector cur- 
rent is done at all intermediate times. The initial 
D meson is therefore always at rest and momen- 
tum is inserted through the vector current. We 
only consider the cases/TK = (0, O, O) and (0, O, 1) 
even though Wuppertal source quark propagators 
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allow coupling to kaons of all possible momenta.  
This is because the signal is poor for the higher 
momenta.  

The raw lattice numbers for the three non-zero 
H ,  are given in Table 1. There are two theoretical 
issues that  need to be resolved before one can ex- 
tract f+ from these numbers: the renormalization 
constant for all three currents and the normaliza- 
tion of the heavy c quark. These effects could be 
as large as 20% - 30% due to O(a) corrections. 
Ignoring both these issues, i.e. setting Zv = 1.0 
and not correction for the heavy quark, our re- 
sults using local and conserved current are given 
in Table 2. For momentum transfer/7 = 0 only 
f0 is non-zero, while for # =  (0,0, l) we get both 
f+.  These three results are shown in columns 2- 
4. Within the uncertainty of the statistical errors 
(20% - 40%) the two results are consistent and 
roughly agree with previous estimates. Clearly, 
to make progress it is important  to improve the 
statistics and use a bigger lattice, and also to re- 
duce O(a) artifacts in the normalization of the 
vector current and of heavy quarks. 

Table 2 
Form-factor data  with local (upper half) and con- 
served vector current. Errors are .v 20 - 40%. 

f o ( # =  0) f + ( # =  1) f _ ( # =  1) 

nl = 0.154 0.98 0.73 -0 .57 

nl = 0.155 1.07 0.85 -0 .98  

t¢ 1 : 0.154 0.90 0.67 -0 .22 

~1 = 0.155 0.97 0.76 -0.41 

2. B E T H E - S A L P E T E R  A M P L I T U D E S  

The equal-time Bethe-Salpeter amplitude for 
the pion is defined as 

.4 , (e)  = (oId(e)75U(6 ,e)u(~)lr(# ,)) (2) 

where / / (6 ,  e) is a path-ordered product of gauge 
links that  joins points e and 0 and makes the am- 
plitude gauge invariant. This amplitude is given 
by the following ratio of 2-point correlators: 

(01d(z; 075//(6, e; t)u(0; t)~(ff; 0)75d(#; 0)10) . (3) 

(01d(6; t)75u(6; t)a(g; 0)75d(ff; 0)10) 

There are two other related amplitudes that  we 
consider; Coulomb gauge (g , )  and Landau gauge 
(/~,). These are obtained by transforming the 
quark propagators to Coulomb (Landau) gauge, 
and then calculating the ratio given in Eq. 3 with 
/ / =  1, i.e. without including the links. 

Chu et al. [4] investigated the simplest ver- 
sion of H(0, e), i.e. the straight line path between 
points that lie along one of the lattice axis. Pre- 
vious calculations show that  (r2)~ measured from 
the simplest gauge invariant BSA is smaller than 
that obtained in either Coulomb or Landau gauge 
and that these are 0.3 - 0.5 of the charge ra- 
dius measured in experiments [4] [5]. (A better 
probe is density-density correlations as discussed 
in Ref. [4]). In this study we generalize M to "fat" 
paths made up of smeared links and show that 
the resultant gauge invariant BSA is broader than 
fixed gauge amplitudes. 

2.1. G a u g e  I n v a r i a n t  B S A  w i t h  S m e a r i n g  
We use the APE smearing method that was 

first introduced to enhance the signal in glueball 
calculations [6]. In this method each link in the 
spatial direction i is replaced by the sum 

4 

i = 1  

where $i are the four spatial staples shared by the 
link Ui, and the symbol P implies that the sum is 
projected back on to the group SU(3). One can 
iterate this smearing step as many times as neces- 
sary, using the effective fields at any step to pro- 
duce still "fatter" fields; for example in the sec- 
ond smearing step the right hand side of Eq. 4 is 
constructed from smeared links produced in step 
one. We specify the smearing level by a super- 
script on A, which will be 0 - 6 corresponding 
to the original links and six levels of smearing. 
We did not consider it appropriate to go beyond 
6 levels of smearing on a lattice of size 16 with 
periodic boundary conditions. 

There is no unique answer for the gauge- 
invariant BSA as different choices of U yield dif- 
ferent results. In Fig. 1 we show that  A~)(g , t  = 
15) falls off less rapidly as the smearing level i 
is increased. The statistical errors are similar for 
smearing levels 1 - 6, and the data  show a rough 
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Figure 1. BSA for the pion at levels 0-6 of smear- 
ing. Errors have been suppressed for clarity 

convergence with i. We therefore use results for 
i = 6 as our present best estimate for the gauge- 
invariant BS amplitude. The second noteworthy 
feature is that the large x behavior is fit well by an 
exponential for .3, (1-6) for x > 6, while such a be- 

havior is hard to extract from A(~ °). We iliad that 
A (6) ,,, e -°'3~, a slower fall-off than one would ex- 
pect as m ,  = 0.365(6). Qualitatively, the shape 
of the BSA does not change with t, though quanti- 
tatively it gets significantly broader with t, reach- 
ing a steady state by about t = 15. This t is 
somewhat larger than t = 10 by which the corre- 
lator is dominated by the lightest state as shown 
in Ref. [3] using the same set of lattices. 

We have also measured these amplitudes for 
non-zero momentum with the separation ~ taken 
to be parallel or perpendicular to the direction of 
/~. This allowed us to qualitatively verify that the 
data show the expected Lorentz contraction. 

2.2. C o m p a r i s o n  b e t w e e n  gauge  i n v a r i a n t ,  
Landau, and C o u l o m b  g a u g e  B S A  

The Coulomb and Landau gauge amplitudes 
have been measured for the following relative sep- 
arations: the anti-quark's position is varied in a 
cube of size 9 × 9 × 9 with respect to the position of 
the quark. For each of these relative separations 

1, 'm r i 

0.8 
X 

0 , 6  

0 . 4  

0 . 2  

' ' I ' ' ' ' I ' ' ' ' I ' ' 

C o m p a r i s o n  o f  BSA f o r  t he  Pton 

o 
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+ 
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o . . . .  I , +, , , 
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Figure 2. Comparison of the gauge-mvariant BSA 
at smearing levels 0 and 6 with the Coulomb 
gauge result. We only show C, for zi < 6. 

we sum the quark's position over the time slice to 
produce a zero-momentum state. The data show 
that for x > 6 along any of the axis there is a sig- 
nificant contamination from wrap-around effects 
due to periodic boundary conditions. These ef- 
fects can be taken into account by incorporating 
the contributions of all the mirror points. 

The data show that  .A (6) is slightly broader 
than £ which in turn is slightly broader than C. 
On the other hand we find £ ~> d > A (°) con- 
sistent with the earlier results of Ref. [5]. These 
two features are illustrated in Fig. 2 by data  for 
C,, A (°) and A(~ 6). Thus A (6) is a better probe of 
quark/anti-quark distribution than Coulomb or 
Landau gauge BSA. 

2.3. Polarizaton dependence of  the p B S A  
The p meson wavefunction is a linear combi- 

nation of l = 0 and l = 2 orbital angular mo- 
mentum states. On the lattice the BSA can be 
decomposed under the cubic group as 

(01d(z, t )-r;u(6, t)u(6, t )lp(6, j)) 
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Figure 3. The BSA for the rho at ~ = 0.154 with 
polarization axis i II and _k to separation E. 

x~x~ (~)]. (5) +(1 - 6ij)--ff~-&T~ 

The functions CA~, CE and CT~ are scalars under 
the cubic group with E (T2) labelling the 2 (3) di- 
mensional decomposition of the l = 2 state. Thus 
lattice calculations allow us to investigate, as a 
function of the quark mass, the relative mixture 
of I = 0 and 1 = 2 states, and the restoration of 
rotational symmetry by studying the three cases: 
(A) i = j and ~ along i (l[), (B) i = j and E 
perpendicular to i (2_), and (C) i ¢ j .  

At present we have only measured the BSA for 
i = j ,  and the results for cases (A) and (B) at 

= 0.154 are shown in Fig. 3. The data show 
that for large separation the fall-off is extremely 
well fit by an exponential in both cases, with a 
rate of fall-off given by roll = 0.226(8) and m± = 
0.263(7) respectively. Again, it is interesting to 
note that  the large x fall-offis governed by a mass 
that is lighter than m~ = 0.365. 

From the data  shown in Fig. 3 we extract 
CA,(X) and CE(.T). The results, shown in Fig. 
4, are fit to simple hydrogen-like radial wavefunc- 
tions 

CAx (x) : 1.61 e -0'242r 

CE(Z) = 0.029 r 2 e -°375r . (6) 

1.5 ~ -  ii:" x. 

0 5 10 15 

Figure 4. Results for CA, (x) and CE(X) using the 
data shown in Fig. 3. The fits are described in 
Eq. (6). 

These functions give a good fit to CA~(X) for r > 6 
and dE(X) for r >_ 2. The results at t¢ = 0.155 are 
qualitatively similar. The data for both CA~(X) 
and CE(x) are slighly broader, though the differ- 
ence is smaller than the statistical errors. 
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