

# **Coherent State Qubits**



тос

**Bosonic Qubit Operations** 





## **Status of Experimental Efforts**

- Current experiments use down-converted photons.
- Australia: E.g. O'Brien&Pryde&White&Ralph&Branning 2003 [15]
- US: E.g. Pittman&Jacobs&Franson 2004 [16]
- Europe/China: E.g. Zhao&Zhang&Chen&Zhang&Du&Yang&Pan 2004 [17]



## **Challenges and Device Requirements**

Logical requirements.

Device requirement guesses.

|                                                                                                                                                                                                                                                          | Probably ok? | I'll work harder? |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|--|--|
| Single photon source:                                                                                                                                                                                                                                    | > 99.9%      | > 90%             |  |  |
| 0, 1, 2-photon counter:                                                                                                                                                                                                                                  | > 99.9%      | > 90%             |  |  |
| Photon loss ( $\approx 10$ devices):                                                                                                                                                                                                                     | $\ll 1\%$    | < 10%             |  |  |
| Beamsplitter ( $\delta$ trans):                                                                                                                                                                                                                          | $\ll .1\%$   | < 1%              |  |  |
| Mode matching (overlap <sup>2</sup> ):                                                                                                                                                                                                                   | $\ll .1\%$   | < 1%              |  |  |
| Further challenges.   - Feed-forward: Time delay for classical decisions = $\tau_c$ .   - Ph. counter: Detection time = $\tau_p$ .   - Storage: Time to unacceptable loss = $\tau_s$ .   Mode shape needs to be controlled.   - Switches: Low loss/fast. |              |                   |  |  |
| 15 100 10 4 1 C                                                                                                                                                                                                                                          |              | 17<br>TOC         |  |  |

#### Contents

| Title: Linear Optics Quantum Computation0 |
|-------------------------------------------|
| Optical Quantum Computing1                |
| Photonic Qubit                            |
| Optical Modes                             |
| Coherent State Qubits                     |
| Optical Devices for LOQC5                 |
| Bosonic Qubit Operations 6                |
| Linear Optics No-Go?                      |
| eLOQC Guide                               |
| Controlled Sign Flips 9                   |

| Linear Optical Controlled Sign Flip           | 10 |
|-----------------------------------------------|----|
| One Mode Teleportation                        | 11 |
| CS by Teleportation                           | 12 |
| State Preparation for CS                      | 13 |
| Schemes for Improving the Success Probability | 14 |
| Zooming in on eLOQC                           | 15 |
| Status of Experimental Efforts                | 16 |
| Challenges and Device Requirements            | 17 |
| References                                    | 19 |
|                                               |    |





#### References

- [1] G. J. Milburn. Quantum optical Fredkin gate. Phys. Rev. Lett., 62:2124–2127, 1988.
- [2] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett., 75:4710–4713, 1995.
- [3] N. J. Cerf, C. Adami, and P. G. Kwiat. Optical simulation of quantum logic. Phys. Rev. A, 57:R1477-R1480, 1998.
- [4] E. Knill, R. Laflamme, and G. Milburn. A scheme for efficient linear optics quantum computation. Nature, 409:46–52, 2001.
- [5] D. Gottesman, A. Kitaev, and J. Preskill. Encoding a qudit in an oscillator. Phys. Rev. A, 64:012310/1-21, 2001.
- [6] T. C. Ralph, W. J. Munro, and G. J. Milburn. Quantum computation with coherent states, linear interactions and superposed resources. quant-ph/0110115, 2001.
- [7] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy. Quantum computation with optical coherent states. Phys. Rev. A, 68:042319/1–11, 2003.
- [8] L. G. Valiant. Quantum computers that can be simulated classically in polynomial time. In Proceedings of the 33rd Annual ACM Symposium on the Theory of Computation (STOC'01), page ?, El Paso, Texas, 2001. ACM Press.
- [9] B. M. Terhal and D. P. DiVincenzo. Classical simulation of noninteracting-fermion quantum circuits. Phys. Rev. A, 65:032325/1-10, 2002.
- [10] E. Knill. Fermionic linear optics and matchgates. Technical Report LAUR-01-4472, Los Alamos National Laboratory, 2001. quant-ph/0108033.
- [11] S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Nemoto. Efficient classical simulation of continuous variable quantum information processes. Phys. Rev. Lett., 88:097904/1–4, 2002. quant-ph/0109047.
- [12] N. Yoran and B. Reznik. Deterministic linear optics quantum computation with single photon qubits. Phys. Rev. Lett., 91:037903/1-4, 2003
- [13] M. A. Nielsen. Optical quantum computation using cluster states. quant-ph/0402004, 2004.

[14] D. Gottesman and I. L. Chuang. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature, 402:390–393, 1999.

[15] J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning. Demonstration of an all-optical quantum controlled-not gate. Nature, 426:264–267, 2003

[16] T. B. Pittman, B. C. Jacobs, and J. D. Franson. Experimental demonstration of a quantum circuit using linear optics gates. quant-ph/0404059, 2004.

[17] Z. Zhao, A.-N. Zhang, Y.-A. Chen, H. Zhang, J.-F. Du, T. Yang, and J.-W. Pan. Experimental demonstration of a non-destructive controlled-NOT quantum gate for two independent photon-qubits. quant-ph/0404129, 2004.

