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We use perturbation theory to compute the low-lying energy levels in SU{2) gauge theory with
twisted boundary conditions. Finite lattice spacing corrections, which can be large, are taken into

account. A comparison with recent numerical simulations is made. Nonperturbative effecis are

discussed.
1. INTRODUCTION

We will consider nonabelian gauge theory in a
3-dimensional box of side L. I the box issmall {L <«
Aa(lm), asymptotic freedom implies that “physics”™
can be calculated in perturbation theory. This is
not the physics ultimately relevant for the real world
of large volumes {L > AE%D)' but it may have
some bearing on our understanding and interpreta-
tion of numerical simulations of lattice gauge theories
which, for practical reasons, are typically performed
in intermediate volumes (L ~ A(—z:m)-

Physics in a small volume is strongly dependent
on the boundary conditions imposed. Ideally we wish
to have boundary conditions which lead to a fast (ex-
ponential) approach to the infinite volume limit for L
sufficiently large. Periodic boundary conditions are
known to have this characterl, however in small vol-
umes they induce large finite size effects which qual-
itatively alter the spectrum. These effects, which
have their origin in the existence of zero momentum
modes for the gauge field, pursist into intermediate
volumes. This can be seen in both numerical simula-
tions 2nd in analytic calculations, for both of which
we refer to a fairly recent review by Micheal.

An aiternative to periodic boundary conditions
are the twisted boundary conditions of ‘t Hooft3
where we have periodicity modulo a gauge trans-

iwraiion. These respect the exponential approach
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to the infinite volume limit. but eliminate the zero
modes of the gauge fields and the assodiated smalf
volume behaviour. k has been argued that twisted
boundary conditions “seed” the vacuum for the for-
mation of strings, anJ that as a result the transition
to the large volume “stringy” physics should be more

rapid, with smaller finite size effects.

2. GLUEBALL MASSES

(a) Perturbation theory. To calculate the glueball
masses we examine the (Euclidean) time behaviour
of the connected correlation function between Wilson
loops at zero momentum:

C(t) = (W)W (0)) — (WHHW(0)),
= ZA,, exp(—Ent).

To isolate the lowest lying states, which we iden-
tify with the glueballs, ¢ is taken to be large. The
masses of different glueballs are fou:d by considering
correlations of Wilson loop combinations in various
representations of the cubic group.

In a small volume we can use perturbation the-
ory and we expect C(t) to have the resolution
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where represents 3 gluon propagatoer, and &
represents 3 sowrce. Taking £ large then has the of-
fect of putting all legs emanating from the source an
shefl. Furthermore, 35 2 consequence of the Ward
contribite to the energy. This can be veified ex-
plicitly, and is 2 very useful {indeed essential} check
arise in the calcdation.
At O(g?) the lowest energies are given by

i:ﬁ{ +1‘+I+X

= UPin| + cg”
in the 2-giuon sector, and by
. -_ -
1’)’:0 {—-—-l- —_— I e ><

= Blfmial + dg*

in the 3-gluon sector, and so on. Hese we have used
the notation fi,;, 1o denote a (discrete) momen-
tum of the minimal length allowed by the bound-
ary conditions. For periodic boundary conditions we
have Biia = 0, and this results in infrared problems
which make the perturbative strategy outlined above
impossible. Instead 2 less straightforward approach
must be adc»pted4 .

No such obstacle arises with twisted boundary
conditions. As an example we take SU(2) gauge the-
ory with a cubically invariant twist (characterized by
the abelian magnetic flux M = (1,1, 1)). Explicitly
the boundary conditions we impose are

Ap(z + & L) = iop A (z)(ioe)!,

where €. is a unit 3-vector and o are the Pauli ma-
trices. Performing a Fourier decomposition, we find
Pmin = 21/2L(1,1,0) (or a cubic rotation of this).
The perturbative calculation then proceeds with the
results for the 2-gluon sector given in figure 1 5. Here
we show the dependence of the energies on the lat-
tice spacing (or more accurately on the lattice size).
For 43 x oo lattices, for example, the lattice spacing
corrections are seen to be sizable, particularly for the
negative parity states A7 and E~.
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Figure 1. The Ofg®} enesgy shifts of the two giuon
statsasafundionof!zL[aﬁ‘,

(b) Comparison with simulation. We now have anz-
fytic results for the “glueball” mass spectrum in smoll
volumes for SU(2) gauge theory with cubscally in-
variant twisted boundary conditions. But how small
is smali? To answer this question we must turn to
numerical simulations. This theory has recently been
simulated by Stephenson® at 2 variety of values of 3
and I = 4,6,8, and 12 where | = Lfa. We include
some of his results in figure 2. The hovizontal scale
here may be regarded as Z,/3, where Z_ = /&L is
the finite size scaling variable associzted to the infi-
nite volume string tension, although for large S it is
in fact calculated indirectly by assuming asymptotic
scaling. It measures the physical size of the box.

A few remarks about the L dependence of the
mass gap (the mass of the A} state) are in order.
In figure 2, the zeroth order perturbative resuit for
the mass gap would be a constant (mL = constant),
whereas for large L, mL must grow linearly (unless
m = 0). However, the first order perturbative re-
sults drive mL down. This is similar to the Coulomb
binding energy in a bound state like the Hydrogen
atom. [t is evident that nonperturbative effects are
instrumenta! in pushing the mass gap up once again

as we move to larger L. From figure 2 we can see
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Twisted boundary conditions
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Figure 2. Glueball masses as function of physical
volume®.

that such effects come in to play at Z, ~ 1.

When it comes to comparing our perturbative
results to the simulation, we have to decide on what
our coupling g means. We are at liberty to make
two choices. First, we can take g = gy, the bare
coupling. Then, for § = 4/g2 sufficiently large, our
results should agree quantitatively with simulation.
It turns out that we need to go as high as 3 =
4.7 before this is achieved within errors®, which are
unfortunately rather large. Second, we can take g =
gr, the renormalized coupling at a scale g = L71.
Since we do not know g,., we have to fit cur results
If we do this then there is
reasonable agreement between perturbation theory
to B = 3.0. After this there are
distinct differences. In making these comparisons, we

to the numerical data.
and simulation dov

ignore the AT mass found in the simulation, which
lies consistently below the perturbative prediction,
but which has unfortunately large systematic errors®.

Referenced

also includes a comparison between
In the
latter case, the small volume behaviour is for mL
to go to zero?. For Z, ~ 1 (intermediate volumes),

the AT and Et states remain very close together,

twisted and periodic boundary conditions.

a feature which is absent from the case with twist.

For Z, ~ 3, the glueball spectra with twisted and
periodic boundary conditions are found to coincide,
indicating that we have reached the large volume

region.
3. NONPERTURBATIVE ASPELCTS

{a) Vacoum structure. In doing perturbation theory
we assumed the existence of a unique vacuum. For
SU(2) gauge theory with periodic boundary condi-
tions there are in fact 2° perturbative vacua, char-
acterized by abelian electric fluxes, €, whose com-
ponents are integers modulo 2. These vacua are
mapped into one another by the action of spatial
Polyakov loops, P(£), of given flux, €, which is the
vector normal to the loop.

In the presence of a twist M, a state of flux €
acquires a “Poynting” momentum, = /L (€ x 17 mod
2). For our case where 7 = (1,1, 1), this means that
only the €= {0,0,0) and £ = (1,1,1) vacua survive.
Similarly P{091) and P({(:11) pick up momenium,
but P{111) does not.
surviving vacua remain degenerate, but this is hifted

In perturbation theory the

by tunneling between them.

it may be helpful to have a concrete picture of
these ground states on a lattice of size *xLi. WL
is odd, then the boundary conditions can be trans-
formed to the case where every spatia! plaqueite is
twisted, that is each plaquette is multiplied by an
extra factor of —1. Then the potential energy is just
> tr(14Up), where the sum is over afl spacelike pla-
quettes. This is minimized by one of two gauge in-
equivalent configurations: U= (*i01, Hioa, +ioy).
These we identify with the perturbative vacua.

(b) Instantons. It is known from rigorous arguments7

that smooth tunneling solutions exist in the pres-
ence of twisted boundary conditions. Their shape
and other properties have been explored on the lat-
tice using cooling methods in reference®. The safient
results of this study are:
o the solutions are (anti)self-dual to a very good
approximation, and the action is close to 472,
e the action integrated over 3-space has the
peaked profile indicated in figure 3.
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4. CONCLUSIONS
The glueball spectra of SU(2) gauge theory in
. periadic and twisted boxes coincide within the er-
: =2 rors of current simulations at Z, = 3. Also at this
value, Polyakov loop energies become stringy. 2 nice
-~ confirmation of the scundness of the numerical sim-
ulations. Physically the perturbative analytic resuits
show the effect of Coulombic forces on the energy
splittings of the 2-gluon states. These effects drive
the mass of the A7 down, as m 3 bound state. At
Ze = 1 the level starts to go vp again due to 2
/ ' nonperturbative mechanism yet to be explained.
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have like the |€]<L (x is the infinite volume string
tension). This is confirmed within errors by the re-
sults of simulations at Z, = 35 For small Z, we can
compute E((01) and E(011) in perturbation theory
with the result

E(#) ~ E(0) = |mial + 4°S(),

where S(€) is the projection of the gluon self energy
onto the polarization paraflel to €& FE(111) remains
is 0 in this approximation, however, since P(111)
relates the degenerate vacua and so must have zero
energy. However, it does pick up an exponentially
small contribution from instanton effectsS.



