EIDER BREEDING POPULATION SURVEY ARCTIC COASTAL PLAIN, ALASKA 2006

by:
William Larned ${ }^{1}$
Robert Stehn ${ }^{2}$
Robert Platte ${ }^{2}$

U.S. Fish and Wildlife Service
${ }^{1}$ Migratory Bird Management - Waterfowl Mgt. Branch, Soldotna
${ }^{2}$ Migratory Bird Management - Waterfowl Mgt. Branch, Anchorage December 13, 2006

EIDER BREEDING POPULATION SURVEY

 ARCTIC COASTAL PLAIN, ALASKA, 2006William W. Larned
U.S. Fish and Wildlife Service, Migratory Bird Management, Waterfowl Branch 43655 KBeach Rd., Soldotna, Alaska 99669
Robert Stehn, Robert Platte
U.S. Fish and Wildlife Service, Migratory Bird Management, Waterfowl Branch 1011 E. Tudor Rd., Anchorage, Alaska 99503.

Abstract

The North Slope Eider Survey has been conducted for 15 consecutive years, 1992 to 2006. Primary survey objectives include monitoring abundance, trends and distribution of spectacled eiders on the Arctic Coastal Plain of Alaska in accordance with recovery tasks B1.1 and B1.4 of the Spectacled Eider Recovery Plan (U. S. Fish and Wildlife Service 1996). Secondary objectives include providing similar information for other waterbirds breeding on the Coastal Plain. Survey techniques have remained constant, except for minor technological improvements in electronic data logging and transcribing. The survey pilot/port side observer was the same person for all years, while six different starboard observers participated during this period. In 1998 the survey area was split into 11 geographical strata based on habitat features and the boundaries of the National Petroleum Reserve of Alaska, northeast planning area. Data were re-analyzed for all years using the new stratification, which slightly reduced the variance of some estimates and facilitated area-wise comparisons. Spring arrived slightly early on the Arctic Coastal Plain in 2006. We completed the survey from 10 to 16 June, with 1 day lost due to fog. Sampling intensity was doubled within three strata in the Teshekpuk Lake region, for the third consecutive year, per request and funding by the Bureau of Land Management. The 2006 population index for spectacled eiders is 6,731 (SE 786), and the average annual growth rate ($0.997, \mathrm{n}=14 \mathrm{yrs}$) is not significantly different from $1.0(\alpha=0.10)$. The king eider index is 12,896 (SE 1,209), with an average annual growth rate of 1.017, which is significantly $>1.0(\alpha=0.10)$. Spatial distributions of spectacled and king eiders were similar to previous years. Other species with long-term significant positive growth rates are arctic tern, red-breasted merganser, greater scaup, white-winged scoter, snow goose, greater white-fronted goose, black brant, and tundra swan, while a significant negative rate is noted for red-throated loon and shorebirds. Long-term growth rates for other species have not indicated a significant departure from 1.0. However, breeding populations of northern pintails and long-tailed ducks warrant careful monitoring due to short-term downward trends consistent with other independent Alaskan indices. The survey will continue in 2007, modified to incorporate objectives of the "standard" waterfowl breeding population survey of the Alaska Arctic Coastal Plain.

Key Words: aerial, survey, Alaska, arctic, waterfowl, breeding, population, Somateria fischeri, spectacled eider, Somateria spectabilis, king eider,

INTRODUCTION

A comprehensive aerial waterfowl breeding population survey was initiated in the Arctic Coastal Plain (ACP) of Alaska in 1986, and has continued annually to the present time. That survey, however, conducted from late June through early July, is phenologically too late for an accurate assessment of eiders, the males of which typically begin to depart the breeding grounds for the post-nuptial molt by about 20 June. Accordingly, in anticipation of the listing of spectacled and Steller's eiders under the Endangered Species Act, a second, earlier survey was initiated in 1992 to obtain an accurate annual population index and distributional data for these two species. The latter survey has consistently provided useful data for spectacled eiders, king eiders, and several other species of waterfowl, but has proven inadequate in sampling intensity for Steller's eiders, which are present on the arctic coastal plain in very low densities. The survey has been conducted annually using essentially the same design since it's inception, though improvements in data collection technology and analysis have been added along the way. This report includes methods and results for the 2006 eider breeding population survey, and summaries for 19922006.

OBJECTIVES

Spectacled Eider Recovery Plan (U. S. Fish and Wildlife Service 1996) tasks related to the demographics of the spectacled eider North Slope breeding population are as follows:

B1.1. Determine the breeding range and relative abundance of spectacled eiders on the North

 Slope.This task is listed as completed as of 1996 by this and various other surveys conducted by agencies and industry.

B1.4. Monitor trends and generate breeding pair abundance estimates for the [North Slope] breeding population.

This task relates to the decision criteria for future de-listing or reclassifying from Threatened to Endangered. These criteria are based on population growth rate and the minimum abundance estimate, which is defined as "the greater of the lower end of the 95% confidence interval from the best available estimates, or the actual number of birds counted". It is generally known that aerial observers detect less than 100 percent of the birds within a sampled area, and naturally the recovery team would prefer to evaluate these criteria against estimates that have been adjusted for observer bias, rather than uncorrected indices, so they have requested that detection rate studies be conducted to determine these values (Task B1.4.1.2). In addition, with growing interest in mineral resource extraction and transportation on the North Slope, there is increasing demand for precise waterfowl distributional data for permitting and other decision making, particularly for listed species such as spectacled and Steller's eiders, and other species of concern.

Specific objectives:

1. Determine the population trend for spectacled eiders in light of recovery and reclassification criteria, including power analysis.
2. Estimate the abundance of spectacled eiders observable from the air.
3. Develop and implement a detection rate study to correct for birds present but not detected in the sample area by observers.
4. Describe the distribution of observed eiders within 500 meters of actual location, covering all known spectacled eider habitat on a rotational basis each 4 years using a systematic grid with less than 2 km between sampled strips. Use data to produce point location and density polygon maps describing location of observed eiders and areas with specified ranges of (multi-year mean) peak eider breeding density.
5. Collect, analyze and report similar data for all other ducks, geese, swans, cranes, loons, grebes, eagles, owls, ravens, gulls, terns, and jaegers within the spectacled eider survey area.

STUDY AREA AND METHODS

Aerial crew for 2005:

Pilot/port observer: William Larned, Migratory Bird Management, Soldotna, Alaska
Starboard observer: David Fronczak, Migratory Bird Management, Columbia, Missouri

Survey design, navigation, and observation
Survey techniques followed those described by Butler et al. (1995). Transects were oriented roughly east-west, and consisted of computer-generated segments of great-circle routes, for compatibility with Global Positioning System (GPS) navigation. The lines, along with end-point coordinates, distance figures and segment end indicators, were machine-plotted on 1:250,000 scale U.S. Geological Survey topographic maps, which were used in conjunction with GPS for navigation. Transects were spaced systematically from a randomly-selected starting point, at intervals of 2.3 km . Every fourth transect was flown on a given year, with the sampling frame shifted incrementally each year, requiring 4 years for coverage of all transects. Thus transects flown in 2006 were duplicates of those flown in 2002. However, the GIS base map for the survey area boundary was redrawn in 1998, and the survey lines for that year approximated but did not precisely duplicate those of prior years. The annual incremental frame shift was then resumed based on the new coverage. In 1998 we also split the survey area into 11 geographical strata, based on a habitat classification map developed by Ducks Unlimited, and the boundaries of the National Petroleum Reserve of Alaska (NPRA) Northeast Planning Area (Fig. 1). All results presented in this report, including those from previous years, were calculated using this stratification, so slight differences may be seen when comparing data herein with corresponding figures from earlier reports. Advantages of this stratification system are that it decreased the variance for estimates of eiders and most other waterbirds, and it facilitated comparisons among
geographic areas within both the Eider Survey area and the area of the Standard ACP Breeding Population Survey (the strata for this survey are a subset of those for the ACP Survey (Fig. 1)). Survey transects flown in 2006 are depicted in Fig. 2. On request from, and using funds provided by, the Bureau of Land Management, we added survey lines midway between the planned transects for strata 9, 15, and 16 (Fig. 1, 2), which doubled the sampling intensity in those areas. The objective was to improve the density estimates and provide more distributional detail within the current focal area for oil and gas leasing. Flight hours required to complete the survey in 2006 totaled 34.7 hours on transects (Table 1), plus 2.0 hours for reconnaissance. These hours did not include ferry time to and from the survey area. This year the aerial crew consisted of Bill Larned (Pilot/port observer) and David Fronczak (starboard observer).

We used a Cessna 206 amphibian for all years of this survey. Navigation equipment included a GPS, a radar altimeter, and a Horizontal Situation Indicator (HSI) slaved to a remote compass, with integrated GPS course deviation indicator. We flew along the transect center lines at 38 m altitude and 176 " $19 \mathrm{km@r}{ }^{-1}$ ground speed, while both the pilot and the right-hand observer recorded all water birds, avian predators and shorebirds observed within 200 m either side of the flight path. Observers used tape markers placed on the aircraft lift struts to aid in estimating the outer transect (strip) boundaries. The viewing angle was determined trigonometrically and strut markers were placed using a clinometer. We actively minimized observations in the "unknown eider" category by leaving the transect centerline when necessary to confirm identification of eiders. Additional birds seen on these departures were not included in the data set, and such deviations typically occur <10 times per annual survey.

Data recording and transcription

Beginning in 1997 a new data acquisition system was used, in which observations were entered vocally into a microphone connected to a laptop computer. The computer also received GPS position data concurrently via a serial connection from the panel-mounted GPS receiver. These two inputs resulted in a sound file (.wav format) with a linked .pos file containing location, date and time. To create a final data file, the observer played back the sound file on the computer and entered the species name and group size for each observation, using a custom transcribing program. The transcription program produced an ASCII text file, each line of which contained a species code, group size, geographic coordinates, date, time, observer code, observer position in aircraft, stratum and transect identifier. Additionally, the system created a track file which is a list of geographic coordinates for the aircraft recorded every five seconds during flight. A separate computer was used by each observer, and each computer was connected to the GPS and supplied with power via a 28 -volt DC to 110 -volt AC inverter connected to the aircraft's electrical system. The software used for this system was developed by John I. Hodges, U.S. Fish and Wildlife Service, Migratory Bird Management, 3000 Vintage Blvd., Suite 240, Juneau, AK 99801-7100. The resultant observation data files may be used to produce map, tabular and other products describing population trends and distribution of the various taxa surveyed.

Data Analysis and survey timing

Waterfowl observation data were treated according to protocol described for the standard North American Waterfowl Breeding Population Surveys (U.S. Fish and Wildlife Service and Canadian Wildlife Service 1987). That is, for all ducks except greater scaup, the indicated total population index is calculated as twice the number of males observed as singles, in pairs, and in groups of males up to four, plus birds in flocks of 5 or more regardless of sex composition. In

2002 we began doubling single dark geese (white-fronted geese, Canada geese and black brant), to account for assumed undetected mates on nests, which is a departure from that protocol. Historical data were changed accordingly for multi-year analysis. For scaup (which are known to have sex ratios strongly skewed toward males) and all other surveyed species not mentioned above, singles were not doubled and population indices were based on total birds observed.

We attempted to provide an index to the number of individuals of each waterfowl species and other selected bird species that are present within the study area. The term index as used here is defined as a number that represents an unknown proportion of the population of birds occupying the survey area during the nesting season and detected by the observers, based on adult males for eiders and other sexually dimorphic species, and on individuals seen for monomorphics. While unknown, the proportion is assumed to be constant among years, and the index is used to help track population changes through time. Indices are typically subject to biases associated with data collection. Bias in this survey comes primarily from three sources: sampling error due to the nonrandom spatial distribution of birds within the sampled area, timing of the survey relative to bird breeding phenology, and variations in detection of birds within the sample. Sampling error is addressed using ratio estimate procedures described by Cochran (1977), and the calculated variance is used to produce 95% confidence intervals for the population estimates. Survey timing is designed to coincide with the presence of spectacled and king eider males, which are normally present on the breeding grounds only from arrival until shortly after nest initiation, when they move offshore for the postnuptial molt (Kistchinski and Flint 1974, Lamothe in Johnson and Herter 1989, for spectacled and king eider, respectively). Variations in timing of arrival and departure between individual spectacled eider males on a study area in the Prudhoe Bay vicinity suggest that there may be few, if any, days when all breeding males are present in the survey area at the same time, especially in years of early spring melt (Troy 1997). Median nest initiation dates for Spectacled eiders at Prudhoe Bay from 1993 to 1996 varied from 7 to 16 June (average 1982-96 = 15 June), and telemetry data suggest that male departure begins within about 3 days of that date, and is more synchronized in the years when it commences later (Troy 1997). Most males depart the tundra for offshore molting areas by 20 to 25 June. Comparable data are not available from other parts of the Arctic Slope, but our aerial observations from this survey since 1992 suggest consistency within about 1 week among areas and years. King eider phenology is similar, but the period of male presence is normally more protracted and possibly less synchronous than that of spectacled eiders, perhaps because king eiders utilize a greater diversity of wetland types which thaw at different times, and because king eiders breeding on the Arctic Slope are widely distributed during the winter, and timing of spring migration would likely vary somewhat among wintering populations (Lynn Dickson, Canadian Wildlife Service, pers. comm.). In general in the high arctic, king eiders begin to nest in the last half of June, about 2-3 weeks after arrival (Bellrose 1980). Daily counts of male king eiders on a Study area immediately southeast of Teshekpuk Lake in 2002 indicated a stable presence from June 8 to 16, with rapid departure of most males on 18 June (Abby Powell, University of Alaska, Fairbanks, pers. comm.). On 18 June a brief spike in the number of males present suggested a transient group of departing males moving through the study area. An earlier study in Canada found males departing from Bathurst Island, N.W.T. rather abruptly and synchronously from one week to 10 days after clutch initiation (Lamothe 1973). For our survey we assumed that proper timing for spectacled eiders is adequate for king eiders as well.

Our procedure for determining proper survey timing consisted of the following: 1. We monitored weather, and ice and snow cover data, planning to arrive in the survey area when ponds and tundra vegetation were just becoming available to nesting eiders over most of the arctic slope. 2. We contacted biologists in Prudhoe Bay and Barrow for their observations on eider phenology. 3. We flew reconnaissance surveys to determine the distribution of spectacled eider pairs. We initiated the survey when most eider pairs appeared to be occupying breeding territories, rather than in mixed-sex/species flocks. Our observations from past years on this survey suggest this behavior normally occurs as soon as there is extensive open water in most shallow vegetated wetlands and tundra vegetation is mostly snow-free around pond margins.
We have used two methods to determine retrospectively the appropriateness of the timing of our survey. Beginning in 1997 we used a ratio of lone drakes (males unaccompanied by females) to total males (with and without females), averaged over the entire survey sample as an index for spectacled and king eiders, to help compare survey timing among years for these primary target species (Larned and Balogh 1997). The assumption inherent in this index is that the proportion of lone or grouped males in the surveyed population will increase as the season progresses because males remain visible on breeding ponds, as females spend more time with nesting activities. This index is clearly easier to interpret for most dabbling ducks, which often remain on the breeding grounds after nest initiation to molt in local wetlands, while eider males normally depart the breeding grounds for distant marine molting habitats immediately after nest initiation, rendering them unavailable for observation. Hence, it is expected that the ratio will reach a peak at or slightly beyond the peak of nest initiation, followed by an abrupt drop as males depart the survey area while females are still visible especially during recesses from laying and incubation. This pattern has been observed in the Prudhoe Bay area (Warnock and Troy 1992). Above-noted shortcomings notwithstanding, we consider the average lone drake ratio for the survey period and a plot of daily totals of this ratio helpful when considered in concert with other indicators of phenology, especially in determining the beginning of the survey window.

For the second method, primarily because we had no consistent ground-based sources of phenology data in the western portion of the coastal plain, in 1999 we selected a $97.4 \mathrm{~km}^{2}$ irregular polygon plot located within the high density spectacled and king eider habitat about 10km northwest of Atqasuk, to use as a reference for waterfowl phenology. From 1999 through 2003 we surveyed this polygon as often during the survey period as practicable, collecting bird data as in the operational survey. Data consisting of daily counts of total birds and relative numbers of singles, pairs and flocked birds enabled us to evaluate our survey timing in relation to apparent breeding phenology. We did not use these data to adjust our survey data in any way to compensate for errors resulting from inappropriate survey timing. Due to funding constraints, weather delays and concerns that the additional workload of the phenology plot would result in our not completing the operational survey before male departure, we did not use this method in 2004 or 2005, and completed only one replicate in 2006 (10 June). We hope to be able to resume it in the future.

We have made little progress in addressing the detection rate objective. The survey is assumed to track the population of birds that visits the survey area during the breeding season. Of this total, some birds will not be represented in the sample because: 1 . They have not yet arrived in the survey area; 2 . They have left the survey area; 3 . They have flushed from the sample transect
before detection, due to disturbance by the survey aircraft; 4. They are not visible from the aircraft (hidden by vegetation, terrain, aircraft fuselage etc.); 5. They are misidentified; 6. Observers fail to see them due to any of several variables of detection bias, such as fatigue, experience level, visual acuity differences, distractions, sunlight conditions, presence or absence of snow and ice, cryptic bird behavior, and work load (density of other birds or objects competing for the observer's attention). As previously mentioned, we have attempted to minimize the effects of numbers 1 and 2 by proper survey timing. Aerial survey crews working in other areas have attempted to compensate for the net effect of all the other variables by ground-truthing a sub-sample using ground or helicopter crews (US Fish and Wildlife Service and Canadian Wildlife Service 1987), and using those data to calculate visibility ratios to adjust operational survey data. During the 2001 survey we conducted a fixed-wing/helicopter detection study covering a $270 \mathrm{~km}^{2}$ subset of our operational transects. The results of this study were not satisfactory in that our fixed-wing count often exceeded the helicopter count, suggesting a serious flaw in design or implementation. Therefore we default to an unadjusted annual index to abundance, for which we strive diligently to minimize observer changes and standardize techniques, thereby minimizing the effects of observer bias.

RESULTS AND CONCLUSIONS

The survey was flown during the period 10-16 June, with all planned transects completed (Table 1). The crew was grounded in Barrow all day on 15 June due to fog.

Habitat conditions and survey timing

Spring breakup at our 9 June arrival in Deadhorse appeared slightly ahead of normal, based on our reconnaissance flight in the area between the Colville River and Deadhorse. Most of the snow was gone from the tundra, shallow wetlands were substantially thawed, and most large deeper lakes had at least narrow thawed margins. Other investigators working in the central arctic coastal plain area concurred with this assessment (B. Anderson, ABR, pers. comm.). Some species (e.g. greater white-fronted geese) in the Colville River Delta area were seen nesting earlier than normal (R. Johnson, ABR, pers. comm.). We found similar conditions during our first survey flight to the southwestern portion of the survey area near Atqasuk on 10 June, and waterfowl and loon distributions seemed normal for appropriate survey initiation. All portions of the arctic slope seemed normal for birds and habitat conditions, except that water levels between Wainwright and Atqasuk were a little higher than usual for this time period.
The overall ratio of lone males to total males during the survey, a rough measure of survey timing in relation to nest initiation, was average for both king and spectacled eiders (Table 2), which is consistent with our impression of a well-timed survey. The daily trend in this measure showed a gentle upward slope in the mid-range for both eider species (Figure 3), suggesting a relatively protracted period of male presence, consistent with an appropriately-timed survey. If the early days of the survey had shown few or no lone males (ratio close to 0.0), or if there was a high ratio during the survey followed by an abrupt drop, we would have suspected the survey was timed too early (some males not arrived yet) or too late (large numbers of males had departed for the postnuptial molt), respectively. The graphs for pintails and long-tailed ducks appear consistent with a well-timed survey (Fig. 3).

Population estimates and breeding distribution for selected species
Table 3 presents totals for sample data (singles, pairs and flocked birds in the sample), as well as indices calculated from these data, for 2006. Table 4 presents long-term population trend slopes, growth rates, and the power of the survey to detect trends, expressed as the minimum number of years required to detect a growth rate equivalent to a growth or decline of 50 percent in 20 years. Figures 4-25 include stacked bar graphs, tables and maps describing the size, composition, and spatial distribution of eiders and other waterbirds included in the survey. We report annual sample composition (singles, pairs, flocked birds), annual population indices with 95 percent confidence limits based on within-year sampling error among transects as stratified by 11 physiographic regions, and average annual growth rate as determined by log-linear regression. Growth rates are given both for the full 14-15 years of data (depending on species) and for the most recent 7 years. Annual indices and other values are shown for singles, pairs, birds in flocks, and total indicated birds. Please note that only bias resulting from spatial sampling error is accounted for in these calculations, as other sources (e.g. observer effect, survey timing) are unmeasured in this survey. This year rather than producing maps depicting the current year's observations we include maps comparing polygons of average breeding densities calculated from two time periods: 1993-1999 and 2000-2006, for selected species. Annual data sets used in construction of these maps did not include observations from the additional transects in the Teshekpuk Lake area funded by BLM. Following are comments by species.

Loons

The Yellow-billed loon index was unchanged from 2005, and slightly above the long-term mean, continuing its erratic pattern and slight, non-significant upward trend (Fig.4). Distribution was similar among the two time periods, but seems to have increased in the most recent period in an area immediately southeast of Teshekpuk Lake (Fig. 5). The Pacific loon index (Fig. 6) was slightly below average. The long-term trend is level, but that of the most recent 7 years is significantly downward at 0.964 (0.944-0.984). The Pacific loon distribution is similar among the two time periods (Fig. 7). The 2005 red-throated loon index was the lowest on record, remaining well below average, with a significantly negative long-term growth rate of 0.934 (0.905-0.965), and a growth rate of 0.902 ($0.854-0.953$) for the most recent 7 years (Fig. 8). Distribution of the densest breeding concentrations of red throated loons appears to have changed among early and late time periods, as the population declined (Fig. 9).

Jaegers

Jaeger species are combined for this survey to help prevent distraction of observer focus from eiders and other higher priority species. The jaeger index fluctuates widely following prey abundance (primarily North American brown lemming, Lemmus trimucronatus). Lemming populations spiked this year across much of the arctic coastal plain, and Jaegers responded with the highest index $(9,412$, Fig. 10) since the survey's inception in 1992. Our subjective impression from aerial and ground observations suggested that pomerine jaegers contributed most of this increase. The extremely variable annual index does not indicate a significant trend in either short or long term (Fig. 10).

Gulls \& terns

Discounting birds in flocks, which can vary widely if the year's transects happen to cross large breeding colonies or transient flocks, the glaucous gull index has remained level and stable in both short and long terms (Fig. 11). This year saw the highest index yet for combined singles
and pairs for this survey. Distribution is fairly similar among time periods, but apparent differences may be partly artifacts of the clumped distribution of colonies, and the opportunistic behavior of scavengers/predators (Fig. 12). Sabine's gull annual indices have been erratic, though level in the long term (Fig. 13). The trend for the Arctic tern index increased steadily through 2000, but has declined significantly over the most recent 7 years (Fig. 14). The 2006 index $(10,350)$ is very close to the long-term average (Fig. 14). The relative distribution appears similar among the two time periods, but increased densities in most of the dense breeding concentrations suggest expansion in place over time (Fig. 15).

Eiders

The spectacled eider index of 6,731 is below both last year's index of 7,821 and the long-term average of 6,903 (Fig. 16). The 14-year trend remains essentially level, but that of the last 7 years shows a slight insignificant increase (growth rate 1.016, Fig. 16). The gross distribution patterns of the two time periods appear similar, but note the apparent increase in density in the Teshekpuk Lake to Cape Halkett area (Fig. 17). The King eider index of 12,896 is below the long-term average $(13,070)$, and is below the barely-significant positive trend line (growth rate 1.017, Fig. 18). The distribution depicted in Fig. 19 is similar between the two time periods, but increased densities are evident in the more recent period, especially in the core breeding area southeast of Teshekpuk Lake. The difference in distributions between spectacled and king eider distributions is striking, particularly in the central portion of the survey area. Common eiders nest primarily on barrier islands and other coastal habitats, which are not adequately sampled by this survey. A special coastal survey is conducted for this species, by C. Dau and others (Dau and Larned 2006). There are so few Steller's eiders detected during this survey that it is of little value for detecting a useful trend. This year was a "breeding year" in the Barrow area, with several nests and broods observed by ground observers (N. Rojek, USFWS, pers. comm.., R. Richie, ABR, pers. comm.), and our index of 300 was above the long-term mean of 166 (Fig. 20). We observed 4 single males and 3 pairs in our sample this year (Table 3).

Other ducks

Other duck species that occur on the Arctic Coastal Plain in significant numbers are red-breasted merganser, northern pintail, greater scaup, and long-tailed duck. The 2006 red-breasted merganser index is well below that of 2005 (518, 942 respectively), but the long term trend has a significant positive slope (growth rate 1.123, Fig. 21). Mergansers are widely scattered in the central coastal plain, mostly well inland from the coast. Though relatively abundant on the Arctic Coastal Plain, pintail production is low, and the area is thought to be most important for molting males from other parts of the breeding range and as a reservoir for drought-displaced prairie birds (Derksen and Eldridge 1980). Though this survey is timed early relative to breakup and nesting cover availability, we normally record a low percentage of paired pintails (Fig. 23), which is consistent with the molting area hypothesis. Our 2006 index $(29,153)$ was the second of two consecutive years that were well below the long-term average of 49,577, though the 0.980 population growth rate is not significantly less than 1.0 at $\mathrm{p}=0.10$ (Fig. 23). The distribution of pintail concentrations is very similar among the two time periods, though densities appear to be lower in the most recent period, especially in the area north and east of Teshekpuk Lake (Fig. $24)$. The 2006 greater scaup index $(6,739)$ was the second highest for the 15 years since the survey began, and well above the mean and the significantly positive trend line (growth rate 1.052, Fig. 25). Note that flocked birds made up an unusually high proportion of the total observed scaup during the three years $(2002,2005,2006)$ with the highest population indices,
suggesting an early influx of molting birds, possibly failed breeders (Fig. 25). While the gross distribution pattern for scaup is similar between the two time periods, it appears that breeding densities have increased substantially in the central portion of the arctic slope, especially in the Fish Creek and Colville River drainages (Fig. 26). The 2006 long-tailed duck index $(27,418)$ is unchanged from 2005, slightly below the 15-year average $(31,115)$, and lies on the insignificantly negative trend line (growth rate 0.982, Fig. 27). This trend agrees closely with that derived from data from the late June Arctic Coastal Plain standard breeding population survey (Mallek et al. 2005), so we recommend close monitoring of the status of this species. The distribution of this species appears relatively consistent since 1993 (Fig. 28).
Mallard, American wigeon (Fig. 22), Am. Green-winged teal, shoveler, and black scoter occur at very low densities on the arctic coastal plain (Table 4), hence the Arctic Coastal Plain of Alaska is not considered important for continental or flyway populations of these species at this time. Most observations of White-winged scoters across all years have been recorded in the southern portion of stratum 8, southeast of Teshekpuk Lake (Fig. 1). Though erratic in the early years of the survey, white-winged scoter indices indicate a positive growth rate, which is significant in both 7 and 15-year time scales (Fig. 29).

Geese and swans

The 2006 greater white-fronted goose index $(111,468)$ is the highest so far recorded during this survey, and 47 percent above the long-term mean. The "pairs" component comprises most of the increase this year (Fig. 30). The average growth rate for this species (1.030) indicates a significant increasing trend (Fig. 30). The erratic nature of the annual index is driven mostly by the variable flocked bird component, which is likely to be more sensitive to survey timing than are singles and pairs. The density polygon maps reflect the overall increase in densities through time, but show finer scale inconsistency. Most of the survey area east of Wainwright increased in density, while the southwestern portion decreased. This survey does not adequately sample snow geese, which occur mainly in isolated breeding colonies, though our data for the species shows a long-term trend significantly greater than 1.0 (Table 4), which is consistent with the findings of Ritchie et al., ABR Inc. (2002) who conduct annual surveys of snow goose and black brant colonies for the North Slope Borough. Black brant are also primarily colonial nesters on the North Slope, so trends are difficult to detect using our systematic transect survey design. Our data suggest a significant positive growth rate over the survey's 15 -year history and the most recent 7 years (Fig. 32), but we suspect this may be adventitious, as much of our annual brant sample consists of a variable component of non-breeders or failed breeders from western Alaska (Ritchie et al. 2002), hence the high proportion of flocked birds in our sample most years (Fig. 32). Ritchie et al. (2002) did not detect a significant upward trend in breeding black brant on the North Slope, and Mallek et al. (2005) could not detect a trend due to high sampling error. Canada geese are clustered on the North Slope, and most that we see are in large flocks and therefore likely early failed breeders or non-breeders from other breeding areas. Most observations are near the coast east of Dease Inlet, especially north of Teshekpuk Lake. The 2006 index of 5,340 is below the long-term mean $(7,394)$ and both long-term and 7-year trend lines, which are essentially level (Fig. 33). The 2006 tundra swan index $(7,600)$ was slightly above the long-term mean and on the trend line, which shows a slight but significant positive slope (Growth rate 1.023, Fig. 34). Our temporal distribution comparison suggests a very consistent pattern of nesting distribution.

Raptors, Ravens, other birds

Owl populations are extremely variable on the North Slope, following primarily the lemming cycles. This year brown lemmings were in widespread abundance (pers. comm. numerous Alaska Natives and biologists, personal observations), and so were owls. The Short-eared owl index was the third highest since 1992, while that of the snowy owl was second highest (Fig. 36). Most of the snowy owl observations were west of the Colville River and within 30km of the coast. Despite concerns about raven populations expanding on the North Slope in response to increased anthropogenic nesting habitat (buildings and other artificial structures) and year-round food sources (garbage), we have not detected a positive growth rate from our small sample (Fig. 37). However, the likelihood of our detecting ravens among industrial and residential facilities is low, as they normally spend a large part of their time on or near such structures, which we intentionally avoid during our surveys due to regulatory and safety considerations. In addition we expect detection of dark birds associated with structures would be poor. We see very few sandhill cranes during this survey (2006 index $=75,1992-2006$ mean $=124$). The long-term growth rate (1.056) is not significantly greater than 1.0 at $\mathrm{P}=0.10$ (Table 4). We have recorded shorebirds during this survey beginning in 1997, largely as a measure of timing of arrival on the breeding grounds, and large-scale distribution. Some shorebird species are difficult to distinguish on aerial surveys, and of low priority for this survey. Accordingly, prior to this year we split them into 2 categories: "small"(Charadrius spp., Pluvialis spp., Calidris spp., Arenaria spp.) and "large" (Numenius spp., Limosa spp.). This year, in recognition of inconsistencies among observers in this classification, we pooled all shorebird observations. The shorebird index growth rate (0.959) is significantly less than 1.0 (Table 4, Fig. 38).

RECOMMENDATIONS

Work is underway to redesign this survey for the 2007 field season to incorporate the objectives of the "standard" waterfowl breeding population survey of the Alaska Arctic Coastal Plain (Mallek et al. 2005), and eliminate the latter survey. This will include expansion of the survey area, some changes in stratification and sampling intensity, but survey timing protocol for core eider habitats will remain unchanged from the current eider survey.

ACKNOWLEDGMENTS

The authors would like to thank Dave Fronczak for the excellent job during his first season as observer on this survey, and his supervisor, Ken Gamble, for generously supporting Dave's participation. Special thanks to the Bureau of Land Management for supporting the additional aerial coverage in the Teshekpuk Lake region.

LITERATURE CITED

Bellrose, F. C. 1980. Ducks, geese and swans of North America. Third edition. Stackpole Books, Harrisburg, Pennsylvania. 540p.

Butler, W. I. Jr., J. I. Hodges, and R. A. Stehn. 1995. Locating waterfowl on aerial surveys. Wildl. Soc. Bull. 23(2):148-154.

Cochran, W. G. 1977. Sampling techniques. Third edition. John Wiley and Sons, Inc., New York, N.Y. 428p.

Dau, C. P. and W. W. Larned. 2006. Aerial population survey of common eiders and other waterbirds in near shore waters and along barrier islands of the Arctic Coastal Plain of Alaska, 24-27 June 2006. Unpubl. Rept., U. S. Fish and Wildlife Service. 20p.

Derksen, D. V., and W. D. Eldridge. 1980. Drought-displacement of pintails to the Arctic Coastal Plain, Alaska. J. Wildl. Manage. 44(1):224-229.

Johnson, S. R., and D. R. Herter. 1989. The birds of the Beaufort Sea. BP Exploration (Alaska) Inc. Anchorage, Alaska. 372p.

Kistchinski, A. A., and V. E. Flint. 1974. On the biology of the spectacled eider. Wildfowl 25:5-15.

Lamothe, P. 1973. Biology of king eider Somateria spectabilis in a fresh water breeding area on Bathurst Island, N. W. T. M. Sc. Thesis. U. of Alberta. Edmonton. 125p.

Larned, W. W., and G. R. Balogh. 1997. Eider breeding population survey, arctic coastal plain, Alaska, 1992-96. Unpubl. rept., U.S. Fish and Wildlife Service, Migratory Bird Management, Anchorage, Alas. 51p.

Larned, W. W., R. A. Stehn, and R. M. Platte. 2001. Eider breeding population survey, arctic coastal plain, Alaska, 1999-2000. Unpubl. rept., U.S. Fish and Wildlife Service, Migratory Bird Management, Anchorage, Alas. 60p.

Mallek, E. J., R. M. Platte and R. A. Stehn. 2005. Aerial breeding pair surveys of the Arctic Coastal Plain of Alaska - 2004. Unpubl. rept., U.S. Fish and Wildlife Service, Migratory Bird Management, Fairbanks, Alas. 25p.

Ritchie, R. J., P. Lovely and M. J. Knoche. 2002. Aerial surveys for nesting and brood rearing brant and snow geese, Barrow to Fish Creek Delta and slow goose banding near the Ikpikpuk River Delta, Alaska, 2001. Unpubl. rept. submitted to North Slope Borough Department of Wildlife Management, Barrow, Alas. 31p.

Troy, D. 1997. Distribution and abundance of spectacled eiders in the vicinity of Prudhoe Bay, Alaska: 1996 Status Report. Unpubl. Rep. for BP Exploration, Troy Ecological Res. Assoc., Anchorage, Alas. 11p.
U. S. Fish and Wildlife Service. 1996. Spectacled eider recovery plan. Anchorage, Alas. 157p.
U. S. Fish and Wildlife Service, and Canadian Wildlife Service. 1987. Standard Operating procedures for aerial waterfowl breeding ground population and habitat surveys. Unpubl. Manual, U. S. Fish and Wildl. Serv., Migratory Bird Management, Washington, D. C. 98p.

Warnock, N. D., and D. M. Troy. 1992. Distribution and abundance of spectacled eiders at Prudhoe Bay, Alaska: 1991. BP Exploration (Alaska) Inc., Anchorage, Alaska. 11p.

Table 1. Survey design, North Slope Eider Survey, 1992-2006.

	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Recon. Dates (June)	NA	8	10-12	8	6	5-10	6	8	11	9-10	8	8	9	9-10	9
Survey Dates (June)	20-29	9-18	12-19	9-18	7-17	11-20	6-15	11-17	11-18	11-17	9-14	9-18	11-17	10-19	10-16
Total transect length (km)	2784	3146	3193	3248	3199	3232	3527	3478	2905	3200	3145	3160	3343	3590	3321
Sample area (km^{2})	1113	1253	1277	1300	1279	1292	1410	1391	1162	1280	1258	1264	1337	1436	1329
Survey area (km^{2})	30755	30755	30755	30755	30755	30755	30755	30755	30755	30755	30755	30755	30755	30755	30755
Sample \% of survey area	3.6	4.1	4.2	4.2	4.2	4.2	4.6	4.5	3.8	4.2	4.1	4.1	4.3	4.7	4.3
Pilot/observer ${ }^{1}$	WL														
Starboard observer ${ }^{2}$	GB	GB	GB	GB	GB	TT	TT	TT	JF	JF	AB	AB	AB	TM	DF
Survey flight hours	40.2	50.5	50.3	54.5	53.1	50.2	49.0	51.5	41.7	33.8	38.1	37.0	34.1	34.7	33.7

Table 2. Ratio of total lone males to total males (lone males plus males in pairs) in the sample for king eider and spectacled eider, 1992-2006 North Slope Eider Survey, Alaska. We suggest that higher numbers indicate more advanced breeding chronology relative to survey timing. Data from 1992 are not included in long-term average calculations due to known late survey timing that year.

	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	20061993-2006 Avg.	
King eider	0.54	0.21	0.31	0.33	0.58	0.27	0.48	0.25	0.32	0.14	0.34	0.38	0.41	0.28	0.34	0.33
Spectacled eider	0.52	0.52	0.44	0.42	0.55	0.53	0.56	0.29	0.55	0.37	0.53	0.59	0.53	0.42	0.48	0.48

Table 3. Combined observations of birds by pilot and right-hand observer on aerial survey transects sampling tundra habitats, Arctic Coastal Plain, Alaska, June, 2006 with observable indicated population indices calculated from these data. Expanded coverage in the Teshekpuk Lake area is included.

Species	Single	pair	Grouped birds	Indicated Total	Density birds@km-2	Index	Std. Error	\%CV
Yellow-billed loon	15	19	0	53^{1}	0.041	1,268	372	29
Pacific loon	166	284	16	$750{ }^{1}$	0.566	17,393	1,528	9
Red-throated loon	18	19	0	56^{1}	0.038	1,176	227	19
Jaeger spp.	346	49	6	$450{ }^{1}$	0.306	9,412	574	6
Glaucous gull	245	128	146	647^{1}	0.487	14,983	2,041	14
Sabine's gull	114	80	119	$393{ }^{1}$	0.295	9,063	1,530	17
Arctic tern	164	125	21	435^{1}	0.337	10,350	875	9
Red-breasted merganser	4	7	0	22^{2}	0.017	518	162	31
Mallard	2	0	0	4^{2}	0.003	103	67	65
American wigeon	3	4	6	20^{2}	0.015	457	281	62
Am. green-winged teal	0	4	0	8^{2}	0.007	200	97	48
Northern pintail	460	55	359	1,389 ${ }^{2}$	0.948	29,153	2,164	7
Northern shoveler	0	1	0	2^{2}	0.002	50	53	106
Greater scaup	46	62	100	$270{ }^{1}$	0.219	6,739	1,546	23
Long-tailed duck	255	299	40	1,148 ${ }^{2}$	0.891	27,418	2,069	8
Spectacled eider	76	82	0	316^{2}	0.219	6,731	786	12
Common eider	3	8	0	22^{2}	0.019	583	414	71
King eider	100	188	0	$576{ }^{2}$	0.419	12,896	1,209	9
Steller's eider	4	3	0	14^{2}	0.01	300	141	47
Black scoter	2	0	0	4^{2}	0.003	107	63	59
White-winged scoter	1	5	0	12^{2}	0.014	427	318	75
Snow goose	3	3	8	17^{1}	0.043	270	105	39
Gr. white-fronted goose	288	1,222	2,287	5,307 ${ }^{2}$	3.624	111,468	9,990	9
Canada goose	15	39	189	$297{ }^{2}$	0.174	5,340	1,062	20
Black brant	66	114	193	$553{ }^{2}$	0.334	10,276	2,169	21
Tundra swan	136	91	17	$335{ }^{1}$	0.247	7,600	671	9
Sandhill crane	1	1	0	3^{1}	0.043	62	48	77
Unid. shorebird ${ }^{3}$	475	419	625	2,413 ${ }^{2}$	1.299	39,938	3,669	9
Common raven	2	0	0	2^{1}	0.001	38	26	70
Short-eared owl	5	0	0	5^{1}	0.005	166	56	34
Snowy owl	92	6	0	$104{ }^{1}$	0.073	2,256	259	12

1. singles+(2*pairs)+flocked birds 2. 2*(singles+pairs)+flocked birds 3. Charadrius sp., Pluvialis spp., Calidris spp., Arenaria sp. Numenius sp., Limosa sp., Limnodromus sp. et a.l

Table 4. Average population indices, population growth rates and years to detect a population trend equivalent to a 50 percent growth or decline in 20 years, for observations of selected bird species in early to mid-June 1992-2006 sampling North Slope wetlands, Alaska. Variance estimates used were based on within-year sampling error among transects as stratified by 11 physiographic regions. Significant growth rates are in bold font.

Species	Measure ${ }^{1}$	Years	n years	Mean pop. index	Log-linear slope	Mean pop. growth rate	Mean pop. growth rate 90\% CI	Avg. sampling error coef. of variation	Years to detect a slope of 0.0341
Yellow-billed loon	$\mathrm{S}+2 * \mathrm{Pr}+\mathrm{FL}$	1992-2006	15	1,102	0.010	1.010	0.989-1.032	0.22	14
Pacific loon	$\mathrm{S}+2 * \mathrm{Pr}+\mathrm{FL}$	1992-2006	15	20,643	-0.001	0.999	0.981-1.018	0.07	7
Red-throated loon	$\mathrm{S}+2 * \mathrm{Pr}+\mathrm{FL}$	1992-2006	15	2,558	-0.068	0.934	0.905-0.965	0.16	12
Jaeger spp.	$\mathrm{S}+2 * \mathrm{Pr}+\mathrm{FL}$	1992-2006	15	4,146	0.004	1.004	0.956-1.053	0.11	9
Glaucous gull	$\mathrm{S}+2 * \mathrm{Pr}+\mathrm{FL}$	1992-2006	15	11,870	0.005	1.005	0.980-1.030	0.14	11
Sabine's gull	$\mathrm{S}+2 * \mathrm{Pr}+\mathrm{FL}$	1992-2006	15	6,745	0.007	1.007	0.975-1.040	0.14	11
Arctic tern	$\mathrm{S}+2 * \mathrm{Pr}+\mathrm{FL}$	1992-2006	15	10,321	0.039	1.040	1.023-1.057	0.11	9
Red-breasted merganser	$2 *(\mathrm{~S}+\mathrm{Pr})+\mathrm{Fl}$	1992-2006	15	440	0.116	1.123	1.058-1.191	0.43	23
Mallard	$2 *(S+\mathrm{Pr})+\mathrm{Fl}$	1992-2006	15	209	-0.100	0.905	0.809-1.012	0.58	28
American wigeon	$2 *(\mathrm{~S}+\mathrm{Pr})+\mathrm{Fl}$	1992-2006	15	378	0.012	1.012	0.923-1.108	0.66	30
Northern shoveler	$2 *(\mathrm{~S}+\mathrm{Pr})+\mathrm{Fl}$	1992-2006	15	242	-0.001	0.999	0.865-1.155	0.39	21
Northern pintail	$2^{*}(\mathrm{~S}+\mathrm{Pr})+\mathrm{Fl}$	1992-2006	15	49,577	-0.020	0.980	0.939-1.023	0.09	8
Greater scaup	$\mathrm{S}+2 * \mathrm{Pr}+\mathrm{FL}$	1992-2006	15	4,257	0.050	1.052	1.023-1.081	0.19	13
Long-tailed duck	$2^{*}(\mathrm{~S}+\mathrm{Pr})+\mathrm{Fl}$	1992-2006	15	31,115	-0.019	0.982	0.961-1.002	0.07	7
Spectacled eider	$2^{*}(\mathrm{~S}+\mathrm{Pr})+\mathrm{Fl}$	1993-2006	14	6,903	-0.003	0.997	0.978-1.016	0.10	9
King eider	$2 *(\mathrm{~S}+\mathrm{Pr})+\mathrm{Fl}$	1993-2006	14	13,070	0.017	1.017	1.003-1.031	0.10	9
Steller's eider	$2 *(\mathrm{~S}+\mathrm{Pr})+\mathrm{Fl}$	1992-2006	15	166	0.034	1.035	0.910-1.177	0.48	25
White-winged scoter	$2 *(\mathrm{~S}+\mathrm{Pr})+\mathrm{Fl}$	1992-2006	15	336	0.100	1.105	1.017-1.201	0.61	29
Snow goose	$\mathrm{S}+2 * \mathrm{Pr}+\mathrm{FL}$	1992-2006	15	2,934	0.120	1.128	1.003-1.267	0.56	27
Gr. White-fronted goose	$\mathrm{S}+2 * \mathrm{Pr}+\mathrm{FL}$	1992-2006	15	75,784	0.029	1.030	1.002-1.058	0.08	8
Canada goose	$\mathrm{S}+2 * \mathrm{Pr}+\mathrm{FL}$	1993-2006	14	7,394	-0.018	0.983	0.943-1.024	0.27	17
Black brant	$\mathrm{S}+2 * \mathrm{Pr}+\mathrm{FL}$	1992-2006	15	6,533	0.120	1.127	1.086-1.170	0.28	17
Tundra swan	$\mathrm{S}+2 * \mathrm{Pr}+\mathrm{FL}$	1992-2006	15	6,163	0.023	1.023	1.007-1.038	0.11	9
Sandhill crane	$\mathrm{S}+2 * \mathrm{Pr}+\mathrm{FL}$	1992-2006	15	124	0.055	1.056	0.986-1.131	0.62	29
Unident. shorebird	$2 *(\mathrm{~S}+\mathrm{Pr})+\mathrm{Fl}$	1997-2006	10	57,581	-0.042	0.959	0.925-0.995	0.07	7
Common raven	$\mathrm{S}+2 * \mathrm{Pr}+\mathrm{FL}$	1992-2006	15	63	-0.029	0.971	0.911-1.036	0.71	32
Short-eared owl	$\mathrm{S}+2 * \mathrm{Pr}+\mathrm{FL}$	1992-2006	15	88	0.044	1.045	0.947-1.152	0.33	19
Snowy owl	$\mathrm{S}+2 * \mathrm{Pr}+\mathrm{FL}$	1992-2006	15	848	-0.045	0.956	0.844-1.083	0.35	20

1. $\mathrm{S}=$ single, $\mathrm{Pr}=$ pair, $\mathrm{Fl}=$ flocked birds not in discernable pairs.

Figure 1. Survey strata for the Eider Breeding Population Survey, Srctic Coastal Plain, Alaska, with major hydrographic and cultural features. Unshaded units south of the eider survey area are strata surveyed only during the Standard waterfowl breeding population survey conducted in late June - early July.

Figure 2. Aerial transects flown during the Eider Breeding Population Survey, Actic Coastal Plain, Alaska, June 2006. Blue lines are extra transects added to increase sampling intensity and distribution resolution in the NPRA Northeast Planning Unit.

Figure 3. Daily ratios of lone males to total males (lone males plus males in pairs) of selected duck species observed during the Eider Breeding Population Survey, Arctic Coastal Plain, Alaska, June 2006. Sample size (N) refers to total observations (lone males plus males in pairs).
Yellow-billed Loon
North Slope early-June survey

Aerial index: Total birds observed				S6d strata ($\mathrm{n}=11$)		YBLO	
year	sg	2*pr	flocks	Index	Std Err		
1992	731	202	73	1005	178	n yrs $=$	15
1993	394	630	176	1200	286	mean $=$	1102
1994	422	280	141	844	197	std dev $=$	230
1995	544	650	69	1263	312	In linear slope =	0.0104
1996	750	286	0	1036	183	SE slope =	0.0129
1997	285	848	145	1279	518	Growth Rate =	1.010
1998	422	462	0	884	165	low $90 \% \mathrm{ci} \mathrm{GR} \mathrm{=}$	0.989
1999	295	574	70	939	187	high 90% ci GR =	1.032
2000	325	396	0	721	167		
2001	272	832	0	1104	178	regression resid CV =	0.216
2002	800	642	108	1551	256	avg sampling err CV =	0.220
2003	494	748	71	1312	243		
2004	321	524	0	846	163	min yrs to detect -50\%	Oyr rate :
2005	364	918	0	1282	262	$\mathrm{w} /$ regression resid $\mathrm{CV}=$	14.4
2006	336	932	0	1268	372	w/ sample error CV =	14.5
						most rece	7 years :
						Growth Rate =	1.051
						low $90 \% \mathrm{ci} \mathrm{GR} \mathrm{=}$	0.966
						high 90% ci GR =	1.143

Figure 4. Population trend for Yellow-billed Loons (Gavia adamsii) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The total birds observed population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95\% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Calculations of power used alpha with $\mathrm{p}=0.10$, beta at $\mathrm{p}=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years.

Fig. 5. Mean yellow-billed loon breeding densities, Alaska Arctic Coastal Plain, 1993-99 (above) and 2000-06 (below).

Pacific Loon
North Slope early-June survey

Aerial index: Total birds observed				S6d strata ($\mathrm{n}=11$)			PALO
year	sg	2*pr	flocks	Index	Std Err		
1992	7833	7858	215	15906	1067	n yrs $=$	15
1993	4559	13860	253	18671	942	mean $=$	20643
1994	4803	17228	618	22648	1286	std dev =	3402
1995	5664	17772	1052	24488	1307	In linear slope =	-0.0008
1996	5928	17832	71	23832	1240	SE slope $=$	0.0111
1997	5623	18798	1189	25610	1808	Growth Rate =	0.999
1998	3315	9580	226	13120	1650	low 90% ci GR =	0.981
1999	4245	15702	628	20575	1149	high $90 \% \mathrm{ci} \mathrm{GR} \mathrm{=}$	1.018
2000	5444	17240	1310	23994	1342		
2001	3864	15788	621	20273	1210	regression resid $\mathrm{CV}=$	0.185
2002	5004	16418	428	21850	1356	avg sampling err CV =	0.067
2003	4659	15346	1086	21091	1470		
2004	4898	13928	463	19290	1055	min yrs to detect -50\%	20yr rate :
2005	4383	15218	1310	20910	1662	w/ regression resid CV =	13.0
2006	3797	13182	415	17393	1528	$\mathrm{w} /$ sample error CV =	6.6
						most recen	7 years :
						Growth Rate =	0.964
						low 90% ci GR =	0.944
						high 90\%ci GR =	0.984

Figure 6. Population trend for Pacific Loons (Gavia pacifica) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The total birds observed population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95\% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Calculations of power used alpha with $\mathrm{p}=0.10$, beta at $\mathrm{p}=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years.

Figure 7. Mean Pacific loon breeding densities, Alaska Arctic Coastal Plain, 1993-99 (above) and 2000-06 (below).
Red-throated Loon
North Slope early-June survey

Aerial inde	Total bi	observ		d strata	($\mathrm{n}=11$)		RTLO
year	sg	2*pr	flocks	Index	Std Err		
1992	1453	2236	188	3878	485	n yrs $=$	15
1993	357	2604	0	2960	393	mean $=$	2558
1994	997	2732	1162	4891	994	std dev $=$	1086
1995	823	2672	0	3495	476	In linear slope $=$	-0.0681
1996	571	3066	72	3709	417	SE slope $=$	0.0196
1997	670	2084	0	2754	461	Growth Rate $=$	0.934
1998	311	890	0	1202	236	low 90\%ci GR =	0.905
1999	266	1048	0	1313	235	high 90% ci GR =	0.965
2000	511	1724	69	2305	300		
2001	649	1694	72	2415	350	regression resid $\mathrm{CV}=$	0.328
2002	649	2062	0	2711	391	avg sampling err CV =	0.155
2003	375	1298	156	1828	249		
2004	215	1524	49	1787	285	min yrs to detect - 50%	20yr rate :
2005	324	1368	248	1940	316	$\mathrm{w} /$ regression resid $\mathrm{CV}=$	19.0
2006	405	770	0	1176	227	$\mathrm{w} /$ sample error $\mathrm{CV}=$	11.5
						most recen	7 years :
						Growth Rate $=$	0.902
						low 90\%ci GR =	0.854
						high 90% ci GR =	0.953

Figure 8. Population trend for Red-throated Loons (Gavia stellata) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The total birds observed population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95\% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Calculations of power used alpha with $\mathrm{p}=0.10$, beta at $\mathrm{p}=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years.

Figure 9. Mean red-throated loon breeding densities, Alaska Arctic Coastal Plain, 1993-99 (above) and 2000-06 (below).

Jaeger spp
North Slope early-June survey

Aerial inde	Total bi	observ		d strata	($\mathrm{n}=11$)		JAEG
year	sg	2*pr	flocks	Index	Std Err		
1992	1534	366	418	2318	308	n yrs =	15
1993	4670	928	408	6006	652	mean $=$	4146
1994	1425	722	0	2146	377	std dev =	2163
1995	6106	1244	145	7496	602	In linear slope $=$	0.0036
1996	2985	854	271	4109	502	SE slope $=$	0.0294
1997	2318	674	0	2991	427	Growth Rate $=$	1.004
1998	1783	1020	160	2964	401	low 90% ci GR =	0.956
1999	3307	1248	181	4736	394	high 90% ci GR =	1.053
2000	3730	1128	245	5103	452		
2001	3640	996	294	4930	629	regression resid $\mathrm{CV}=$	0.491
2002	1630	540	0	2170	209	avg sampling err $\mathrm{CV}=$	0.111
2003	2054	770	0	2824	294		
2004	1833	656	0	2489	228	min yrs to detect - 50%	Oyr rate :
2005	2114	386	0	2500	293	w/ regression resid CV =	24.8
2006	7193	2070	148	9412	574	$\mathrm{w} /$ sample error $\mathrm{CV}=$	9.2
						most recen	7 years :
						Growth Rate $=$	1.022
						low 90% ci GR =	0.852
						high 90\%ci GR =	1.226

Figure 10. Population trend for jaeger species (Stercorarius parasiticus, S. pomarinus, S. longicaudus) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The total birds observed population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $p=0.10$, beta at $\mathrm{p}=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years.

Glaucous Gull
North Slope early-June survey

Aerial index: Total birds observed				S6d strata ($\mathrm{n}=11$)		GLGU	
year	sg	2*pr	flocks	Index	Std Err		
1992	5635	2792	3732	12160	1571	n yrs $=$	15
1993	3667	2616	2850	9134	940	mean $=$	11870
1994	4766	2108	3945	10818	1771	std dev =	3206
1995	4342	2406	3331	10080	1496	In linear slope $=$	0.0051
1996	6002	2828	9699	18529	7859	SE slope $=$	0.0151
1997	4060	3050	1825	8934	1154	Growth Rate $=$	1.005
1998	4728	3704	1672	10104	930	low 90\%ci GR =	0.980
1999	4001	2844	7078	13923	1673	high $90 \% \mathrm{ci} \mathrm{GR} \mathrm{=}$	1.030
2000	4423	2936	11084	18445	3068		
2001	4538	2524	2456	9519	1227	regression resid $\mathrm{CV}=$	0.253
2002	4718	2658	1385	8762	694	avg sampling err CV =	0.143
2003	5221	2904	2105	10229	1204		
2004	4957	3042	3065	11063	1192	min yrs to detect -50\%	Oyr rate :
2005	5223	3488	2660	11371	1135	$\mathrm{w} /$ regression resid $\mathrm{CV}=$	16.0
2006	5573	5732	3679	14983	2041	$\mathrm{w} /$ sample error CV $=$	10.9
						most recen	7 years :
						Growth Rate $=$	0.999
						low 90\%ci GR =	0.913
						high $90 \% \mathrm{ci}$ GR =	1.093

Figure 11. Population trend for Glaucous Gulls (Larus hyperboreus) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The total birds observed population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95\% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $\mathrm{p}=0.10$, beta at $\mathrm{p}=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years.

Figure 12. Mean glaucous gull breeding densities, Alaska Arctic Coastal Plain, 1993-99 (above) and 2000-06 (below).

Sabine's Gull
North Slope early-June survey

Aerial index: Total birds observed				S6d strata ($\mathrm{n}=11$)		SAGU	
year	sg	2*pr	flocks	Index	Std Err		
1992	1939	1284	5111	8333	1329	n yrs =	15
1993	2431	2462	1505	6399	729	mean =	6745
1994	2976	1824	567	5367	640	std dev =	1804
1995	3191	3290	1866	8348	1493	In linear slope =	0.0069
1996	2621	2516	1232	6369	839	SE slope =	0.0198
1997	2801	3248	1896	7945	787	Growth Rate =	1.007
1998	1711	906	166	2784	423	low 90\%ci GR =	0.975
1999	1250	1808	2026	5084	762	high 90\%ci GR =	1.040
2000	2201	1890	2746	6836	828		
2001	2268	2406	1837	6511	856	regression resid $\mathrm{CV}=$	0.332
2002	2480	3256	3116	8851	864	avg sampling err CV =	0.136
2003	2325	1420	380	4127	482		
2004	2073	2952	2933	7959	1288	min yrs to detect -50\%	Oyr rate
2005	2307	2432	2465	7205	985	w/ regression resid CV =	19.1
2006	2536	3656	2871	9063	1530	w/ sample error CV =	10.5
						most recen	7 years :
						Growth Rate =	1.034
						low 90\%ci GR =	0.948
						high 90\%ci GR =	1.128

Figure 13. Population trend for Sabine's Gulls (Xema sabini) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The total birds observed population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $\mathrm{p}=0.10$, beta at $\mathrm{p}=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years.

Arctic Tern
North Slope early-June survey

Aerial index: Total birds observed				S6d strata ($\mathrm{n}=11$)		ARTE	
year	sg	2*pr	flocks	Index	Std Err		
1992	2621	1478	3472	7571	1077	n yrs $=$	15
1993	2473	3412	652	6537	646	mean =	10321
1994	3530	3404	1551	8486	836	std dev $=$	2418
1995	2932	2802	1863	7597	1053	In linear slope $=$	0.0390
1996	4380	3608	1080	9068	836	SE slope $=$	0.0099
1997	3500	4918	1694	10112	1047	Growth Rate $=$	1.040
1998	4206	4480	978	9663	901	low 90\%ci GR =	1.023
1999	2911	5038	1554	9503	1040	high 90\%ci GR =	1.057
2000	4347	5056	4503	13907	1778		
2001	5024	6836	1634	13495	1292	regression resid $\mathrm{CV}=$	0.165
2002	4819	4314	4882	14014	1717	avg sampling err CV =	0.108
2003	5097	4040	1347	10484	1069		
2004	5573	4794	3082	13449	1577	min yrs to detect -50\%	Oyr rate :
2005	4098	4408	2072	10578	987	$\mathrm{w} /$ regression resid $\mathrm{CV}=$	12.0
2006	3900	5824	627	10350	875	$\mathrm{w} /$ sample error $\mathrm{CV}=$	9.0
						most recen	7 years :
						Growth Rate $=$	0.951
						low 90\%ci GR =	0.920
						high 90\%ci GR =	0.982

Figure 14. Population trend for Arctic Terns (Sterna paradisaea) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The total birds observed population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95\% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $p=0.10$, beta at $p=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years.

Figure 15. Mean arctic tern breeding densities, Alaska Arctic Coastal Plain, 1993-99 (above) and 2000-06 (below).
Spectacled Eider
North Slope early-June survey

Aerial index: Indicated total birds				S6d strata ($\mathrm{n}=11$)		SPEI	
year	2*sg	2*pr	flocks	Index	Std Err		
1992	638	564	0			n yrs $=$	14
1993	4796	4284	0	9079	909	mean $=$	6903
1994	2920	3848	113	6882	717	std dev $=$	1203
1995	2722	3970	0	6693	707	In linear slope $=$	-0.0030
1996	2902	2588	0	5489	663	SE slope $=$	0.0115
1997	2838	2506	0	5345	577	Growth Rate $=$	0.997
1998	5060	4332	0	9392	944	low 90\%ci GR =	0.978
1999	1764	4482	0	6247	521	high 90\%ci GR =	1.016
2000	3228	2672	0	5900	585		
2001	2634	4636	0	7270	679	regression resid $\mathrm{CV}=$	0.173
2002	3390	3048	224	6662	752	avg sampling err CV =	0.104
2003	4144	3006	0	7149	690		
2004	3222	2762	0	5985	556	min yrs to detect -50\%	20yr rate :
2005	3284	4538	0	7821	978	$\mathrm{w} /$ regression resid $\mathrm{CV}=$	12.4
2006	3324	3408	0	6731	786	$\mathrm{w} /$ sample error $\mathrm{CV}=$	8.8
						most recen	7 years :
						Growth Rate $=$	1.016
						low 90\%ci GR =	0.983
						high $90 \% \mathrm{ci} \mathrm{GR} \mathrm{=}$	1.050

Figure 16. Population trend for Spectacled Eider (Somateria fischeri) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The indicated total birds population index is the sum of birds observed as singles, an equal number of unseen but indicated single birds, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $p=0.10$, beta at $p=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years. A low index of 1,202 in 1992 was excluded from trend calculation because the survey was flown too late in June.

Figure 17. Mean spectacled eider breeding densities, Alaska Arctic Coastal Plain, 1993-99 (above) and 2000-06 (below).

King Eider
North Slope early-June survey

Aerial index: Indicated total birds				S6d strata ($\mathrm{n}=11$)			KIEI
year	2*sg	2*pr	flocks	Index	Std Err		
1992	632	682	1440			n yrs =	14
1993	2084	7672	77	9832	1125	mean $=$	13070
1994	3564	7950	638	12152	1044	std dev =	1832
1995	4066	8704	371	13141	1196	In linear slope =	0.0167
1996	8590	6404	144	15137	1335	SE slope $=$	0.0085
1997	2640	7208	1273	11120	1503	Growth Rate =	1.017
1998	5220	5770	167	11156	1074	low 90% ci GR =	1.003
1999	2814	8846	0	11659	1134	high 90\%ci GR =	1.031
2000	4242	9136	0	13378	1452		
2001	2502	14030	0	16533	1537	regression resid $\mathrm{CV}=$	0.128
2002	4804	9398	527	14730	1512	avg sampling err CV =	0.100
2003	4738	8114	0	12853	1360		
2004	5482	7872	107	13461	1327	min yrs to detect -50\%	Oyr rate :
2005	4014	10468	452	14934	1232	$\mathrm{w} / \mathrm{regression} \mathrm{resid} \mathrm{CV} \mathrm{=}$	10.1
2006	4578	8318	0	12896	1209	w/ sample error CV =	8.6
						most recen	7 years :
						Growth Rate =	0.986
						low 90\%ci GR =	0.957
						high 90\%ci GR =	1.016

Figure 18. Population trend for King Eider (Somateria spectabilis) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The indicated total birds population index is the sum of birds observed as singles, an equal number of unseen but indicated single birds, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $\mathrm{p}=0.10$, beta at $\mathrm{p}=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years. A low index of 2,754 in 1992 was excluded from trend calculation because the survey was flown too late in June.

Figure 19. Mean king eider breeding densities, Alaska Arctic Coastal Plain, 1993-99 (above) and 2000-06 (below).

Steller's Eider
North Slope early-June survey

Aerial index: Indicated total birds				S6d strata ($\mathrm{n}=11$)		STEI	
year	2*sg	2*pr	flocks	Index	Std Err		
1992	0	0	0	20	0	n yrs $=$	15
1993	48	96	119	262	148	mean =	166
1994	0	46	0	47	47	std dev $=$	204
1995	0	282	0	281	161	In linear slope $=$	0.0344
1996	0	0	0	20	0	SE slope $=$	0.0781
1997	0	190	0	189	124	Growth Rate $=$	1.035
1998	0	0	0	20	0	low 90\%ci GR =	0.910
1999	96	522	168	785	460	high 90% ci GR =	1.177
2000	0	0	0	20	0		
2001	96	192	0	288	195	regression resid $\mathrm{CV}=$	1.310
2002	0	0	0	20	0	avg sampling err CV =	0.484
2003	94	0	0	93	93		
2004	48	0	0	48	49	min yrs to detect -50\%	Oyr rate :
2005	48	52	0	99	71	$\mathrm{w} /$ regression resid $\mathrm{CV}=$	47.7
2006	152	148	0	300	141	$\mathrm{w} /$ sample error CV =	24.6
						most recen	7 years :
						Growth Rate $=$	1.278
						low 90\%ci GR =	0.913
						high $90 \% \mathrm{ci} \mathrm{GR} \mathrm{=}$	1.789

Figure 20. Population trend for Steller’s Eider (Polysticta stelleri) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The indicated total birds population index is the sum of birds observed as singles, an equal number of unseen but indicated single birds, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $\mathrm{p}=0.10$, beta at $\mathrm{p}=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years. To calculate slope, an index value of 20 was substituted for years with no observations.
Red-breasted Merganser North Slope early-June survey

Aerial index: Indicated total birds				S6d strata ($\mathrm{n}=11$)		RBME	
year	2*sg	2*pr	flocks	Index	Std Err		
1992	246	48	243	538	205	n yrs $=$	15
1993	94	0	0	94	67	mean $=$	440
1994	48	48	0	96	69	std dev =	258
1995	46	46	0	93	66	In linear slope =	0.1157
1996	334	384	0	718	206	SE slope $=$	0.0361
1997	42	192	0	233	96	Growth Rate $=$	1.123
1998	48	204	0	251	108	low 90\%ci GR =	1.058
1999	192	140	0	333	121	high 90\%ci GR =	1.191
2000	132	286	0	419	151		
2001	48	294	73	415	143	regression resid $\mathrm{CV}=$	0.604
2002	144	440	0	585	222	avg sampling err CV =	0.426
2003	242	326	95	665	210		
2004	192	470	36	698	186	min yrs to detect -50\%	Oyr rate :
2005	456	342	144	942	367	$\mathrm{w} /$ regression resid $\mathrm{CV}=$	28.5
2006	176	342	0	518	162	$\mathrm{w} /$ sample error $\mathrm{CV}=$	22.6
						most recen	7 years :
						Growth Rate $=$	1.092
						low 90\%ci GR =	1.011
						high $90 \% \mathrm{ci} \mathrm{GR} \mathrm{=}$	1.178

Figure 21. Population trend for Red-breasted Megansers (Mergus serrator) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The indicated total birds population index is the sum of birds observed as singles, an equal number of unseen but indicated single birds, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $\mathrm{p}=0.10$, beta at $\mathrm{p}=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of - 0.0341 , a 50% decline in 20 years.
American Wigeon
North Slope early-June survey

Aerial index: Indicated total birds				S6d strata ($\mathrm{n}=11$)		AMWI	
year	2*sg	2*pr	flocks	Index	Std Err		
1992	0	110	0	110	67	n yrs $=$	15
1993	50	0	0	49	48	mean $=$	378
1994	188	46	970	1206	602	std dev $=$	318
1995	176	46	0	223	121	In linear slope $=$	0.0115
1996	280	156	111	547	206	SE slope $=$	0.0556
1997	0	142	188	330	188	Growth Rate =	1.012
1998	150	240	71	461	188	low 90\%ci GR =	0.923
1999	0	46	138	185	145	high 90\%ci GR =	1.108
2000	44	282	402	727	291		
2001	0	0	727	727	798	regression resid $\mathrm{CV}=$	0.931
2002	0	102	0	103	79	avg sampling err $\mathrm{CV}=$	0.660
2003	140	94	0	236	142		
2004	0	0	97	97	91	min yrs to detect -50\%/20	Syr rate
2005	0	48	158	205	146	$\mathrm{w} /$ regression resid $\mathrm{CV}=$	38.0
2006	124	184	149	457	281	$\mathrm{w} /$ sample error $\mathrm{CV}=$	30.2
						most recen	7 years :
						Growth Rate $=$	0.867
						low 90\%ci GR =	0.663
						high 90% ci GR =	1.135

Figure 22. Population trend for American Wigeon (Anas americana) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The indicated total birds population index is the sum of birds observed as singles, an equal number of unseen but indicated single birds, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $\mathrm{p}=0.10$, beta at $\mathrm{p}=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years.
Northern Pintail
North Slope early-June survey

Aerial index: Indicated total birds				S6d strata ($\mathrm{n}=11$)			NOPI
year	2*sg	2*pr	flocks	Index	Std Err		
1992	22482	5390	32969	60842	6249	n yrs $=$	15
1993	20604	5164	7260	33028	2880	mean $=$	49577
1994	15172	1624	7864	24660	2496	std dev =	19616
1995	36392	7392	35626	79409	7508	In linear slope $=$	-0.0203
1996	37798	4840	26386	69024	8545	SE slope $=$	0.0260
1997	16428	2138	7614	26181	2990	Growth Rate $=$	0.980
1998	38574	10168	18623	67366	5686	low 90\%ci GR =	0.939
1999	36022	14060	13429	63510	3701	high 90% ci GR =	1.023
2000	39496	19586	17286	76368	4876		
2001	25382	10174	8802	44358	3637	regression resid $\mathrm{CV}=$	0.435
2002	36620	4766	16434	57819	5495	avg sampling err $\mathrm{CV}=$	0.089
2003	25946	4784	4110	34839	3324		
2004	34904	7098	9744	51747	3520	min yrs to detect -50\%	20yr rate :
2005	16394	1792	7160	25347	2297	$\mathrm{w} /$ regression resid $\mathrm{CV}=$	22.9
2006	19892	2440	6822	29153	2164	$\mathrm{w} /$ sample error $\mathrm{CV}=$	8.0
						most recen	7 years :
						Growth Rate $=$	0.863
						low 90\%ci GR =	0.798
						high 90% ci GR =	0.934

Figure 23. Population trend for Northern Pintail (Anas acuta) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The indicated total birds population index is the sum of birds observed as singles, an equal number of unseen but indicated single birds, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $\mathrm{p}=0.10$, beta at $\mathrm{p}=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years.

Figure 24. Mean northern pintail breeding densities, Alaska Arctic Coastal Plain, 1993-99 (above) and 2000-06 (below).
Greater Scaup
North Slope early-June survey

Aerial index: Total birds observed				S6d strata ($\mathrm{n}=11$)		SCAU	
year	sg	2*pr	flocks	Index	Std Err		
1992	525	630	884	2039	549	n yrs =	15
1993	417	1954	420	2791	590	mean $=$	4257
1994	617	1510	2065	4192	2097	std dev =	1553
1995	547	2540	1096	4182	713	In linear slope =	0.0504
1996	1462	2340	116	3917	508	SE slope =	0.0169
1997	1029	2520	392	3940	665	Growth Rate =	1.052
1998	1039	2230	581	3851	466	low 90\%ci GR =	1.023
1999	581	1684	144	2410	396	high 90\%ci GR =	1.081
2000	601	2998	240	3838	535		
2001	787	3652	479	4918	803	regression resid $\mathrm{CV}=$	0.284
2002	1319	4260	2467	8046	855	avg sampling err CV =	0.191
2003	658	2368	468	3494	597		
2004	1121	2372	655	4149	523	min yrs to detect -50\%	Oyr rate :
2005	524	3418	1404	5347	1068	w/ regression resid CV =	17.2
2006	1033	3000	2707	6739	1546	w/ sample error CV =	13.2
						most rece	7 years :
						Growth Rate =	1.044
						low 90\%ci GR =	0.946
						high 90\%ci GR =	1.152

Figure 25. Population trend for Greater Scaup (Aythya marila) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The total birds observed population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $\mathrm{p}=0.10$, beta at $\mathrm{p}=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years.

Figure 26. Mean greater scaup breeding densities, Alaska Arctic Coastal Plain, 1993-99 (above) and 2000-06 (below).

Long-tailed Duck
North Slope early-June survey

Aerial index: Indicated total birds				S6d strata ($\mathrm{n}=11$)			LTDU
year	2*sg	2*pr	flocks	Index	Std Err		
1992	15012	10520	6020	31552	2752	n yrs =	15
1993	12958	14534	1886	29380	1862	mean $=$	31115
1994	12934	12202	3159	28295	2054	std dev $=$	6405
1995	13138	17966	4162	35265	2230	In linear slope $=$	-0.0185
1996	16522	16064	6136	38722	2467	SE slope $=$	0.0127
1997	14742	17304	4076	36122	1997	Growth Rate $=$	0.982
1998	14422	14474	2192	31087	1536	low 90\%ci GR =	0.961
1999	11428	12652	3406	27485	2063	high $90 \% \mathrm{ci} \mathrm{GR} \mathrm{=}$	1.002
2000	14720	16168	7291	38179	2677		
2001	12496	19688	3425	35609	2044	regression resid $\mathrm{CV}=$	0.213
2002	18748	18804	3293	40846	1992	avg sampling err CV =	0.065
2003	9518	9106	850	19473	1349		
2004	10366	9330	463	20159	1390	min yrs to detect -50\%	2yr rate
2005	10848	14456	1832	27135	1573	$\mathrm{w} /$ regression resid $\mathrm{CV}=$	14.2
2006	12390	14292	736	27418	2069	$\mathrm{w} /$ sample error $\mathrm{CV}=$	6.5
						most recent 7 years :	
						Growth Rate $=$	0.923
						low 90\%ci GR =	0.850
						high 90% ci GR =	1.003

Figure 27. Population trend for Long-tailed Duck (Clangula hyemalis) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The indicated total birds population index is the sum of birds observed as singles, an equal number of unseen but indicated single birds, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $p=0.10$, beta at $\mathrm{p}=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years.

Figure 28. Mean long-tailed duck breeding densities, Alaska Arctic Coastal Plain, 1993-99 (above) and 2000-06 (below).
White-winged Scoter
North Slope early-June survey

Figure 29. Population trend for White-winged Scoters (Melanitta fusca) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The indicated total birds population index is the sum of birds observed as singles, an equal number of unseen but indicated single birds, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $p=0.10$, beta at $p=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years. To calculate slope, an index value of 20 was substituted for years with no observations.
White-fronted Goose North Slope early-June survey

Aerial index: Indicated total birds				S6d strata ($\mathrm{n}=11$)	
year	2*sg	2*pr	flocks	Index	Std Err
1992	4724	9112	82955	96790	9227
1993	4792	16634	20741	42168	2753
1994	4518	25216	25811	55543	4612
1995	7880	18942	24149	50970	4320
1996	12120	29232	55314	96667	5466
1997	4642	25702	32181	62525	4782
1998	8028	20240	27685	55952	4612
1999	7424	23526	43039	73991	6933
2000	7082	30374	44308	81765	8021
2001	6266	36806	51653	94724	5543
2002	9822	35276	43662	88762	7830
2003	9168	22736	24179	56085	4289
2004	9146	37260	55440	101845	9771
2005	7264	30784	29451	67499	5631
2006	12904	51904	46660	111468	9990

	WFGO
n yrs $=$	15
mean $=$	75784
std dev $=$	21675
In linear slope $=$	0.0292
SE slope $=$	0.0166
Growth Rate $=$	1.030
low 90\%ci GR $=$	1.002
high 90% ci GR $=$	1.058
regression resid CV $=$	0.278
avg sampling err CV $=$	0.082
min yrs to detect -50\%/20yr rate $:$	
w/ regression resid CV $=$	17.0
w/ sample error CV $=$	7.5

most recent 7 years :	
Growth Rate $=$	$\mathbf{1 . 0 1 4}$
low $90 \% \mathrm{ci} \mathrm{GR}=$	0.935
high $90 \% \mathrm{ci} \mathrm{GR}=$	1.100

Figure 30. Population trend for Greater White-fronted Geese (Anser albifrons frontalis) observed on aerial survey transects sampling 30,755 km2 of wetland tundra on the North Slope of Alaska. The indicated total birds population index is the sum of birds observed as singles, an equal number of unseen but indicated single birds, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $\mathrm{p}=0.10$, beta at $p=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years.

Figure 31. Mean white-fronted goose breeding densities, Alaska Arctic Coastal Plain, 1993-99 (above) and 2000-06 (below).
Black Brant
North Slope early-June survey

Aerial index: Indicated total birds				S6d strata ($\mathrm{n}=11$)		BRAN	
year	2*sg	2*pr	flocks	Index	Std Err		
1992	848	738	1121	2707	484	n yrs $=$	15
1993	430	388	476	1294	463	mean $=$	6532
1994	972	858	1751	3581	858	std dev =	4050
1995	1808	1154	2560	5522	2533	In linear slope =	0.1195
1996	904	710	2300	3914	1414	SE slope $=$	0.0227
1997	1402	1494	5151	8047	2919	Growth Rate $=$	1.127
1998	1420	1384	1808	4611	1146	low 90\%ci GR =	1.086
1999	610	1520	1302	3432	825	high $90 \% \mathrm{ci}$ GR =	1.170
2000	876	718	3281	4873	1283		
2001	338	1098	3535	4972	1374	regression resid $\mathrm{CV}=$	0.380
2002	2296	1658	2964	6919	1381	avg sampling err CV =	0.284
2003	1676	1246	5618	8542	3242		
2004	2508	2506	10020	15033	4454	min yrs to detect -50\%	Oyr rate
2005	2372	3530	8362	14264	2738	$\mathrm{w} /$ regression resid $\mathrm{CV}=$	20.9
2006	2426	4340	3511	10276	2169	$\mathrm{w} /$ sample error $\mathrm{CV}=$	17.2
						most recen	7 years :
						Growth Rate $=$	1.201
						low 90\%ci GR =	1.108
						high $90 \% \mathrm{ci}$ GR =	1.301

Figure 32. Population trend for Pacific Black Brant (Branta bernicla nigricans) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The indicated total birds population index is the sum of birds observed as singles, an equal number of unseen but indicated single birds, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $\mathrm{p}=0.10$, beta at $\mathrm{p}=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years.
Canada Goose
North Slope early-June survey

Aerial index: Indicated total birds				S6d strata ($\mathrm{n}=11$)			CAGO
year	2*sg	2*pr	flocks	Index	Std Err		
1992	422	262	29537			n yrs =	14
1993	348	540	4524	5413	2496	mean $=$	7394
1994	674	1044	3529	5246	1369	std dev =	2502
1995	1186	538	9018	10742	2853	In linear slope =	-0.0176
1996	750	1764	8670	11183	3473	SE slope =	0.0249
1997	588	1464	8470	10523	3124	Growth Rate =	0.983
1998	592	670	4234	5496	1254	low 90% ci GR =	0.943
1999	486	1606	6488	8581	1928	high 90\%ci GR =	1.024
2000	976	1158	6366	8502	2829		
2001	520	1004	4219	5743	2267	regression resid $\mathrm{CV}=$	0.376
2002	924	1174	945	3045	467	avg sampling err CV =	0.273
2003	1524	1896	6183	9603	2181		
2004	610	1242	5579	7432	1374	min yrs to detect -50\%	Oyr rate :
2005	728	1014	4932	6673	1902	$\mathrm{w} / \mathrm{regression} \mathrm{resid} \mathrm{CV} \mathrm{=}$	20.8
2006	690	1744	2907	5340	1062	w/ sample error CV =	16.8
						most recent 7 years :	
						Growth Rate =	0.993
						low $90 \% \mathrm{ci} \mathrm{GR} \mathrm{=}$	0.873
						high 90\%ci GR =	1.129

Figure 33. Population trend for Canada Geese (Branta canadensis) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The indicated total birds population index is the sum of birds observed as singles, an equal number of unseen but indicated single birds, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $\mathrm{p}=0.10$, beta at $\mathrm{p}=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years.
A high index in 1992 was excluded from trend calculation because the survey was flown too late in June.

Tundra Swan
North Slope early-June survey

Aerial index: Total birds observed				S6d strata ($\mathrm{n}=11$)		SWAN	
year	sg	2*pr	flocks	Index	Std Err		
1992	2633	3636	1174	7444	1278	n yrs =	15
1993	1973	2588	73	4633	462	mean $=$	6163
1994	1606	2452	179	4237	442	std dev =	1062
1995	2595	2874	415	5883	681	In linear slope $=$	0.0225
1996	3344	2006	142	5493	588	SE slope $=$	0.0093
1997	1989	2342	526	4858	681	Growth Rate $=$	1.023
1998	2461	2562	793	5815	624	low 90\%ci GR =	1.007
1999	2437	2330	1330	6097	1071	high $90 \% \mathrm{ci}$ GR =	1.038
2000	2379	4130	1130	7640	1075		
2001	2828	3358	220	6406	575	regression resid $\mathrm{CV}=$	0.156
2002	3124	3300	441	6865	693	avg sampling err $\mathrm{CV}=$	0.112
2003	2498	3132	221	5852	557		
2004	3154	3394	344	6891	553	min yrs to detect -50\%	Oyr rate :
2005	2930	3552	247	6728	472	w/ regression resid $\mathrm{CV}=$	11.5
2006	3112	4102	385	7600	671	w/ sample error CV =	9.3
						most recen	7 years :
						Growth Rate $=$	1.003
						low 90\%ci GR =	0.972
						high 90% ci GR =	1.035

Figure 34. Population trend for Tundra Swans (Cygnus columbianus) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The total birds observed population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Calculations of power used alpha with $\mathrm{p}=0.10$, beta at $\mathrm{p}=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years.

Figure 35. Mean tundra swan breeding densities, Alaska Arctic Coastal Plain, 1993-99 (above) and 2000-06 (below).

Snowy Owl
North Slope early-June survey

Aerial index: Total birds observed				S6d strata ($\mathrm{n}=11$)		SNOW	
year	sg	2*pr	flocks	Index	Std Err		
1992	251	0	0	251	104	n yrs $=$	15
1993	756	0	0	756	156	mean =	848
1994	84	0	161	245	160	std dev $=$	1314
1995	4910	240	0	5150	608	In linear slope $=$	-0.0446
1996	741	236	0	976	228	SE slope $=$	0.0757
1997	266	0	0	266	92	Growth Rate $=$	0.956
1998	276	0	0	276	91	low 90\%ci GR =	0.844
1999	561	50	0	610	130	high 90\%ci GR =	1.083
2000	96	0	0	96	51		
2001	97	0	0	97	51	regression resid $\mathrm{CV}=$	1.271
2002	571	46	100	718	159	avg sampling err $\mathrm{CV}=$	0.347
2003	776	0	0	776	141		
2004	49	0	0	49	35	min yrs to detect -50\%	Oyr rate :
2005	155	0	36	191	76	$\mathrm{w} /$ regression resid $\mathrm{CV}=$	46.7
2006	1971	286	0	2256	259	w/ sample error CV =	19.7
						most recen	7 years :
						Growth Rate $=$	1.337
						low 90\%ci GR =	0.874
						high $90 \% \mathrm{ci}$ GR =	2.046

Figure 36. Population trend for Snowy Owls (Bubo scandiacus) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The total birds observed population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95\% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $p=0.10$, beta at $p=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years.
Common Raven
North Slope early-June survey

Aerial index: Total birds observed				S6d strata ($\mathrm{n}=11$)			CORA
year	sg	2*pr	flocks	Index	Std Err		
1992	24	48	0	72	58	n yrs $=$	15
1993	26	0	0	26	25	mean $=$	63
1994	118	0	0	118	62	std dev =	42
1995	101	56	0	156	72	In linear slope $=$	-0.0290
1996	48	0	0	48	33	SE slope $=$	0.0393
1997	24	0	0	24	24	Growth Rate $=$	0.971
1998	25	0	0	25	22	low 90\%ci GR =	0.911
1999	72	0	0	72	42	high 90% ci GR =	1.036
2000	22	44	0	66	46		
2001	74	0	0	74	38	regression resid $\mathrm{CV}=$	0.659
2002	48	0	0	48	24	avg sampling err $\mathrm{CV}=$	0.709
2003	26	0	0	26	25		
2004	36	96	0	131	69	min yrs to detect - 50%	Oyr rate :
2005	25	0	0	25	21	$\mathrm{w} /$ regression resid $\mathrm{CV}=$	30.2
2006	38	0	0	38	26	$\mathrm{w} /$ sample error $\mathrm{CV}=$	31.7
						most recen	7 years :
						Growth Rate $=$	0.904
						low 90\%ci GR =	0.748
						high 90\%ci GR =	1.093

Figure 37. Population trend for Common Ravens (Corvus corax) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The total birds observed population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $\mathrm{p}=0.10$, beta at $\mathrm{p}=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of - 0.0341 , a 50% decline in 20 years.

Aerial index: Indicated total birds				S6d strata ($\mathrm{n}=11$)	
year	2*sg	2*pr	flocks	Index	Std Err
1992					
1993					
1994					
1995					
1996					
1997	27506	15240	11938	54684	3226.2
1998	31170	22922	18990	73082	4186.5
1999	27912	16890	12950	57753	3270.6
2000	33470	23394	20507	77369	5294.1
2001	30096	14380	12009	56483	3003.4
2002	23432	14806	34207	72445	5338.7
2003	24782	9326	8771	42879	3517.4
2004	21192	11504	14517	47212	3930.8
2005	20300	12016	7144	39460	2997
2006	21396	18562	14483	54440	4316

n yrs $=$	10
mean $=$	57581
std dev =	13014
In linear slope =	-0.0417
SE slope =	0.0221
Growth Rate =	0.959
low 90% ci GR =	0.925
high 90\%ci GR =	0.995
regression resid $\mathrm{CV}=$	0.201
avg sampling err CV =	0.069
min yrs to detect -50\%/20yr rate :	
w/ regression resid CV =	13.7
$\mathrm{w} / \mathrm{sample}$ error CV =	6.7
most recent 7 years :	
Growth Rate =	0.924
low 90\%ci GR =	0.867
high 90\%ci GR =	0.986

Figure 38. Population trend for combined shorebird species (sandpipers, phalaropes, plovers, whimbrel, godwit, dowitcher, snipe) observed on aerial survey transects sampling $30,755 \mathrm{~km} 2$ of wetland tundra on the North Slope of Alaska. The indicated total birds population index is the sum of birds observed as singles, an equal number of unseen but indicated single birds, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Vertical lines indicate 95% confidence intervals based on sampling error calculated among transects. Stratification included 11 physiographic regions. Average annual growth rate was calculated by log-linear regression. Power calculations used alpha with $p=0.10$, beta at $p=0.20$, and a coefficient of variation based on either regression residuals or averaged sampling error. The power of the survey to detect trends can be compared across species using the estimated minimum number of years necessary to detect a slope of -0.0341 , a 50% decline in 20 years.

