
Pr
oo

f C
op

y

Optimistic Simulations of Physical
Systems Using Reverse Computation
Yarong Tang
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332
yarongt@cc.gatech.edu

Kalyan S. Perumalla
Oak Ridge National Laboratory
Oak Ridge, TN 37831

Richard M. Fujimoto
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332

Homa Karimabadi
Jonathan Driscoll
Yuri Omelchenko
SciberQuest, Inc.
Solana Beach, CA 92075

Efficient computer simulation of complex physical phenomena has long been challenging due to their
multiphysics and multiscale nature. In contrast to traditional time-stepped execution methods, the
authors describe an approach using optimistic parallel discrete event simulation (PDES) and reverse
computation techniques to execute plasma physics codes. They show that reverse computation-
based optimistic parallel execution can significantly reduce the execution time of an example plasma
simulation without requiring a significant amount of additional memory compared to conservative
execution techniques. The authors describe an application-level reverse computation technique that
is efficient and suitable for complex scientific simulations.

Keywords: Parallel simulation, discrete event simulation, optimistic simulation, reverse computation,
plasma simulation

1. Introduction

Parallel discrete event simulation (PDES) has been an ac-
tive research area in the high-performance computing com-
munity for many years. Synchronization techniques for
PDES systems are usually classified into two principal cat-
egories: conservative approaches that avoid violating the
local causality constraint and optimistic approaches that
allow violations to occur but provide a mechanism to re-
cover. The operation of recovering a previous state in an
optimistic parallel simulation is known as a rollback and
involves undoing incorrect computations.

|
|
|
|
|

SIMULATION, Vol. 82, Issue 1, January 2006 xxx-xxx
©2006 The Society for Modeling and Simulation International
DOI: 10.1177/0037549706065481

A widely used technique for implementing rollback is
state saving, which saves the values of state variables prior
to an event computation and restores them by referring to
these saved values upon rollback. Copy state saving cre-
ates an entire copy of a logical process’s modifiable state.
For simulations that have a small number of state changes
for each event computation, incremental state saving can
reduce the time and memory overheads of state saving by
only keeping a log of changes to individual state variables.
When a large portion of the state tends to change dur-
ing each event, infrequent state saving, which periodically
saves an entire copy of the modifiable state, can be an at-
tractive alternative.A relatively new technique for rollback,
reverse computation [1], realizes rollback by performing
the inverse of the individual operations executed in the
event computation. These techniques have been exploited
in small- and large-scale parallel simulations.

Pr
oo

f C
op

y

Tang, Perumalla, Fujimoto, Karimabadi, Driscoll, and Omelchenko

However, advances in PDES research to date have yet
to be explored in space physical science, where mul-
tiphysics and multiscale physical systems are modeled
by partial differential equations and particles. Tradition-
ally, models of such physical systems have been simu-
lated using time-driven or time-stepped approaches [2].
These simulations advance their states based on explicit
time discretization imposed by the global numerical sta-
bility criterion, the Courant-Friedrichs-Levy (CFL) condi-
tion ∆t < (∆x/V)min, where ∆x and V are the spatial
mesh size and the rate of local activities or local propaga-
tion speed, respectively. Such approaches have two inher-
ent limitations that have prevented the simulation of more
complex physical systems that are important in plasma
physics and other areas of science. First, the time incre-
ment used in simulation is constrained by the global CFL
condition to ensure the numerical stability and results in
different degrees of accuracy in multiscale systems where
rates of propagation differ in different regions. Second,
synchronous updates of states across the entire simulation
domain at a fixed time step can lead to unnecessary com-
putations in less active regions where there are few or no
state changes during a time increment. Various adaptive
schemes [3-6] have been developed in time-stepped re-
search to allow variable temporal or spatial discretization
in an effort to overcome the limitations imposed by fixed
time steps; among those is the most developed and widely
used technique of adaptive mesh refinement (AMR) [3].
Allowing recursive creation of refined grids within exist-
ing ones, the AMR technique is able to resolve the com-
putational regions of interest at a higher resolution, both
in time and space. However, the time step for each re-
finement grid is still constant and constrained by the local
CFL condition in that grid, and consideration for interpo-
lation, synchronization among grids, and flux conservation
at grid boundaries adds much complexity to the algorithm.
Recently, research in nonlinear electrodynamics applica-
tions has seen an emerging time-stepped technique called
asynchronous variational integrator (AVI) [7], which bears
similarity to the asynchronous event-processing paradigm
in discrete event simulation approaches. It allows the se-
lection of independent time steps in each spatial mesh and
implements asynchronous updates of simulation states via
a priority queue similar to the pending event list/set in dis-
crete event simulation (DES). Since the AVI approach is
based on Hamilton’s variational principle, it has the desir-
able properties of conserving local energy and momenta,
subject to solvability of the local time steps. But its ap-
plicability is limited to dynamical systems in which the
Lagrangian is expressible as a sum of component sub-
Lagrangians, and like any other time-stepped approach,
the time steps are subject to the CFL condition.

Discrete event simulation was recently used to model
spatially discretized physical systems [8] where it is shown
that this approach not only alleviates the constraint of the
CFL condition but also provides a significant performance

advantage over the time-stepped approach. The perfor-
mance advantage in discrete event simulation approach to
multiscale physical systems such as the plasma simulation
presented in Karimabadi et al. [8] comes from the natu-
ral decoupling of spatial scales in time. This is capable of
capturing both the fine resolutions at particle scales in fast-
evolving regions and the coarse resolutions in less active
regions. Interestingly, the “irregular time steps” inherent
in DES seem to be an elegant solution to the ultimate goal
of getting around the global CFL condition that the time-
stepped research has long been seeking to achieve. In our
work, we further the research effort in Karimabadi et al.
[8] and apply optimistic parallel discrete event simulation
techniques to this problem. Due to the unique character-
istics of plasma simulations that pose great modeling and
simulation challenges, we take a simulation approach that
is efficient and yet general to a broad category of physical
systems. Because memory constraints are often a severe
limitation in the size of the computations that can be per-
formed, reverse computation offers greater promise than
traditional state-saving techniques. We explore the use of
reverse execution for plasma simulations to gain new in-
sights for such challenging, complex physical systems. The
combination of DES methodology and reverse computing
techniques offers the potential to dramatically reduce the
amount of time required to perform plasma simulations
without incurring a large penalty in additional memory
requirements.

The main contributions in this work can be summa-
rized as follows. To our knowledge, this is the first work to
apply reverse computation techniques to parallel physical
system simulations and to show performance advantages
using this approach. In addition, we provide a simple model
and guidelines for creating reverse simulation codes at the
application level that may help physicists in application do-
mains such as space physics and astrophysics to develop
simulation prototypes without comprehensive knowledge
of PDES mechanisms.

The remainder of this article is organized as follows.
The next section discusses related research. An overview
of the physical system we simulate is then presented, as
well as an outline of the reverse computation approach. We
then go into an in-depth discussion on the reverse compu-
tation implementation and challenges associated with this
approach. In the section that follows are experimental re-
sults from a preliminary performance evaluation study. We
conclude by reporting ongoing and future work in this area
and provide guidelines for reversing parallel physical sim-
ulation codes.

2. Related Work

A limited amount of research has examined physical sys-
tem simulation using parallel discrete event simulation
techniques. Perhaps the earliest was the “colliding pucks”
application developed for the time warp operating system
(TWOS) [9]. This work, modeling a set of pucks traveling

2 SIMULATION Volume 82, Number 1

Pr
oo

f C
op

y

OPTIMISTIC SIMULATIONS OF PHYSICAL SYSTEMS

over a frictionless plane, was used to benchmark an early
implementation of the time warp protocol. Lubachevsky
[10] discusses the use of conservative simulation proto-
cols to create cellular automata models of Ising spin. Other
work describes challenges in using discrete event simula-
tion techniques for a few other physical system problems
[11]. A formal approach to both discrete event and contin-
uous simulation modeling based on DEVS (discrete event
system specification) was proposed by Zeigler, Praehofer,
and Kim [12], and some numerical solutions have been
examined based on the DEVS formalism [13].

Seminal work in optimistic parallel discrete event sim-
ulation was completed by Jefferson [14]. State saving has
historically been the dominant approach to enabling the
rollback of computations. Much work has been done to re-
duce the cost of state saving both using hardware [15] and
software support. The less costly software approaches re-
ported in the literature include copy state saving, incremen-
tal state saving [16, 17], and infrequent state saving [18-
21]. A different approach avoiding the cost of state saving
was first described in Carothers, Perumalla, and Fujimoto
[1], where reverse execution is used to roll back computa-
tions. Their reverse procedures were automatically gener-
ated by a compiler. More recent work using reverse exe-
cution for parallel network simulations, using manually
generated code, was reported in Yuan, Carothers, and
Kalyanaraman [22]. Our work is different in that it applies
reverse execution techniques to the simulation of physical
systems that involve complex floating point operations and
generates reverse code based on application semantics.

Traditionally, complex physical systems described by
partial differential equations and particles are modeled by
time-stepped simulations. Karimabadi et al. [8] recently
demonstrated both the feasibility and efficiency of apply-
ing the DES methodology to model such complex sys-
tems. Their study shows that performance improvement of
up to two orders of magnitudes is achievable by switching
from a time-stepped approach to an event-driven approach.
Our study is based on their work and focuses on parallel
execution techniques for their DES models. In particular,
we examine the feasibility of optimizing the parallel syn-
chronization mechanism by applying reverse computation
techniques.

3. Overview

In this section, we describe the computational plasma sim-
ulation model that is used as a case study. The underlying
physics in this model may be a bit involved from a com-
puter science point of view and is not required to be fully
digested by the reader to understand the reverse compu-
tation techniques elaborated in the next section. Since our
focus is on the use of reverse execution techniques in opti-
mistic simulation, a high-level understanding of the model
suffices for our purpose. Interested readers can refer to
Karimabadi et al. [8] for a more complete discussion on
the DES modeling approach.

3.1 Computational Model: PIC Simulation

One of the great challenges in space physics is to un-
derstand how the solar wind interacts with the Earth’s
magnetosphere. While traditional work focused primarily
on time-stepped methods, new methodology presented in
Karimabadi et al. [8] was among the first to apply a DES
approach to simulating such complex physical systems.
The basic idea behind the DES approach is, instead of ad-
vancing time in small (safe) time increments, state updates
are scheduled as far into the future as locally predictable.
This approach can lead to bigger leaps in simulation time
and local stepping rather than global stepping in contrast
to time-stepped method and hence can be more efficient.

The particle-in-cell (PIC) [23] modeling approach
serves as a good starting point in theoretical research
in plasma dynamics. This model is conceptually simple
yet captures the characteristics of physical phenomena in-
volved and can be extended to more complex models. How-
ever, the computational ramifications of PIC simulation
are nontrivial in that it simulates movements of millions
or even billions of particles and their interactions with the
fields, placing great demands on computational capacity.
There has been considerable interest in improving its per-
formance in the high-performance computing community.
Although we apply the reverse computation method only
to this particular model in our study, the programming
model and methodology used here are representative of
grid-based physical systems. Therefore, the approach pre-
sented here may be applicable to a wider range of physical
systems.

3.2 Spacecraft Charging Model

We limit our simulations to a one-dimensional electrostatic
model using spherical coordinates. Figure 1 illustrates a
plasma PIC simulation of charging a spacecraft immersed
in neutral plasma by injecting a charged beam from its
surface [23]. The spacecraft is initially charge neutral and
immersed in the charge-neutral plasma of the solar wind.
A charged beam is periodically injected from the space-
craft surface. The effect of beam injection is twofold: the
surface charge of the spacecraft incurs a change equal
in magnitude but with an opposite sign to the injected
beam particles; the charge in the cell immediately to the
right of the spacecraft incurs a change equal to the beam
both in magnitude and sign. The latter leads to a corre-
sponding change in the electrostatic field, which in turn
affects the plasma particles’ movement, triggering a self-
consistent change in the field as this cycle of cause and
effect repeats. Here the interactions between particles and
the field present a challenge in time-stepped simulations,
where special techniques are typically applied to break the
“coupling,” whereas the “decoupling” is realized naturally
in DES, as will become clearer shortly. Despite its sim-
ple concept, the spacecraft charging problem does have

Volume 82, Number 1 SIMULATION 3

Pr
oo

f C
op

y

Tang, Perumalla, Fujimoto, Karimabadi, Driscoll, and Omelchenko

Figure 1. Schematic of the particle-in-cell (PIC) model

practical significances in space science. For example, the
results of the simulation can help spacecraft designers un-
derstand plasma dynamics as well as its charging effects on
the spacecraft, so that appropriate beam injection devices
could be equipped on the spacecraft to offset the accumu-
lated charge from plasma particles and prevent spacecraft
internal electronic devices from malfunctioning.

With the physical phenomena and significance of this
PIC model in mind, we are now in a position to take a
closer look at the details in our simulation. In our space-
craft model, the simulation domain is divided into “cells,”
with each cell modeled as a Cell class. Upon simulation
initialization, the spacecraft and all cells are charge neu-
tral, with each cell uniformly loaded with an equal number
of electrons and protons. Then a beam is injected from the
spacecraft surface into the first cell, exciting solar wind par-
ticles and propagating to other cells. The main numerical
computations involved are summarized as follows.

• Field update. Because Gauss’s law allows the field
value to be solely determined by the charge enclosed
at a boundary, the field value can be expressed as
E ∝ Q

r2 in spherical coordinates, where Q is the
enclosed charge within the distance of r . Using the
differential form of Gauss’s law, dE ∝ dQ

r2 , one can
solve the field locally and update any field changes
in a cell by keeping a running sum of all the charges
that have crossed its left and right boundaries [8].

• Particle movement. Initially, all particles in cell
itake on a charge given by Qi = 4πr2

i
∆riρi , where

ri , ∆ri , and ρi are the cell center coordinate, cell
width, and the particle density in cell i, respectively.
As a particle moves within a cell, its motion prop-
erties, such as acceleration Acc, velocity Vel, and
position Pos, can be easily calculated via equations
of motion. In particular, the time at which a particle
reaches the cell boundary and moves into the neigh-
boring cell has significance in the DES approach:
it indicates when the cell field values need updates
and when the particle motion trajectory may be re-
computed in the new electric field; it reflects the fine
timescale of particle movement that the event-driven
approach is designed to cope with. The future exit

time of a particle is solved by finding the roots dt of
the quadratic equations [8]:

1

2
∗ Acc ∗ dt 2 + V el ∗ dt + Pos − CellWidth = 0,

(1)

1

2
∗ Acc ∗ dt 2 + V el ∗ dt + Pos = 0, (2)

which give

dt =
−V el ± √

V el2 − 2 ∗ Acc ∗ (Pos − CellWidth)

Acc
,

−V el ± √
V el2 − 2 ∗ Acc ∗ Pos

Acc
. (3)

Equations (1) and (2) represent the right and left exit
conditions, respectively. dt is the time difference be-
tween the current simulation time and the particle’s
next movement time. The smallest real root for dt
in (3) is used for predicting the particle’s future exit
time.

• Field and particle interactions. In the plasma sim-
ulation, the field and the particles are tightly coupled
physical entities. When a particle moves out of a cell
and then enters another cell, the field values in both
cells will change. However, only when the change
in a cell’s electric field exceeds a predefined thresh-
old value can the change actually affect all particles
within that cell. Such an event is called a “wakeup,”
where the exit times of all particles in that cell have
to be recomputed, using the new field value. The
consequence of a wakeup is usually the acceleration
of particles moving across cell boundaries, which in
turn results in field updates. Traditional time-stepped
plasma simulations advance the field and move dif-
ferent types of particles based on the same time step,
regardless of the difference in their evolution rates.
The event-driven paradigm allows both the field and
particles to evolve at their own timescales, leading to
an elegant solution that is efficient and a close match
to the physical phenomena.

4 SIMULATION Volume 82, Number 1

Pr
oo

f C
op

y

OPTIMISTIC SIMULATIONS OF PHYSICAL SYSTEMS

3.3 Model Execution and Parallelization

In PDES of a PIC model, each cell in the simulation do-
main is mapped onto one logical process (LP), and one or
multiple LPs are mapped onto one physical process (PP)
according to a carefully tuned load-balancing scheme. Two
distinct regions are shown in Figure 1, based on different
grid spacing, which in our PIC model differentiate the ac-
tive regions from inactive regions. Note that field updates
are limited to active cells in which events are allowed to be
scheduled. The state of each LP includes the cell electric
field variables and the states of all particles within the cell
boundaries.

The dynamic behavior of the system is driven by parti-
cle movements that are modeled by events. There are three
types of events associated with particle movement: Parti-
cleArrivalEvent, ParticleDepartureEvent, and ParticleIn-
jectEvent. The corresponding event handlers are outlined
in Figure 2. When the simulation starts, all cells are ini-
tialized, including electric fields and uniformly distributed
particles along with their physical states (mass, charges,
velocities, positions, etc.). Each particle’s movement is de-
termined by its MoveTime or cell exit time. Whenever a
particle is created in the case of a beam injection or in-
serted in a cell when it has just entered a new cell, its exit
time must be calculated and a pair of departure and ar-
rival events scheduled at the exit time in the corresponding
cells. The departure event is scheduled on the source cell,
and the arrival event is scheduled on the destination cell.
In addition, a particle’s exit time needs to be recalculated
whenever the hosting cell “wakes up.” The physical activ-
ities associated with each component shown in Figure 2
will be explained in detail in the next section.

3.4 Reverse Computation Approach

The characteristics of this plasma simulation present three
major challenges concerning the synchronization of paral-
lel computations. The rationale for the parallelization ap-
proach used here is based on the following considerations.

• Lookahead. The simulation is highly dynamic. The
amount of parallelism can vary dramatically as the
simulation progresses. Dependencies among events
are governed by each particle’s exit time, but this
time can be arbitrarily close in the near future. In
the spacecraft charging model, particle arrival events
can be scheduled across neighboring cells with al-
most no simulation time delay. This low level of
“predictability” results in a low, dynamically chang-
ing value of lookahead that makes efficient execution
using conservative synchronization techniques dif-
ficult. In general, low lookahead is inherent in DES
models of continuous systems due to their formula-
tion, which incur “immediate” updates via events to
neighboring logical processes. This suggests that op-

Cell::arrival(ParticleArrivalEvent *e)
{
 if (this cell is active) {
 update cell state;

insert particle in cell;
 } else if (e is a beam particle) {

activate cell;
 }
}
Cell::departure(ParticleDepartureEvent *e)
{
 if (particle bounced from right neighbor) {

bounce particle back; // no cell state change
 } else {

update cell state;
 }
}
Cell::inject(ParticleInjectEvent *e)
{

update cell state;
insert beam particles;

}

Figure 2. A simplified spacecraft charging model

timistic synchronization [14] may be a more natural
choice for this simulation.

• Memory. Realistic plasma simulations involve a
large number of events, desirably on the order of bil-
lions. Complex data structures are often needed. This
makes traditional approaches to optimistic execution
using state saving problematic: the amount of mem-
ory required can be prohibitively large. Furthermore,
the amount of model-level computation performed
for each event tends to be relatively small, on the or-
der of a few microseconds on a contemporary CPU.
This suggests that the time overhead for state sav-
ing may be significant and hence could significantly
degrade performance, even using techniques such as
incremental state saving. While various techniques
for reducing the cost of state-saving-based rollbacks
have been developed [24, 25], our experiences in-
dicate that much memory is still needed to achieve
efficient parallel execution [26]. On the other hand,
efficient reverse execution has the potential to reduce
or eliminate the memory needed for rollback at the
cost of slightly more or sometimes less computa-
tional time than in the forward execution. For these
reasons, reverse computation was selected for the
parallelization of this plasma simulation code. How-
ever, comparison of the reverse execution approach
with other advanced check-pointing approaches re-
mains an area of future investigation.

Volume 82, Number 1 SIMULATION 5

Pr
oo

f C
op

y

Tang, Perumalla, Fujimoto, Karimabadi, Driscoll, and Omelchenko

• Floating point. The reverse computation approach
proposed in Carothers, Perumalla, and Fujimoto [1]
uses an automated approach to creating the reverse
execution code for each executable line of forward
execution code. For example, a decrement state-
ment is generated to undo an increment statement
in the forward execution code. This approach be-
comes problematic when floating point arithmetic is
used because the computation may not be easily re-
versed due to effects such as round-off error. Here,
we explore a different approach where the program
is viewed at a higher level of abstraction, and suit-
able reverse computation code is developed man-
ually. With our ongoing effort of applying reverse
computation techniques to other plasma codes, we
envision that a general framework for instrumenting
the automation of reverse codes for certain plasma
simulation could be developed in the near future.

These factors motivate the approach that was adopted
for optimistic synchronization using manually derived re-
verse computation code. We believe this can be used to
build a foundation for future work in developing scalable
parallel simulators for complex physical systems.

4. Parallel Simulation Code

Here we use a one-dimensional model of the spacecraft
electrostatic particle code as the illustrative example of
our choice to discuss some of the challenges in generating
the reverse code for this physical system simulation. There
are two types of distinct physical entities in this simula-
tion: particles and cells,1 with particles consisting of three
species of particles—solar wind electrons, solar wind pro-
tons, and injected beam particles. Particles move across
cells, and each cell keeps track of the particles residing
within its own domain. The communication between adja-
cent cells occurs via particle movement events that contain
information of particle physical states. The complex data
structures housing the particles and the physical processes
being captured require a careful modeling of the system.
The object-oriented design used here allows one to encap-
sulate physical properties via classes.

The code in Figure 2 includes three event handlers, one
for each type of event. Much of the complexity of the event
computation is encapsulated within the insert and update
operations. An insert operation includes an “insert” queue
operation (data structures representing particles in the cell
can be organized as a priority queue sorted by their exit
times or simply a list) and computation of the particle’s exit
time from the cell based on equations of motion.An update
operation recomputes the cell’s field value by including the

1. The spacecraft situated at one end of the spatial coordinate can
be treated as a special cell that does not keep the physical states of parti-
cles. We use cells hereafter to refer to the regular cells unless otherwise
specified.

arrival particle’s charge. A change in the field value may
trigger an expensive wakeup computation that again scans
the particle list and updates each particle’s exit time.

It may be noted that the reverse computation tech-
niques introduced in Carothers, Perumalla, and Fujimoto
[1] would generate the reverse code for each instruction
without taking into account the semantics of the higher
level operations being performed. This clearly leads to inef-
ficiencies for the queue management operations frequently
used in this code and, as mentioned earlier, leads to diffi-
culties concerning the reversibility of floating point oper-
ations. The model-specific approach taken here involves
generating the reverse code for the application by exploit-
ing knowledge of the higher level semantics of the opera-
tions being performed. We call this approach application-
level reverse computation.

As a first approach, we investigated the use of a com-
piler for automatically generating reverse code from for-
ward model code. The compiler would use an automated,
instruction-by-instruction reversal approach to achieve re-
verse code. However, the spacecraft charging code, repre-
sentative of other complex physics models, was sufficiently
complex for the compiler to resort to state saving on most
assignment instructions that were apparently destructive
in nature (e.g., x = f (y)). Pervasive use of mathemati-
cal library functions such as sqrt() and log() also greatly
hindered automation.

Careful readers may notice that the particle departure
event handler depicted in Figure 2 does not specify any
deletion operation that matches the insertion operations in
the particle arrival event handler. In fact, deletions are per-
formed aggregately on an as-needed basis. This is done
based on performance considerations. Instead of deleting
each particle at its exiting time, a near-periodic deletion op-
eration is used to amortize the cost of deletions in queues.
It is observed that wakeup events within one cell happen al-
most periodically with a frequency determined by physical
conditions in that cell; furthermore, each wakeup requires
a full scan of the cell’s particle queue. We find that restrict-
ing deletion operations only at cell wakeup times reduces
the total overhead of particle deletions without introducing
excessive memory usage. Since the aggregate deletions are
used to clean up the obsolete states for particles that have
already exited, no rollbacks are needed to recover these
obsolete states in the event of undoing a wakeup.

Figure 3 shows the reverse code of the simulation. No-
tice that after decomposing the forward code into compo-
nents based on simulating physical processes, the reverse
code is relatively easy to construct based on the operations
shown in Figure 3. The next step for generating the com-
plete reverse code is just a matter of reversing each physical
process. Examples of reversing some of the more difficult
processes are shown in Figure 3.

The insert operation appears in both particle arrival and
injection event handlers. Its effect includes assigning mem-
ory for the new particle states in the queue and scheduling

6 SIMULATION Volume 82, Number 1

Pr
oo

f C
op

y

OPTIMISTIC SIMULATIONS OF PHYSICAL SYSTEMS

Cell::undo_arrival(ParticleArrivalEvent *e)
{
if (cell was activated) {

undo_activate cell;
 } else if (cell already active) {

delete particle in cell;
undo_update cell state;

 }
}
Cell::undo_departure(ParticleDepartureEvent *e)
{
 if (particle was bounced from right neighbor) {
 undo_bounce particle;
 } else {

undo_update cell state;
 }
}
Cell::undo_inject(ParticleInjectEvent *e)
{

delete beam particles;
undo_update cell state;

}

Figure 3. A simplified reverse code of the spacecraft model

arrival/departure event pairs at each particle’s future exit-
ing time. Conversely, the delete operation in the reverse
code should perform the corresponding inverses of these
processes. Particles in each cell are organized in a FILO
(first-in, last-out) queue, so the delete operation always re-
moves the particle at the head of the queue that is exactly
the same particle inserted in the forward computation. As
for “undoing” event scheduling, it is assumed that the un-
derlying simulation engine provides the application with a
primitive for explicitly retracting scheduled events; this is
very useful in implementing the delete operation.

One example of an irreversible operation is the calcula-
tion of a particle’s exit time, MoveTime, solved with equa-
tions (1) through (3) introduced in the previous section. The
smallest real value of dt in equation (3) is used to determine
MoveTime and the exit direction. An initial inspection of
the quadratic equations seems to suggest the infeasibility
of applying reverse computation to this process. However,
if we apply the reverse computation approach at the ap-
plication level, we find that the movement of the particle
is highly reversible. Based on the physical laws of parti-
cle motion, the recovery of dt does not require the direct
inverse of the quadratic equations. Indeed, a particle’s mo-
tion states—acceleration, velocity, and position—can be
simply rolled back by reverse computation, as illustrated
in Figure 4; the critical state dt can then be reconstructed by
carrying out the forward computation with the recovered

Particle::update_position(double dt)
{
 Pos += Vel * dt + 0.5 * Acc * dt * dt;
}
Particle::update_velocity(double dt)
{
 Vel += Acc * dt;
}
Particle::update_acceleration(double cell_field)
{
 Acc = cell_field * particle_charge /particle_mass;
}
Particle::reverse_position(double dt)
{
 Pos = Pos - Vel * dt - 0.5 * Acc * dt * dt;
}
Particle::update_state(double cell_field, double dt)
{

update_position(dt);
update_velocity(dt);
update_acceleration(cell_field);
dt = update_dt(); // solve eq. (1) and (2)
MoveTime = now + dt;

}
Particle::reverse_state(double cell_field, double dt)
{

update_acceleration(cell_field);
update_velocity(-dt);
reverse_position(dt);
dt = update_dt();
MoveTime = now + dt;

}

Figure 4. The reverse code example of the particle states

particle motion states. Note that the parameters cell_field
and dt in the reverse code refer to the rolled-back cell_field
value, as well as the time difference between now and the
time when the particle moved right before the wakeup. Fi-
nally, we note that random-number generation is essential
to this parallel simulation. Therefore, an efficient random-
number generator (RNG) that is reversible and has a long
period is required. For this purpose, we use the reversible
RNG described in Carothers, Perumalla, and Fujimoto [1].

5. Performance Evaluation

The application-level reverse computation approach is best
implemented in a system that decouples implementation
details of the simulation engine from the application to
allow one to focus efforts on application semantics. As
a result, a simulation engine that can support reverse

Volume 82, Number 1 SIMULATION 7

Pr
oo

f C
op

y

Tang, Perumalla, Fujimoto, Karimabadi, Driscoll, and Omelchenko

computation at an application level and provide efficient
management of large numbers of events with minimal stor-
age requirement is needed. In addition, the simulation en-
gine should have the flexibility and extensibility to support
future refinements of the parallel simulation.

The parallel simulation code, using reverse execution
described in the previous section, was implemented us-
ing µsik, a general-purpose parallel/distributed simulation
engine based on a microkernel architecture [27]. µsik pro-
vides primitives supporting multiple synchronization ap-
proaches, including optimistic and conservative synchro-
nization, as well as a means to relax event ordering rules
and mixing different approaches to synchronization within
a single parallel execution. It therefore provides the capa-
bilities needed for the parallel physical system simulations
described here.

In a µsik simulation, logical (simulation) processes
(LP) are fully autonomous entities that communicate via
events. In our simulation model, each cell is implemented
as an LP and can choose to run conservatively or optimisti-
cally. A conservative implementation of the simulation de-
scribed here performed very poorly, due to poor lookahead,
and is not discussed further. We focus on optimistic exe-
cution using our reverse handlers to support rollback.

5.1 Experiment Configuration

To demonstrate the feasibility and efficiency of reverse
computation in the electrostatic plasma simulation, we
carried out all experiments on a symmetric multiproces-
sor (SMP) machine running Red Hat Linux 7.3 with a
customized 2.4.18-10smp kernel. The SMP machine is
equipped with eight Pentium III 550-MHz Xeon proces-
sors that share 4 GB of memory.

We use normalized units throughout our simulation,
where length, time, and velocity are normalized to elec-
tron Debye length, electron plasma frequency, and electron
thermal velocity, respectively. The spacecraft is assumed
to have a 500-unit radius, and each cell has a width of 0.24
units. The solar wind plasma is initially loaded with uni-
formly distributed electrons and protons. We choose the
initial values of 30 electrons and 30 protons per cell. The
injected positron beam has energy of 10 kev with an in-
jection period of 0.004. Upon initialization, there are up to
7000 cells, of which the first 70 close to the spacecraft are
“active”; as the simulation progresses up to time 60, the
beam travels further away from the spacecraft surface, and
thus more cells are activated.

5.2 Parallel Performance

Figure 5 shows a snapshot visualization of phase space
structures for the solar wind electrons, protons, and beam
particles from a time-stepped simulation and the optimistic
PDES simulation. Both simulations are run up to 60 time
units and with the same simulation parameters, except

using different RNGs. The PDES used a specialized re-
versible RNG in contrast to the generic single-stream RNG
used in the time-stepped simulation. Despite this differ-
ence, the two phase space structures at the end of the
simulations are rather close in form. The result from the
PDES execution with reverse computation is verified to
accurately capture the main features of movement for all
three species of particles at the end of the simulation. In
particular, it can be seen that the beam front in both sim-
ulations has propagated to the same distance, and beam
particles display a similar shape in phase space. It is also
evident that the electron phase space has a finer resolution
in the PDES case for up to 4000 cells. This is the result
of its fine timescale based on individual particles. A minor
difference to note is that, in the PDES case, the phase space
does not extend all the way to the right wall, whereas in the
time-stepped model, it does. This is because we model an
expanding box in PDES but not the time-stepped model.
Overall, the results helped serve as validation of our op-
timistic simulation model against the original sequential
simulation model.

Validation could perhaps be improved by employing
more rigorous comparison testing, such as using deviation
measures for phase-space plots. For our purposes, however,
the closeness of match by visual comparison is sufficiently
clear.

The speedup of DES over TDS[*PLS. SPELL OUT*]
has been discussed in great detail in Karimabadi et al. [8].
In this work, we focus on further improving DES per-
formance by realizing parallelization and using optimistic
synchronization. All the parallel experiments discussed in
the following section were run with the same physical pa-
rameters and resulted in the same number of committed
events as the sequential runs. Figure 6 shows the parallel
speedup in terms of execution time for up to eight pro-
cessors. The sequential data are measured by running the
parallel code on a single processor. It should be noted that
the single-processor execution incurs neither rollbacks nor
state-saving overhead. Because µsik was designed for both
efficient sequential and parallel execution, we believe these
measurements reflect the performance one could expect
to see using a reasonably efficient sequential simulation
engine.

We observe that the optimistic parallel execution
achieves a nearly linear speedup up to four processors,
but the performance improvement is somewhat less in go-
ing from four to eight processors. This phenomenon is
largely due to the fact that there is relatively little compu-
tation per particle event. As the computation is distributed
over more and more processors, the amount of computa-
tion between event communications decreases, resulting
in reduced speedup. We expect that this problem will not
persist if a larger, more complex physical model such as a
three-dimensional plasma code were used. An initial test
with an increased simulation time of 2 units did show bet-
ter speedup performance due to the fact that the longer the

8 SIMULATION Volume 82, Number 1

Pr
oo

f C
op

y

OPTIMISTIC SIMULATIONS OF PHYSICAL SYSTEMS

Figure 5. Validation by phase-space comparison of time-stepped simulation and parallel discrete event simulation (PDES) with
reverse computation

simulation runs, the more cells are activated, resulting in
more balanced computation for each processor.

A second factor that results in less than optimal perfor-
mance concerns the distribution of the workload. Figure 7
shows the amount of computation assigned to each proces-
sor in each of the runs. Here, the load is distributed by first
dividing the physical area encompassed by the simulation
into two regions (as illustrated in Fig. 1), with the initially
active cells closer to the spacecraft in the “heavy activity”

region and other cells forming the “less active” region.
Cells in the active regions are evenly grouped and dis-
tributed among the available processors, while other cells
are grouped into subregions or “blocks” and distributed
among processors in a round-robin fashion. All simula-
tions shown in Figure 7 have a fixed “block” size. We
observe that during the lifetime of each simulation, the
processor load shows significant variation as more cells
become active. Upon simulation termination, the simula-

Volume 82, Number 1 SIMULATION 9

Pr
oo

f C
op

y

Tang, Perumalla, Fujimoto, Karimabadi, Driscoll, and Omelchenko

1 2 3 4 5 6 7 8

Number of Processors

1

2

3

4

5

6

7

8

Sp
ee

du
p

R
el

at
iv

e
to

 S
eq

ue
nt

ia
l R

un

lin
ear

 sp
eed

up

Figure 6. Parallel discrete event simulation (PDES) versus sequential discrete event simulation (DES)

0 2 4 6 8

Processor ID

0

1e+07

2e+07

3e+07

4e+07

T
ot

al
 N

um
be

r
of

 E
ve

nt
s 2 processors

4 processors

6 processors

8 processors

Figure 7. Event distribution

tion with the largest number of processors tends to be the
least balanced. The imbalance is inherent of such simu-
lations due to their highly dynamic nature and the static
load-balancing scheme. Further investigation of character-
istics of electrostatic plasma simulations is needed to aid
in the development of a more efficient load-balancing al-
gorithm for this application that can lead to better parallel
performance for large numbers of processors.

5.3 Efficiency

Intuitively, grid-based physical systems such as the elec-
trostatic plasma simulation studied here have the desir-
able features of locally solved field values and queu-
ing/dequeuing operations that are time reversible, but the
evolution of the system itself (beam injections, cell wake-
ups in our case) is not time reversible. However, with the

10 SIMULATION Volume 82, Number 1

Pr
oo

f C
op

y

OPTIMISTIC SIMULATIONS OF PHYSICAL SYSTEMS

application-level reverse computation illustrated here, we
have shown that numerical operations in the electrostatic
plasma simulation chosen for this study are truly reversible,
despite round-off errors and irreversible evolution pro-
cesses. The most important discovery from our study is
that application-level reverse computation may be quite
efficient for these scientific simulations.

The efficiency mainly comes from two contributing fac-
tors: the smaller amount of additional memory required
for optimistic execution, particularly queue operations in
which no additional state is required to perform rollbacks;
note the fact that the simulation is not constrained by ar-
bitrarily small lookahead values. However, there are still
important practical issues related to reverse computation.

Ideally, one would like to apply reverse computation
to all reversible operations. But reverse computation also
comes at a cost: if the number of destructive operations is
sufficiently large and no efficient application-level reverse
computation can be found, employing reverse computa-
tion can result in worse performance than state saving.
One such case, as pointed out in Carothers, Perumalla, and
Fujimoto [1], is when a rollback spans several processed
events. Merely switching pointers to restore a state based
on the earliest rolled-back event incurs a small cost in copy
state saving, while reverse computation must roll back one
event at a time, and thus excessive rollbacks can cause
performance to degrade considerably. The effect of this is
particularly severe in our simulation when a rollback spans
multiple wakeup events.

Our solution to reducing the rollbacks of costly wakeup
events is to limit the “optimism” of the parallel execu-
tion. The idea of controlling optimism is not new. One
such approach is first described in the moving time win-
dow (MTW) protocol [28], where LPs are not allowed to
advance beyond a time window above the GVT[*PLS.
SPELL OUT*]. Although other approaches, such as prob-
abilistic rollbacks [29], local rollbacks [30], Breathing
Time Buckets [31], and Wolf Call mechanism [32], have
been proposed to counter the effect of overoptimism, we
simply choose to use a time window–based approach be-
cause of its simplicity and low overhead. µsik supplies sim-
ulation applications with a convenient facility for our pur-
pose.A “run-ahead” parameter, which is in fact the moving
window size, can be set by the model upon simulation ini-
tialization. This limits how far in simulation time each LP
can run ahead of other LPs during optimistic execution.
By tuning the run-ahead parameter based on cell wakeup
frequency, we are able to reduce or eliminate consecutive
rollbacks of wakeup events. The significant performance
gain in our experiment indicates that the extra operation
associated with the window maintenance is a small cost to
pay. Further improvement in parallel performance is pos-
sible by fine-tuning the run-ahead value. This is left for
future investigation.

In addition to the basic reverse computation techniques
discussed here, advanced reverse techniques can be applied

to the plasma simulation. For example, compiler-supported
reverse computation can be used to further optimize the
parallel performance at runtime. This approach is beyond
the scope of our discussion and will be studied in the future.

6. Conclusions

In this work, we have applied reverse execution to perform
parallel discrete event simulations of a physical system.
The spacecraft charging application was used to demon-
strate feasibility of applying this approach in modeling and
simulation of physical systems. The spacecraft charging
application is a sufficiently complex application and hence
particularly challenging for reverse execution. It contains
several nuances, such as dynamic activation of neutral cells
by beam particles; runtime retraction of particle events; en
masse “wakeup” of all particles within a cell; periodic,
dynamic creation of particles; multiple particle types and
their properties; and complex boundary conditions.

Despite the complexity, we demonstrated that an
application-level reverse computation approach can be
used to (manually) generate efficient reverse code. These
results suggest that reverse computation merits further in-
vestigation as an approach for parallel/distributed simula-
tion of physical systems modeled using a discrete event
simulation paradigm.

As previously mentioned, the PIC simulation consid-
ered in this article is only a simplified example of reverse
execution in simulating physical systems. The examples
given previously are representative and certainly do not
encompass the diversity and complexity of all physical
system simulations. However, the underlying reverse tech-
niques can be used in other grid-based models without ex-
tensive modifications. Here we provide some guidelines
for the development of parallel physical discrete event
simulations using reverse computation. Since our explo-
ration of reverse computation is an ongoing research effort,
the guidelines provided here should be used as references
rather than strict rules for applying reverse computation in
scientific simulations.

• Reverse computation is well suited for fine-grained
applications such as 1D electrostatic grid-based
plasma models. It is especially useful where efficient
queue management is needed. But other optimiza-
tion techniques should also be considered to fully
optimize parallel performance.

• Good knowledge of the application semantics, es-
pecially the underlying physics, can be beneficial in
producing reverse code for physical systems. Model-
specific optimization can be quite efficient but re-
quires knowledge of application-level operations.
The simple example of reversing the quadratic equa-
tion would not have been efficient, if at all possible,
without knowledge of the physics involved (parti-
cle’s motion in this case).

Volume 82, Number 1 SIMULATION 11

Pr
oo

f C
op

y

Tang, Perumalla, Fujimoto, Karimabadi, Driscoll, and Omelchenko

• The modeling process largely determines how suc-
cessfully reverse computation will improve paral-
lel performance. Initial analysis in Carothers, Peru-
malla, and Fujimoto [1] shows that complex use of
jump instructions, such as goto, break, and continue,
is difficult to optimize in terms of memory usage.

• In modeling physical systems, it seems desirable
to avoid monolithic code for event handlers; in-
stead, use of functions calls is preferable that are
associated with each physical process. If an event
handler only consists of a long sequence of simple
instructions, it is difficult to extract application se-
mantics; therefore, reverse computation can degen-
erate to instruction-by-instruction reverse execution.
Using small function calls that reflect a more accu-
rate mapping to physical processes helps to develop
reverse codes based on physical properties of the sys-
tem. Another obvious advantage is easier debugging
and testing for the reverse code. As future work, we
plan to investigate approaches by which application-
level semantics can be exposed to an automated re-
verse code-generating compiler for generating re-
verse code comparable to manual, application-level
reversal techniques described here. One possibility is
to define this in an application domain-specific man-
ner, such as a library of forward and reverse particle
physics models.

The work presented here is only an initial step based on a
simplified physical system. Yet, the results show promise.
Our goal is to build a scalable parallel simulator for com-
plex physical systems by exploitation of more advanced
reverse computation techniques.

7. Acknowledgment

This work was supported in part by the National Science
Foundation grants ATM-0326431, 0325046, and 0539106.

8. References

[1] Carothers, C. D., K. Perumalla and R. M. Fujimoto. 1999. Efficient
optimistic parallel simulation using reverse computation. ACM
Transactions on Modeling and Computer Simulation 9 (3): 224-
53.

[2] Birdsall, C. K., and A. B. Langdon. 1985. Plasma physics via com-
puter simulation. New York: McGraw-Hill.

[3] Berger, M. J., and J. Oliger. 1984. Adaptive mesh refinement for
hyperbolic partial differential equations. Journal of Computa-
tional Physics 53:484-512.

[4] Otani, N. F. 2000. Computer modeling in cardiac electrophysiol-
ogy. Journal of Computational Physics 161:21-32.

[5] Dawson, C., and R. Kirby. 2001. High resolution schemes for con-
servation laws with locally varying time steps. SIAM Journal
of Scientific Computing 22 (6): 2256.

[6] Abedi, R., S. Chung, J. Erickson, Y. Fan, M. Garland, D. Guoy, R.
Haber, J. M. Sullivan, S. Thite, and Y. Zhou. 2004. Spacetime

meshing with adaptive refinement and coarsening. In Proceed-
ings of the 12th Annual Symposium on Computational Geome-
try, pp. 300-8.

[7] Lew,A., J. E. Mardsen, M. Ortiz, and M.West. 2003.Asynchronous
variational integrators. Archive for Rational Mechanics and
Analysis 167 (2): 85-146.

[8] Karimabadi, H., J. Driscoll,Y.A. Omelchenko, and N. Omidi. 2005.
A new asynchronous methodology for modeling of physical
systems: Breaking the curse of courant condition. Journal of
Computational Physics 205 (2): 755-75.

[9] Hontalas, P., B. Beckman, M. DiLorento, L. Blume, P. Reiher,
K. Sturdevant, L. V. Warren, J. Wedel, F. Wieland, and D. Jef-
ferson. 1989. Performance of the colliding pucks simulation
on the time warp operating system. In Distributed Simulation,
Society for Computer Simulation International.

[10] Lubachevsky, B. D. 1989. Efficient distributed event-driven simu-
lations of multiple-loop networks. Communications of the ACM
32 (1): 111-23.

[11] Lubachevsky, B. D. 1993. Several unsolved problems in large-
scale discrete event simulations. In Proceedings of the 7thWork-
shop on Parallel and Distributed Simulation, pp. 60-7.

[12] Zeigler, B. P., H. Praehofer and T. G. Kim. 2000. Theory of mod-
eling and simulation. 2nd ed. New York: Academic Press.

[13] Nutaro, J. J. 2003. Parallel discrete event simulation with applica-
tion to continuous systems. Ph.D. diss., Electrical and Computer
Engineering Department, University of Arizona.

[14] Jefferson, D. 1985. Virtual time. ACM Transactions on Program-
ming Languages and Systems 7 (3): 404-25.

[15] Fujimoto, R. M., J. J. Tsai, and G. Gopalakrishnan. 1988. The roll
back chip: Hardware support for distributed simulation using
time warp. Proceedings of SCS Distributed Simulation Confer-
ence 19 (3): 81-6.

[16] Bauer, H., and C. Sporrer. 1993. Reducing rollback overhead in
time warp based distributed simulation with optimized incre-
mental state saving. In Proceedings of the 26th Annual Simula-
tion Symposium.

[17] Steinman, J. 1993. Incremental state saving in SPEEDES using
C++. In Proceedings of the 1993Winter Simulation Conference.

[18] Lin, Y. B., and E. D. Lazowska. 1989. The optimal checkpoint
interval in time warp parallel simulation. Technical Report 89-
09-04, Department of Computer Science and Engineering, Uni-
versity of Washington.

[19] Bellenot, S. 1992. State skipping performance with the time warp
operating system. In Proceedings of the 6th Workshop on Par-
allel and Distributed Simulation, pp. 53-61.

[20] Franks, S., F. Gomes, B. Unger, and J. Cleary. 1997. State saving
for interactive optimistic simulation. In Proceedings of the 11th
Workshop on Parallel and Distributed Simulation, pp. 72-9.

[21] Fleischmann, J., and P. Wilsey. 1995. Comparative analysis of
periodic state saving techniques in time warp simulators. In
Proceedings of the 9th Workshop on Parallel and Distributed
Simulation, pp. 50-8.

[22] Yuan, G., C. D. Carothers, and S. Kalyanaraman. 2003. Large-
scale TCP models using optimistic parallel simulation. In Pro-
ceedings of the 17th Workshop on Parallel and Distributed Sim-
ulation, p. 153.

[23] Pritchett, P. L., and R. M. Winglee. 1987. The plasma envi-
ronment during particle beam injection into space plasmas:
1. Electron-beams. Journal of Geophysical Research—Space
Physics 92 (A7): 7673-88.

[24] Jefferson, D. R. 1990. Virtual time II: Storage management in
distributed simulation. In Proceedings of the Ninth Annual ACM
Symposium on Principles of Distributed Computing, pp. 75-89.

[25] Preiss, B. R., and W. M. Loucks. 1995. Memory management
techniques for time warp on a distributed memory machine. In
Proceedings of the 9th Workshop on Parallel and Distributed
Simulation, pp. 30-9.

12 SIMULATION Volume 82, Number 1

Pr
oo

f C
op

y

OPTIMISTIC SIMULATIONS OF PHYSICAL SYSTEMS

[26] Das, S. R., and R. M. Fujimoto. 1997. An empirical evaluation
of performance-memory tradeoffs in time warp. IEEE Trans-
actions on Parallel and Distributed Systems 8 (2): 210-24.

[27] Perumalla, K. 2005. µsik—A micro-kernel for paral-
lel/distributed simulation systems. In Proceedings of the 19th
Workshop on Principles of Advanced and Distributed Simula-
tion.

[28] Sokol, L. M., and B. K. Stucky. 1990. MTW: Experimental results
for a constrained optimistic scheduling paradigm. Proceedings
of the SCS Multiconference on Distributed Simulations 22:169-
73.

[29] Madisetti, V., D. Hardaker, and R. Fujimoto. 1993. The MIMDIX
operating system for parallel simulation. Journal on Parallel
and Distributed Computing 18 (4): 473-83.

[30] Dickens, P. M., and P. F. Reynolds. 1990. SRADS with local roll-
back. Proceedings of the SCS Multiconference on Distributed
Simulation 22:161-4.

[31] Steinman, J. S. 1993. Breathing time warp. In Proceedings of
the 7th Workshop on Parallel and Distributed Simulation, pp.
109-18.

[32] Madisetti, V., J. Walrand, and D. Messerschmitt. 1988. WOLF:
A rollback algorithm for optimistic distributed simulation

systems. In Proceedings of the 20th Conference on Winter Sim-
ulation, pp. 296-305.

Yarong Tang is *POSITION?* in the College of Computing at
the Georgia Institute of Technology, Atlanta.

Kalyan S. Perumalla is *POSITION?* at the Oak Ridge Na-
tional Laboratory, Oak Ridge, Tennessee.

Richard M. Fujimoto is *POSITION?* in the College of Com-
puting at the Georgia Institute of Technology, Atlanta.

Homa Karimabadi is *POSITION?* at SciberQuest, Inc.,
Solana Beach, California.

Jonathan Driscoll is *POSITION?* at SciberQuest, Inc., Solana
Beach, California.

Yuri Omelchenko is *POSITION?* at SciberQuest, Inc., Solana
Beach, California.

Volume 82, Number 1 SIMULATION 13

