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We use perturbation theory to compute the tow-lying energy levels in SU(2) gauge theory with 

twisted boundary conditions. Finite lattice sl~acing corrections, which can be large, are taken into 

account. A comparison with recent numerical simulations is made. t~Jonperturbative effects are 

discussed. 

I. INTRODUCTION 

We will consider nonabelian gauge theory in a 
3-dimensional box of side L. If the box is small (Z, << 

A ~ D ) ,  asymptotic freedom implies that =physics ~ 

can be calculated in perturbation theory. This is 

not the physics ultimatdy relevant for the real world 

of large volumes (L >> A ~ D  ), but it may have 

some hearing on our understanding and interpreta- 

tion of numerical simulations of  lattice gauge theories 

which, for practical reasons, are typically performed 
in intermediate volumes (L ~ A ~ D  ). 

Physics in a small volume is strongly dependent 

on the boundary conditions imposed. Ideally we wish 

to have boundary conditions which lead to a fast (ex- 

ponential) approach to the infinite volume !imit for L 

sufficiently large. Periodic boundary conditions are 

known to have this character 1, however in small vol- 

umes they induce large finite size effects which qual- 

itatively alter the spectrum. These effects, which 
have their origin in the existence of zero momentum 

modes for the gauge field, p~rsist into intermediate 

volumes. This can be seen in both numerical simula- 

tions ~nd in analytic calculations, for both of which 
we refer to a fairly recent review by Micheal 2. 

An aiternative to periodic boundary conditions 

are the twisted boundary conditions of 't Hooft 3 

w~here we have periodicity modulo a gauge trans- 

i, ~Li ic~ These respect the exponential approach 
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to the infinite volume limit, but eliminate the zero 

modes of the gauge fields and the associated small 

volume behaviour. It has been argued that twisted 

boundary condidon~ "--~-ed" the vacuu~ f~. the for- 

mation of strings, anJ that as a result the transition 

to the large volume "stringy" physics should be more 

rapid, with smaller finite size effects. 

2. GLUEBALL MASSES 

(a) Perturbation theory. To calculate the glueball 

masses we examine the (Euclidean) time behaviour 

of the connected correlation function between Wilson 

loops at zero momentum: 

c ( t )  = <wct)w(o)) - (w(t)>(w(o)), 
= Z A n  ex~p(-Ent). 

n 

To isolate the lowest lying states, which we iden- 

tify with the glueballs, ~ is taken to be large. The 

masses of different glueballs are fou::d by considering 

correlations of Wilson loop combinations in various 

representations of the cubic group. 

In a small volume we can use perturbation the- 

ory and we expect C'(t) to have the resolution 

c(,)= < 2 >  ÷ 

+ 4 g l u o n  + . . . ,  
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w h e r e _  ~ep~es~ts a g~r~oo ~ro~gat~r,  and 

rewesents a ~ r c e .  Taking ~ l~ge  t h ~  has th~ ef- 
fect o f  l ~ ,~ r~  an ~ e m ~ t ~ r ~  from t t~  sauce 

s/~l_ Furd~'mare, as a ~ of ~ Ward ~- 

co~fibute  to  the  em~q~. ~ c~ be s~,'ifs~ ex- 

plicitly, and is a wery tLse~m[ ~wxleed ~ )  check 
m ~he c~nplicated lattice F e ~ m a ~  d ~ z ~ s  wh/c~ 

arbe in the ~ .  

~=6 { + "4~ ."1- + ~ 

in the 2-~uo~ sed~.  and by 

- - -  - -e-  " T -  X F=6 - - +  ÷ + 

= 3 1 ~ - - l + a ~  
in the 3-gluon sector, and so on. Here we have used 

the notation ~,~, to  denote a (dLu~ete) momen- 

tum of  the minimal length allowed by the bmmd- 
ary conditions. For periodic boundaxy eruditions we 

h a v e / ~  = ~, and this results in i n f ~ e d  problems 

which make the  perturbative strategy outlined above 
impossible. Instead a less straightfonvard ap~oach 
must be adopted 4. 

No such obstade arises with twisted boundary 
conditions. As an example we take ~LT(~-) gauge the- 

ory with a cubically invariaut twist (characterized by 
the abelian magnetic flux r~ = (1,1,1)). Explicitly 

the boundary conditions we impose are 

~ ( ~  + ~'~) = i~tA~(~)(i~t)*, 

where ~'/~ is a unit 3-vector and ~e are the Paoli ma- 
trices. Performing a Fourier decomposition, we find 

P~n = 2~r/2L (1,1, 0) (or a cubic rotation of this). 
The perturbative calculation then proceeds with the 

results for the 2-gluon sector given in figure 15. Here 

we show the dependence of the energies on the lat- 

tice spacing (or more accurately on the lattice size). 

For 4 3 x oo lattices, for example, the lattice spacing 

corrections are seen to be sizable, particularly for the 
negative parity states A~- and ~ - .  
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Fimm~ Z. The 0 ( ~ )  e n e ~  ~ of  the t ~  ~ 
~ l :es  as ,a f u ~ t b n  o~ ~ = L J ~ .  

(b) C o m p ~  m~h s/mu/a~on. We now have ana~ 

lyric resutts fm tbe " l~ueba r  mass  ~pectsum ~n small 

volumes for SU(2)  gauge t h e o q  With cubkally iu- 

va fau t  twisted boundary conoraiom. But how small 

is small? To  amm~r th i s  quest ion we  mus t  turn  t o  

numerical simulations. This  themy has  recently been 

simulated by Stephenson 6 at a v a ~  of  values of 

and ! = 4 ,6 ,8 ,  and 12 where 1 = Lla.  We indude 

some of  his results in figure 2. The ho~_outal scale 
here may be regarded as  Z J 3 .  where Z .  = ~'~L is 

the finite size scaling variable assoc~ted to the int~ 

nite volume string tension, although for large j~ i t  is 
in fact calculated indirectly by assuming asymptotic 

scaling. It measures the physical size of  the box. 

A few remarks about the L dependence of the 
mass gap (the mass of the A + state) are in order. 

In figure 2. the zeroth order perturbative result for 

the mass gap would be a constant (rrtL ---- constant). 

whereas for large L,  m L  must grow linearly (unless 
rn = 0). However, the first order perturbative re- 

s,Jlt~ drive .~_L down. This is similar to the Coulomb 

binding energy in a bound state like the Hydrogen 

atom• It is evident that nonperturbative effects are 
instrument-~! in pushing the mass gap up once again 

as we move to larger L. From figure 2 we can see 
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Figure 2. Glueball masses as function of physical 
volume 6. 

that such effects come in to play at Z~ ~ 1. 

When it comes to comparing our perturbative 
results to the simulation, we have to decide on what 

our coupling g means. We are at liberty to make 

two choices. First, we can take g --- go, the bare 

coupling. Then, for/~ = 4/g0 2 sufficiently large, our 

results should agree quantitatively with simulation. 

It turns out that we need to go as high as ~ = 

4.7 before this is achieved within errors 6, which are 

unfortunately rather large. Second, we can take g = 

gr, the renormalized coupling at a sca~/L -- L - ] .  
Since we do not know gr, we have to f i t  our results 

to the numerical data. If we do this then there is 

reasonable agreement between perturbation theory 

and simulation do~ to/~ = 3.0. After this there are 

distinct differences. In making these comparisons, we 

ignore the A + mass found in the simulation, which 
lies consistently below the perturbative prediction, 

but which has unfortunately large systematic errors 6. 

Reference 6 also includes a comparison between 

twisted and periodic boundary conditions. In the 

latter case, the small volume behaviour is for mL  

to go to zero 4. For Z~ ~ 1 (intermediate volumes), 

the A + and E + states remain very close togetl~er, 

feature which is absent from the case with twist. 

D. D~z,s~.] et al./Small volume phlsics 

For Z~ ~" 3, the gluebaH spectra w]t~ tw]~ted .a~d 

periodic boundary conditions axe found to co~ci~e 

indicating that we have reached the large ~,o[~.,me 

region. 

3. N O N P E R T U R B A T I V E  A S P E C T S  

I (a) ~lacuum structure, tn do~ng perturbation theo~, 

we assumed the existence of a unique vacuum. For 

S~-(~ ~ gauge theory with periodic boundary condi- 

tions there are in fact 23 perturbative vacua, char- 

acterized by abelian electric fluxes, ~', whose com- 

ponents are integers modulo 2. These vacua are 

T2÷ mapped into one another by the action of spatial 

z.0 Polyakov loops, P(c~), of given flux, C, which is the 

vector normal to the loop. 
In the presence of  a twist ~ .  a state o f  flux K" 

acquires a "Poynting" momentum. ~ / L ( ~ ' x  ~ nlod 

2). For our case where ~7~ = (!~ 1,1), this means that 

only the ~ '= (0, O, O) and ~ = ( 1 , 1 ,  ] )  vacua survive. 

Similarly P(O01) and P(OI1) pick up momentum. 

but P(111) does not. In perturbation theory the 
surviving vacua remain degenerate, but this is lifted 

by tunneling between them. 

It may be helpful to have a concrete picture of 

these ground states on a lattice of size L 3 × L[. If L 

is odd, then the boundary conditions can be trans- 

formed to the case where every spatia! plaquette is 

twisted, that is each plaquette is multiplied by an 
extra factor of - 1 .  Then the potential energy is just 

f , r( l+Upl),  where the sum is over all spacefike pla- 

quettes. This is minimized by one of two gauge in- 

equivalent configurations: U = (4-i~r],4-ia~_,±icr3). 

These we identify with the perturbative vacua. 

(b) Instantons. It is known from rigorous arguments 7 

that smooth tunneling solutions exist in the pres- 

ence of twisted boundary conditions. Their shape 

and other properties have been explored on the lat- 

tice using cooling methods in reference 8. The salient 

results of this study are: 

• the solutions are (anti)self-dual to a very good 

approximation, and the action is close to 47r 2. 

• the action integrated over 3-space has the 

peaked prof e indicated in figure 3. 
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Rgure 3. The instanton shape for ~ = ( l ,  1,1) 8. 

• the width of the peak does not depend on Z~, 

only on L. but there is Lt dependence in the 

tail. 
• the tail of  the peak extrapolated to L t  = o~ is 

of the form exp(--2[/~h.lt). 

(c) String energies. These are obtained by memudng 
the decay in time of spatial Polyakov loops. For large 

L we are in the string regime where these should be- 

have like the I~_L ( x  is the infinite volume string 
tension). This is confirmed within errors by the re- 

sults of simulations at Z~ ~ 36. For small Z .  we can 

compute E(001) and ~(011) in perturbation theory 

with the result 

4. CONCLUSfONS 
The ~L~ehal! spectra of SU(2) gauge tbeo~] in 

periodic and ~ ' c e d  boxes c~nc~de wffhin the er- 

ects of current s~muIat~ens at Z~ ~ 3. A|so at tb~s 

vaime, Po~aEc~ loop energies become strir~gy; a nice 
confirmation of the_ so~nd~e~ of the numedv-at ~m- 

utat~e~. Phy~-~.a~y the Ipe~urb~'~ ana{y~¢ results 
show the effect of C _ ~ b ~  forces on ~ enef~ 

sp~ttings af  the 2-gl~m s ~ e s .  These e~ects drP~e 
the mass of  the .4"~ down, as ~n a b<~cl Hate. A~ 
Z.  ~ I tee level ,~arr~ to So up agaln d~e m a 

nonpe~ulrbat~ mechanism yet to  be exldai~ed. 
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E ( O  - E ( 6 )  = IF~..I + g~s(~, 

where S ( ~  is the projection of  the gluon self energy 
onto the polarization parallel to ~'. E(111) remains 

is 0 in this approximation, however, since P ( l l l )  

relates the degenerate vacua and so must have zero 
energy. However, it does pick up an exponentially 

small contribution from instanton effects 8. 


