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The Sacramento River winter chinook 
sal mon is listed as an endangered spe-
cies under the U.S. Endangered Spe-
cies Act (ESA). The historical spawning 
grounds of the winter chinook salmon 
were in upper tributaries of the Sacra-
mento River, including the Upper Sacra-
mento, Pit, and McCloud Rivers (Fig. 1). 
The completion of Shasta and Keswick 
Dams in the 1940s blocked access to 
these spawning grounds, although pop-
ulations had already declined from his-
toric levels owing to habitat destruction 
in the upper tributaries (Fisher, 1994). 
Quantitative winter chinook salmon 
population size estimates began in 1967 
when the Red Bluff Diversion Dam 
(RBDD), a fl ashboard dam with three 
fi sh ladders, was completed. Since the 
completion of RBDD, winter chinook 
salmon spawning runs have declined 
from over 100,000 adults to a few hun-
dred adults in the 1980s (Fig. 2; Wil-
liams and Williams, 1991).

The winter chinook salmon popula-
tion re mains extremely depleted. The 
Cali fornia Fish and Game Commission 
listed the population as a “candidate” 
species under California’s Endangered 
Species Act in 1988 and declared it 
endangered under that Act in 1989. 
The National Marine Fisheries Service 
(NMFS) declared the species “threat-
ened” under the federal ESA in the same 
year, and it was declared “endangered” in 
1994. NMFS has taken numerous regu-
latory actions under the ESA to improve 
winter chinook salmon survival, includ-
ing changes in the regulations govern-
ing California’s ocean salmon fi sheries.1
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Abstract—When monitoring endan-
gered species, natural resource manag-
ers require a recovery benchmark and a 
statistical procedure to test whether the 
benchmark has been met. We applied 
statistical power analysis to devise such 
a procedure for the endangered Sac-
ramento River winter chinook salmon 
(Oncorhynchus tshawytscha). Winter 
chinook salmon management currently 
focuses on population growth rate, and 
our procedure used a Student’s t-test to 
evaluate whether the average popula-
tion growth rate is signifi cantly lower 
than the management goal of 0.57 per 
generation. In the test, the null hypoth-
esis was that the growth rate was not 
lower than the desired rate. In contrast 
to the usual hypothesis-testing frame-
work, our procedure did not control for 
the type-I error rate. Instead, it con-
trolled for the statistical power (the 
complement of the type-II error rate) 
and uses the resulting type-I error rate, 
computed from the sample size and 
other information, for the test. This pro-
cedure is conservative for winter chi-
nook salmon in that, if all assumptions 
are met, it provides the specifi ed level 
of assurance of detecting dangerously 
low population growth rates.

In 1997, NMFS required that future 
ocean fi shery harvest regulations be 
designed to achieve at least a 31% 
increase in the winter chinook salmon 
average cohort replacement rate over 
that observed in 1989–93.2 Because 
winter chinook salmon females spawn 
predominantly at age 3 (Fisher, 1994), 
the cohort replacement rate in year i is, 
for simplicity, defi ned as Ri = Ni /NI–3, 
where Ni is the number of adult spawn-
ers passing RBDD in year i. For statisti-
cal modeling purposes, it is convenient 
to express this cohort replacement rate 
on the log scale, ri = log(Ri), and refer 
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Figure 1
Map of Northern California depicting the Sacramento 
River, its upper tributaries, and mainstem dams.

to ri simply as the “growth rate” of the cohort returning 
in year i. Denoting the underlying mean growth rate by ρ, 
the goal of at least a 31% increase in the average cohort 
replacement rate over the observed mean of 1.35 for the 
1989–1993 period is equivalent to a goal, on the log scale, 
of ρgoal ≥ log(1.35 × 1.31) = 0.57.

A natural recovery benchmark then is to compare the 
observed sample mean growth rate r  in future years to 
ρgoal. If recovery efforts have the desired effect, and if no 
increased mortality occurs from other causes, recovery will 
proceed as desired and r  will likely exceed ρgoal. However, if 
r < ρgoal , recovery may not be proceeding as desired and fur-
ther conservation measures may need to be implemented. 
This possibility raises the question of how one should evalu-
ate whether an observed r  <ρgoal warrants concern.

In our paper, we propose using a one-sample, one-sided 
t-test to evaluate the statistical signifi cance of a differ-
ence between the observed mean growth rate and the 
target rate. We depart from the usual procedure (Lehm-
ann, 1986), however, by conditioning the test on a specifi c 
level of statistical power, rather than on a fi xed type-I 
error rate, in order to provide an adequate detection prob-
ability for dangerously low population growth rates. Appli-
cation of the test requires choosing a particular power 
level and specifying what constitutes a “dangerously” low 
population growth rate. Together, these quantities deter-
mine the sensitivity of the test for detecting population 
growth rates below the target, and the likelihood of false 
positives, i.e. concluding that population growth rate is 
below the target when it in fact is not. The level of danger 
posed by a certain growth rate is evaluated by using a 
population viability model.

Hypothesis testing and statistical power 

Evaluating whether or not winter chinook salmon are 
meeting the recovery goal requires a statistical test 
because of the variability inherent in r. We propose that 
a one-sided t-test be used to decide whether an observed 
mean population growth rate falls signifi cantly short of 
the goal—in which case further regulatory action may 
be necessary. The null hypothesis of the test is that the 
underlying mean growth rate ρ (estimated by r ) is greater 
than or equal to ρgoal, and the alternative hypothesis is 
that ρ is less than ρgoal. That is,

H0: ρ ≥ ρgoal

HA: ρ < ρgoal

with, in this case, ρgoal = 0.57. Given a set of n > 1 observed 
ri values {r1, r2,… ,rn}, with mean r  and standard devia-
tion s, the test statistic is

 δ
ρ − ρ
σ

= goal

n/
.  (1)

Assuming that the {ri} are independent and identically 
distributed normal random variables, t has a central t-dis-

tribution with n – 1 degrees of freedom if ρ = ρgoal , and a 
noncentral t-distribution if ρ ≠ ρgoal (Lehmann, 1986). The 
t-test rejects H0 in favor of HA when t is less than some 
critical value tc specifi ed a priori by the investigator.

A t-test has four possible outcomes, two of which result 
in correct inference: the test can accept H0 when it is true, 
and it can reject H0 when it is false. The test could also 
reject H0 when it is in fact true—a “type-I” error, or it could 
fail to reject H0 when it is false—a “type-II” error. The 
expected rates of type-I and type-II errors are convention-
ally denoted as α and β, respectively. The probability of 
correctly rejecting H0 is known as the power π of the test, 
and π = 1 – β.

The type-I and type-II error rates are determined by the 
value of tc selected for the test. A smaller value of tc results 
in a lower type-I error rate α and a higher type-II error 
rate β. A larger value of tc has the opposite effects. In all 
cases, the two error rates change in opposite directions 
when the value of tc is changed. Thus, for a given data set 
of size n, α and β cannot be simultaneously minimized by 
adjusting tc.

Given the endangered status of winter chinook salmon, 
it is clearly necessary to ensure that the statistical test 
has enough power to detect dangerously low population 
growth rates. To achieve this goal we propose that the 
power π of the test be held at a fi xed level, rather than the 
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Figure 2
Historical time series of winter chinook salmon adult returns at Red Bluff Diversion Dam.

type-I error rate α. This approach differs from the conven-
tional approach to hypothesis testing in which α is fi xed 
at, say, 0.05, and the resulting power-level is either toler-
ated, or the sample size n is increased suffi ciently to pro-
vide an acceptable level of power. Increasing n is not an 
option in this instance, because in any given year of appli-
cation the sample size of the {ri} data set will be fi xed, and 
a procedure is required that can be applied in each and 
every year. In the context of monitoring winter chinook 
salmon, a failure to reject H0 may be used to justify “busi-
ness as usual.” By specifying the power π of the test in 
advance, resource managers will know that if the mean 
growth rate is falling seriously short of the goal, they will 
be able to detect this with specifi ed probability π.

Calculation of α given π 

In this section, we formulate the relation between π and 
α. This relation allows one to determine what values of α 
should be used for the test in order to achieve a specifi ed 
level of power π.

With the previously stated distributional assumptions, 
t has a central t-distribution if ρ = ρgoal, with cumulative 
distribution function (cdf) T and inverse cdf T–1. If  ρ ≠ 
ρgoal, t has a noncentral t-distribution with cdf Tδ, inverse 
cdf Tδ

–1, and noncentrality parameter

 t
r

s n
goal=

− ρ
/

.  (2)

which is the difference between ρ and ρgoal in standard 
error units (Johnson et al., 1994). Given a particular criti-
cal value tc, the associated type-I error rate and power of 
the t-test are

 α = { } =Pr reject trueH H T tc0 0 ( ), (3)

 π δ= { } =Pr reject falseH H T tc0 0 ( ), (4)

α by defi nition being the largest value of Tδ(tc) under H0, 
which occurs at ρ = ρgoal where Tδ=0(tc) = T(tc). Solving 
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Table 1
Type-I error rate (α) necessary to maintain the t-test 
power-level at π given a fi xed number of observations n.  
Power-level is with respect to detecting a mean growth 
rate of ρ.

 n

ρ π 2 3 4 5

–0.0 0.9 0.435 0.326 0.246 0.185
 0.8 0.308 0.216 0.154 0.110
 0.7 0.238 0.157 0.106 0.073
 0.6 0.188 0.117 0.076 0.050
 0.5 0.148 0.087 0.054 0.034
 0.4 0.114 0.063 0.037 0.023
 0.2 0.054 0.027 0.015 0.008

–0.14 0.9 0.334 0.225 0.152 0.102
 0.8 0.243 0.150 0.094 0.059
 0.7 0.190 0.109 0.065 0.039
 0.6 0.151 0.081 0.046 0.027
 0.5 0.120 0.061 0.033 0.018
 0.4 0.092 0.044 0.023 0.012
 0.2 0.044 0.019 0.009 0.004

–0.40 0.9 0.229 0.125 0.068 0.037
 0.8 0.172 0.084 0.042 0.022
 0.7 0.137 0.062 0.029 0.014
 0.6 0.110 0.046 0.021 0.010
 0.5 0.087 0.035 0.015 0.007
 0.4 0.068 0.025 0.010 0.004
 0.2 0.033 0.011 0.004 0.002

Equation 4 for tc and substituting this into Equation 3 
gives

 α πδ= ( )−T T 1( ) . (5)

Equation 5 indicates the type-I error rate, α, associated 
with the test when conducted at specifi ed power-level π. 
Note that, π having been specifi ed, α also depends on 
the magnitude of the underlying difference ρ – ρgoal, the 
variability σ in growth rates, and the sample size n, all 
through the noncentrality parameter δ.

Relation between α, π, n, and quasi-extinction 

Although Equation 5 gives the value of α corresponding 
to a specifi ed power-level π, the formula itself does not 
reveal the nature of the relation between α and π, and 
how this relation is affected by ρ and n. We illustrate 
these relationships below and consider their consequences 
in the context of a proposed test for detecting low growth 
rates in the Sacramento River winter chinook salmon 
population.

To apply Equation 5, we must specify σ, ρ, and π. We 
want to know (with probability π) that winter chinook 
salmon growth is not less than ρgoal by a critical amount. 
Because the ESA is invoked to prevent extinction, we 
want to guard against growth rates that could lead to 
extinction. We used the winter chinook salmon popu-
lation viability model developed by Botsford and Britt-
nacher (1998) to identify growth rates corresponding to 
quasi-extinction probabilities of 0.05, 0.50, and 0.99 over 
50 years. Quasi-extinction occurs when a population falls 
below some threshold level, in this case 200 adults in 
three consecutive cohorts. We initialized the viability 
model simulation with winter chinook salmon spawning 
escapements from the 1989–93 base period, and set σ = 
0.552, the observed standard deviation of growth rates 
during the base period, assuming that this value will 
continue to hold in the future. The mean growth rates 
corresponding to the specifi ed quasi-extinction proba-
bilities were found to be about 0.0, –0.14, and –0.40, 
respectively. We note that if indeed ρ = ρgoal = 0.57, quasi-
extinction is an extremely unlikely event according to 
this model.

For each of the three growth rates, δ was computed 
according to Equation 2, and Equation 5 was then used 
to determine the type-I error rate α over a range of spec-
ifi ed power-levels π and sample sizes n. We calculated 
Equation 5 by using the Matlab Statistics Toolbox func-
tion NCTINV (Jones, 1996). (Fortran and S-PLUS subrou-
tines are also available for the noncentral t-distribution 
from the Carnegie Mellon University Department of Sta-
tistics’ StatLib and Oxford University Department of Sta-
tistics’ FTP archive, respectively. Alternatively, because tδ 
is distributed as a ratio of independent random variables,
( ) / / ( ) ,Z nn+ −−δ χ 1

2 1 where Z is a standard normal variate 
and χ2

n–1 is a chi-square variate with n – 1 degrees of free-
dom, a large number of draws of tδ could be simulated, and 
the 100 × π′th percentile could be taken as an approxima-
tion to  Tδ

–1(π) in Equation 5.)

The results for ρ = 0.0 (Fig. 3) display the general behav-
ior expected: 1) for fi xed π, α decreases with n; 2) for fi xed 
n, the higher π is set, the greater α becomes; and 3) for 
fi xed α, power increases with increased sample size. For 
example, if the power-level were fi xed at π = 0.8 and α set 
accordingly, a type-I error would be expected about 22% of 
the time with 3 years of data, 11% of the time with 5 years 
of data, or 3% of the time with 10 years of data. On the 
other hand, if the type-I error rate were fi xed at α = 0.05, 
there would be roughly an 80% chance of detecting this 
value of ρ with 7 years of data, but the power of detection 
would drop to π < 35% with only 3 years of data.

Table 1 lists results for mean growth rates of 0.0, –0.14 
and –0.40. Notice that while the type-I error rate required 
diminishes for a given power-level and sample size as the 
underlying growth rate declines, use of a fi xed α = 0.05 
even in the most dire case of ρ = –0.40 would provide very 
low power for n ≤ 3.

Monitoring protocol 

A monitoring protocol cannot be designed solely on the basis 
of statistical considerations—it must be guided by manage-
ment policy. In this instance, the management policy is to 
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provide an adequate level of protection for winter chinook 
salmon through timely identifi cation of low growth rates, 
without incurring too many false positive results.

The suggested protocol, therefore, would be to apply the 
t-test annually, with a fi xed power-level of 80% for detect-
ing a mean population growth rate of ρ = 0 (which is 
projected to lead to quasi-extinction over 50 years with 
probability 0.05). The choice of π and ρ is somewhat arbi-
trary, refl ecting the perceived costs of type-I and type-II 
errors, and is discussed in a later section of this paper.

The observed growth rates are defi ned as ri = log(Ni /
Ni–3), and the protocol would commence with the i = 1997 
and 1998 spawning runs—both runs having benefi ted 
from the 1996 shift in ocean harvest regulations designed 
to reduce fi shing mortality on winter chinook salmon.1 
Each year after 1998, the additional observed growth 
rates would be added to the test data set, until fi ve 
growth rates are obtained. Beyond the year 2001, the test 
would be limited to the most recent fi ve growth rates, 

at which point the α-level will stabilize at 0.11. The pro-
tocol’s moving fi ve-year data frame will facilitate identi-
fi cation of shifts in winter chinook salmon survival and 
strengthen the basis for the assumption that the {ri} are 
identically distributed (discussed below). Survival shifts 
might be expected in response to naturally arising or 
management-related changes in the freshwater or marine 
environment.

To illustrate in concrete terms the proposed monitoring 
and analysis protocol, we applied it to the historical time 
series of adult returns i = 1970,…,1996, as if the protocol 
had commenced with the i = 1970 and 1971 spawning runs. 
The calculations and results of this application are pre-
sented in Table 2. Throughout the historical time series, 
r  failed to reach the target level of 0.57, and this failure 
would have been declared signifi cant in all years except 
for 1983–89 and 1996. If the test used a higher π, the 
number of failures declared signifi cant would be higher. 
For instance, using π = 0.85 results in 21 null hypothesis 

Figure 3
Type-I error rate (α) of the proposed t-test as a function of the power π and the number of 
observations n. Power-level is with respect to detecting a mean growth rate of ρ = 0 (which 
is projected to lead to quasi-extinction over 50 years with probability 0.05). The value of the 
noncentrality parameter in this case is δ = − ( )0 57 0 552. / . / .n
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rejections out of 26 tests, rather than the 18 rejections for 
π = 0.80. On the other hand, setting α = 0.05 would have 
rejected H0 only 14 times.

Discussion 

Statistical considerations 

Any t-test assumes that the observations are indepen-
dent and are identically distributed normal random vari-
ables. Assuming a normal distribution for r is reasonable, 
because R (its antilog) has been found to be approximately 
lognormally distributed (Botsford and Brittnacher, 1998). 
More generally, observations on fi sh population sizes or 
survival rates are often found to be approximately lognor-

mally distributed, as if arising from a series of random 
multiplicative events (Hennemuth, 1980).

The requirement that the growth rate observations be 
identically distributed as well (same underlying mean and 
variance), is not directly verifi able, but this assumption 
is reasonable given the short time period over which the 
test is conducted (n=5-year period). Indeed, this was our 
rationale for limiting the testing protocol to a 5-year time 
horizon. Although a longer time frame would boost the 
test’s sample size and, for fi xed α, increase its power, we 
believe identity of distribution beyond a 5-year horizon 
is an untenable assumption. Thus, the proposed protocol 
limits the test to a 5-year time frame, achieving the neces-
sary power at the expense of a higher type-I error rate.

The issue of independence of observations is more dif-
fi cult to assess. Winter chinook salmon adults return to 

Table 2
Application of the proposed monitoring protocol to the historical time series of winter chinook salmon adult returns at Red Bluff 
Diversion Dam. Subscript i denotes year; N = abundance; R = cohort replacement rate; r = log (R) = growth rate; r  = average 
growth rate over previous n years; t = t-statistic; π = power of test to detect a mean growth rate of zero; α = type-I error rate of test; 
tc = test critical value; H0 = mean growth rate ≥0.57.

Year(i) Ni Ni–3 Ri ri r i ni ti πi αi tc, i Reject H0, i?

1967 32321 — — — — — — — — — ––
1968 74115 — — — — — — — — — ––
1969 108855 — — — — — — — — — ––
1970 32085 32321 0.993 –0.007 — — — — — — ––
1971 32225 74115 0.435 –0.833 –0.420 2 –2.399 0.8 0.308 –0.689 yes
1972 28592 108855 0.263 –1.337 –0.726 3 –3.343 0.8 0.216 –0.976 yes
1973 19456 32085 0.606 –0.500 –0.669 4 –4.430 0.8 0.154 –1.225 yes
1974 18109 32225 0.562 –0.576 –0.651 5 –5.613 0.8 0.110 –1.453 yes
1975 15932 28592 0.557 –0.585 –0.766 5 –8.718 0.8 0.110 –1.453 yes
1976 26462 19456 1.360 0.308 –0.538 5 –4.252 0.8 0.110 –1.453 yes
1977 15028 18109 0.830 –0.186 –0.308 5 –5.160 0.8 0.110 –1.453 yes
1978 23669 15932 1.486 0.396 –0.129 5 –3.337 0.8 0.110 –1.453 yes
1979 2251 26462 0.085 –2.464 –0.506 5 –2.068 0.8 0.110 –1.453 yes
1980 84 15028 0.006 –5.187 –1.427 5 –1.859 0.8 0.110 –1.453 yes
1981 18297 23669 0.773 –0.257 –1.540 5 –2.041 0.8 0.110 –1.453 yes
1982 972 2251 0.432 –0.840 –1.671 5 –2.243 0.8 0.110 –1.453 yes
1983 1439 84 17.131 2.841 –1.182 5 –1.327 0.8 0.110 –1.453 no
1984 794 18297 0.043 –3.137 –1.316 5 –1.388 0.8 0.110 –1.453 no
1985 3633 972 3.738 1.318 –0.015 5 –0.579 0.8 0.110 –1.453 no
1986 2013 1439 1.399 0.336 0.104 5 –0.462 0.8 0.110 –1.453 no
1987 1761 794 2.218 0.797 0.431 5 –0.141 0.8 0.110 –1.453 no
1988 1386 3633 0.382 –0.964 –0.330 5 –1.129 0.8 0.110 –1.453 no
1989 480 2013 0.238 –1.434 0.011 5 –1.070 0.8 0.110 –1.453 no
1990 425 1761 0.241 –1.422 –0.537 5 –2.386 0.8 0.110 –1.453 yes
1991 134 1386 0.097 –2.336 –1.072 5 –3.173 0.8 0.110 –1.453 yes
1992 1122 480 2.338 0.849 –1.061 5 –3.096 0.8 0.110 –1.453 yes
1993 267 425 0.628 –0.465 –0.961 5 –2.832 0.8 0.110 –1.453 yes
1994 153 134 1.142 0.133 –0.648 5 –2.165 0.8 0.110 –1.453 yes
1995 1296 1122 1.155 0.144 –0.335 5 –1.670 0.8 0.110 –1.453 yes
1996 612 267 2.292 0.829 0.298 5 –1.101 0.8 0.110 –1.453 no
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the river for spawning at age 3 or age 4, and although 
approximately 90% of a brood’s spawning adults do so at 
age 3 (Fisher, 1994), this means that there is imperfect 
temporal isolation between runs in adjacent years. It is 
plausible that an environmental factor occurring in a par-
ticular spawning year could affect the returns in several 
future years, creating a lack of independence among obser-
vations. Such autocorrelation would decrease the effective 
sample size. Under this scenario, any test based on the 
nominal sample size (number of years of data) would have 
increased levels of both type-I and type-II errors (Lehm-
ann, 1986). Given the relatively low level of information 
available on this population, this consideration is second-
ary and can be evaluated more thoroughly as the data base 
increases. The current time series of {ri} values shows no 
signifi cant autocorrelation (P>0.05), which suggests that a 
lack of independence is most likely not a serious issue.

Choice of δ and π 

In any hypothesis test, one must specify the type-I and 
type-II error rates. The choice of these rates should refl ect 
the relative costs, as perceived by the investigator, of 
making these errors (Toft and Shea, 1983). When these 
costs can be specifi ed in advance, and in comparable terms, 
one can balance them explicitly through specifi cation of 
α and π (Mapstone, 1995). However, in the case of our 
proposed winter chinook salmon monitoring protocol, the 
cost of making a type-I error is unknown (no specifi c 
actions have yet been associated with a rejection of the 
null hypothesis), whereas type-II errors may be associated 
with extinction. We believe the appropriate course in this 
situation is to fi rst identify growth rates that lead to unac-
ceptably high probabilities of extinction, fi x the power π of 
detecting these growth rate levels at a suitably high level, 
and accept, within reasonable limits, the resulting type-I 
error rate α. Specifi cally, for the winter chinook salmon 
monitoring protocol, we have specifi ed an 80% chance of 
detecting growth rates that would lead to a ≥5% chance of 
quasi-extinction in 50 years, and accept the corresponding 
type-I error rate. We have selected these values because 
they are consistent with suggestions in the literature 
(reviewed briefl y below); resource managers should care-
fully consider whether they are appropriate.

Setting δ by way of ρ that leads to an unacceptable pre-
dicted extinction risk, as we have done, is natural in the 
current setting, but just what level of extinction risk should 
be of concern is debatable. Population viability models have 
been widely used in conservation biology to quantify extinc-
tion risk as a function of population size and the magni-
tude and variability of population growth rate (Beissinger 
and Westphal [1998] have provided a recent review). Shaf-
fer (1981), in pioneering work on minimum viable popu-
lations, has tentatively suggested that viable populations 
should have at least a 99% chance of remaining extant 
for 1000 years, but stated that specifi c probabilities and 
time horizons are arbitrary, and other values might be 
more appropriate. Indeed, other studies have used a vari-
ety of criteria: Botsford and Brittnacher (1998) used a 
0.10 extinction probability in 50 years to develop criteria 

for removing winter chinook salmon from the Endangered 
Species List; Shaffer and Samson (1985) used the criteria 
of a 0.05 extinction probability over 100 years to identify a 
minimum viable population size for grizzly bears. We have 
adopted the 0.05 probability of extinction over 50 years as 
a moderately conservative criterion.

Specifying the value of π is also somewhat arbitrary. 
Peterman and M’Gonigal (1992) contend that monitoring 
programs must have high power (π ≥0.8) to detect biologi-
cally important effects in order to be reliable. A reliable test 
should also have a reasonable α value as well as suffi cient 
power. In the proposed winter chinook salmon protocol, the 
α-level stabilizes at 0.11 after 5 years of data have been col-
lected, and we feel that this behavior represents a reason-
able balance between the type-I and type-II error rates.

Power analysis and the precautionary approach 

With the decline, collapse, or endangerment of numerous 
fi sh populations around the world, the paradigm of precau-
tionary fi shery management is receiving increasing atten-
tion. The “precautionary approach” to fi shery management, 
as developed by the Food and Agriculture Organization of 
the United Nations (FAO, 1996), strives to avoid irrevers-
ible or slowly reversible damage to fi sheries, places prior-
ity on conservation of productive capacity, and requires that 
fi shing activities be considered harmful unless proven oth-
erwise. The reauthorization of the U. S. Magnuson-Stevens 
Fishery Conservation and Management Act (as amended 
through October 11, 1996) is meant to ensure that “irrevers-
ible or long-term adverse effects on fi shery resources and 
the marine environment are avoided.”

Peterman and M’Gonigal (1992) have argued that power 
analysis is a fundamental part of precautionary manage-
ment, because it provides an estimate of the reliability of 
the monitoring program. There are four types of power 
analysis, which correspond to determining one of either n, 
π, α, or the effect size from the other three (Cohen, 1977). 
In environmental studies, the determination of n and π 
are fairly common (e.g. Gerrodette, 1987; Gryska et al., 
1997; Urquhart et al., 1998). The determination of α, as 
we have done here, is least common, in part owing to the 
“strength of the signifi cance criterion convention, which 
makes investigators loath to consider “large” values of α” 
(Cohen, 1977).

Type-II errors in fi sheries management are costly be-
cause populations and ecosystems can be slow to recover 
(Dayton, 1998). In endangered species management, the 
biggest risk is extinction of a species, rather than failure 
to meet some fi scal or harvest goal, and is truly irrevers-
ible. Fixing the type-I error rate at a typical value such as 
0.01 or 0.05 would make timely detection of dangerously 
low growth rates unlikely (Table 1; Peterman, 1990). Thus, 
we believe that using standard statistical protocols, which 
control for the type-I error rate and accept the resulting 
type-II error rate, is not an appropriate method when 
monitoring endangered species. In such situations, it is 
more logical, and certainly more precautionary, to set the 
type-II error rate at an acceptably small value that yields 
a reasonable type-I error rate.
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