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Introduction

In this paper we consider systems of conservation laws which possess
an entropy function. Such equations of mathematical physics can be written
in a symmetric form which retains the conservation properties of the system.
Among the researchers who have investigated this class of equations are
Godunov [2], Friedrichs and Lax [3], and more recently Mock [6] and Harten
and Lax [4].

The symmetrizability of systems of conservation laws with entropy may
and should be utilized in the design and analysis of numerical solutions
to such problems. For example it offers the possibility to locally linearize
the equations in a way which preserves the hyperbolicity and comservation
properties (see Roe [7], [8], the next section and [5]). Another example is
the use of the symmetrizibility property to rigorously analyze splitting
algorithms for the Navier-Stokes equations by Abarbanel and Gottlieb (see {1]).
Of particular interest is the possibility of improving the structure of
iteration matrices in direct Newton-iteration methods to the solution of the
steady state equationms.

The goal of this paper is to review the general structure of systems of
conservation laws with entropy, and in particular to present symmetric formu-~
lations of the equations of gas dynamics. Hopefully, this information will
be of service to the designers of numerical approximation of this important

class of equatioms.

1. Systems of Conservation Laws with Entropy

In this paper we consider systems of hyperbolic conservation laws of

the form

d
(1.1a) u + 5 £, T u +div £(u) = 0.
i=1 e




. i
Here wu(x,t) 1is an m-~column vector of unknowns, f (u) is a vector valued

function of m components, x = (xl,...,xd), f = (fl,...,fd). We can

write (1.la) in the matrix form

d .
(1.1b) u + 3 AT(wu, =0,
i=1 i
where
1.1c) atw) = £l

(1.1) is called hyperbolic if the matrix

(1.2) Z wiAi(u)’

has real eigenvalues and a complete set of eigenvectors for all real Wy e
A scalar function U(u) is an entropy function for (1.1) if:

i) U satisfies

(1.3 Uf =F , i=1,...,d

where Fi(u) is some scalar function called entropy flux in the xi-direction.

ii) U 1is a convex function of u.

It follows from (1.3), upon multiplication of (1.la) by Uu, that every

smooth solution of (1.1) also satisfies

(1.4) U+ ) F
where

d
F = (Fl,...,F ).




A system of equations

d
1
(1.5) 1>vt + 2 B Ve T 0,
: i=] i

is called symmetric hyperbolic if P and all Bi are symmetric matrices,

and if P is positive definite.

The symmetrization of (1.1) will be accomplished by introducing new

dependent variables v in place of u by setting u = u(v), i.e.,

d d
i i
(1.6a) u(w), + 3, Fu), =uv + Y fv.  =0.
t =1 xi vt =1 v xi
Thus (1.1) becomes of form (1.5) with
i i
(1.6b) P=u , B =f.

The symmetry of the matrices u, and fi implies that u and

gradients with respect to v, i.e.,there exist scalar functions

such that
(1.7a) q, = ul,
(1.7b) ri = HT,

fi are

q(v), ri(V)

where superscript T denotes transpose. The positive definiteness of u,

is equivalent to the convexity of q(v).

Note that the convexity of ¢q implies that the mapping v - q, is

one~to-one, so that (1.7a) can be inverted, i.e., v can be regarded as a

function of u. .



Theorem 1.1 (Godunov). Suppose (1.1) can be symmetrized by introducing

new variables v, i.e., (1.7) holds, where q 1is a convex function of v.

Then (1.1) has an entropy function U(u) given by
T
(1.8a) U(u) = uv - q(v),

with entropy fluxes Fl(u)

(1.8b) P = #HTv - tto.

Proof: Differentiate (1.8a) with respect to u; using (1.7a) we get
_ T, T, _ _ T

(1.9) Uu =v +u v, qQV, =V -

Similarly from (1.8b) and (1.7b) we get

(1.10) R R R I s e
u u u vu u

Relation (1.3) follows.
To prove the convexity of U, we show that U 1is the Legendre trans-

form of q:
(1.11) U(u) = max [ulv-q)].

For, by the convexity of q, the right side has a unique maximum; at the
maximum point the v derivative must vanish; this gives relation (1.7a).
This proves that (1.11) is the same as (1.8a). (1.11) represents U as

the maximum of linear functions; this proves that U is convex.




Conversely:
Theorem 1.2 (Mock). Suppose U(u) 1is an entropy function for (1.1),
then
T
(1.12) v o= Uu’
symmetrizes (1.1).
Proof: The convexity of U implies that the mapping u > Uu is

one-to-one, hence (1.12) defines u as a function of v. We define now

q and ri by

(1.13a) q(v) vl - U(u),

Vel - iy,

(1.13b) v

where F' are the entropy fluxes. Differentiating (1.13a) with respect

to v, and using (1.12) gives )

i, AT, T.i i AT
r, = (£f) +v fuuv -F u, = (£ .

u

These formulas show that (1.7a) and (1.7b) hold; therefore u, and £, are
symmetric. To show that u, is positive we have to verify that q 1s con-
vex. This can be done, as before, by observing that, because of the con-
vexity of U, it follows from (1.13a) and (1.12) that q 1is the Legendre
transform of U.

(For more details see [4].)

We note the following relatiomns:

i) The symmetric positive definite matrix u, simultaneously symmetrizes

all Ai = fi from the right, i.e.,



(1l.1l4a) Aty =8t = symmetric on all 1.

ii) The symmetric positive definite matrix v, simultaneously

symmetrizes all Ai from the left.
(1.14b) vuA = quiv = symmetric.
iii) The similarity transformation
(1.14c) (vu)& Ai(vu)_% = (vu)% Bi(vu)é = symmetric,

i, . .
simultaneously transforms all A into symmetric matrices.

We say that the system (1.1) can be linearized in the sense of Roe if

for all vy and u,
i i i _
(1.15a) f (uz) - f (ul) = A (ul,uz)(uz-ul), i=1,...,d ,

(1.15b) alu,u = fi(u) Ay,

and the matrix
d i
(1.15(:) .Z wiA (ulsu2)9
i=1
has real eigenvalues and a complete set of eigenvectors for all real w

i
(see [7] and [8]).

Theorem 1.3 (Harten-Lax). Suppose (1.1) has an entropy function, then

(1.1) can be linearized in the sense of Roe.

Proof. Let vT = Uu’ then by Theorem 1.2 the mapping u - v 1is one-to-one,
v, 1s a symmetric positive definite matrix and fi are symmetric. Let

vy = v(ul), v, = v(u2) and define

v() = v, + 6(vy=-vy),




then
1 1
fi(uz) - fi(ul) =ffi(v(e)) g—‘é a9 = f £L(v(8))dB(vy-u ).
0 0
Denote
1
(1.16a) B (uy,u,) = ff\];(v(e))de ,
0
then
(1.16b) ey - gty = 3hu,u) (v - vo)
. 2 1 1042) (Vy = vy

where Bi(ul,uz) is symmetric.

Now let
U(T]) = ul + n(uz— ul)’
then
1 1
du _ _
(1.17a) vy = vy = fvu(u(n)) d—ndn = fvu(u(n))dn(uz u,y).
0 0
Denote
1
P(“1’u2) = fvu(u(n))dn s
0
then
(1.17b) Vy = Vy = P(ul,uz)(uz-ul),

where P(ul,uz) is symmetric positive definite. Combining (1.16b) and

(1.17b) we get




(1.18a) fi(uz) - fi(ul) = Ai(ul,uz)(uz-ul),
where
(1.19) Ai(ul,uz) = Bi(ul,uz)P(ul,uz).

For u; = u, =u we get that v{(0) = v(u), u(n) = u and

B(ul,uz) = fi(v(u)), P(ul,uz) = vu(u). Hence
(1.20a) Ai(u,u) = Bi(u,u)Pi(u,u) = fi(v(u))vu(u) = fi(u) = Ai(u).

Denote

i=1

d ii d .o
C = 2: w A (ul,uz) = 2: wlBl(ul,uz) P(ul,uz).
i=1

Then

"

% -3 & 1 : 3
(1.20b) [P(ul,uz)] C[P(ul,uz)] [:P(ul,uz)] I:Z w™ B (ul,uz)] [P(ul,uz)]
i=1

symmetric.

Thus C 1is similar to a symmetric matrix and therefore has real eigenvalues

and a complete set of eigenvectors for all real W, .

2. Euler Equations of Gas Dynamics

In this section we consider the Euler equations for polytropic gas

in conservation form:
b'4 y -
(2.1a) u + [ (W] + [f (u)]y 0,

where




UT = (p,m,n,E) = (ul’uz’u39u4)s

2.16)  [Ew]T

-2({ 2 2 3-y 2
uy (uluz,(Y-l)ull:ulu4~éu3] + 5 Ulys UgU,Ug,

(2.1 [P’ u;Z(uiu3,u1u2u3,<Y-1>ul[ulu4-%ugj 2L 2

oyl .2 2
uBl:Yulu4 3 (u2+u3) .
where p 1is the density, E the total energy, m and n are the momentum in

the x-direction and the y-direction, respectively.

The Jacobian matrix AX = fﬁ

(2.2a) A¥ =
- 0 -ui 0 0
(3-Y) 2 2 2 3
[ 2 + S__L ug | uy (y=3)uju, (y-1)uju, (1-v)uy
1
u,u,u -uzu —uzu 0
17273 173 172
2.2 2yl 2, 2. 2
Yuju,u, + (l-y)uz(u2+u3) -Yu1u4+ 5 ul(3u2+u3) (Y-l)ulu2u3 ~Yuju,




has eigenvalues

(2.2b)

The Jacobian matrix Ay =

(2.3a) AV =

Y1424

3=y 1-y
uy G5 ug+=5

u2 uz)
3 2

2. 2
Yu;usu, + (1—y)u3(u2+u3)

has eigenvalues

G F

(2.30) a = ull{u3— Y(y-1)
G

aZ = ull {u3+ y(y-1)

(2.4a) S = log[P p-Y]

-10-

3
Eﬁ“a’é(“§+“§i

3
I:ulu4—é(u§+u§):| ‘

(y-1) u]_uzu3 uy [—Yu4 + %1(3u§ +u

~

o

o

£y
u
0 —ui
.2 _ 2
ulu3 ulu2
2 2
(Y-l)ulu2 (Y—3)u1u3

2
2

)

)

R (u 42 . YoV = o
_u1u4 é(u2+u3)d } 5 &y = a3 =y
_ -3

2 2
-ulu4-%(u2+u3)— } .

“Iy_l 2, 2

log { -1 [u1u4- a}(u2+u3):| } .

(l-Y)Ui

Yupus
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where
(2.4b) P = (Y-l)ui1 [“4“1 - %(ug + ué)]

is the pressure, satisfies

dS _ _
Uy 3t C ulst + uZSx + u3Sy =0,

for all smooth wu(x,t).

Consequently
(2.5a) ugh(8), + u h(8)_ + ush(S)_ = u h(s) & = ¢
1 t 2 x 3 y 1 dt

for all differentiable functions h(S). Here * denotes derivative with
respect to S.

Multiplying the continuity equation in (2.1)

(2.5b) u, +u_+u

1t 1x 3y =0,

by -h(S) and subtracting (2.5a) we obain the entropy equation (1.4) for

(2.1).

(2.6a) [-uyR(8)] + [-uh()] + [~uzn(s)]y = 0

Here

(2.6b) UCw) = —uph(s),  Fw) = -un(s),  F(w) = -uzn(s).
T (v15V,5V35v,) 1o (1.12) becomes

2.7 RS —5—1 ( Ry (ﬁ)l -y —1),-u2,-u3,u1).
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12 .
(2.8a) v, = (Y;—) u h(s) -
' 4 4 =
%’q + C*/Y 2 f r 2
2 2 2/1
-q [-%q (1-R)+Rc -4, |2q (l-R)+Rc_] 3q"(1-R) - c (=~
- R(q? - cd)? 1 *_‘ 2._2 * * (Y t)
2 2 2 2
-4y [:%q (l—R)+Rc*:] q; (L=R) + c//y q;9,(1-R) -q;(1-R)
2
-qz[%q (1-R)+Rc,2;l 4,4,(1-R) q%(l-R) + Ci/Y -q,(1-R)
2 21
3" (1-R)=c, (- B) ~q; (1= R) -4, (1= R) 1-R

Here P 1is the pressure (2.4b), c2 = —%}-P/u
2 2 2 o .
and q° = q; + qz; R = h(S)/h(S).
We show now that the symmetric matrix D 1is positive definite if and only

if

(2.8b) R = h(S)/h(S) < % X

We do so by showing that the determinants of the major blocks of D are positive

if and only if (2.8b) holds.

2
(2.9a) My;-=Dyp = (%— )(&qz-ci) + qZ(jz_l q2+Ci)/Y > 0,
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(2.9b)
D D
v e ger| P11 P12
22 D D
21 D2
c2 2
* 2 2
== (l-RY)[(%q -c,) + (Y‘*‘l)CiQS +C§q§+ %(Y-l)q4 > 0,
»
2.9¢c
(2.9¢) D D D.. |
11 12 D13
M3y = det] D)y Dy, Dy,
D3 D3p D34
C4 -
* 2
- = |a-rnek +ci/v>+(1-R>q"/a] > 0,
Y -
8
Cx
(2.9d) M,, = det(d) = — (y-1)A-RY) > 0.
Y

We consider now h(S) of the form

g 1
—_— oty
(2.10a) n(s) = kY = k@)
S_
» - K a"‘Y. = o e . = 1
In this case h(S) —Ol""'Y e '; R h (S)/h(S) oy It follows from

(2.8) that va is positive definite if and only if

(2.10b) o > 0, K > 0.

We note that det(vu) = (0 if and only 1f o = 0.

Substituting (2.10a) with K = % for h(S) in (2.7) we get

T '—i—'l "'}‘ P
= _potY aty —_ - —u. -
(2.11) v' = ~P u:l (u4+ Y_l(OL 1), Uy, u3,ul).
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Denote:
(2.12a) w S -v,

= Y1 k(w2 g2
(2.12b) U 3 [:wlw4 %(w2+w3) .
then wu(v) is given by

y+o-2 1-0-y
-1 -1
(2.13a) U =p =W, Y U Y s
(2.13b) uz/ul = ql = -Wz/w4’
(2.13¢) u3/ul =q, = —w3/w4,
(2.13d) (-1 {uju, -3 +ud) [/u; = p = wlup
) 14 2793 1 4

We turn now to express the fluxes £ and £ in (2.1) in terms of

the dependent variable wv.

-3

X T 2 2 _o=Y
(2.14a) [£f7(v)] ow, (—w2w4,w4(w2-+u),w2w3w4,-w2(wlw4 y-1 u)) .

(2.146) ()T

pwz3('w3wi’“zwsw4’wa(Wg*'“)"W3(W1W4"%5% “)) ;

o(v) 1is given in (2.13a). We observe that the fluxes fx(v) and fy(v) are

homogeneous functions of v of degree

(2.15) degree = - &L
Y-1
We denote
= (1-q- . = &Y
(2.16) ky = A-a-v/w k==L
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The Jacobian fx = --fx is
v w
x —-— —-—
(2.17a) fv = -pu W,
i 3 2 2
—klwzw4 w4(klw2 u)

2 2 2

kwww2

2
1¥2Y3%, =W 3w, (kywy =)

2
-, [(k2 +1u kyu(w,+ )

2
+ klwlw 4] + WiW, (klwz-u)

-~

Similarly the Jacobian fz = -f‘}; is
Yy _ _ -1 -3,
(2.17b) fV = -pu W,
3 2
-k 1Y3%, k1w2w3w 4
2 2
k1¥a¥3¥y, waw, (1 = kW)

2. 2 2.
wy, (kw3 - 1) wou,, (1 = kywy)

—Waw, l:(k2 + 1y

e WoWa (kzu + klwlw4)
i 1"’1"’4]

W2W

2
klwzw 3V 4

2
w3w4(klw2 ~-u)

2
wow, (M = kyw3)

3 (kU +kywyw,)

2 2
W, (klw3 -1

2
wowy (= kywq)

2
~WaW, (klw3 - 3u)

2
k,H (w3 +u)

2
+ Wy, (klw3 -u)

~W,W, (k+1)u+ kyww 4]

2
kzu(w?_ + 1)

2
+ Wi, (klw2 -

WoWa (kzu + k1w1w4)

-V, [wl (2k2u + klwlw4)

-12
- kz(kz—l)w4 u]

—WqW, [:(k2 +1u

+ klwlw 4]
wowa (ko + kywiw,)

2
kM (w3 +1)

2
+ wi¥, (klw3 -

~Wj I:Wl (2k2u + klwlwl»)

-1 2
—kz(kz-l)w4 u :'

=




The homogeneity property (2.15) of fx(v)

(2.18) fjv

Thus for o =1 - 2y we have

<

~16-

and fy(v)
. v = - oty £7 (v)
’ v y-1 )

implies

- % =1 and (2.18) implies that

fzv = fx(v), fzv = fy(v). This property may be used in constructing upwind

differencing schemes (see [9] and [5]). We remark that o = 1-2y < 0 and

therefore vy is not positive definite; however the mapping u + v is

one-to-one.

We note that for o

1-2y < 0 we have kl= 0

results in a great simplification in (2.17)

(2.19a) £ = -ow

Yy o -
(2.190) £ = -pw;

Here k

SN

- (k2 +Dw

-3

~N

—WZ 0
3w2w4 w3w4
WaW, woW,

2
k2 (w2 + u)-wlw4 kzwzw

0 —wz
V¥, YoV
VoW 3waw,

2
kowowy  ky (Wit Wy-wyw

in (2.16) which

-(k2 + l)wzwa
K. (w2 + )=
2 Wy TH)=W W,

kywowy

-k 2%y [:2w1

- (k, - l)u/le

- (k2 + 1)w3w4

kywowg
K. (w2 + )=
2 (W3 T H=w W,
—kzw3 I:Zwl

-
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For o =y >0 we have k_=0 in (2.16); thus (2.17) becomes

2
[ k.w w2 k 2 k
1%2% Wy, (kywy = 1) 1¥2Y3%, Wy (it kgwyw,) ]
(2.20a) ) ) ) )
. R AL A W, (kgwy = 3u) sy (kgwy - ) wy (kywy = 1)
fv = P W, ) ) ,
kywywaW, “wa(kgwy ~ 1) -wy (kywy - 1) kywyw,wg
-w, (U +k,w,w,) w(sz—u) K, WaW. W -szw
2 11 1%, 1%2%3%, 1¥1%2
B 2 2 T
-k Y vr vr vr wr flr wx< o 11) -y [ y vv vv )
K1¥3¥, K1¥o¥3¥, WKWyt Wglut ke,
(2.20b) ) )
kywywaw, va(u-kgwy) Wy (kg wy - 1) kywywyvy
v -1 -2
£f7 = -pu "w ’
v 4 2 2 2 2
wa(k1w3-u) -wz(k1w3-u) —w3(k1w3-3u) wl(k1w3_ 1))
-w,(u+k,w,w,) k. w.w,wW w(sz—u) -szw
3 1¥1% 1¥1%2%3 1(k1vs 1¥1¥3

Here kl = 1/vy-2.

3. Viscosity Terms

In this section we consider the viscosity terms in the compressible

Navier-Stokes equations
x y - o¥ oY
(3.1) “t + [f (u)]x + [f (u)]y 3% Q (u,uxsuy) + ay Q (u’uxsuy)’

where u, fx(u) and fy(u) are the same as in section 2, and

T
(3.2 Q] - (0’A (91x* 9ay) *+ Mag b (2 + 1) o1ay (a7, * 95y

*+ gy (ag,+ dgy) * 2uqlqlx),




~18-

T
(3.2b) Q"1 = (o,u(q1y+q2x),x(q1x+ Qoy) ¥ 2Udpyandy (dpy +ay )

+ Ay (2, ta, ) + 2“‘lz‘lzy) ;

as before 9 = u2/u1 and 9y = u3/u1 are the velocity components in
the x and y directions, respectively.

Expressing 93 and q, as a function of v in (2.11) we get
q = —v2/v4, q, = —v3/v4,

and

- 2 . = -
(3.32)  ag, =T (v tvav ) ap = v V4V3x T V3V4x)

= w2/ . = —
(3.3b) qu =, ( V4v2y4-V2V4y)’ q2y \A ( vuv3y4-v3v4y).

Substituting qix’qiy’ i=1,2 in (3.2) by (3.3) we rewrite (3.2) as
(3.4a) Qx = Rxx(v)vx + ny(v)vy,
(3.4b) Q7 = Ryy(v)vy + R * (v,

where

) 0 0 0 7
2
; 0 -(A+2u)v4 0 ()\-I-Zu)vzv4
(3.5a) R=(W) =v,
4 2 »
0 0 “Hv, uv3v4
2 2
L0 ()H-Zu)vzv4 uv3v4 -(A4-2u)v2 - uv3_
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0 0 0 0
0 —uv2 0 Uv,V
yy -3 4 274
(3.5b) R (v) = v, 2 ,
0 0 -()\-!-Zu)v4 (A-!-Zu)v3v4
0wy, (A+2w S 2VE = v
i MV V3V, HIVy = WY,
o 0 0 0 1
0 0 -sz Av,. v
4 374
Xy _.-3
(3.6a) R™ (v) = A i ) ) >
A 0 Hv,v,
i 0 Hvav, szvh -(A+—u)v2v3 |
0 0 0 0 B
0 0 —uvz Uv,v
G.60)  RF() = v 4 34
2 .
0 —Xv4 0 AV,
L 0 )\v3v4 Wv,v, —(X+u)v3v4_

We observe that R* and RYY are symmetric nonnegative matrices (note that
v, < 0 by definitiom). RYY and R are not symmetric, except in the non-

physical case A=y; however R + RY* s symmetric, in agreement with [1].
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