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III. Methodology and Considerations in 
Establishing Criteria Recommendations 
 
This chapter discusses the methodology used and some of the underlying thoughts and 
concerns that went into establishing the temperature criteria recommendations contained in 
this paper. 
 

1. The Multiple Lines of Evidence (MLE) 
Methodology 

 
Scientific information comes in a wide variety of forms.  These include: 
 

• Laboratory testing where the temperature is held constant,  
• Laboratory testing where the temperature is made to fluctuate at a set rate,  
• Controlled field studies using either natural or artificial channels,  
• Field studies where environmental variables such as shade are altered, and  
• Field observational studies where the patterns of fish are observed in the wild.   

 
All of these sources of information provide valuable insights, but it can be a challenging task 
to try and compare and contrast such different types of research.  This has led many 
researchers to simplify their approach and select only a single type of research.  This 
simplification, while understandable, can result in a loss of understanding.  More 
importantly, however, it can result in a lost opportunity to demonstrate how well all of these 
very different types of studies correspond to one another.  The key to using a diversity of 
information types is to convert the results into a common metric.  
 
The multiple lines of evidence (MLE) approach used in this paper was developed as a means 
to use all of the available scientific information to support sound decision making.  The MLE 
methodology was developed to provide a method for making recommendations that are 
transparent to the reviewer and that can be predictably modified when new information 
becomes available. The basic approach is rather simple.  All the scientific information is 
sorted first by the life-stage (e.g., spawning, rearing, migration, etc.) or by some discrete 
environmental risk (e.g., lethality, smoltification, disease, etc.).  The information is then 
sorted into different categories of study types.  The following provides a simplified example 
of how this information can be categorized into independent lines of evidence (ILOE) for the 
life-stage of juvenile rearing:  

 
Study types (ILOE): Constant temperature laboratory testing of growth 

  Fluctuating temperature laboratory testing of growth 
  Controlled field studies on growth 
  Studies on the distribution and health status of natural populations 
  Laboratory studies examining competition and predation  
  Field studies examining competition and predation 

   



For each line of evidence the study conclusion are standardized into a standardized exposure 
metric and summarized as the range of individual study results.  Depending upon the line of 
evidence, this range may be either the absolute range or the dominant range (e.g., 90th 
percentile of distribution of study results).   
 
The standard metric for this temperature analysis is a 7-day average of the daily maximum 
temperatures (7DADMax).  This metric was chosen primarily because:  
 

1. Sublethal chronic biologic reactions generally take more than a week’s exposure to 
become meaningful;  

2. Small daily maximum temperature fluctuations beyond some “healthy” target level 
will not be biologically meaningful, but if a single daily maximum metric were chosen 
and then not attained such fluctuations would have regulatory repercussions; and  

3. It is not as defensible to use weekly averages of the daily average temperatures 
because fluctuations about the mean temperature can be highly variable and extreme 
fluctuations will erase or diminish the benefits of otherwise healthy average 
temperatures.   

 
To make the conversions to a standard metric, this analysis relies upon the conversion 
equations provided by Dunham et al. (2000) that are based on data from 752 stream sites 
located in the Western United States; particularly the Northwest.  For conversting the 
temperature research results for protecting bull trout and Dolly Varden (Washington’s most 
cold water loving fish species), it is assumed that their habitat will have very stable 
temperatures.  This analysis uses the assumption that summer average diel fluctuations are 
less than 2°C in char habitat.  This is consistent with the state’s information showing that 
colder streams (7DADMax <15C) have median average fluctuations of 2.1°C (90% between 
1.1-3.6°C).  It is also consistent with the commonly held belief that many of these waters are 
kept thermally stable due to a higher reliance on input from groundwater.  For salmon and 
trout waters, the conversion is based on the assumming that the summer average diel 
fluctuations are from 4-6°C.  This is consistent with the state’s data showing that warmer 
streams (7DADMax 15-19°C) have a median average fluctuations of 1.2-5.3°C (90 percentile 
range – median 2.6°C).  It also recognizes that the waterbodies used by salmon and trout 
have the most variable temperature regimes overall.   The following table shows the 
adjustment calculations that were used to convert temperatures to a common metric.   
 



Table (III-1): Conversion equations for standardizing duration of exposure scenarios.  These 
are used to convert study results to the standard metric of a 7-day average of the daily 
maximum temperatures. 
 
 
 
 
 
 
 
 
 

   
The metric adjustment step was also used where appropriate to put bounds on the potential 
correct estimate on each line of evidence.  This bounding process was used where there was 
reasonable uncertainty about the duration of exposure that best represented the line of 
evidence and the related biological response.  For example, growth studies are generally 
conducted for a relatively long period of time 30-90 days, but significant changes in growth 
between different test temperatures are commonly obvious after the first week or two.  Thus 
there is uncertainly whether the results of these tests should be applied as if they are summer 
average exposures or weekly average exposures.  In the face of this uncertainty conversions 
are made for both possible cases.  The range produced by using these two adjustment factors 
creates a range within which the most probable correct answer would be expected to occur. 
 
The results of this MLE process are presented in tabular form, and a range is produced by 
independently averaging both the lower and upper range values for each line of evidence.  
This creates a range within which the best estimate should be found.  The midpoint of this 
range is considered to be the overall best estimate, unless overriding concerns with any 
particular line of evidence suggest another course is warranted.  In such a case the suspect 
line of evidence is noted and either dropped entirely from the final range calculation, or is 
used as a basis for conditioning the recommendation.  The following is a simplified example 
based on protecting the juvenile rearing life-stage of salmon and trout: 
 

Convert from: To a 7DADMax (°C) Summer Average of 
the Diel Ranges (°C)

In Char Spawning Habitat:   
  Summer max Subtract 0.55 0-2 
  Summer mean Add 2.00 0-2 
  Weekly mean (highest) Add 0.93 0-2 
  Daily mean (highest) Add 0.62 0-2 
   
In Salmon and Trout Habitat:   
  Summer max Subtract 0.95 4-6 
  Summer mean Add 4.64 4-6 
  Weekly mean (highest) Add 3.18 4-6 
  Daily mean (highest) Add 2.60 4-6 



Table (III-2): Juvenile rearing of salmon and trout: 
 

Line of Evidence (LOE) 7DADMax (°C) Midpoint Comments Regarding LOE 
Laboratory Growth Studies at 
Constant Temperatures 

x-z  y Based on well controlled 
laboratory tests. 

Laboratory Growth Studies at 
Fluctuating Temperatures  

x-z  y  

Field Studies on Growth x-z  y  
Predation and Competition x-z  y  
Ranges Identified as Optimal  x-z  y Basis for estimates and intended 

metrics unclear. 
Comparing Discrete Test 
Regimes  

x-z  y  

Laboratory Temperature 
Preferences 

x-z  y  

Swimming Performance and 
Scope for Activity 

x-z  y  

Field Distribution  of Healthy 
Populations 

x-z  y This estimate relies on the 
general upper range considered 
healthy, and temperatures above 
which coldwater species begin 
to loose dominance 

Summary Statistics and Final 
Estimated Range: 

Ave(x)-Ave(y)  Midpoint    

 
   
Based on previous draft reviews of the temperature requirements of Washington’s native 
fish, it was determined the differences between species were generally slight.  Only division 
into three species groupings (guilds) appears warranted (Hicks, 1998, 2000).  Therefore, the 
multiple lines of evidence procedure was conducted separately in this current review only for 
the guilds of 1) Char, and 2) Salmon and trout, and 3) Warm water species. 
 
 
2. General Thoughts and Observations 
 
a) Adjusting Laboratory Data for Application to Natural 
Waters 
 
Laboratory tests do not represent the full range of conditions that an organism will face in the 
natural environment.  In most laboratory tests fish are exposed to a constant temperature 
environment, while in natural waters the temperature fluctuates during each day, between 
days, and in seasonal trends of spring warming and fall cooling.  In natural waters, fish must 
actively maintain position and seek food and shelter in the currents of rivers, succeed in the 
face of inter- and intra-species competition for both food and shelter, avoid predation, and 
resist disease.  In laboratory studies, however, the fish are often in test chambers without 
substantial currents, fed food in pellet form, treated to prevent disease, and seldom need to 
compete or avoid predation.  On the other hand, in laboratory tests, fish are often crowded 



into very small unnatural spaces, even styrofoam cups, and forced to perform using electrical 
stimulation or prodding, subjected to laminar artificial flows, and often fed unusual rations 
with large time intervals of starvation.   
 
Because of the differences between laboratory conditions and the environmental conditions 
that fish face in the natural world, we must use caution in how we apply laboratory-derived 
data in setting ambient water criteria.  We must ensure that the temperature regimes used in 
the laboratory tests are considered in any application to natural streams. 
 
 
Growth Studies: 
 
Most of the research on optimal growth temperatures is conducted with water kept at a 
constant temperature.  Water quality standards, however, must apply to naturally fluctuating 
thermal environments.  Since temperature directly effects the metabolism of the fish, a fish 
kept continuously in warm water will experience more metabolic enhancement than one 
which only experiences that same temperature for one or two hours per day.  Thus, constant 
test results cannot be directly applied as a daily maximum temperature in a fluctuating stream 
environment.  The literature examined for this paper strongly suggests that constant 
temperature test results can be used to represent daily mean temperatures (Hokanson et al., 
1977; Clarke, 1978; Grabowski, 1973; Thomas et al., 1986; Hahn, 1977; and Dickerson, 
Vinyard, and Weber, 1999, and unpublished data, as cited in Dunham, 1999); at least in 
systems with moderate temperature fluctuations.  Growth studies may be conducted for 
substantially varying periods of time (14 to 90 days) but generally encompass time-frames 
that would match reasonably well with periods of maximum summer temperatures (20-60 
days). 
 
For illustrative purposes we can examine the findings of Hokanson et al. (1977).  This study 
compared specific growth and mortality rates of juvenile rainbow trout for 50 days at seven 
constant temperatures between 8°C and 22°C and six diel temperature fluctuations (sine 
curve of amplitude +/- 3.8°C about mean temperatures from 12°C to 22°C 
 
Figure (III-1): Relationship between growth rates and mean temperature exposures.  Based on 
Hokanson et al.(1977). 
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Plotting the growth rates against the mean temperatures for both the constant and fluctuating 
tests produced a characteristic normal distribution for growth rate and temperature (Figure 
III-1, above).  Thus a strong relationship appears between the daily mean temperatures in 
fluctuating tests and those in the constant tests.  A pattern was demonstrated, however, where 
daily mean temperatures in the fluctuating tests at means of 12.5 and 15.5°C produced 
greater growth rates than comparable constant temperatures at 11.8 and 14.8°C.  At the 
constant optimal temperature of 17.2°C and above, however, this pattern was reversed.  This 
pattern led Hokanson et al. to suggest that the growth of rainbow trout appears to be 
accelerated at fluctuating treatments when the mean temperature is below the constant 
temperature optimum for growth and retarded by mean fluctuating temperatures above the 
constant temperature optimum.  Hokanson et al. suggested that water quality standards 
(based on weekly mean values) should be set such that the average weekly temperature is 
below the constant test temperature producing maximum growth.   
 
Like Hokanson et al. (1977), other researchers (Thomas et al., 1986; and Everson, 1973) 
have found that fluctuating temperature regimes actually enhance growth over what is found 
at constant temperature exposures; at least where the mean of the fluctuating regime is at or 
below that of the constant exposure test temperature producing optimal growth.  The works 
by these authors also suggest that high peak temperatures may create stress which will harm 
growth even though the daily average temperature appears optimal.  For example, Thomas et 
al. (1986) noted stress conditions occurring in cycles with daily peak temperatures of 20°C. 
 
 
Variable Feeding Regimes: 
 
Growth rates are related to both temperature and food rates.  As temperature goes up, more 
food is necessary to supply basic physiological needs but also the efficiency goes up for 
utilizing excess foods.  This relationship results in a situation where at maximum feeding 
rates fish will grow larger in warmer water, but at reduced feeding rates in the same warm 
water growth rates will suffer.  In cooler waters maximum growth rates are achieved at 
feeding rates well below those that produced maximum growth in the warmer waters.  This 
relationship between feeding rates and temperature means that laboratory test results would 
need to be modified to account for the feeding regimes present in natural stream 
environments to be able to confidently set a very precise maximal growth temperature.   
 
Numerous authors have demonstrated that food availability in the natural environment is well 
below that used in laboratory growth studies (Brett et al., 1982; Saski, 1966; Nedham and 
Jones, 1959; Wurtsbaugh and Davis, 1977; Ensign et al., 1990; Bisson and Davis, 1976; as 
cited in ODFW, 1992; Elliott 1975, McCullough 1975, 1979, Murphy and Hall 1981, 
Edwards et al. 1979, Vannote et al. 1980, Bisson and Bilby 1998, and James et al. 1998; as 
cited in USEPA, 2001, and others).  As an example of the influence of feeding rates, 
McMahon, Zale, and Selong (1999) tested bull trout growth and found that at satiation 
(maximum) and 66% satiation ration levels growth was highest at 16°C, whereas at a 33% 
satiation ration growth rate was maximized at 12°C.  Thus in waters of lower productivity, 
maximum growth may occur at temperatures well below those that produce optimal growth 
at high rations.  



 
While the basic relationship between feeding rates and growth at various temperatures is well 
established, there is a problem with trying to apply an adjustment factor to laboratory test 
results.  In the laboratory tests reviewed for this paper, feeding rates and regimes varied 
significantly.  In addition, the nutritional value can be different between feeds, the size and 
type of food along with its method of presentation can influence the ability of fish to feed and 
consequently grow, and the specific starting size of the test fish will greatly influence growth 
rates.  Given that the feeding regimes and test conditions were so highly variable, trying to 
make a standard adjustment to laboratory test results to try and match natural feeding regimes 
is problematic.  Nevertheless, it is important that this factor be recognized when setting water 
quality criteria recommendations for juvenile rearing.  
 
There are at least a couple of ways that this factor can be accounted for without having to 
develop complex growth models to test various temperature regime scenarios.  The first is to 
make a standard 2-4°C adjustment downward to the temperature value determined optimal 
for growth at satiation feeding.  The second is to apply the criteria to a relatively brief 
window of time (e.g., 2-3 weeks), even though the growth tests often lasted 4 weeks or more, 
and recognize that temperatures will need to be below this value most of the time in even the 
warmest years to result in compliance, thus virtually ensuring that temperatures will produce 
excellent growth overall.  In assessing the risks associated with making such simplifying 
assumptions it is important to recognize that growth rates diminish on either side of the 
optimal temperature range.  It is not substantially different to err slightly on the warmer side 
of optimal than it is to err on the cooler side of optimal, barring any other detrimental 
biologic responses.  By extending just beyond the warmer side of optimum during the 
warmest period of the warmest years the fish will actually be experiencing a greater number 
of days in the optimum range over most years.  In the recommendations of this paper, except 
where noted for testing that examined reduced feeding rates, temperatures that consistently 
resulted in maximum growth at satiation feeding were used to set the criteria value. 
 
 
Incubation Studies: 
 
Specific studies were not found that compared the effects of constant to fluctuating 
temperature on incubating fish.  However, it is assumed in this paper that that incubating fish 
generally respond to the daily mean temperature.  This seems warranted given the strong 
basis provided through the use of the standardized “temperature unit” calculations in 
hatchery operations and in fisheries science in general.  It is fortunate that many of the 
incubation studies were conducted at fluctuating water temperatures (highlighted in the 
discussion on individual species).  This provided a good opportunity to generally check the 
effect of applying the results as average temperatures and to assess the risks of allowing 
higher daily maximum temperatures.  Additionally, a natural safety factor often exists to 
protect egg incubation.  Since salmonids bury their eggs in the gravel of the stream bed, they 
are buffered slightly from both daily maximum and daily minimum stream temperatures.  
The buffering of the stream bed gravel can effectively reduce the daily maximum 
temperature by at least 1-1.5°C (Crisp, 1990).  While this natural safety factor is not 
accounted for in laboratory tests it is also not dependable.  Therefore, in the 



recommendations of this paper no adjustment is made to account for this often occurring 
buffering effect.  It is useful, however, when reviewing the potential risks of the 
recommendations in this paper to recognize that sudden and unseasonable rises in stream 
temperature during incubation will often not cause similar temperature exchanges in the egg 
pockets situated in the gravel.   
 
Few studies examined the risk of short-term lethality to eggs from unusually high 
temperatures for individual species, so the few that were conducted are used broadly to 
suggest limits on daily maximum temperatures during the incubation period for all related 
species.  Limits for daily maximum temperatures are also based on the results from 
controlled laboratory tests where the temperature regime experienced by the fish was started 
at varying high daily maximum temperatures and then allowed to fluctuate and fall in concert 
with the seasonal changes in the natural waters used to supply water for the tests.  From these 
experiments it can be observed what temperatures at the start of the incubation tests are 
generally associated with reduced incubation performance, and what temperatures appear not 
to hinder incubation.  
 
 
Lethality and Acute Effects: 
 
The water quality standards must be applicable to a broad range of human activities.  The 
standards must protect against both gradual basin-wide increases in temperature as well as 
localized shifts in daily maximum temperatures.  Rapid or site-specific changes in 
temperature can be caused by unique human activities (such as industrial cooling waters 
process wastewaters, and water releases from reservoirs).  While localized extreme changes 
in water temperature are not as common as the gradual basin-wide changes, they do exist, 
and their regulation through discharge permits and water quality certification programs 
require careful application of biologically-based temperature standards.  These localized 
point sources of temperature change are also those most capable of creating short-term 
lethality to aquatic life as they may discharge water significantly hotter or colder than the 
ambient water to which organisms are acclimated. 
 
The incipient lethal level (ILL) is typically determined by exposing juvenile fish to constant 
temperatures and determining the test temperature that causes 50% mortality of test fish 
within typically a 7-day exposure period.  It would not be appropriate to establish a criteria 
that would allow 50% mortality, however, so the ILL value needs to be adjusted to a level 
that would not be expected to cause any mortality.  The National Academy of Sciences 
(1972) and Coutant (1973) recommend subtracting 2°C from the LT50 value to determine a 
safe (no more than 1% mortality – an LT1) short-term temperature limit.  Some reasons for 
extra caution in interpreting lethality studies include that:  
 

1. The time above lethal levels appears cumulative (DeHart, 1974, 1975, and Golden, 
1978);  

2. Adults appear more sensitive than the juveniles which are most commonly tested 
(Coutant, 1970; Becker, 1973; Bouck and Chapman, 1975);  



3. Individual stocks possess slightly different tolerance levels (Beacham and Withler, 
1991);  

4. Indirect acute effects are often cited to occur just below lethal levels (e.g., increased 
predation, feeding cessation, migration blockage); and  

5. The range between no mortality and high mortality rates is often described by as little 
as 0.5°C (Charlon, Barbier, and Bonnet, 1970).   

 
The selection of laboratory results for use in developing recommendations focuses on test 
fish that had previously been acclimated to reasonably cool water temperatures.  This 
recognizes that fish migrating from cooler upstream tributaries or from marine waters may 
not be fully acclimated to warmer mainstem summer river temperatures.  It also helps to 
bridge the gap in protection that occurs when protecting fish from hot thermal discharges 
occurring in the late fall through early spring period when the ambient river temperatures are 
often very cold.   
 
Although test results that determine lethal threshold temperatures are used as one line of 
evidence in this paper for recommending water temperature criteria that will prevent acute 
(short-term) effects, the final recommendations are not based on just avoiding lethality.  
Temperatures that would result in any detrimental acute effect such as causing a barrier to 
adult fish spawning or migration take precedence in the recommendations.  Thus, while a 
species may be able to survive in a laboratory environment at a given temperature, research 
may show that the temperature maximum would be unacceptable in natural waters. 
 
 

IV. Temperature Requirements of Char, 
Salmon, and Trout Species 
 
 
1. Native Char Temperature Requirements 
 
a) General Life History Information: 
 
Bull trout (Salvelinus confluentus) and Dolly Varden (Salvelinus malma) are the only two 
species of char native to Washington (Hass and McPhail, 1991).  Perhaps more than any 
other species, cold waters are critical to maintaining healthy populations of these native char.  
These two closely related species are difficult to taxonomically identify from one another in 
the field (Hass and McPhail, 1991).  Cavender (1978) may have first recognized that what 
had previously been considered an interior form of Dolly Varden was in fact a distinct 
species, now referred to as the bull trout.  Goetz (1989) suggests that bull trout may be more 
directly related to the Arctic char (Salvelinus alpinus), and in fact a sister to the Arctic char-
Dolly Varden group.  Spalding (1997) found that for Washington’s Olympic Peninsula many 
of the anadromous char previously assumed to be Dolly Varden keyed out to be bull trout.  
While important to advancing scientific understanding, the historic problems with 
discriminating between these char appear to pose little practical problems in terms of setting 



water quality criteria.  This is because Dolly Varden and bull trout are generally considered 
to have very similar biological requirements, and the management measures needed to 
protect both Dolly Varden and bull trout may be identical (WSDFW, 1994).   
 
The Washington State Department of Fish and Wildlife considers the majority of native char 
stocks in the state as being “Vulnerable Populations” requiring special protection.  Bull trout 
in particular have received considerable publicity in recent years because of their status as a 
threatened species under the federal Endangered Species Act.  The results of a 12-month 
study evaluating stock status by U.S. Fish and Wildlife Service noted serious declines of bull 
trout populations statewide (USFWS, 1997).  Rieman et al. (1997) examined the distribution 
and status of bull trout across 4,462 sub-watersheds of the interior Columbia River basin and 
the Klamath River basin and found that bull trout are more likely to occur and the 
populations are more likely to be strong in colder, higher-elevation, low- to mid-order 
watersheds with lower road densities.  They noted that while bull trout were widely 
distributed across their potential range, strong populations may exist in only 6% of this 
potential range. 
 
Upon hatch, char fry will either remain in the localized area or move downstream to larger 
streams or lakes to rear (Goetz, 1989; Williams and Mullen, 1992; Reiser et al., 1997).  
Movements to more suitable upstream waters has also been observed (Fraley and Shepard, 
1989; Armstrong and Morrow, 1980, as cited in Goetz, 1989).  Unless information clearly 
demonstrates that a stretch of water would not be used for summer rearing even under natural 
conditions, temperature criteria assigned to these migration paths should also be set to protect 
the rearing of char fry.   
 
Some research suggests that age 0-1 juvenile char have cooler temperature preferences than 
age 1+ juveniles; however, there is little consistency in the values identified.  The preference 
values for age 0-1 bull trout range from an average of 4.5°C (Ratliff, 1992), to maximum 
stream temperatures of 10°C and 13°C (Ratliff, 1987; and Martin et al., 1991).  Resident 
forms of bull trout remain in or near their natal streams for their entire life.  Fluvial and 
adfluvial forms may remain in the area of their natal stream for 1 to 3 years and then migrate 
significant distances to more productive waters for greater juvenile growth opportunities 
(Pratt, 1992; Ratliff, 1992; Riehle et al., 1997; Fraley and Shepard, 1989; Goetz, 1989); 
although, some stocks have also been observed to migrate to lakes or reservoirs immediately 
after hatching (Reiser et al., 1997).  Sea-run (anadromous) forms will migrate hundreds of 
miles to take advantage of productive near-shore marine habitat (Goetz, 1989).  Temperature 
standards would ideally be set in consideration of these various life-strategies.   
 
The needs of resident forms may be slightly different from the various migratory forms.  
Juvenile bull trout and Dolly Varden have difficulty competing with several common 
salmonid species in warmer waters (Haas, 2001; McMahon et al., 1999).  This may partially 
explain why researchers have observed young juvenile fish remaining in their natal stream 
for the first several years before moving downstream to warmer and more productive waters.  
It is plausible that the lack of significant competitors in their cold natal streams may 
compensate for the reduced productivity of these pristine environments.  Since non-migratory 
resident bull trout must remain in and defend their natal habitat for their entire life, 



temperatures here should clearly favor bull trout over competing species such as chinook 
salmon and rainbow trout (Martin et al., 1991; Mullan et al., 1992; Ziller, 1992; Adams and 
Bjornn, 1997; WSDFW, 1994; Haas, 2001).   
 
 
b) Spawning Requirements 
 
Field Observations of Spawning Initiation 
 
Maximum temperatures should generally be below 12°C and on a fall season cooling trend at 
the time char enter their spawning streams (Fraley and Shepard, 1989).  In a study on the 
Rapid River in Idaho, pairing behavior was noted to begin after average water temperatures 
dropped from 10 to 6.5°C (generally equivalent to a change in single daily maximum 
temperatures from 11-7.5°C) (Schill, Thurow, and Kline, 1994).  In the same river, Elle and 
Thurow (1994) found that daily maximum water temperatures below 10°C influenced the 
movements of spawners both in and out of the Rapid River.  While daily maximum 
temperatures may need to fall below 9 to 11°C (WSDFW, 1994) for redd construction to 
begin, no authors have been found to suggest spawning will begin at daily maximum 
temperatures above 10°C.  Most place the temperature that triggers spawning below 9°C 
(Goetz, 1989; Pratt, 1992; Kramer, 1991; Fraley and Shepard, 1989), with the peak of 
spawning activity not occurring until stream temperatures falls below 7°C (James and 
Sexauer, 1997; Wydoski and Whitney, 1979).  Reiser et al. (1997) suggested that a daily 
average temperature between about 6.8 to 8.1°C (generally equivalent to a single daily 
maximum range of 7.8-9.1°C) was necessary to initiate spawning activity.  Temperatures 
above 8°C were noted by Kramer (1994) as appearing to cause spawning activity to 
temporarily cease in char in northwest Washington streams.  The Washington Water Power 
Company (1995) studied the distribution of fish in the lower Clark Fork River in Idaho and 
found that bull trout spawning was confined to an artificial spawning channel created to 
mitigate the effects of the Cabinet Gorge Dam.  Water temperatures in theses spawning areas 
were consistently cooler (5-7°C) than other areas of the channel, and during the period of 
redd construction bull trout used the area of the channel where the temperature was 11°C due 
to ground water seeps. 
 
Bull trout are noted to begin spawning as soon as conditions are suitable and redds are 
constructed.  Temperature may be the primary cue used by the fish to determine when to 
begin migratory movements (Elle and Thurow, 1994; Swanberg, 1997) as well as to initiate 
spawning (Kramer, 1994).  It is important that temperatures at the initiation of spawning be 
within a range that would not hinder ovulation and would not cause obvious harm to 
offspring of any early spawning individuals.   
 
The field observations and citations noted above are in strong concurrence that spawning 
behavior (pairing and redd construction) will not begin 7DADMax temperatures fall below 
8.45-9.45°C, and that spawning itself will only be initiated once the daily maximum 
temperature falls below 7.45-8.45°C. 
 



Laboratory Studies of Spawning Initiation 
 
Only a single study was found that addressed the question of what temperatures are required 
to initiate spawning.  In a study by Gillet (1991) ovulation in char was found to be 
completely inhibited at constant temperatures above 11°C and slowed down above 8°C as 
compared to fish held at 5°C.  This would be correlated with 7DADMax values of 11.62-
11.93°C and 8.62-8.93°C, depending upon the constant test exposures being treated as if they 
represent on-day average and seven-day daily average stream exposures.  Transfers from 8°C 
to 5°C were found to stimulate ovulations.  Gillet also found that exposure to temperatures of 
8°C prior to ovulation were favorable to fecundity rates, and assumed based on their work 
that very cold water was only necessary during the last weeks before spawning.  The work of 
Gillet suggests that for the closely related Arctic char, temperatures should be falling below 
8°C to stimulate healthy spawning, and falling towards 5°C to ensure full survival of 
fertilized eggs (only 11, 8, an 5°C were tested, so specific incubation thresholds were not 
determined).  Based on this one laboratory study it would appear that a 7DADMax of less 
than 8.62-8.93°C is necessary to allow healthy ovulation to occur in bull trout.   
 
 
Summary on Spawning Initiation Requirements 
 
There is strong agreement among both field and laboratory research and observations on the 
spawning requirements of bull trout.  The weight of the evidence supports the position that 
initial spawning behavior (pairing and redd construction) is hindered by daily maximum 
stream temperatures above 9-11°C and that the act of spawning may be impaired by daily 
maximum water temperatures greater than 8-9°C.   
 
 
Laboratory Studies on Incubation Success 
 
Only a few studies were found that tested the incubation requirements of bull trout in the 
laboratory.  Fredenberg (1992) reported that eggs from wild bull trout incubated at an 
average temperature of 3.1°C had egg survival averaging 97.4% from unfertilized egg to eye-
up and 97.1% from unfertilized egg to hatch.  Eggs were subsequently collected from the 
hatchery raised broodstock and incubated at an average temperature of 5.8°C (5.0°C 
minimum and 6.6°C maximum), and while no growth or survival data was collected the 
author suggested that it appeared normal.  Fredenberg, Dwyer, and Barrows (1995) collected 
gametes from wild spawning bull trout from the Swan River drainage of northwest Montana 
during September of 1993 and 1994.  Fertilized eggs were produced by paired matings and 
incubated in 1993 at approximately 3.1°C with a resultant 97.1% survival from green eggs to 
hatching.  Eggs in 1994 were incubated at approximately 6.5°C with a resultant 95.5% 
survival.   
 
McPhail and Murry (1979) tested incubation of bull trout at constant laboratory temperatures 
of 2, 4, 6, 8, and 10°C in a series of three replicate tests.  In the one test lot that escaped high 
transit-related mortality during movement to the laboratory after fertilization, McPhail and 



Murry (1979) found that survival was excellent (90-95%) at 2, 4, and 6°C, good (85%) at 
8°C, and poor (20%) at 10°C.  In the two other test lots, which experienced significant 
transit-related stress (40% egg mortality during transit), survival rates were noted to steadily 
decline from 2 to 4, to 6°C and drop to zero at 8 and 10°C.  Similarly, constant test 
temperatures in the range of 7-11°C were reported to result in “poor” survival in hatchery 
culture by Brown (1985).  McPhail and Murry (1979) noted that mortalities at low 
temperatures (<6.0C) typically occurred at blastopore closure, while at high temperatures 
(>8.0) mortality is associated with hatching.  In studies on the related species of Arctic char, 
Humpesch (1985) reported optimal incubation to occur at 5°C.   
 
The above studies generally found that constant temperatures in the range of 3.1-6.5°C 
capable of producing excellent (90-97.4%) survival of char eggs, with survivals equally high 
throughout the range.  At temperatures 8 to 10°C survival rates may drop precipitously from 
85% to 0%.  The research suggests that a constant temperature of 6.5°C may most 
confidently define the upper limit for fully protecting incubation.  This would be equivalent 
to a 7DADMax temperature of 7.43°C when correlated as if it were a one-week average daily 
exposure, and equivalent to a 7DADMax temperature of 8.5°C when correlated as if it were 
an incubation season-long average exposure (assuming a stable stream temperature with 0-
2°C diel variation).  Based on the above, the laboratory studies suggest full incubation 
protection will occur if the highest 7DADMax temperature during the incubation period does 
not exceed 7.43-8.5°C.  It is important to note that this process is not trying to determine an 
acute criteria for eggs or embryos.  It only identifies temperatures that can occur at the 
initiation of incubation that will fully protect native char incubation under a normal 
temperature regime (i.e., fall cooling trends). 
 
It is important to note that even though 2°C has been shown to be suboptimal at a constant 
incubation temperature, natural seasonal declines in temperature down to 2°C in the 
incubation period are unlikely to reduce survival rates.  Salmonids have been shown to 
undergo conditioning in the early stage of incubation that allows excellent survival at very 
low temperatures occurring later.  Where the conditioning does not occur, and the eggs are 
incubated at an early stage at very low temperatures, significant reductions in survival have 
been noted (Murry and Beacham, 1986; Seymour, 1956).  This assertion is also supported by 
work showing that newly hatched bull trout alevins are tolerant of temperatures near 0°C 
(Baroudy and Elliott, 1985) and that the lower limit for hatching in the related Arctic char is 
less than 1°C.  Such conditioning, however, may not only protect embryos from later 
exposure to colder waters but may help increase tolerance for warm water fluctuations as 
well.  Bebak, Hankins, and Summerfelt (2000) examined the hatching success and posthatch 
survival of three stocks of Arctic char and found that if incubation had been well initiated at a 
favorable (6°C) temperature then later transfers to waters as warm as 10-12°C still allowed 
for excellent hatch rates (90-98%).  It is noteworthy, however, that they also found that 
survival rates post-hatch declined over time at both 10°C and 12°C.   
 
 



Field Evidence on Incubation Requirements 
 
Little evidence was found from field studies on the incubation requirements of bull trout or 
Dolly Varden.  In one study that was reviewed, however, it was noted that bull trout redds in 
the upper Flathead River basin in Montana had mean temperatures that ranged from 2.1-
5.4°C (Weaver and White, 1985).  This season-long estimate of average field temperatures 
would correlate with a 7DADMax temperature range of 4.1-7.4°C.  It is important to point 
out that just noting the average temperature of redds does not indicate whether it was healthy, 
and is not very useful for describing of the upper boundary for successful incubation.  For 
this reason, only the upper half of the range will be used to represent this line of evidence, the 
next preferred option would be to not use this range at all to estimate incubation 
requirements.  Based on the above discussion,  field temperatures of bull trout redds should 
be considered to have an upper range of 5.75-7.4°C.    
 
 
Conclusion on Spawning and Incubation 
 
While spawning and incubation were discussed separately above, it is important to recognize 
they actually occur concurrently in the natural stream environment.  Once spawning has 
occurred the eggs begin to incubate.  The multiple lines of evidence created from the wide 
variety of field and laboratory studies can be brought together in support of selecting a 
temperature standard for application at the beginning of the spawning and incubation period.  
The focus on the temperature at the initiation of incubation is viewed as appropriate since 
temperatures will be at their highest at this time.  They should also be on a trend of fall 
cooling that will soon reach temperatures that are naturally determined by the elevation and 
geographic location of the site.  The interim conclusions from each line of evidence are 
summarized below: 
 
Table (IV-1): Spawning and Incubation requirements of native char. 
 
Line of Evidence 7DADM - Range (°C) Median (°C) 
Field observations on spawning 
initiation 

7.45-8.45 7.95  

Laboratory studies on spawning 
initiation 

8.62-8.93  8.77 

Laboratory studies on incubation 
success 

7.43-8.5 7.97 

Field study on typical average redd 
temperatures in Montana 

5.75-7.4 6.57 

Best Estimate of Criteria 7.31-8.32  mid. pt. 7.82 
 
The range of these independent lines of evidence is 5.75-8.93°C with a mean range of 7.31-
8.32°C and an overall midpoint of 7.82°C.  This strongly suggests that a 7-day average daily 
maximum temperature of 7.82°C will fully protect the spawning and incubation of char.  In 
recognition that temperatures of 8.0°C have been noted as hindering spawning in char, it may 



not be advisable in this situation to select a spawning criteria from the upper end of the range 
presented above.   It is concluded that a 7-day average of the daily maximum temperatures of  
7.5-8.0°C best represents the highest temperature that can occur at the initiation of spawning 
without causing detrimental effects to either spawning or subsequent incubation. 
 
 
c) Juvenile Rearing 
 
Field Distribution Work Examining Fish Presence 
 
Dunham et al. (2001) surveyed the distribution of juvenile/small bull trout (Note: small 
resident stock fish cannot be distinguished apart from juveniles of migratory stocks) in 6 
basins (109 sites) in Washington state and found that summer maximum temperatures best 
defined their presence in streams.  In their study, 95% of the bull trout were found in streams 
with temperatures above 12°C with an interquartile range of 13.3-14.7°C (with the median 
and mode both at 14°C).  This is similar to a study by Rieman and Chandler (1999) who 
examined 581 sites throughout the Western United States and found that the majority of sites 
with juvenile/small bull trout had summer maximum temperatures of 11-14°C (95% were 
from waters with summer maximums less than 18°C).  Goetz (1997b) surveyed 13 drainages 
in Washington and Oregon and was unable to find juvenile bull trout in streams with 
temperatures above 14°C.  In a study in British Columbia, Hass (2001) found that the 
warmest study streams containing bull trout (resident juveniles or adults) had summer 
maximum temperatures of 16°C, which is similar to the findings of numerous other 
researchers that 15-16°C formed the upper temperature limit to bull trout (juveniles or adults) 
summer distributions (Fraley and Shepard 1989, Shepard 1985, Goetz, 1989, Pratt, 1992, 
Martin et al. 1991) and that a temperature of 15°C can trigger the out-migration of char from 
otherwise suitable habitat (Goetz, 1997).  The general findings for bull trout discussed above 
are also supported by the work of Jensen (1981) who found that 14°C (as a 10-day mean) 
appeared to form a barrier to the distribution of the closely related Arctic char.   
  
The above studies demonstrate that daily maximum temperatures in the range of 14-15°C 
(7DADMax 13.45-14.45°C) set the upper boundary for commonly finding juvenile/small 
bull trout.  It is important to note that some researchers have both wider and narrow margins 
of distribution.  Some authors have found that colder summer maximum temperatures (10-
11.5°C) formed the general limits to bull trout distributions in specific watersheds (Ratliff, 
1987).  While other authors have reported finding juvenile bull trout at much warmer (17-
20.5°C) temperatures (Brown, 1992; Goetz, 1989, Adams and Bjornn, 1997; Reiman and 
Chandler, 1999).  It was noted by Adams (1999) that bull trout found at 20.5°C held in the 
coolest water available in the area (<17.2°C) and looked physically unhealthy.  This point is 
made to remind the reader that the mere presence of a fish does not indicate that it is healthy 
or that the stream is capable of supporting healthy populations.   
 
 



Field Work that Considered Dominance, Density, and Competitive Advantage 
 
While studies that describe the stream temperatures associated with the presence of a species 
are a useful line of evidence, they cannot be used to say whether or not the population is in 
good health at the observed temperature regimes.  Researchers have tried to answer the 
question of what is healthy for bull tout in field studies by identifying sites with high 
densities of bull trout, and by identifying temperatures beyond which bull trout begin to loose 
dominance over other competing species.  Health has also been assessed more directly by 
evaluating the condition of the fish using standard bio-metrics.   
 
Haas (2001) found that a 7-day average of the daily maximums of 11.6°C (correlating with a 
single daily maximum of 12.15°C) consistently determined the dominant presence and better 
condition of bull trout in 26 sites in the Columbia River drainage in British Columbia.  Haas 
reasoned that bull trout populations would be supported by maintaining summer maximum 
temperatures below 13°C, and noted that rainbow trout were found to be dominant over bull 
trout and in better condition as summer maximum temperatures approached 14-15°C.  This 
corresponds well to the Dunham et al. (2001) finding that 90% of the sites that did not have 
bull trout had summer maximum temperatures greater than 13.5°C (interquartile range of 
14.6-19.8°C and median of 17°C).  It also corresponds well with Williams and Mullen (1992) 
finding that rainbow trout excluded the first two age classes of bull trout at weekly average 
temperatures above approximately 11-12°C (correlating with single day maximums of 12.49-
13.49°C).   Williams and Mullan (1992) found that bull trout growth in the Early Winters 
Creek basin of northern Washington steadily increased with increasing temperatures at three 
synchronous test sites having annual maximum weekly average temperatures of 8.7, 10.3, 
and 11.7°C, respectively.  The maximum weekly average of 11.7°C correlates to a 
7DADMax of 12.63°C.  Growth was not tested at any warmer sites, thus the 7DADMax 
temperature that would allow for optimal growth in this stream system was not identified, but 
would likely be greater than 12.6°C.  Similarly, Martin et al. (1991) and Goetz (1989, 1997) 
concluded that bull trout are dominant in streams with summer maximum temperatures less 
than 13°C.  Saffel and Scarnecchia (1999) examined 18 reaches of six streams and found that 
the density of bull trout increased with increasing maximum temperature below 14°C (range 
7.8-13.9°C) and decreased with increasing temperature above 18°C (range 18.3-23.3°C)  The 
highest densities were found in reaches with maximum summer temperatures between 10-
13.9°C.  In this work there were no study streams having summer maximum temperatures 
within the range of 14-18°C, so it cannot be said whether or not densities would have begun 
to decline just above 14°C.  Kitano et al. (1994) found that brook trout and cutthroat trout 
coexisted with bull trout in the Flathead River basin in Montana in waters with a temperature 
range of 5.3-8.9°C in early September, but they provided no information on the relative 
health of these populations or on when competition would be impaired. 
 
Based on the above works, it is reasonable to expect that streams with summer maximum 
temperatures of 12-14°C (7DADMax 11.45-13.45°C) will be capable of producing and 
maintaining strong populations of bull trout.  Not all of the research examined, however, 
fully supports this assertion.  Sexauer and James (1997) studied four bull trout streams in the 
Yakima and Wenatchee River watershed in central Washington that were selected because 
they were considered “healthy” and found summer maximum temperatures in the year the 



study was conducted ranged from 9-12.5°C.   Further, Ratliff (1992) and Ziller (1992), 
reported that bull trout began to lose dominance as summer average temperatures rose above 
7.9°C (correlating with single day maximums of 10.45°C).   
 
The wealth of studies across the Northwest when considered in combination demonstrate 
some strong patterns of occurrence.  Any study of a single basin or stream needs to be 
carefully considered prior to accepting its conclusions.  For example, in the cold groundwater 
dominated Metolius River system in Oregon, Ratliff (1987) reported that bull trout were 
rarely found at temperatures above 10°C.  While true, it is important to recognize that 
warmer waters are largely unavailable in this tributary system.  Thus care should be 
exercised before concluding that 10°C has been shown to create a barrier to bull trout 
populations.  Similarly, many of the studies were conducted over a single year, and thus the 
long-term relationship between the presence healthy populations and maximum ambient 
temperatures at the site is often not documented.  So while Sexauer and James (1997) studied 
streams with healthy populations, they only reported temperatures from a single year.  The 
actual temperature regime for these sites, which hold healthy char populations, may include 
years with warmer temperatures than those observed during the study year.  
 
 
Summary of Evidence from Field Studies on Juvenile Rearing 
 
A preponderance of juvenile/small bull trout in Washington may be found in streams with 
summer maximum temperatures between 13.3-14.7°C (7DADMax 12.75-14.15°C).  This is 
reasonably consistent with surveys extending throughout the Western states that found most 
juvenile use to occur in stream segments with maximum temperatures not exceeding 14°C.  It 
is also well supported by studies of in-stream growth, density, and competitive dominance 
which suggest healthy bull trout streams have summer temperatures that do not exceed 12-
14°C.  While field studies are a very useful line of evidence for developing temperature 
criteria, they can be strengthened by cross-checking the conclusions with laboratory findings.   
 
 
Laboratory Studies Supporting Juvenile Rearing 
 
In a controlled hatchery environment, Fredenberg et al. (1995) found that constant exposure 
to 8.3°C produced greater growth of bull trout at maximum rations than at lower test 
temperatures.  This would be equivalent to a single-day maximum of 9.79°C (7DADMax 
9.24°C) if the constant hatchery temperature is treated as it represented the warmest one-
week average stream temperature; and a single-day maximum of 10.85°C (7DADMax 
10.3°C) if it were equivalent to a summer season-long average stream temperature.   
 
In a laboratory study, McMahon et al. (1998) found that growth was highest at a constant 
12°C, but not significantly less at 14 and 16°C at maximum rations.  Growth declined sharply 
at temperatures greater than 18°C and less than 10°C.  In follow-up tests, the authors 
(McMahon et al., 1999) found that growth at maximum and at 66% of maximum rations 
were highest at 16°C, but that at 33% of maximum ration growth was maximized at 12°C.  In 
modeling the available calories in low productivity streams (the ration used and the basis for 



its selection was not provided) against the growth observed in their tests, the authors 
suggested the optimum growth range of 12-16°C would shift to 8-12°C.  McMahon et al. 
(2000) examined the growth of bull trout over a 60-day period in both constant and 
fluctuating temperature regimes.  Peak growth at a moderately restricted ration (0.66) 
occurred at 12.4°C at a constant temperature and at a mean of 12.2°C in fluctuating 
treatments (+/- 3°C around the mean - giving a 60-day average daily maximum of 15.2°C).  
Peak growth at an unrestricted ration occurred at 13.2°C and at a severely restricted ration 
(0.11) occurred at 12.3°C.  In this work the authors found that growth was higher in constant 
exposure tests overall, and opined this was due to the fluctuating temperatures increasing 
metabolism without increasing food intake.  Similar findings were produced using the related 
Arctic char (Swift, 1975; as cited in Jensen, 1995; and Jobling, 1983) where maximum 
growth occurred at about 12-14°C (at satiation rations).  These growth studies may help 
explain why Shepard et al. (1984) found that bull trout growth was slower in the middle fork 
of the Flathead River, Montana, even though it was warmer and more productive.  The work 
of McMahon et al. (2000) suggest that an average temperature of 12-13°C can produce 
maximal growth under both severely restricted and satiation diets, respectively.  A constant 
laboratory test temperature exposure of 12-13°C can be correlated with 7DADMax summer 
stream temperature maximums of 12.93-13.93°C based on correlations with the warmest 
one-week average stream temperature; and 7DADMax summer maximums of 14-15°C based 
on correlations with the summer season-long average stream temperature.  There is reason to 
also believe that in some cases growth could be maximized, or not statistically different, at 
even higher constant temperatures.  Their work also suggests that daily maximum 
temperatures of 15-16°C (7DADMax 14.45-15.45°C) may be producing thermal stress or 
excess metabolic demands that may hinder growth in juvenile char that are at otherwise 
healthy daily mean temperatures.   This is supported by the findings of Bonneau and 
Scarnecchia (1996) who noted that temperatures above 15-16°C are associated with 
increased metabolic stress and swimming impairment in bull trout.  The line of evidence 
produced using the above laboratory studies suggests that streams with 7DADMax 
temperatures not exceeding 12.93-15°C are likely to fully support the growth of juvenile 
char. 
 
 
Laboratory Studies Examining Competition for Food 
 
Brook trout are a species of char that have been widely introduced in the northwest that have 
often been cited as eliminating bull trout from their native habitat.   McMahon et al. (1999), 
found that the presence of brook trout in sympatry (together) with bull trout resulted in 
significantly greater growth of brook trout and significantly lower growth for bull trout than 
occurred with either species in allopatry (alone), especially at constant water temperatures 
equal to or greater than 12°C.  McMahon et al. (2000) examined bull trout and brook trout 
competition under two constant (11 and 17°C) temperatures.  At a constant 11°C there were 
not significant differences in the growth of bull trout and brook trout in allopatry and 
sympatry.  However, at the higher temperature (17°C) brook trout grew significantly more (a 
2.5-times greater growth rate) than bull trout in both allopatry and sympatry.  Behavioral 
observations were also made at temperatures of 8 and 16°C.  When in the presence of brook 



trout, bull trout feeding rates declined 50% at 8°C and 64% at 16°C, whereas feeding by 
brook trout showed no change.  The work of McMahon et al. (1999, 2000) suggests that as 
average water temperatures rise above 12°C bull trout may begin to loose their competitive 
ability against brook trout.  It also points out the difficulty of trying to protect bull trout from 
displacement by brook trout since the brook trout are capable of significantly out-competing 
the bull trout even at very low temperatures (8°C).   
 
In trying to correlate the laboratory studies on competition to stream temperatures, it is 
important to recognize that competition may be related as much to the absolute temperature 
at any point in time as much as a weekly or seasonal average temperature regime.  However, 
since the effect of competition on the health of a species will not be determined by a portion 
of a single day allowing for detrimental competition, it is still considered reasonable to 
correlate average stream temperatures with the constant laboratory test temperature at which 
competition was not favored by water temperature (12°C).  A single daily average and a 
weekly average are used below to represent the effects found with constant laboratory 
exposures and make conversions to a 7DADMax temperature metric.  The above cited work 
suggests that a 7DADMax summer temperature of 12.62-12.93°C may best describe a stream 
which does not provide any thermal advantage in competition between bull trout and brook 
trout.  It is important to remind the reader that the laboratory tests did not include 
temperatures within the range of 12-16°C making it difficult to determine if a threshold 
exists within this range above which most of the change in competitive ability occurs.    
 
 
Summary of Laboratory Studies 
 
The work of McMahon et al. (1999, 2000) suggest that a constant or average temperature of 
12°C can produce maximal growth under even severely restricted diets.  Their work also 
suggests that as water temperatures rise above 12°C bull trout begin to loose their ability to 
compete with brook trout.  As noted above, the research on competition seems best viewed 
by comparison with a single week’s average temperature, rather than as a single day of 
detrimental competition.  So, while the range produced for the laboratory growth tests is 
compared as either weekly average temperatures or season-long average temperatures, the 
laboratory study on brook trout competition is only compared here as a weekly average 
temperature.  After appropriately converting the constant laboratory test results to 7DADMax 
temperature metrics the studies on growth and competition overlap each other.  Growth 
should be maximized at a 7DADmax of 13.5-15.5°C and competition with brook trout should 
not be materially worsened at temperatures below 13.5°C. 
 
 



Conclusion on Rearing 
 
The multiple lines of evidence created from the wide variety of field and laboratory studies 
can be brought together in support of selecting a summer rearing temperature standard.  The 
interim conclusions from each line of evidence is summarized below:  
 
Table (IV-2): Juvenile Rearing of Native Char: 
 
Line of Evidence 7DADM - Range (°C) Median (°C) 
Field studies on limit to where most 
commonly found      

13.45-14.45 13.95  

Filed studies on density, and 
dominance 

11.45-13.45 12.45 

Laboratory Growth Studies  12.93-15 13.96 
Laboratory Competition Studies 12.62-12.93    12.75 
Best Estimate of Criteria (averages) 12.61-13.96  mid. pt. 13.29 

 
 
The range of these independent lines of evidence is 11.45-15°C with a mean range of 12.61-
13.96°C and an overall midpoint of 13.29°C.  This strongly suggests that streams having 7-
day average daily maximum summer temperatures not exceeding 13.29°C are fully protective 
of juvenile/small bull trout rearing.  After cross checking this conclusion against each 
independent line of evidence, no overriding factors of disagreement appear to exist.  The 
slight conflict with the field studies on density and dominance, and the laboratory 
competition studies do, however, suggest that rounding the estimate down to the nearest 
0.5°C increment, rather than up, may be more appropriate.  It is therefore concluded that 
13°C as a 7-day average of the daily maximum temperatures will fully support the life-stage 
of juvenile/small char rearing.   
 
 
d) Migratory Adult and Sub-Adult Char Populations 
 
As noted previously, fluvial and adfluvial forms of char may remain in the area of their natal 
stream for 1 to 3 years and then migrate significant distances to more productive waters for 
greater juvenile growth opportunities (Pratt, 1992; Ratliff, 1992; Riehle et al., 1997; Fraley 
and Shepard, 1989; Goetz, 1989).  The larger size of these migrants is generally believed to 
allow them to better compete for resources, and to make use of a larger prey base that 
includes the juvenile fish of other species.  This is similar to the way the ocean is used by 
Pacific salmon to enable them to grow to significantly greater sizes than would be possible if 
they were to remain in freshwater tributaries.  This may be a very important survival trait of 
these migratory populations, and serve to free up food resources in the tributary system for 
juvenile char.  These adult and non-spawning sub-adult fish, may also move out of tributary 
systems to hold in lower mainstem areas during the winter to avoid unsuitable winter 
conditions of ice and storm flows.  In Washington, bull trout may migrate all the way from 
headwater streams to the Puget Sound to feed and rear.  Relatively little is known about the 



temperature preferences and requirements of these migratory fish which makes setting 
temperature criteria for them problematic. 
 
Heimer (1965) examined the use by Dolly Varden of an off channel artificial spawning on 
the lower Clark Fork River in Idaho below the Cabinet Gorge Dam.  The channel was 
constructed in an area where cool spring water would make the artificial channel cooler than 
the mainstem river during part of the year.  Temperatures in the majority of the spawning 
channel were between 8-11°C.  The author noted that fish observed in the spawning area 
were consistently in the areas of cooler water.  As river temperatures declined in the fall a 
portion of the fish in the spawning area left without spawning.  These fish were presumably 
present because of the cooler waters, as the mainstem temperatures in the Clark Fork River 
did not decline to below 13.9°C until after September 26th.   The Washington Water Power 
Company (1995) also studied the distribution of fish in the lower Clark Fork River in Idaho 
and found that while mainstem river temperatures were 18°C on September 28th temperatures 
in the adjacent channel used by bull trout for spawning was 11°C.  These two studies when 
considered together suggest that bull trout will actively avoid rivers having fall water 
temperatures above 18°C.  The strong contrasting temperatures between the river and the 
channel, the combination of spawning and non-spawning fish, competition with other 
salmonids also using the channel for refuge, and the lack of specific temperature metrics in 
association with char movements all combine to prevent using these studies to estimate a 
threshold response. 
 
Swanberg (1997) found that bull trout residing in the lower Blackfoot River in Montana 
migrated out when daily maximum temperatures reached 18-20°C, and non-spawning sub-
adult fish began returning once maximum temperatures declined to 12°C.  The few fish that 
did not migrate were found in association with the confluence of a small cold tributary with a 
daily maximum temperature of 12°C.  Elle and Thurow (1994) found that adfluvial bull trout 
in the Rapid River in Idaho began leaving the lower system in peak numbers seven out of 
nine years as the daily maximum temperatures began to exceed 10°C and returned as the 
temperature of the lower river declined to 10°C.  These fish moved to lower mainstem rivers 
to hold for the winter.  Movements to avoid unhealthy winter conditions are common in 
salmonids, and Jakober et al. (1998) found that bull trout and westslope cutthroat trout in two 
drainages in Montana made extensive downstream movements as temperatures dropped 
precipitously in the Fall.  These movements were most extensive in mid-elevation streams 
where frequent freezing and thawing led to anchor ice formation and super cooling (<0°C) of 
the water. 
 
Several very import issues and questions need to be addressed prior to setting criteria to 
protect these adult and sub-adult fish.  These include: 
 

• Is it ecologically appropriate to base temperatures in salmon and steelhead 
strongholds on the temperature requirements of char? 

• How, and should, populations that are in mainstems to rear be separated from those 
that may be leaving inhospitable winter conditions in the tributaries? 



• Is rearing protected only by maintaining favorable temperatures in these lower rivers 
year-round, or can migration out of the lower reaches during maximum summer 
temperatures be considered a normal and thus acceptable natural pattern? 

• Should temperatures considered protective of these adult and sub-adult fish be based 
on assumptions of relative food abundance and lack of competition? 

  
Until these questions are reasonably answered, there does not seem to be sufficient 
foundation in the research to justify setting temperature criteria in lower mainstem rivers 
below those appropriate for the protection of salmon and steelhead.   
 
 
e) Lethality to Adults and Juveniles: 
 
As shown above in the discussion of juvenile rearing, waters that fully protect the health of 
native char will have temperatures well below those posing a threat of acute lethality.  Thus, 
the conclusions that follow are intended for application in the evaluation of special projects.  
They can also be used as an aid in assessing the relative safety for char moving through 
mainstem rivers predominantly protected for salmon and steelhead. 
 
The only research found directly testing one of Washington’s native char species (bull trout) 
was the works of McMahon et al. (1998, 1999) as published in Selong et al. (2001). 
McMahon et al. (1998, 1999) conducted 60-day lethality studies of juvenile bull trout.   In 
their 1998 study, 98% survival occurred at temperatures between 7.5-18°C.  Mortality was 
21% at 20°C over the 60-day test period, but was 100% within 24 hours at 26°C,  within10 
days at 24°C, and within 38 days at 22°C.  In the 1999 study, survival was 46% at 21°C and 
53% at 20°C, with the time to 50% mortality varying from 10-days at 23°C to 24 days at 
22°C.  Using the data from both the 1998 and 1999 studies, the authors determined a 60-day 
UUILT (Ultimate Upper Incipient Lethal Temperature) of 20.8°C for juvenile bull trout and 
estimated that a 7-day UILT (Upper Incipient Lethal Temperature) would be 23.5°C (Selong 
et al., 2001).    
 
The work of McMahon et al. (1998, 1999) and Selong et al. (2001) strongly suggest that 
lethality will be prevented at constant temperature exposures of 18-19°C or less.  This 
assertion comes from two sources of information.  The first is that in tests at a constant 18°C 
there was at least 98% survival over a 60-day exposure.  The second is derived by using the 
60-day UUILT of 20.9°C.  After applying the adjustment factor recommended by the 
USEPA (Brungs and Jones, 1977) to change from a temperature that kills 50% of the 
exposed fish to a temperature that is unlikely to kill any fish.  The non-lethal temperature 
estimate would change to a constant 18.9°C (20.9°C minus 2°C).  Constant temperatures of 
18-19°C would be correlated to 7DADMax temperatures of 21.18-22.18°C and 1-day 
maximums (1DMax) of 22.13-23.13°C when treated as if they were based on weekly 
temperature exposure.  When treated as if they were based on a season-long exposure (which 
may be justified in this case since the laboratory tests were 60 days long) these values change 
to 22.64-23.64°C (7DADMax) and 23.60-24.60°C (1DMax).  This line of evidence suggests 



that acute mortality will be prevented in acclimated fish by maintaining 7DADMax 
temperatures below 21.18-23.64°C or 1-day maximum temperatures below 22.13-24.6°C. 
 
While a constant temperature exposure would generally be similar to an average temperature 
in a natural stream, daily maximum temperatures above the lowest determine lethal 
concentration (20.9°C with a 60-day exposure) will begin to accumulate lethal stress.  To 
avoid exposure to temperatures that create lethal stress altogether (would eventually cause 
lethality if exposure period is sufficient) daily maximum temperatures should not exceed 
20.9°C (7DADMax 19.95°C).  Since this is not an estimate of a threshold beyond which 
acute mortality would be expected, it should only be viewed as a line of evidence for 
establishing a lower-bound estimate of temperatures that would avoid lethality and severe 
stress.   
 
Using the data of Selong et al. (2001) we can also estimate the general risk of mortality from 
multiple days of exposure in the potentially lethal range.  By assuming that temperature 
exposure in the lethal range is additive (DeHart, 1974, 1975; Golden, 1978), and by 
examining the potential lethal dose that occurs with each hour spent over the lowest lethal 
level (20.9°C), the risk of mortality can be reasonably described.  The equation in Selong et 
al. (2001) giving the relationship between exposure temperature and time to mortality (LC50) 
can be used to estimate the number of hours that would need to be spent at each daily 
temperature increment (one-hour intervals used herein) above the an ultimately lethal 
temperature (20.9°C) to cause mortality (LC50).  Using this approach, the number of daily 
cycles of temperature that would occur before causing mortality can be predicted.  Based on 
this technique, bull trout in a stream with a daily average temperature of 20.9°C (21°C) and a 
diel range above the daily mean of 4.13°C would be expected to experience high mortality 
(LC50) in approximately 10 days or less.  In streams with mean temperatures 19 and 18°C, 
high mortality (LC50) would occur after 54 and 163 days of repeat exposure, respectively.  
This approach to evaluating the risk of mortality is only useful in assessing relative risk.  
Nevertheless, it provides a good support for the position that weekly average temperatures of 
18-19°C and summer peak daily maximum temperatures of 22-23°C (7DADMax 21.05-
22.05°C) pose little risk of creating acutely lethal conditions in char populations.   
 
While having relatively sensitive optimal temperature limits, adult and juvenile char do not 
appear unusually sensitive to acute temperature limits.  With acclimation, juvenile and adult 
char are very tolerant of temperature extremes in a laboratory environment – capable of 
withstanding temperatures of –1.2°C (below zero) for up to 5 continuous days and having 
upper lethal temperature limits similar to, but towards the lower end, of that for juvenile 
Pacific salmon (Selong et al. 2001).   



 
Table (IV-3): Temperature induced lethality of in native char.   
 
Line of Evidence 7DADMax  (°C) Midpoint (°C) 
Direct laboratory observation of no 
mortality, and conversion of LC50 to no 
effects temperature using Brungs and 
Jones (1977). 

21.18-23.64 22.41 

Laboratory estimate of temperature 
exerting lethal stress 

19.95  19.95 

Modeling risk associated multiple day 
exposures to fluctuating temperatures 

21.05-22.05 21.55 

Best Estimate of Criteria 20.73-21.88  mid. pt. 21.31 
 
The range of the independent lines of evidence discussed above is 19.95-23.64°C with a 
mean range of 20.73-21.88°C and an overall midpoint of 21.31°C.  This strongly suggests 
that not allowing single daily maximum temperatures to exceed 21.31°C (7DADMax of 
21.35°C) will prevent acute lethality in char populations.  Based on the above it is concluded 
that an annual highest single-day maximum temperature not exceeding 21°C will prevent 
direct lethality to Washington’s juvenile native char.   
 
It is important to point out, however, that only juveniles of one stock of bull trout were 
tested.  Juvenile Dolly Varden, other stocks of juvenile bull trout (Beacham and Withler, 
1991), and adults of either species could be somewhat more (or less) sensitive (Coutant, 
1970; Becker, 1973; Bouck and Chapman, 1975).   It would be unwise to assume that 
temperatures at the upper end of the range identified above are of equal merit for 
consideration as an acute criteria until more stocks have been tested.  The data cited below by 
Ugedal et al. (1994) lend further support for being cautious about assuming the upper end of 
the predicted range would be fully protective.   
 
Support for these findings can be found in research on related species of char (Arctic char 
and Arctic grayling).  The estimated LT50 (lethal to 50% of test population within 7 days) 
values for a variety of char species at acclimations of 5-20°C generally group between 21.5-
24°C.  Lohr et al (1996) determine a 7-day LC50 of 23-25°C for juvenile Arctic Grayling; 
Lyytikainen et al. (1997) determined a 14-day LC50 of 23-24°C for juvenile Arctic Char; and 
Baroudy and Elliott (1994) determine a 7-day LC50 of 21.5-21.6°C for Arctic char fry and 
parr.  These ranges were determine primarily by varying the acclimation temperatures.  In a 
modified CTM test, the authors also found that fry and parr experienced 10-minute LT50 
values of 24.79-26.57°C at acclimation temperatures from 10 to 20°C.  Ugedal et al. (1994), 
in conducting a 104-day growth test using Arctic char, found that when water temperature 
rose from an initial 12-13°C (daily mean) to a brief 20°C (average temperature for 
approximately 10 days) before falling again a slight increase in mortality (approx 5%) 
occurred during the period that water temperatures reached 20°C.   
 



Some additional information from studies with these related species are worth noting here.  
At full acclimation to temperatures of 15-18°C, sudden exposure to 29°C water produce 
LC50 values within 2-4 minutes in Arctic char (Lyytikainen et al., 1997).  At an acclimation 
of 15°C a test temperature of 26°C produced LC50 results in just 44 minutes.  Baroudy and 
Elliott (1994) found that the Arctic char alevins had 7-day UILTs of 18.67, 19.67, 20.83, and 
20.79°C at acclimation temperatures of 5, 10, 15, and 20°C.  Alevins experience 50% 
mortality within ten minutes at 23.33, 25.09°C, and 25.39°C at acclimation temperatures of 
5, 10, and 15°C.    
 
Research useful for estimating daily maximum temperatures that will protect developing 
embryos and alevins was only found for Arctic char (Baroudy and Elliott,1994).  Since the 
work of Baroudy and Elliott was based on a non-indigenous species of char, and tested only 
the short-term effects to the alevin life-stage it is insufficient for setting an acute lethality 
criteria for char incubation.  It can be used, however, to demonstrate that incubation of char 
is more sensitive then juvenile rearing, and to suggest that daily maximum temperatures 
would likely need to remain below 16.7°C to prevent acute lethality to char alevins.  This 
estimate was made by subtracting 2°C from the LC50 value determined at an acclimation 
temperature appropriate for incubation (5°C) to convert to a temperature that should not 
produce any short-term mortality (USEPA, 1977).   
 
 
 

IX. Summary of Temperature Requirements for 
Indigenous Aquatic Life  
           
1. Cold Water Species 
 
The following table summarize the individual conclusions made previously to protect the 
state’s cold water aquatic habitats.  For the two salmonid guilds examined, the life-stages are 
presented along with other thermal stressors that would influence the health of these life-
stages (e.g., disease, other associated community and prey species).  This approach is useful 
in identifying what temperature criteria would be most appropriate to provide for a fully 
protective thermal environment.  The conclusions are provided as summary statements in 
Table X-1 below. 
 
Table X-1: Ranges within which lie temperatures likely to fully protect specific species and life-
stages. 
 
Requirements by Species Guild and 

Life Stage 
7DADMax 

Temperature 
Range (°C) 

Midpoint of 
Range (°C) 

Bull Trout and Dolly Varden (Char) 
Char spawning and incubation 7.31-8.32 7.82 



Char juvenile rearing 12.61-13.96 13.29 
Disease - Virtual elimination of warmwater 
disease effects in salmon and trout 

12.58-16.18 14.38 

Macroinvertebrate lethality in headwater 
streams 

13.08-17.18 15.13 

Char lethality (7-day exposure) 20.73-212.88 21.31 
 
Summary:  Temperatures (7DADMax) should be below 7.5-8°C at the time of spawning 
for char and below 13-13.5°C outside of the incubation period.  This temperature regime 
will also provide full protection from warm water disease and support sensitive 
headwater species of macroinvertebrates.  
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