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Abstract. Current developments in nuclear structure are discussed from a theoretical
perspective. First, the progress in theoretical modeling of nuclei is reviewed. This is
followed by the discussion of nuclear time scales, nuclear collective modes, and nuclear
deformations. Some perspectives on nuclear structure research far from stability are
given. Finally, interdisciplinary aspects of the nuclear many-body problem are outlined.

1 Introduction

The atomic nucleus is a fascinating many-body system bound by strong interac-
tion. The building blocks of a nucleus { protons and neutrons { are themselves
composite aggregations of quarks and gluons governed by quantum chromody-
namics (QCD) { the fundamental theory of strong interaction. Nuclei are ex-
ceedingly di�cult to describe; they contain too many nucleons to allow for an
exact treatment and far too few to disregard �nite-size e�ects. Figure 1 shows

Fig. 1. From the QCD vacuum to heavy nuclei: the intellectual connection between the
hadronic many-body problem (quark-gluon description of a nucleon) and the nucleonic
many-body problem (nucleus as a system of Z protons and N neutrons). From Ref. [1].
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the main challenges in our quest for understanding the nucleus. Studies at rel-
ativistic energies probe the domain of QCD; they reveal the nature of quark
and gluon dynamics. Studies at lower energies probe the structure and dynam-
ics of nuclei. The bridges illustrate major physics questions pertaining to the
nucleus: the nature of hadrons, the understanding of the bare nucleon-nucleon
interaction in terms of the quark-gluon dynamics, and the understanding of the
e�ective interactions in heavy nuclei in terms of the bare force.

In this talk, I intend to review { rather brie
y { a number of issues relevant to
the nuclear many-body problem. Firstly, Sec. 3 covers the enormous progress that
has happened in theoretical nuclear structure during recent years. (For a general
overview of nuclear science, the reader is encouraged to study the recent report
[2].) Some spectacular examples of the nuclear collective motion are presented in
Sec. 4. The concept of nuclear deformation, i.e., anisotropic nuclear mean �eld,
is one of the most useful and important building blocks of the uni�ed model. In
Sec. 5, several di�erent views on the microscopic origin of nuclear deformation
are presented. The common denominator is the interplay between the symmetry-
breaking particle-vibration interaction and the symmetry-restoring pairing force.

One of the frontiers of today's nuclear science is the \journey to the limits"
of atomic charge and nuclear mass, of neutron-to-proton ratio (see Sec. 7). The
tour to the limits is not only a quest for new, exciting phenomena, but the new
data are expected, as well, to bring qualitatively new information about the
fundamental properties of the nucleonic many-body system, the nature of the
nuclear interaction, and nucleonic correlations at various energy-distance scales.

Section 8 discusses interdisciplinary aspects of the nuclear many-body prob-
lem, and Sec. 9 contains conclusions of these lectures.

2 The Territory

The nuclear landscape, the territory of nuclear structure, is shown in the top
portion of Fig. 2. Moving away from the valley stable nuclei by adding either
protons or neutrons, one enters nuclear \terra incognita" which is bordered by
the particle drip lines where the nuclear binding ends. The nuclei beyond the
drip lines are unbound to nucleon emission. Examples of such systems are proton
emitters { narrow resonances beyond the proton drip line which exist due to
the con�ning e�ect of the Coulomb barrier [3]. An exciting question is whether
there can possibly exist islands of stability beyond the neutron drip line. One
such island is, of course, a neutron star which exists due to gravitation. So far,
calculations for light neutron drops have not produced permanent binding [4,5].
However, it has been suggested recently [6] that areas of stability can appear in
heavier nuclei as a result of shape coexistence/isomerism.

The vast territory of nucleonic matter is shown in Figure 3 which illustrates
various domains of nuclear matter. The range of neutron excess, (N � Z)=A, in
�nite nuclei is from about {0.2 (proton drip line) to 0.5 (neutron drip line). The
new-generation radioactive beam facilities will provide a unique capability for
accessing the very asymmetric nuclear matter and for compressing neutron-rich
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Fig. 2. Top: Nuclear landscape. Bottom: Various theoretical approaches to the nuclear
many-body problem.

matter approaching density regimes important for supernova and neutron star
physics.

3 The Nuclear Many-Body Problem: Towards the Uni�ed
Description of the Nucleus

The common theme for the �eld of nuclear structure is that of the nucleon-
nucleon (NN ) interaction which clusters nucleons together into one composite
system. Figures 1 and 2 illustrate, schematically, our main strategy in the quest
for understanding the nucleus in the context of the hadronic and nucleonic many-
body problem.

The free NN force can be viewed as a residual interaction of the under-
lying quark-gluon dynamics of QCD, similar to the intermolecular forces that
stem from QED. The low-energy interaction between nucleons has a compli-
cated spin-isospin dependence dictated by the hadron's substructure. One of
the main challenges of nuclear science, indicated by the �rst bridge in Fig. 1,
is the derivation of a nucleon-nucleon (NN ) interaction from the underlying
quark-gluon dynamics of QCD. Experimentally, the NN force can be studied by
means of NN scattering experiments. Examples of phenomenological parame-
terizations based on the NN scattering data are the Bonn [8,9], Nijmegen, Reid
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[10], Paris [11], and Argonne [12] potentials. While the long-range part of these
free (but still e�ective!) NN forces is well described by one-pion exchange, their
short-range behavior is purely phenomenological. Here the quark-gluon degrees
of freedom must be considered explicitly. (It is believed that the short-range
part can be well accounted for by a simple one-gluon exchange potential and the
Pauli principle [13,14].)

How to tackle the problem of A strongly interacting nucleons? The general
theoretical strategy is illustrated in Fig. 4. The starting point is, of course, the
exact solution of the A-body Schr�odinger equation (or relativistic �eld equations)
with the bare NN force. Today, such ab initio calculations can be performed for
very light nuclei, but still it is a very di�cult task. Firstly, the corresponding
dimensions are huge. Secondly, the bare NN force is very complicated (e.g., it
contains tensor terms and, often, non-local terms) and the form of higher-order
interactions, such as a three-body force (NNN ), is not well known.

The state of the art is marked by the ab initio Green's Function Monte Carlo
(GFMC) calculations [15] which have recently reached A=10. Figure 5 shows the
results of GFMC calculations by the Argonne-Los Alamos-Urbana collaboration
of the excitation spectrum of A=4-9 nuclei using the GFMC method. The vari-
ational Monte Carlo calculations with a free NN force have been carried out for
relatively heavy systems such as 16O [17]. Another ab initio method, which is
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currently undergoing a renaissance is the coupled-cluster [or \exp(S)"] method
[18{20] (see Refs. [21{23] for recent applications). In the parallel development
[24,25], ab initio calculations describing the scattering of few-body systems have
brought new insights into the nature of the three-nucleon force.

While the very light nuclei can nowadays be described as A-body systems
bound by a free NN force augmented by a NNN force, the conceptual frame-
work of larger nuclei is still that of the independent particle model. Here, the
basic assumption is that the nucleons are moving almost independently in a mean
potential obtained by averaging out the interactions between a single nucleon
and all remaining A{1 protons and neutrons. This picture is only a �rst approx-
imation; it is modi�ed by the presence of the residual interaction between the
nucleons. The \e�ective" NN interaction in the heavy nucleus, used to determine
the mean potential, di�ers considerably from the free NN force. In principle, it
should be obtained by means of the complicated Br�uckner renormalization pro-
cedure which corrects the free NN interaction for the e�ects due to the nuclear
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medium [26{28]. (In practice, however, e�ective forces are often determined by
a �t to experimental data, or by extracting interaction matrix elements from
the data.) This challenging task is represented by the second bridge in Fig. 1.
Many features of the e�ective interaction such as short range; strong dependence
on spins, isospins, and relative momenta of interacting nucleons; and the reduc-
tion of mass in the nuclear interior have been extracted from experimental data.
Having determined the e�ective force, the two most commonly used strategies,
represented by a forking in Fig. 4, are (i) that of the nuclear shell model and (ii)
the mean-�eld strategy.

In the nuclear shell model, the e�ective two-body Hamiltonian is diagonal-
ized in the limited con�guration space. Here, the practical limitation is the size
of the Hilbert space considered. Often, the realistic shell-model Hamiltonian can
be further approximated by replacing it with a Hamiltonian which can be diag-
onalized exactly using group theoretical techniques [29{33]. The wave function
of the nuclear shell model is an eigenstate of fundamental symmetry operators;
it has good parity, angular momentum, and isospin. From this point of view, it
is a laboratory system wave function.

The recently developed no-core shell model, employing the e�ective interac-
tion calculated (in the large con�guration space) from the NN force, has recently
reached 12C. Figure 6 shows the result of the no-core shell-model calculations
[34] for positive and negative-parity states of 12C. In a parallel development,
Bloch-Horowitz equations have been solved for very light systems [35], and an
e�ort has been under way [36] to marry the numerical methods of the shell model
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with the tools of e�ective theory [37] to generate e�ective interactions and ef-
fective operators. (In this approach the hard-core contribution is summed to all
orders analytically.)

There has been substantial progress in the area of the traditional shell model
[38]. In 1971, Whitehead and Watt [39] succeeded in performing shell-model cal-
culations for 24Mg in the full sd shell (with the dimension of the model space
approaching 30,000). Today, this can be done in a few seconds on a modern
workstation. Traditional shell-model techniques make it possible to approach
the collective nuclei from the pf shell; the calculations involve model spaces
with dimensions of several millions. However, progress in this area is going to be
very slow due to exploding dimensions when increasing the number of valence
nucleons [40,41] (see Fig. 7). In spite of this, the conventional shell-model calcu-
lations employing realistic NN interactions [42,43] are becoming more and more
e�cient in handling large con�guration spaces. The state-of-the-art shell-model
studies of Gamow-Teller distributions of A=45-65 nuclei [44], electron capture
and beta-decay rates in the pf nuclei [45], spectroscopic studies of A=50-52 iso-
baric chains [46], and of quadrupole and magnetic moments of the Fe isotopes
[47] set the new standard in this area, although future progress is strongly limited
by present-day computer resources.

One actively pursued alternative is to truncate the con�guration space by
applying the projected self-consistent quasiparticle basis [48,49]. Another fam-
ily of novel shell-model techniques is based on the Monte Carlo method [50].
Applications of the Monte Carlo shell model have been remarkably successful
in describing many structural properties of medium-mass and heavy nuclei [51{
54] where the dimensions of the model space reach 1020. The approach adopted
by the Tokyo group [53,55] is a mixture of the projected shell model and the
Monte Carlo shell model. It was applied to studies of deformed structures in the
doubly-magic nucleus 56Ni.
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That the conventional shell model fails at short distances, due to the pres-
ence of short-range correlations, has been known for quite some time. Recently,
16O(e,e0pp)14C two-proton knock-out data [56,57] o�ered an opportunity to
study one- and two-body currents and to discriminate between long-range and
short-range correlations [58]. Such studies are extremely important for under-
standing in-medium e�ects in nuclear matter. Another complementary piece of
data, coming from the decay studies, that is relevant to the question of two-
nucleon correlations, was the recent observation [59] of the simultaneous emis-
sion of two protons from a resonance of 18Ne. This new mode of nuclear decay
was predicted in the 1960s, but until recently experimental e�orts have found
sequential emission of single protons though an intermediate state. A key remain-
ing question is whether the two protons, as they leave the nucleus, are closely
coupled together to form 2He, or are emitted almost independently in a direct
three-body breakup (\democratic" decay). Further studies of this phenomenon
will shed new light on the nature of nucleonic superconductivity. (See Ref. [60]
for recent theoretical developments.)

Despite the exciting progress in shell-model approaches, their applications
to very heavy systems are still beyond our reach. Besides, for nuclei with many
valence particles, the concept of valence nucleons is less useful, and the valence
and inner-shell nucleons have to be treated on an equal footing. To carry out the
microscopic, consistent in-medium renormalization for heavy nuclei is a di�cult
task. Consequently, theories and methods have been developed which use e�ec-
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tive interactions or e�ective Lagrangians. Among them are the self-consistent
methods based on the density-dependent e�ective interactions, which by now
have achieved a mature state of development, as well as those based on rela-
tivistic meson-nucleon Lagrangians which have reached the state where detailed
studies of results and readjustment of basic parameters are now possible.

In the strategy of the mean-�eld theory, the main assumption is that the
many-body wave function can be { to zero order { approximated by that of inde-
pendently moving quasiparticles. Together with the variational principle applied
to the e�ective density-dependent Hamiltonian, this leads to the Hartree-Fock
(HF) or Hartree-Fock-Bogolyubov (HFB) equations [28]. In spite of the very
simple form, the independent-quasiparticle wave function is a highly correlated
state. In the mean-�eld theory, self-consistency is automatically guaranteed by
the equations of motion. That is, the same wave function which generates the
mean �eld is an eigenstate of the mean-�eld Hamiltonian. Since the mean-�eld
Hamiltonian often breaks symmetries present in the laboratory system, the HFB
state is an intrinsic wave function, which { in general { is not an eigenstate of
angular momentum, parity, and particle number operators. (The microscopic
mechanism responsible for the symmetry-breaking is discussed below in Sec. 5.)
By restoring the intrinsically broken symmetries, one takes into account corre-
lations going beyond the mean-�eld description. This can be done by various
theoretical techniques such as the Random Phase Approximation (RPA), the
Generator Coordinate Method (GCM), or various projection methods.

The mean-�eld approaches have achieved a level of sophistication and preci-
sion which allows analyses of experimental data for a wide range of properties
and for arbitrarily heavy nuclei [61{64]. For instance, a self-consistent mass table
has been recently developed [65] based on the Skyrme energy functional. The
resulting rms error on binding energies of 1700 nuclei is around 700 keV, i.e.,
is comparable with the agreement obtained in the microscopic-macroscopic ap-
proaches. Figure 8 displays two-neutron separation energies for the Sn isotopes
calculated in several state-of-the-art self-consistent mean-�eld models based on
di�erent e�ective interactions and, in the inset, those obtained with phenomeno-
logical mass formulae. All these models nicely describe the existing experimental
data; some interesting deviations are seen when approaching the proton drip line.
This �gure nicely illustrates di�culties with making theoretical extrapolations
into neutron-rich territory. Clearly, the di�erences between forces and mass for-
mulae are greater in the region of \terra incognita" than in the region where
masses are known. As seen in Fig. 8, the position of the neutron drip line for the
Sn isotopes depends on the model used. Therefore, the uncertainty due to the
largely unknown isospin dependence of the e�ective force gives an appreciable
theoretical \error bar" for the position of the drip line. Unfortunately, the re-
sults presented in Fig. 8 do not tell us much about which of the forces discussed
should be preferred since one is dealing with dramatic extrapolations far beyond
the region known experimentally. However, a detailed analysis of the force de-
pendence of results may give us valuable information on the relative importance
of various force parameters.
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Among other recent developments in theoretical nuclear structure, particu-
larly important is the elegant explanation of the pseudo-spin symmetry of the
nuclear single-particle spectra proposed thirty years ago [68,69]. Surprisingly, as
demonstrated by Ginocchio [70], the roots of the pseudo-spin can be traced back
to the symmetry of the Dirac equation (see also Refs. [71,72]). Consequently,
the relativistic approach explains, at the same time, the depth of the average
potential (around 50 MeV), the magnitude of the spin-orbit term, and the small
pseudo-spin-orbit splitting. In this context, it should be noted that the tradi-
tional picture of nuclear shells and magic gaps proposed �fty years ago [73,74]
should not be taken for granted. As discussed in Sec. 7 below, modi�cations of
shell structure are expected in the limit of a large N=Z ratio.

We have learned a great deal about modes of nuclear excitations using phe-
nomenological models, often based on ingenious intuition and symmetry consid-
erations. These models, approaches, and approximations have been extremely
successful in interpreting nuclear states and classifying nuclear states and decays.
Based on this experience, and thanks to developments in theoretical modeling
and computer technology, we are now on the edge of the microscopic description.
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By taking advantage of modern many-body algorithms, one can now shorten
the cycle theory$experiment$theory. Most many-body methods of theoretical
nuclear structure were introduced a long time ago (in the �fties and sixties).
However, thanks to incredible progress in hardware and numerical techniques,
it is only now that we can use these methods in their full glory.

Figure 2, bottom, includes a schematic illustration of the hierarchy of the-
oretical models spanning the chart of the nuclides. By exploring connections
between these models, nuclear theory aims to develop a uni�ed description of
the nucleus. It probably would be very naive to think of the behavior of a heavy
nucleus directly in terms of the underlying quark-gluon dynamics, but undoubt-
edly the understanding of the bridges in Fig. 1 will make this goal qualitatively
possible.

4 Nuclear Modes and Their Time Scales

Considering that the atomic nucleus is, in a good approximation, a cluster of
strongly interacting nucleons (or pairs of nucleons) wandering solo in all di-
rections, the very existence of nuclear collective motions such as rotations or
vibrations, with all particles moving in unison, is rather astonishing.

When discussing nuclear collective motion, such as rotations and vibrations,
one is often making analogies to molecules and their collective modes. As a mat-
ter of fact, many elements of the uni�ed model have been directly transferred to
nuclear physics from molecular physics [75]. But there is a fundamental di�er-
ence between the nuclear and molecular world: in molecules, the fast electronic
motion is strongly coupled to the equilibrium position of slowly moving ions.

This point is nicely illustrated in Fig. 9, which shows the measured spectrum
of a diatomicmolecule N2. Each electronic excitation represents a bandhead upon
which vibrational and rotational states are built. Vibrational states are indicated
by a vibrational quantum number � (�=0 representing the zero-phonon state,
�=1 is a one-phonon state, and so on). Rotational levels are not plotted { there
are far too many to be displayed. The time scale of molecular modes is governed
by the hierarchy of excitation energies. The electronic excitations are of the
order of 105 cm�1 (which in \nuclear" units corresponds to an eV), vibrational
frequencies are �103 cm�1, and rotational energies are �10�1 cm�1. This means
that the single-particle electronic motion is from two to six orders of magnitude
faster than molecular collective modes. Consequently, the adiabatic assumption,
based on the separation of all molecular degrees of freedom into fast and slow
ones, is justi�ed due to di�erent time scales.

Unfortunately, the total A-body wave function of the nucleus cannot, in gen-
eral, be expressed in terms of slow and fast components. This is because (i) the
collective nuclear coordinates are auxiliary variables which depend, in a complex
way, on fast nucleonic degrees of freedom, and (ii) the nuclear residual interac-
tions are not small. How good is the time separation between single-particle
and collective nuclear motion? The typical single-particle period (i.e., the aver-
age time it takes a neutron or a proton to go across the nucleus), Ts:p:=4R=vF
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[where R is the nuclear radius and vF is the Fermi velocity (�0.29 c)], is approx-
imately 3�10�22 sec. (The unit 10�22 sec is sometimes referred to as babysecond.
The single-particle time scale is of the order of several babysec.) The typical pe-
riod of nuclear rotation (Trot�10�21 sec) is only�30 times greater than Ts:p:, and
for nuclear vibrations the period of oscillations is only slightly greater than the
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single-particle period. It is truly amazing that these relatively small di�erences
in time scales seem to be su�cient to create rotating or vibrating potentials,
common for all nucleons!

How \good" are the actual nuclear rotations and vibrations? Let us con-
sider some representative experimental examples. Probably the most spectacular
\molecular" rotational-vibrational nuclear spectrum is that of 240Pu in its su-
perdeformed minimum [77] (Fig. 10). This beautiful and rich structure, observed
in a 238U(�,2n) reaction, shows one- and two-phonon deformed quadrupole and
octupole vibrational states, as well as the rotational bands built upon them. Its
spectrum shows some similarity with the molecular pattern; several low-lying
excitations can be associated with one-phonon states, and some of its levels are
believed to have a two-phonon nature. At �rst sight, the collective structures
seen in 240Pu are fairly regular. However, after closer inspection, many deviations
from the perfect rotational and vibrational pattern can be seen. For example,
the moments of inertia of rotational bands are by no means constant but show
local variations as a function of angular momentum. Also, the positions of vibra-
tional bandheads di�er from the harmonic limit. Such deviations indicate that
the nuclear motion is not completely collective, i.e., that the collective modes
result from coherent superpositions of single-particle nucleonic excitations.
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Fig. 10. Excitation spectrum of 240Pu in the superdeformed minimum. Low-lying
states have characteristic rotational-vibrational structure. (From Ref. [77].)

Another extreme case is shown in Fig. 11, which displays the excitation spec-
trum of 148Gd. This spectrum looks very irregular; it is characteristic of many-
particle many-hole excitations in an almost spherical nucleus. There are many
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Noncollective excitationsNoncollective excitations

148148GdGd

Fig. 11. Excitation spectrum of 148Gd. It is a beautiful example of noncollecive nucle-
onic motion (from Ref. [78]).

states of di�erent angular momentum and parity connected via relatively weak
electromagnetic transitions. In spite of the fact that the excitation pattern looks
\chaotic", most of the noncollective states of 148Gd can be beautifully described
in terms of well-de�ned quantum numbers of the nuclear shell model [79]. The
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collective spectrum of 240Pu discussed above was not perfectly collective. Like-
wise, in the \mess" of noncollective levels in 148Gd one can �nd some elements
of collectivity. For instance, the energies of the four lowest states 0+, 2+, 4+,
6+, when plotted as functions of angular momentum, exhibit a characteristic
parabolic pattern. As was realized around forty years ago [80], such a sequence
of states indicates the presence of pairing { a collective phenomenon.

The next example illustrates the coexistence e�ect. It is a particular case
of the large amplitude collective motion where several nuclear con�gurations,
characterized by di�erent intrinsic properties, compete [83]. In the spectrum of
152Dy, shown in Fig. 12, one can recognize the noncollective structure resembling
that in 148Gd, a collective rotational band (interpreted in terms of a deformed
triaxial con�guration), and super-collective superdeformed bands corresponding
to very large shape-elongations which are structurally isolated from the rest of
the spectrum.

The last experimental example shows yet another case of nuclear collectivity
{ high-frequency nuclear vibrations. Figure 13 displays the cross section for the
scattering of the relativistic 208Pb on a xenon nucleus. The �rst maximum in the
cross section, which appears at �14MeV, can be associated with the one-phonon
giant dipole resonance (i.e., very fast vibration of protons against neutrons).
It has been suggested [84] that the local maximum at an energy of �28MeV
is a two-phonon giant dipole vibration. In the data shown in Fig. 13 one can
also �nd isoscalar and isovector giant quadrupole resonances. The giant nuclear
excitations are always strongly fragmented; their widths are usually more than 5
MeV. It is worth noting that the time scale corresponding to giant two-phonon
vibrations is shorter than 1 babysec! The unusual harmonicity of this mode is
not understood well.

One of the outstanding challenges in nuclear structure is to understand the
mechanism governing the nature of nuclear collective excitations. By studying
nuclear rotations and vibrations, one is probing the details of the nuclear force
in a strongly interacting medium.

5 Nuclear Deformations

The phenomenon of nuclear deformation has a long and interesting history. As
early as 1924 it was suggested by Pauli [85] that the hyper�ne structure of atomic
and molecular energy levels resulted from the electromagnetic interaction with
nonspherical atomic nuclei. (The experimental evidence was given ten years later
by Sch�uler and Schmidt [86].) The fact that nuclei need not be spherical was then
emphasized by N. Bohr in his classic paper on the nuclear liquid-drop model [87]
in which he introduced the concept of nuclear shape vibrations. If a quantum-
mechanical system is deformed, its spatial density is anisotropic. For a deformed
system it is possible to de�ne its orientation as a whole and this naturally leads
to the presence of collective rotational modes. This possibility was realized as
early as 1937 by N. Bohr and Kalckar [88] who had estimated for the �rst time
the energies of lowest rotational excitations and introduced the notion of the
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Fig. 12. Excitation spectrum of 152Dy. It is a spectacular example of the coexistence
of collective and noncollecive nucleonic modes. (Experimental data were taken from
Refs. [81,82].)

nuclear moment of inertia (see also work by Teller and Wheeler [89]). In 1939,
Meitner and Frisch [90] and N. Bohr and Wheeler [91] stressed the role of shape
degrees of freedom during the �ssion process.



Nuclear Collective Motion 17

High-frequency nuclear vibrationsHigh-frequency nuclear vibrations
(giant resonances)(giant resonances)

Energy (MeV)

C
ro

ss
 s

ec
ti

on
 (

m
b/

M
eV

)

2-phonon
state

1-phonon
state

pn

E1

E1
E1

E1
E1

E1

Giant
Dipole
Resonance

Fig. 13. One-phonon and two-phonon giant resonances in 208Pb. (Experimental data
were taken from Ref. [84].)

In 1950, Rainwater [92] observed that the experimentally measured large
quadrupole moments of nuclei could be explained in terms of the deformed shell

model ; i.e., the extension of the spherical shell model to the case of the deformed
average potential. In this picture, the deformed �eld was a direct consequence
of single-particle motion in anisotropic orbits. In a following paper [93], A. Bohr
formulated the basis of the particle-rotor model, introduced the concept of the
intrinsic (body-�xed) nuclear system de�ned by means of shape deformations,
and regarded nuclear shape and orientation as dynamical variables (in this con-
nection, see also Refs. [94{98]).

The basic microscopic mechanism leading to the existence of nuclear defor-
mations was proposed by A. Bohr in his paper on \The Coupling of Nuclear
Surface Oscillations to the Motion of Individual Nucleons" [99]. As a matter of
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fact, this title is probably the most precise (and shortest) answer to the question:
Why are nuclei deformed? The interaction between the single-particle motion of
valence nucleons and the collective excitations (multipole vibrations) of the core
was represented by Bohr by the particle-vibration coupling Hamiltonian,

HPV = �
X
��

������
X
i

f(ri)Y��(
i); (1)

where ��� is the amplitude of the nuclear deformation of the core, f(ri)Y��(
i)
is the multipole moment of the i-th valence nucleon, and ��� stands for the
particle-vibration coupling strength. The coupling (1) is a central element in the
analysis of nuclear collective modes and nuclear deformations.

It was forty years ago when the theory of the coupling between nuclear single-
particle and collective degrees of freedom was presented by A. Bohr and Mot-
telson [100] and Hill and Wheeler [101]. These two works form the intellectual
and conceptual basis of the nuclear uni�ed model that turned out to be one of
the most powerful tools of nuclear structure. Since the main objective of this
section is to discuss the microscopic aspects of nuclear deformation rather than
to talk about the past, I should stop these brief historical remarks here. But be-
fore doing so, let me mention that already in 1935, in London, Jahn and Teller
demonstrated that the electronic degeneracy in molecules could destroy the sym-
metry on which it was based [102]. As discussed below (see also Refs. [103,104]),
a similar mechanism is responsible for the presence of deformed nuclear shapes.

5.1 Nuclear Jahn-Teller E�ect

The Jahn-Teller e�ect, or the phenomenon of spontaneous symmetry-breaking,
�rst proposed for molecules, turned out to appear in many �elds of physics.
Deformation is a common phenomenon that appears in mesoscopic systems with
many degrees of freedom (atomic nuclei, atomic clusters). It also appears in �eld
theory (Higgs mechanism), in physics of superconductors (Meissner e�ect), in
condensed matter physics (numerous phenomena related to spin resonance and
relaxation), and other �elds of physics. Since the microscopic origin of the JT
e�ect is not well known in the nuclear structure community, this section contains
a slightly higher level of detail as compared to other sections.

The adiabatic approximation by Born and Oppenheimer [105] is the natural
starting point in the discussion of spontaneous symmetry-breaking. It is based
on the assumption that system coordinates can be separated into slow (collec-
tive, relevant) coordinates, fQg=fQjg, and fast (noncollective, irrelevant) co-
ordinates, fxg=fxig. The separation obviously depends on the actual physical
problem.

The Hamiltonian for the whole system can be written as

Ĥ = TQ + Tx + V (Q;x); (2)

where TQ and Tx are kinetic energies associated with slow and fast coordinates,
respectively. At this point the slow and fast coordinates are treated on the same
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footing. The equations of motion for the Hamiltonian (2) can be written in a
canonical form and the motion of the system can be described in the full phase
space of collective and non-collective coordinates and associated momenta.

The stationary Schr�odinger equation with Hamiltonian (2) is solved in two
steps. First, at a given point in the collective phase space one solves the eigen-
problem for the non-collective Hamiltonian h=Tx+V (Q;x):

[Tx + V (Q;x)]	n(x;Q) = En(Q)	n(x;Q); (3)

where 	n(x;Q) is the fast (single-particle) wave function which contains the slow
coordinates fQgs parametrically, and En(Q)s are the single-particle energies at
the point fQg. Consequently, the En(Q)s are the static potential energy surfaces
in the collective space.

In the second step, the total wave function of the system is written as a
product

	 =
X
n

	n(x;Q)�n(Q): (4)

The collective wave functions �n(Q) arise from the e�ective potential appro-
priate to each single-particle state. By combining Eqs. (2-4), one obtains the
coupled-channel Schr�odinger equation for �n(Q):

X
m

[�mnTQ + Vmn(Q)]�m(Q) = E�n(Q): (5)

The e�ective collective potential Vmn(Q) takes into account the collective re-
sponse of the single-particle energy on collective coordinates fQg. It contains the
coupling term between di�erent single-particle states n and m, de�ned through

X
m

hnjTQ fjmi�m(Q)g : (6)

If the coupling term is weak, the eigenfunctions of the total system are just
products of collective and single-particle wave functions.

In molecular physics, the electronic states (described by means of fast coordi-
nates) are strongly coupled to the equilibrium position of the ions (described by
means of slow coordinates). The adiabatic assumption is justi�ed due to di�erent
time scales of nuclear and electronic motions (see Fig. 9 and related discussion).
In nuclear physics, the fQgs are �elds characterizing various collective modes and
fxgs are remaining coordinates. This separation is by no means simple; the choice
of proper nuclear collective coordinates is a long-standing problem [28,106]. In-
deed, as discussed early in Ref. [93]: \In contrast with the molecular case, there
are here no heavy particles to provide the necessary rigidity of the structure.
However, nuclear matter appears to have some of the properties of coherent
matter which makes it capable of types of motion for which the e�ective mass is
large as compared with the mass of a single nucleon." The variety and richness
of nuclear collective modes, appearing even in very light nuclei, suggest that the
adiabatic approximation is, very often, a powerful concept.
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5.2 Level Crossing

In many cases the o�-diagonal matrix element in Eq. (6) does not vanish and
non-collective modes are strongly coupled through the collective �eld. An ex-
treme coupling occurs when there are two or more non-collective states which
are degenerate (or almost degenerate) at some point fQg=fQcg, i.e.,

Ek(Qc) � El(Qc) (k 6= l): (7)

The matrix of the collective momentum @=@Q, a Berry vector

(A)lk = ihlj
@

@Q
jki; (8)

is the single most important quantity to determine the validity of the adiabatic
approximation. For small collective velocities and A slowly changing in time,
the motion of the system is adiabatic and can be well described by means of the
perturbation theory. Sometimes, o�-diagonal matrix elements of (A)lk disappear
(e.g., for symmetry reasons), and Eq. (6) contains only diagonal matrix elements
(A)ll which can be eliminated by means of a simple gauge transformation.

Q1

Q2

n

m

  

r
r

B
Q

Q
= 1

2 3

Fig. 14. Conical intersection between two potential energy surfaces m and n in a
collective fQg-space. The crossing point contains a generalized monopole potential
that tries to repel the system from the point of degeneracy. (Based on Ref. [107].)

A wealth of very interesting physics appears at the point of degeneracy,
fQg=fQcg. Unlike in the static situation, it is now impossible to eliminate (8)
through the gauge transformation. In particular, the Berry phase on a closed
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path in fQg-space does not vanish if the path encloses the point of degeneracy.
Geometrically, the crossing point can be viewed as a diabolical point containing a
generalized vector potential [107{109] singular at Qc, see Fig. 14. Consequently,
during its collective motion the system will always try to go as far as possible
from the point of degeneracy, analogously to the motion of a charged particle
in the magnetic �eld of a monopole [108,110]. In the vicinity of Qc, the actual
eigenstates of Ĥ are mixtures of diabatic states. Consequently, around the cross-
ing point (i) the original (fast) quantum numbers are gone and the description in
terms of intrinsic Hamiltonian breaks down, (ii) the motion of the system cannot
be separated into the collective and non-collective parts, and (iii) the notion of
the collective adiabatic potential loses its meaning [111].

5.3 Vibronic Coupling

Let us assume that collective normal modes (e.g., nuclear vibrational modes)
transform according to the irreducible representations T (�) of the symmetry
group T . Therefore, they can be written as fQ��g, where � labels the com-
ponent of the representation �. The single-particle states belong to a certain
group representation T (J) of dimension [J ], i.e., jn;xi = jJM;xi (M labels the
component of the representation J). In order to analyze the particle-vibration
coupling, it is convenient to expand the vibronic potential Vmn de�ned in Eq. (5)
with respect to collective coordinates around the point of degeneracy, fQcg=f0g:

VJM;JM 0 (Q) = VJM;JM 0 (0) +
X
��

Q��

�
@VJM;JM 0

@Q��

�
(0)

+ � � � (9)

Then by the Hellmann-Feynman theorem and the Wigner-Eckart theorem, the
linear vibronic coupling term (often referred to as the JT matrix element) can
be written as

�
HJT

�
MM 0

= [J ]�
1

2

X
��

Q��hJk

�
@H

@Q�

�
(0)

kJihJM 0��jJM i; (10)

where hJk:::kJi is the reduced matrix element, and hJM 0��jJM i is the corre-
sponding Clebsch-Gordan coe�cient for representations � and J .

It is seen immediately from Eq. (10) that the JT matrix element is zero if the
representation T (�) is not contained in the product T (J) 
 T (J). This would
mean that in such a situation the collective mode �� does not couple degenerate
single-particle states. The diagonal constant of the linear coupling has the sense
of the force with which the single-particle part of the system in state jJM;xi
a�ects the collective part in the direction of the collective coordinate Q�.

The vibronic coupling between single-particle nucleonic motion and collective
modes can be estimated by means of a weak coupling model [99,112]. Here the
collective subspace refers to the vibrational modes of the core, while the fast
subspace is associated with the single-particle coordinates of valence particles.
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The particle-core interaction, which can be directly derived from the multipole-
multipole force, is given by Eq. (1), i.e.,

V (Q;x) = �
X
��

���Q��q
val
�� : (11)

The symmetry group of interest is the group of rotations characterized by rep-
resentations (J;M ). Consequently, the JT matrix element becomes

�
HJT

�
M 0M 00

= �(2J + 1)�
1

2

X
��

���Q��hJkq
val
� kJihJM 00��jJM 0i: (12)

It is seen from Eq. (12) that the high-j states contribute the most to the JT
matrix element. Indeed, for those states the value of hJkqval� kJi is largest.

A \Q � q" coupling (11), where Q represents the collective (bosonic) �eld
and q describes the single-particle (fermionic) subsystem, is well known in many
�elds of physics (see, e.g., Ref. [113]). Examples of (Q, q) are: (photons, charged
particles), (mesons, nuclei), (phonons, electrons), and (phonons, nuclei). In all
of these cases, the potential energy V (Q;x) in (2) can be approximated by

V (Q;x) = V (Q) + �Q � q(x) + h(x): (13)

Consequently, the physics of the particle-vibration (fermion-boson) coupling is
rather similar for all the systems mentioned above.

5.4 Static Nuclear Deformations

Let us illustrate the nuclear JT e�ect using simple arguments based on the Ran-
dom Phase Approximation. A simple separable spherical nuclear Hamiltonian
representing vibrations associated with the operator Q̂ can be written as:

H =
X
i

eic
+
i ci �

1

2
� Q̂+ � Q̂: (14)

This Hamiltonian contains two basic ingredients of nuclear shape-collectivity,
namely (i) the single-particle term representing the individual motion of nucleons
around the Fermi surface, and (ii) the multipole vibrational �eldQ that generates
the collective motion.

Within the formalism of RPA [28], the excitations of the system, !RPA, are
solutions of the so-called dispersion equation:

R(!RPA) =
X
ph

2jhphjQj0ij2�ph
�2ph � !2RPA

=
1

�
; (15)

where R(!RPA) is the dispersion function and �ph stands for the energy of a
particle-hole excitation, �ph = ep � eh. The lowest root of Eq. (15) usually rep-
resents the low-frequency collective vibrational state.
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Fig. 15. Schematic diagram illustrating the mechanism of static nuclear deformation
in the the mean-�eld picture. See text for details.

The total HF energy is shown as a function of average self-consistent defor-
mation (collective coordinate) q=�hQ̂iHF in the top portion of Fig. 15. Let us
discuss some properties of the RPA solutions corresponding to di�erent values of
coupling constant �. These three cases are represented in Fig. 15, top portion. If
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the coupling constant � is small (weak coupling or vibrational limit), the lowest-
energy solution is depressed with respect to the lowest non-collective excitation,
and the wave function of the collective state becomes a coherent superposition
of many particle-hole con�gurations. In this situation, characteristic of harmonic
vibrations, the potential energy curve is quadratic around the equilibrium point,
q=0, and the sti�ness

C = (d2E=dq2)q=0 (16)

is greater than zero. In this case, !RPA represents the energy of the vibrational
one-phonon excitation.

If the value of � is increased, the energy surface softens, the low-energy vi-
bration becomes more collective, and the vibrational frequency decreases. At the
critical point (transition from spherical to deformed) when � becomes equal to
�crit=1/R(0), the lowest RPA solution appears at zero energy, i.e., the collective
state becomes degenerate with the ground state. (This is precisely the famous
Goldstone boson!) At this point of a boson condensation, the sti�ness C van-
ishes and the harmonic approximation breaks down. Since the system cannot
have two ground states, it becomes unstable against vibration induced by the
multipole-multipole force [114].

A further increase of the coupling constant leads to permanent shape deforma-

tion. At this limit (strong coupling), the lowest solution of Eq. (15) has imaginary

energy. Here, the sti�ness at a spherical shape becomes negative and the energy
becomes minimal at some non-zero value of q=q� 6=0. The energy of the lowest
collective vibrational state built upon the deformed solution is schematically in-
dicated in Fig. 15. It can be computed by means of RPA equations analogous to
those of Eq. (15), but pertaining to the deformed minimum. However, the low-
est excitations of the nucleus in this limit are not vibrations but rotations. The
presence of stable deformations makes it possible to distinguish between vari-
ous orientations of the nucleus in space; hence rotational bands (i.e.,collective
excitations connected by enhanced transition matrix elements) appear.

The lower portion of Fig. 15 presents schematically the q-vs.-� \phase di-
agram". Within the static mean-�eld theory, which becomes exact at in�nite

particle number, the self-consistent deformation is zero below the critical point,
at which the �rst order phase transition takes place. For � > �crit the system has
static deformation (shape deformation, pair deformation, etc.). In this context,
it should be emphasized that the deformed picture is valid for rather large val-
ues of coupling strength, or for very large particle numbers (for instance, in solid
state physics, where N�1023). Atomic nuclei are relatively small systems and
the �nite size e�ects, which manifest through dynamical correlations (
uctua-
tions), are extremely important. The 
uctuations wash out the transition from
the \spherical" to \deformed" phase, and result in a smooth and continuous
pattern of q, as indicated schematically in Fig. 15.

In the rotational limit, one can de�ne the intrinsic system of the nucleus.
Although the nuclear (laboratory-system) Hamiltonian does commute with the
symmetry broken by the operator Q̂, the intrinsic-system one-body Hamiltonian
(mean-�eld Hamiltonian,HF Hamiltonian) does not. This is precisely the essence
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of the symmetry-breaking: rotational bands are a manifestation of internally bro-
ken symmetries. Nuclear states forming a collective band are labeled by quantum
numbers of these broken symmetries. Examples are rotational bands in nuclei
having quadrupole deformations (here the collective operator is the quadrupole
moment, the broken symmetry is rotational invariance, and rotational bands are
labeled by angular momentum quantum numbers), octupole deformations (here
the collective operator is the octupole moment, the broken symmetry is space
inversion, and rotational bands are parity doublets), and pairing correlations
(here the collective operator is the pair operator, the broken symmetry is parti-
cle number, and rotational bands are the ground states of neighboring even-even
nuclei). See Sec. 6.1 for more examples.

Based on the above discussion, one can make an interesting observation: if
the lowest particle-hole energy approaches zero, the lowest pole of the dispersion
function (Eq. (15)) becomes so small that the lowest solution is always degenerate
with the ground state, independent of the magnitude of the coupling strength.
Consequently, if the Fermi level lies just between two or more (almost) degenerate
states, the system should be unstable with respect to the mode that couples these
states. This is precisely the JT mechanism.

If pairing correlations are present, the dispersion relation given by Eq. (15)
is slightly modi�ed and, in the BCS approximation, it becomes:

X
�;�0

2jh�0jQj�ij2(u�v�0 + u�0v�)
2(E� +E�0)

(E� +E�0)2 � !2RPA
=

1

�
; (17)

where E�=
p
(e� � eF )2 +�2 are the quasiparticle energies, and u� and v� are

the usual BCS occupation coe�cients. The main e�ect of pairing correlations
is the change in the energy denominator in Eq. (17), which now is much larger
than the particle-hole energies in Eq. (15). Indeed, the energy of the lowest pole
becomes 2�'2 MeV. Together with the reduction of the numerator of Eq. (17)
through the uv factor, pairing correlations tend to increase the critical value
of �. One can thus say that pairing has a tendency to make the system more
spherical. The extreme JT e�ect, with very weak residual interaction, can take
place in excited nuclear states. For instance, at high angular momentum the
number of broken nucleonic pairs becomes so large that pairing correlations are
expected to play a minor role. At this regime the collective motion of a system
should be strongly in
uenced by diabatic e�ects (level crossings) giving rise to
large deformation changes [106].

6 Shell Structure

It was early realized that the symmetry-breaking mechanism is ultimately re-
lated to the behavior of the single-particle level density g(e) of the intrinsic
Hamiltonian:

g(e) =
dN

de
: (18)
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(g(e) is simply the number of states per unit of energy.) The atomic nucleus
is expected to be more bound if the level density near the Fermi level is low.
In particular, the nuclear ground state should correspond to the lowest possible
degeneracy. Exceptionally stable systems (magic nuclei) are those with the least
degenerate single-particle level density around the Fermi level, see Fig. 16.

ε

gs p. . ( )ε DEFORMATION β

ε
high density;
instability

shell and
subshell
closures

Single-particle level density and shell effectsSingle-particle level density and shell effects

Fig. 16. Relation between single-particle level density and shell e�ects. Left: single-
particle levels and the corresponding level density. The regions of shell and subshell
closures correspond to reduced g(e). Right: schematic Nilsson diagram illustrating the
appearance of spherical and deformed gaps in the single-particle spectrum.

The nuclear shell model describes well all nuclear properties that depend on
the individual nucleonic motion in the vicinity of the Fermi surface. It is not pos-
sible, however, to apply the shell model alone to calculate bulk nuclear properties
like binding energies, �ssion barriers, etc. It is because the single-particle shell-
model energy di�ers from the full HF energy by the residual-interaction term.
On the other hand, the shell-model energy contains the two main elements of
the symmetry-breaking mechanism, i.e., the single-particle level density and the
perturbation due to the particle-vibration interaction. The deformation-driving
force of the single-particle model can thus be estimated by means of the shell-
correction method developed by Swiatecki [115] and Strutinsky and collaborators
[116{119]. The main assumption of the shell-correction approach is that the total
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energy of a nucleus can be composed of two parts,

E = Emacr + Eshell; (19)

where Emacr is the macroscopic energy (smoothly depending on the number of
nucleons and thus associated with the \uniform" distribution of single-particle
orbitals) and Eshell is the microscopic shell-correction term 
uctuating with
particle number and re
ecting the non-uniformities of the single-particle level
distribution.

For nuclei in which the surface energy dominates, the macroscopic energy
tends to favor spherical shapes. The deformation-driving force is, therefore, con-
tained in the shell-correction term, which can be approximated by

Eshell =
AX
i=1

ei �
1X
i=1

niei; (20)

where the average single-particle occupation numbers ni vary smoothly from 0
to 1 in the energy interval of the order of the energy di�erence between major
shells. The approximation of the total energy by means of Eqs. (19) and (20) has
a simple and elegant justi�cation by means of the energy theorem formulated
by Strutinsky [116,117,119].

The behavior of Eshell can be easily understood for any many-body system
of fermions that generates average �eld. Indeed, if the level density around the
Fermi level is large (level bunching, see Fig. 16), then the second term in Eq. (20)
representing the smooth distribution of levels dominates (on the average it con-
tains more occupied bound states) and Eshell is large and positive. The opposite
is expected in the case of the low single-particle level density: for magic nuclei
Eshell is large in magnitude and negative, thus leading to a strong stabilization
of the total energy.

In order to understand the global features of shell-induced shape-polarization
forces, it is instructive to plot the shell correction versus the number of particles
and selected deformation parameters. A representative example is shown in Fig.
17 which displays the neutron shell-correction landscape of the modi�ed har-
monic oscillator potential (Nilsson potential) as a function of neutron number
and quadrupole deformation ". The topology of Eshell changes periodically with
particle number. The lowest shell energy is expected in the regions of low single-
particle level density, e.g., at spherical shapes for the magic numbers 20, 50, 82,
and 126. However, when going away from these magic numbers, the spherical-
shape level density becomes large [(2j+1)-fold spherical degeneracy] and shell
correction induces the strong quadrupole polarization towards deformed shapes.

The variation in the single-particle level density with shell �lling, the level
bunching, and the very existence of spherical and deformed magic numbers has
a beautiful interpretation in terms of periodic orbits [75,121{123] in the corre-
sponding classical problem. Indeed, the single-particle level density g(�)=

P
i �(��

�i) can be represented by means of the Gutzwiller trace formula [124]

g(�) = ~g(�) +
X
L

1X
k=1

aLk(�) cos
h
k
�
SL(�)=�h �

�

2
�L

�i
; (21)
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Neutron Shell Correction, Nilsson PotentialNeutron Shell Correction, Nilsson Potential

Fig. 17. Shell energy diagram in the ("2, N) plane. The �gure is taken from Ref. [120].

where ~g is the average level density associated with Emacr, while the second
term in Eq. (21) is the 
uctuating part of g responsible for shell e�ects. The
shell energy can then be expressed as a sum over periodic orbits L. (SL is the
action integral associated with the orbit L and �L is the Maslov index.) Con-
sequently, the shell structure of the many-body system (hence the presence or
absence of deformation) has its deep roots in the non-linear dynamics of the
corresponding classical Hamiltonian and the geometry of classical orbits [123].
The microscopic analysis of the link between the phenomenon of spontaneous
symmetry-breaking and the non-linear dynamics (and chaos) is one of the most
vigorously pursued recent avenues in theoretical nuclear physics. Among many
examples of such analyses are: explanation of supershell e�ects in superdeformed
nuclei [75,123] and discussion of shell structure in nuclei with permanent octupole
deformations [125].

In the deformed shell model the important building block is the short-range
pairing interaction. This is often approximated by means of the state-independent
seniority force with the strength G. The macroscopic part of the total energy
already contains the average pairing energy, which accounts for the main part of
the even-odd mass di�erence. Therefore, it is the 
uctuating part of the pairing
energy, �Epair, that gives an additional contribution to the total shell energy.
The pairing �eld depends on the level density around the Fermi level, g(eF ),
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as [126]

� / exp
h
�

1

Gg(eF )

i
: (22)

In the case of a large single-particle level density, Eshell is positive but �Epair

is large and negative (large �). The opposite is true for systems with small
g(eF ), i.e., around large shell gaps. The cancellation between the shell energy
and the pairing energy is yet another manifestation of the fact that pairing is
the symmetry-restoring interaction. Indeed, equilibrium deformations calculated
with the presence of pairing correlations are always reduced as compared to the
situation without pairing.

6.1 Examples of Nuclear Deformations

It has been early recognized that various nuclear collective modes and deforma-
tions could be attributed to speci�c symmetries of the single-particle Hamilto-
nian and residual interaction. Indeed, as noted in Ref. [127]: \The recognition
of the deformation and its degree of symmetry-breaking as the central element
in de�ning rotational degrees of freedom opens new perspectives for generalized
rotational spectra associated with deformations in many di�erent dimensions
including spin, isospin, and gauge spaces, in addition to the geometrical space
of our classical world. The resulting rotational band structure may involve com-
prehensive families of states labeled by the di�erent quantum numbers of the
internally broken symmetries."

There are many examples of nuclear deformations [128]. The most common
are the isoscalar shape deformations. Most nuclei have shapes well described
by the even-parity multipole moments (quadrupole, hexadecapole,...). Extreme
quadrupole deformations have been observed in superdeformed con�gurations
such as those shown in Figs. 10 and 12. The dramatic elongations of superde-
formed states, having a very di�erent intrinsic structure than ground-states, are
excellent examples of the Jahn-Teller e�ect in excited (many-particle, many-hole)
con�gurations.

It has become clear during the last few years that certain nuclei can be
described in terms of intrinsic shapes with parity-breaking (odd-�) static mo-
ments. Stable re
ection-asymmetric deformation in the body-�xed frame can
be attributed to octupole interaction which couples intrinsic states of oppo-
site parity. The regions of nuclei with strong octupole correlations correspond to
particle numbers around 34, 56, 88, and 134, i.e. where the maximum�N=3 oc-
tupole coupling occurs between the unique-parity subshell (`; j) and the normal-
parity subshell (`-3, j-3). Experimentally, for the Ra-Th (Z�88, N�134) and
Ba-Sm (Z�56, N�88) nuclei, low-lying negative-parity states, parity doublets,
and alternating parity bands with enhanced E1 transitions have been established
(see Ref. [129]). Figure 18 shows examples of rotational bands corresponding to
quadrupole and octupole-deformed nuclear rotors.

Deformations can show up in the context of interactions other than the mul-
tipole forces. For example, for strong pairing forces, there appear deformations
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Fig. 18. Examples of nuclear collective bands. Left: ground-state band of quadrupole-
deformed nucleus 238U. Right: alternating-parity ground-state band of octupole-
deformed nucleus 220Ra.

that can be associated with static pairing gaps de�ning the orientation of a nu-
cleus in the gauge space. Here, the broken symmetry is particle number; the
intrinsic wave function is not an eigenstate of the particle number operator.
Interesting pairing deformations are expected in N�Z nuclei. Strong n-p cor-
relations are likely to produce a static moment that will lead to spontaneous
breaking of isospin. The elementary excitations of such systems are represented
by quasi-particles which are mixtures of protons and neutrons [130].

Interesting new deformations can appear at high-spin states. The cranking
Hamiltonian, �!j, breaks the time-reversal symmetry in the rotating reference
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frame. In this context, one can talk about tilted rotation (rotation around an
axis which is not a principal axis of a nucleus; the reorientation angles can
be considered as collective parameters) or spontaneous breaking of signature
quantum number [131{134].

7 Far From Stability

The uncharted regions of the (N ,Z) plane contain information that can answer
many questions of fundamental importance for nuclear physics: How many pro-
tons and neutrons can be clustered together by the strong interaction to form a
bound nucleus? What are the proton and neutron magic numbers in the neutron-
rich environment? What is the e�ective nucleon-nucleon interaction in a weakly
bound nucleus? What are the phases of nucleonic matter? There are also related
questions in the �eld of nuclear astrophysics. Since radioactive nuclei are pro-
duced in many astrophysical sites, knowledge of their properties is crucial to the
understanding of the underlying processes. Today, the physics associated with
radioactive nuclear beams (RNB) is one of the major thrusts of nuclear science
worldwide.

From a theoretical point of view, exotic nuclei far from stability o�er a unique
test of those components of e�ective interactions that depend on the isospin de-
grees of freedom. Since the e�ective interaction in heavy nuclei has been adjusted
to stable nuclei and to selected properties of in�nite nuclear matter, it is by no
means obvious that the isotopic trends far from stability, predicted by commonly
used e�ective interactions, are correct. In models aiming at such an extrapola-
tion, the important questions asked are: What is the density dependence of the
two-body central force? What is the N/Z dependence of the one-body spin-orbit
force? What is the form of pairing interaction in weakly bound nuclei? What is
the role of the medium e�ects and of the core polarization in the nuclear exterior
(halo or skin region) where the nucleonic density is small? Similar questions are
asked in connection with properties of nuclear matter, neutron droplets, and the
physics of the neutron-star crust.

In many respects, weakly bound nuclei are much more di�cult to treat the-
oretically than well-bound systems [135]. Hence, before tackling the problem
of force parametrization at the extremes, one should be sure that the applied
theoretical tools of the nuclear many-body problem are appropriate. The main
theoretical challenge is the correct treatment of the particle continuum. For
weakly bound nuclei, the Fermi energy lies very close to zero, and the decay
channels must be taken into account explicitly. As a result, many cherished ap-
proaches of nuclear theory such as the conventional shell model, the pairing
theory, or the macroscopic-microscopic approach must be modi�ed. But there
is also a splendid opportunity: the explicit coupling between bound states and
continuum, and the presence of low-lying scattering states invite strong inter-
play and cross-fertilization between nuclear structure and reaction theory. Many
methods developed by reaction theory can now be applied to structure aspects of
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loosely bound systems. Here, the representative example is the recent continuum
shell-model description of the 16O(p,
)17F capture reaction [136].

A signi�cant new theme concerns shell structure near the particle drip lines.
Since the isospin dependence of the e�ective NN interaction is largely unknown,
the structure of single-particle states, collective modes, and the behavior of
global nuclear properties is very uncertain in nuclei with extreme N=Z ratios.
For instance, some calculations predict [135] that the shell structure of neutron
drip-line nuclei is di�erent from what is known around the beta-stability valley.
According to other calculations [137], a reduction of the spin-orbit splitting in
neutron-rich nuclei is expected.

Correlations due to pairing, core polarization, and clustering are crucial in
weakly bound nuclei. In a drip-line system, the pairing interaction and the pres-
ence of skin excitations (soft modes) could invalidate the picture of a nucleon
moving in a single-particle orbit [138,139,54,140,141]. It is expected that the
low-l spectroscopic strength is dramatically broadened when approaching the
neutron drip line [142,143]. In addition, since the energy of the pigmy resonance
in neutron-rich nuclei is close to the neutron separation energy, the presence
of soft vibrational modes is also important in the context of the astrophysical
r-process [144].

A fascinating aspect of halos and skins is the presence of clustering at the nu-
clear ground state. It is worth noting that all known neutron halo nuclei can be
described in terms of cluster structures consisting of alpha particles surrounded
by neutrons. The nuclear matter calculations indicate (see, e.g., Refs. [145,146])
the presence of deuteron and alpha condensates at low densities. This suggests
that the transition from a mean-�eld regime (corresponding to the two-
uid
proton-neutron system) to the limit of weak binding (characteristic of drip-line
nuclei) does not have to be smooth. Most likely, one will encounter an intermedi-
ate phase corresponding to the presence of granularities (i.e., cluster structures)
in the skin region.

On the proton-rich side, recent highlights are the discovery [147] of the two-
proton unbound doubly magic nucleus 48Ni, the �rst (indirect) data on the
core-breaking excitations in 100Sn through the high-spin studies of 99Cd (Ref.
[148]), and studies of deformed proton emitters [149,150]. For a comprehensive
review of challenges and opportunities in nuclear structure far from stability, I
would like to refer the reader to the recent RIA White Paper [66] where many
delightful examples can be found.

8 Nucleus as a Finite Many-Body System

The atomic nucleus is a complex, �nite many-fermion system of particles inter-
acting via a complicated e�ective force which is strongly in
uenced by in-medium
e�ects. As such, it shows many similarities to other many-body systems involv-
ing many degrees of freedom, such as molecules, clusters, grains, mesoscopic
rings, quantum dots, atom condensates, and others. There are many topics that
are common to all these aggregations: existence of shell structure and collective
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modes (e.g., vibrations in nuclei, molecules, and clusters; superconductivity in
nuclei and grains), various manifestations of the large-amplitude collective mo-
tion (such as multidimensional tunneling, coexistence, and phase transitions),
nonlinear phenomena (many-fermion systems are wonderful laboratories to study
chaos), and the presence of dynamical symmetries.

Historically,many concepts and tools of nuclear structure theory were brought
to nuclear physics from other �elds. Today, thanks to the wide arsenal of meth-
ods, many ideas from nuclear physics have been applied to studies of other
complex systems. There are many splendid examples of such interdisciplinary
research: studies of the multidimensional tunneling and of the large-amplitude
collective motion and symmetry-breaking in many-body systems, applications of
the nuclear mean-�eld theory and its extensions to studies of static and dynami-
cal properties of metal clusters [151,152], use of symmetry-dictated approaches to
describe collective excitations of complex molecules [153], studies of supersym-
metries in many-body systems [154{156], applications of the nuclear random
matrix theory to various phenomena in mesoscopic systems [157{159], studies of
Bose condensates [160{162], and the description of correlations in many-fermion
systems [163].

A beautiful example of physics on the borderline is the treatment of �nite-
size e�ects in the description of superconductivity of ultrasmall grains [164]. As
in nuclei, superconducting grains exhibit the presence of the energy gap in the
spectrum, and they show the odd-even staggering of binding energies due to a
blocking e�ect caused by the presence of an odd electron [165{168]. As seen in
Fig. 19, in the presence of an external magnetic �eld, quasi-particle spectra of
grains strongly resemble those of rotating nuclei.

A topic of great interest is the signature of classical chaos in the associated
quantum system, a sub-�eld known as quantum chaos. A nuclear physics theory
(randommatrix theory), developed in the 1950s and 60s to explain the statistical
properties of the compound nucleus in the regime of neutron resonances [169],
is now used to describe the universality of quantum chaos. Today, the random
matrix theory is the basic tool of the interdisciplinary �eld of quantum chaos,
and the atomic nucleus is still a wonderful laboratory of chaotic phenomena.
Other excellent examples of interplay between chaotic and ordered motion in
nuclei are parity-violation e�ects ampli�ed by the chaotic environment [170], the
appearance of very excited nuclear states (symmetry scars) well characterized
by quantum numbers [171], and the appearance of collectivity in the many-body
system governed by random two-body interactions [172{174].

The study of collective behavior, of its regular and chaotic aspects, is the
domain where the unity and universality of all �nite many-body systems is beau-
tifully manifested.
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(from Ref. [164]).

9 Summary

In years to come, we shall see substantial progress in our understanding of nuclear
structure { a rich and many-faceted �eld. An important element in this task will
be to extend the study of nuclei into new domains.

There are many frontiers of today's nuclear structure. For very light nuclei,
one such frontier is physics at subfemtometer distances where the internal quark-
gluon structures of nucleons overlap. For heavier nuclei, the frontiers are de�ned
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by the extremes of the N=Z ratio, atomic charge and nuclear mass, and angular
momentum. The journey to \the limits" is a quest for new and unexpected
phenomena which await us in the uncharted territory. However, the new data
are also expected to bring qualitatively new information about the e�ective NN
interaction and hence about the fundamental properties of the nucleonic many-
body system. By exploring exotic nuclei, one can magnify certain terms of the
Hamiltonian which are small in \normal" nuclei, thus di�cult to test. The hope
is that after probing nuclear properties at the extremes, we can later improve
the description of normal nuclei (at ground states, close to the valley of beta
stability, etc.).

There are many experimental and theoretical suggestions pointing to the fact
that the structure of exotic nuclei is di�erent fromwhat has been found in normal
systems. New RNB facilities, together with advanced multi-detector arrays and
mass/charge separators, will be essential in probing nuclei in new domains. The
�eld is extremely rich and has a truly multidisciplinary character. Experiments
with radioactive beams will make it possible to look closely into many exciting
aspects of the nuclear many-body problem. A broad international community
is enthusiastically using existing RNB facilities and hoping and planning for
future-generation tools.

Advances in computer technology and theoretical modeling will make it pos-
sible to (i) better understand the bare NN interaction in terms of quarks and
gluons, and e�ective interactions in complex nuclei in terms of bare forces, and to
(ii) answer fundamental questions concerning nuclear dynamics. These questions
on the microscopic mechanism behind the small- and large-amplitude collective
motion, on the impact of the Pauli principle on nuclear collectivity, and on the
origin of short-range correlations have interdisciplinary character. Particularly
strong are overlaps between nuclear structure and condensed matter physics
(many-body methods, superconductivity, cluster physics, physics of mesoscopic
systems), atomic and molecular physics (treatment of correlations, physics of
particle continuum, dynamical symmetries), nonlinear dynamics (chaotic phe-
nomena, large-amplitude collective motion), astrophysics (nucleosynthesis, neu-
tron stars, supernovae), fundamental symmetries physics, and, of course, com-
putational physics. The nuclear many-body system has it all!
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