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Abstract

A brief survey of the requirements for quantum computational hardware, and an overview
of the ion trap quantum computation project at Los Alamos are presented. The physical
limitations to quantum computation with trapped ions are discussed.

1. Introduction

Over the past decade information theory has been generalized to allow binary data to be
represented by two-state quantum mechanical systems. (A single two-level system has come
to be known as a qubit in this context.) The additional freedom introduced into information
physics with quantum systems has opened up a variety of capabilities that go well beyond
those of conventional information. For example, quantum cryptography [1, 2] allows two
parties to generate a secret key even in the presence of eavesdropping. But perhaps the
most remarkable capabilities have been predicted in the field of quantum computation
[3, 4].

Benioff [5] and subsequently Feynman [5] explored the uses of quantum systems for
(conventional) computation, but it was Deutsch [6] who first suggested that the quantum
superposition principle could be exploited to achieve greater computational power quantum
mechanically than with conventional computation. He coined the term ªquantum paralle-
lismº to describe the ability of a quantum computer to perform computations in superposi-
tion. However, it was not until the work of Shor [7] in 1994 that quantum parallelism was
shown to offer an efficient solution of an interesting computational problem. Specifically,
building on earlier work of Simon [8], Shor invented polynomial-time quantum algorithms
for solving the integer factorization and discrete logarithm problems [7]. The computational
difficulty of solving these two problems with conventional computers underlies the security
of much of modern public key cryptography [9]. Shor's algorithms are sufficiently compel-
ling that the daunting scientific and technological challenges involved in practical quantum
computation are now worthy of serious experimental study.

Every integer can be decomposed into a unique product of prime numbers. Most integers
are easy to factor because they are products of small (prime) factors, but large integers
(hundreds of digits) that are a product of two, comparably-sized primes can be very difficult
to factor with conventional computers [10]. For example, in 1994 the 129-digit number
known as RSA129 [11] required 5,000 MIPS-years of computer time over an 8-month peri-
od to determine its 64-digit and 65-digit prime factors [12]. In contrast a quantum computer
(QC) using Shor's algorithm at a clock speed of 100 MHz would have factored this number
in a few seconds. Furthermore, the growth in complexity of the quantum factoring algorithm
is sufficiently slow that much larger numbers (1,024 bits, say) would require only tens of
seconds for their factorization on such a QC, whereas the best conventional factoring algo-
rithm would take �107 years, extrapolating from the recent factorization of RSA130 [13].

Fortschr. Phys. 46 (1998) 6±±8, 759±±769



Although experimental quantum computation is in its infancy, there is a very promising
hardware concept using the quantum states of ions in an electromagnetic trap [14]. Several
groups, including our own, [15] are now investigating quantum computation with such
systems. Cirac and Zoller showed that laser-cooled ions in an electromagnetic trap have the
necessary characteristics to perform quantum computation. The relevant coherence times
can be adequately long; mechanisms for performing the quantum logic gate operations
exist; and a high-probability readout method is possible. (For a detailed description see
Reference [16].) A single logic operation using a trapped beryllium ion has been demon-
strated [17]. However, even algorithmically small computations will require the creation and
controlled evolution of entangled quantum states that are far more complex than have so far
been achieved experimentally. It is therefore important to quantify the extent to which
trapped ions could allow the quantum engineering of the complex states required for quan-
tum computation [18]. Furthermore, by characterizing the way in which the precision of
quantum operations depends on experimental parameters, it will be possible to determine
how quantum error correction schemes and fault-tolerant methods can best be applied.
These concepts hold out the prospect of indefinite quantum computation, even with imper-
fect physical implementations, if certain precision thresholds can be attained [19].

The rest of this paper is organized as follows. In Section 2 we review the Cirac-Zoller
scheme for ion trap quantum computation, and Section 3 is devoted to a description of the
different qubit schemes possible with trapped ions. Sections 4 and 5 contain estimates of
the limits to quantum computation with the two classes of qubits. In Section 6 we compare
the bounds obtained in sections 4 and 5 with the requirements of quantum factoring, and in
Section 7 we investigate whether there is an upper bound to ion trap computational capa-
city in terms of fundamental constants. Finally in Section 8 we present some conclusions.

2. Quantum Computation with Trapped Ions

There are three essential requirements for quantum computation hardware. Firstly, it must
be possible to prepare multiple qubits, adequately isolated from interactions with their en-
vironment for the duration of computation, in an addressable form. Secondly, there must be
an external drive mechanism for performing the requisite quantum logic operations. And
thirdly, there must be a readout mechanism for measuring the state of each qubit at the end
of the computation. These conditions can be satisfied with trapped ions.

In an ion trap quantum computer a qubit would comprise two long-lived internal states,
which we shall denote j0i and j1i, of an ion isolated from the environment by the electro-
magnetic fields of a linear radio-frequency quadrupole (RFQ) ion trap. Many different ion
species are suitable for quantum computation, and several different qubit schemes are possi-
ble, as we shall see below. For example, at Los Alamos we are developing an ion-trap
quantum-computer experiment using calcium ions, with the ultimate objective of perform-
ing multiple gate operations on a register of several qubits (and possibly small computa-
tions) in order to determine the potential and physical limitations of this technology [15].
We have chosen calcium ions for the convenience of the wavelengths required. The heart of
our experiment is a linear radio-frequency quadrupole (RFQ) ion trap with cylindrical geo-
metry in which strong radial confinement is provided by radio-frequency potentials applied
to four ªrodº electrodes and axial confinement is produced by a harmonic electrostatic
potential applied by two ªend capsº. After Doppler cooling on their 397-nm S-P transition,
several calcium ions will become localized along the ion trap's axis because their recoil
energy (from photon emission) is less than the spacing of the ion's quantum vibrational
energy levels in the axial confining potential. Although localized to distances much smaller
than the wavelength of the cooling radiation, the ions nevertheless undergo small amplitude
oscillations. Their lowest frequency mode is the axial center of mass (CM) motion in which
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all the ions oscillate in phase along the trap axis. The frequency of this mode, whose
quantum states will provide a computational ªbusº, is set by the axial potential. The inter-
ion spacing is determined by the equilibrium between this axial potential, which tends to
push the ions together, and the ions' mutual Coulomb repulsion. For example, with a 200-
kHz axial CM frequency, the inter-ion spacing is on the order of 30 mm. After this first
stage of cooling, the ions form a ªquantum registerº in which one qubit can be addressed
(with a suitable laser beam) in isolation from its neighbors. We have determined that more
than 20 ions can be held in an optically addressable configuration. However, before quan-
tum computation can take place, the quantum state of the ion's CM mode must be prepared
in its quantum ground state.

Because of the long radiative lifetime of the metastable 3D-states (�1 s), the S-D electric
quadrupole transition in calcium ions has such a narrow width that it displays upper and
lower sidebands separated from the central frequency by the CM frequency. With a laser
that has a suitably narrow linewidth, tuned to the lower sideband, an additional stage of
laser cooling (beyond Doppler cooling) can be used to prepare the ªbusº qubit (CM vibra-
tional mode) in its lowest quantum state (ªsideband coolingº). On completion of this stage,
the QC would have all qubits in the j0i state, ready for quantum computation. (This second
stage of cooling could also be performed with Raman transitions.)

The quantum state of the register of ions will then be manipulated by performing quan-
tum logical-gate operations that will be effected by directing a laser beam at individual ions
for a prescribed time. The laser-ion interaction will coherently change the state of the qubit
through the phenomenon of Rabi oscillations. (Several different types of transition are pos-
sible.) An arbitrary logical operation can be constructed from a small set of elementary
quantum gates, such as the so-called ªcontrolled-NOTº operation (ªCNOTº), in which the
state of one qubit (the ªtargetº) is flipped if a second qubit (the ªcontrolº) is in the ª1º
state but left unchanged if the second qubit is in the ª0º state,

CNOTct:

j0ic j0it ! j0ic j0it
j0ic j1it ! j0ic j1it
j1ic j0it ! j1ic j1it
j1ic j1it ! j1ic j0it

; �1�

where the subscripts c and t denote control and target, respectively. As we will see below,
the CNOT operation can be effected with the help of the quantum states of the ions' CM
motion to convey quantum information from one ion to the other.

On completion of the quantum logic operations the result of the quantum computation
can be read out by turning on a laser connecting the j0i state with another ionic level that
decays rapidly back to j0i. An ion in the j0i state will then fluoresce, whereas an ion in the
j1i state will remain dark. So, by observing which ions fluoresce and which are dark, a bit
value can be obtained. We have recently succeeded in trapping calcium ions in our ion trap
and imaging them with a charge-coupled device (CCD) camera. This is the first step toward
creation of a quantum register [15].

3. Trapped Ion Qubits

In an ion trap QC, each qubit is comprised of two states, j0i and j1i. There is also a
computational ªbusº qubit formed by the ground, jgi, and first excited state, jei, of the
ion's CM axial vibrational motion that is used to perform logic operations between qubits.
By virtue of energy conservation (and possibly other selection rules) it is possible to per-
form two types of coherent operations on a qubit, using laser pulses directed at an ion: on-
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resonance transitions that change only an ion's internal state (ªVº pulses); and red-sideband
transitions (detuned from resonance by the CM frequency) that change both the qubit's
internal state and the CM quantum state (ªUº pulses). The V-pulse Hamiltonian for a parti-
cular ion is,

HV � �hW

2
�eÿijj1i h0j � eÿijj0i h1j� ; �2�

and the U-pulse Hamiltonian is,

HU � �hhW

2
���
L
p �eÿijj1i h0j a� eÿijj0i h1j ay� : �3�

Here W is the Rabi frequency, j is the phase of laser drive, h is the Lamb-Dicke parameter
(characterizing the strength of the interaction between the laser and the ions' oscillations), L
is the number of ions, and a (ay) is the destruction (creation) operator for quanta of the CM
motion, satisfying

a jgi � 0 ; ay jgi � jei ; �a; ay� � 1 : �4�
The unitary operations effected by applying these Hamiltonians to the m-th qubit for a
duration given by a parameter q and phase j are:

Vm�q; j�: j0im ! cos �q=2� j0im ÿ ieij sin �q=2� j1im
j1im ! cos �q=2� j1im ÿ ieÿij sin �q=2� j0im

; �5�

and

Um�q; j�: j0im jei ! cos �q=2� j0im jei ÿ ieij sin �q=2� j1im jgi
j1im jgi ! cos �q=2� j1im jgi ÿ ieÿij sin �q=2� j0im jei

: �6�

To perform logic operations on the qubits an additional red-detuned operation involving
an auxiliary level, jauxi, in each qubit is required, with Hamiltonian

Haux
U � �hhW

2
���
L
p �eijjauxi h0j a� eÿijj0i hauxj ay� ; �7�

with associated unitary operation Uaux
m �q; j�. For example, the controlled-sign-flip (CSF)

operation between two qubits, c and t

CSFct:

j0ic j0it ! j0ic j0it
j0ic j1it ! j0ic j1it
j1ic j0it ! j1ic j0it
j1ic j1it ! j1ic j1it

; �8�

can be accomplished with the sequence of three U-pulses of appropriate duration:

CSFct � Uc�p; 0� Uaux
t �2p; 0� Uc�p; 0� : �9�

From this operation a CNOT gate can be produced as

CNOTct � Vt�p=2; p=2� CSFct Vt�p=2; p=2� : �10�
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The U-pulse Hamiltonian drives transitions much more slowly than the V-pulse for a
given Rabi frequency, which is proportional to the square root of the laser intensity. This is
because it is necessary to put the ions' center of mass into motion, which is a slower
process with more ions, and moreover the Lamb-Dicke parameter, h, is less than one. Be-
cause of their slowness (smallness of the coupling) the U-operations are the rate-limiting
quantities to quantum logic operations. It is therefore desirable to drive these transitions as
quickly as possible. However, the laser intensity cannot by made arbitrarily large, in order
to avoid driving a V-transition, for instance. In the following we shall only count the dura-
tion of the U-pulses to the computational time.

There are two classes of candidates for the qubit levels. The first category occurs in ions
such as Hg�, Sr�, Ca�, Ba� and Yb� with first excited states that are metastable, with
lifetimes ranging from 0.1 s (Hg�), 0.4 s (Sr�), 1 s (Ca�); 1 min (Ba�) and even 10 years
(Yb�). A qubit is comprised of an ion's electronic ground (S) state �j0i�, and a sublevel
�j1i� of the metastable excited state (a D-state in Hg, Ca or Ba; an F-state in Yb). The
advantage of this scheme is that it requires only a single laser beam to drive the qubit
transitions, which greatly simplifies the optics of ion addressing. However, the disadvantage
of this scheme is that it requires optical frequency stability of the laser drive that effects
coherent transitions between the qubit levels.

Alternative qubit schemes use hyperfine sublevels of an ion's ground state, or even Zee-
man sublevels in a small magnetic field for ions with zero nuclear spin, with transitions
between the qubit levels driven by Raman transitions. The advantages of this type of
scheme are that the qubit states can be much longer-lived than the metastable state qubits;
only radio frequency stability is required (corresponding to the frequency difference be-
tween the sublevels); and there are many more possible choices of ion (Be�, Ca�, Ba� and
Mg� for example). Disadvantages are that addressing of the qubits is more complex owing
to the requirement for two laser beams; and the readout is more involved than with meta-
stable state qubits.

During quantum computation it is essential that a QC evolves through a sequence of
pure quantum states, prescribed by some quantum algorithm. In general there will be some
time scale required for a particular computation, and other time scales characterizing the
processes that lead to the loss of quantum coherence. By estimating these time scales we
can determine if ion trap QCs have the necessary preconditions to allow quantum computa-
tion to be performed, and which systems are most favorable. Furthermore, certain decoher-
ence mechanisms become more pronounced with larger numbers of qubits, and there are
technological limits to the number of qubits that can be held and addressed. Therefore,
there are also memory (space) limitations to quantum computation, as well as time limita-
tions, and it will be important to determine how to optimize quantum algorithms to make
best use of the available resources.

The various decoherence mechanisms can be separated into two classes: fundamental or
technical. The former are limitations imposed by laws of Nature, such as the spontaneous
emission of a photon from a qubit level, or the breakdown of the two-level approximation
if a qubit transition is driven excessive laser power. The technical limits are those imposed
by existing experimental techniques, such as the ªheatingº of the ions' CM vibrational
mode, or the phase stability of the laser driving the qubit transitions. One might expect that
these limitations would become less restrictive as technology advances.

It is useful to have benchmarks against which computational capacity can be character-
ized. We will use two: factoring capacity and error probability per quantum logic gate. The
former is algorithm dependent, but illustrative, whereas the latter allows us to contrast the
physical systems with the error correction threshold estimates for continuous quantum com-
putation. (However, the threshold numbers have been obtained under assumptions that may
not be applicable to trapped ions, e.g. an error probability per gate that is independent of
the number of qubits.)
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4. Metastable State Qubits

We shall consider a quantum algorithm that requires L qubits (ions), and N laser pulses (we
count only the slow, U-pulses), each of duration t (a p-pulse, q � p, for definiteness). Sponta-
neous emission of just one photon from one of the qubits' j1i states will destroy the quantum
coherence required to complete this computation, so we may set an upper limit on the compu-
tational time, Nt, in terms of the spontaneous emission lifetime of this level, t0. The specific
form of the bound depends on the ªaverageº number of qubits that will occupy the j1i state
during the computation: we choose this proportion to be 2=3; giving a bound:

Nt < 6t0=L : �11�
So we see that ªmoreº computation can be performed if the logic gate time, t, can be reduced.
The duration, t, of a p-pulse is determined by the intensity, I, of the laser field: t � Iÿ1=2.
However, t, cannot be made arbitrarily small. In an earlier paper we showed that t cannot be
smaller than the period of the CM motion, and shorter periods require stronger axial potentials
that push the ions closer together. The shortest possible gate time then corresponds to a mini-
mum ion spacing of one wavelength of the interrogating laser light. In this paper we will
consider a different mechanism that gives comparable limits: the breakdown of the two level
approximation in intense laser fields, first considered in Reference [20].

In addition to the two states comprising each qubit, there are other ionic levels with
higher energies than the j1i state that have rapid electric dipole transitions (lifetime tex) to
the ground state, and so if some population is transferred to such states during computation
their rapid decay will destroy quantum coherence. Although the driving laser frequency is
far off-resonance (detuning D) from the transition frequency between j0i and a higher lying
(ªextraneousº) level, in intense laser fields there will be some probability, P, of occupying
this level, given by

P � W2
ex

8D2 ; �12�

where Wex is the Rabi frequency for the transition from the ground state, j0i, to the higher
lying, extraneous level. Therefore, the probability of decoherence through this two-level
breakdown is proportional to the laser intensity, I. By requiring that the probability of
photon emission from a third level should be less than one during the computation, we
obtain the following inequality

Nt
W2

ex

8D2tex

< 1 : �13�

This inequality sets an upper bound on the laser intensity. From the two inequalities (11)
and (13) we obtain the bound

NL < h
20

p

� �1=2 l0

lex

� �3=2

texD ; �14�

between an algorithmic quantity (left-hand side) and a physics parameter (right-hand side),
where l0 is the wavelength of the j0i ÿ j1i transition, and lex is the wavelength of the
transition from the extraneous level to the j0i state. Using ªtypicalº values of tex �10ÿ8 s
and D � 1015 Hz we see that the value of the right-hand-side of this inequality is �h � 107,
translating into enough time to perform a very large number (105 ±±106) of logic operations
on tens of qubits. (The Lamb-Dicke parameter for these ions will be �0.01±±0.1.)
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The inequality (14) suggests that longer wavelength qubit transitions allow more compu-
tation. Indeed, for specific ions we obtain the bounds:

Hg�: NL < h � 3 � 107 ;

Sr�: NL < h � 7 � 107 ;

Ca�: NL < h � 1 � 108 ;

Ba�: NL < h � 5 � 108 ;

suggesting that Ba� ions may offer greater computational potential than Hg� or Ca�. How-
ever, with L � 60 qubits the bound (14) in Ba� corresponds to a computational time
6t0=L � 6 s, whereas technical sources of decoherence such as ion heating and laser phase
stability are likely to limit the computation before this limit is reached. Therefore, Ba� ions
are not likely to offer any significant computational advantage over Ca� at present. We note
that when translated into an error probability per gate, the above bounds fail to meet the
threshold precision that has been suggested for quantum error correction to allow indefinite
quantum computation by one to two orders of magnitude [15].

5. Raman Qubits

When qubits are represented by Zeeman or hyperfine sublevels of an ion's ground state,
Raman transitions would be used to drive the computational operations, detuned by an
amount D below some third level (lifetime t1). the Rabi frequency for Raman transitions is
proportional to the laser field intensity,

W � I=D ; �15�
as is the decoherence process of spontaneous emission from the third level,

P � I=D2 : �16�
Hence, the probability of a successful computational result is independent of how quickly
the computation is performed (at least from the perspective of this decoherence mechan-
ism). Therefore, Raman transitions offer the possibility of completing a computation before
technical decoherence mechanisms, such as ion heating, become significant. Using similar
arguments as in the last section, we can derive the following inequality for quantum algo-
rithm parameters in terms of the physics parameters for Raman qubits:

NL1=2 < 8ht1D : �17�
The right-hand side of this inequality has a typical value � h � 5 � 105 which is adequate for
a large number of gate operations (� 106) on tens of qubits. Also, with the same number of
qubits, the error probability per gate is lower for the Raman transitions than with meta-
stable qubits. Therefore, Raman qubits come closer to the error correction thresholds than
metastable qubits [15].

6. Quantum Factoring with Trapped Ions

To translate the above physics bounds on algorithmic quantities into limits on the size of
integer that could be factored, it is necessary to determine the computational space and time
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requirements of quantum factoring. To factor an l-bit integer, N, Shor's factoring algorithm
requires a classical integer, x, that shares no factors with N, and the computation of the
period of the function [21]

f �a� � xa mod N ; a � 0; 1; . . . ; N2 ÿ 1 : �18�
From the period of this function the order, r, of x can be determined. The order is the
smallest integer, r, for which

xr � 1 mod N : �19�
If this order is even, the factors of N are then distributed between the parentheses of con-
gruence

�xr=2 ÿ 1� �xr=2 � 1� � 0 mod N : �20�
Therefore, the integers

g:c:d: ��xr=2 � 1�; N� �21�
are factors of N.

Shor's algorithm therefore requires one 2l-bit register to hold the argument of the func-
tion; an l-bit register to hold the function values, and some additional register space to
allow reversible computation of the function. (The computation of the Fourier transform to
determine the order, r, involves an insignificant number of quantum gate operations in
comparison with the computation of the function.)

The amount of scratch space and number of gates is somewhat dependent on the specific
implementation of the algorithm [22], but a total number of �5l� 4� qubits and
� 96l3 � O�l2� U-pulses are required in our recent improved version [23]. The l3-depen-
dence can be understood as arising from the (conditional) multiplication of 2l classical l-bit
integers to build the function, f . Each of the multiplications requires O�l2� bit-additions
(using ªelementary schoolº multiplication) that can be reduced to CNOT and similar ele-
mentary gate operations. Using the values

L � 5l� 4 ;

N � 96l3 � O�l3�
in the decoherence bounds above, we obtain the factoring limits (h � 0:01):

Hg�: l < 5 bits ;
Sr�: l < 6 bits ;
Ca�: l < 6 bits ;
Ba�: l < 10 bits ;
Yb�: l < 5 bits ;

with metastable qubits. Even larger values may be possible with Raman qubits provided a
careful optimization of the parameters is made. These limits correspond roughly to the size
of computation at which the probability of success has fallen to 1=e. Larger integers could
be factored but with a lower success probability.

We note that the total computational time with metastable qubits is �6t0=L, so that it
might be possible to reduce the computation time by using an algorithm with additional
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qubits but less gate operations. Such a space-time trade-off could then allow a factoring
time that was smaller than the technical decoherence times. We also note that the above
limits to integer factoring do not take into account any possible gains from the use of
quantum error correction.

7. Computational Bounds and Fundamental Constants

In the estimates made above of the computational capacity of trapped ion OCs we used
measured values of atomic parameters for specific ions. It would be of great interest if one
could determine an absolute upper bound on the algorithmic quantities that was indepen-
dent of these details of specific ionic systems. For instance, we could use ªtypicalº values
of the relevant parameters in terms of fundamental constants:

unit of wavelength � Rÿ1
1 � ch3=2p2mee4 ;

unit of electric dipole moment � ea0 ;

unit of electric quadrupole moment � ea2
0 ;

where h is Planck's constant, e is the unit of electric charge, me is the electron mass, and
a0 � h2=4p2mee2 is the Bohr radius. Using these values we obtain the bounds

NL <
8
�����
30
p

16p2
haÿ3 �22�

for metastable qubits, and

NL1=2 < haÿ3 ; �23�
for Raman qubits, as first noted by Haroche and Raimond [24], where
a � e2=�hc � 1=137 is the fine structure constant.

These bounds are considerably more pessimistic than the ones we above, and so do not
serve the purpose of providing an absolute upper bound on computational capacity. (One of
the reasons that this approach fails is that real ions have much longer lived metastable
levels than is suggested by the atomic unit of electric quadrupole moment.)

8. Summary and Conclusions

In this paper we have surveyed the prospects for and limitations to quantum computation
with trapped ions. It is apparent that with existing technology adequate time scales and
capacity to hold multiple qubits are available to explore quantum computation beyond the
current state-of-the-art: a single logic operation involving two qubits. These intrinsic limits
(without quantum error correction) only correspond to the factoring of small integers. How-
ever, the numbers of qubits and logic operations involved are huge, and the gate precision
with Raman qubits is close to the correction thresholds for indefinite computation. Ion traps
will therefore be a potent method for exploring whether superpositions and entangled states
of large numbers of qubits can be created. Investigations of the type studied here identify
the relevant physics issues that must be addressed to achieve computational gains. In parti-
cular, we note that there has yet to be a demonstration that more than one ion can be
sideband cooled to the vibrational ground state. Furthermore, the heating mechanisms for
this vibrational mode are poorly understood [25, 26]. Studies of sideband cooling and re-
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heating of multiple ions will therefore be crucial to the development of ion trap QCs. Once
entangled states of three or more qubits can be constructed it will also be possible to deter-
mine whether multiparticle decoherence mechanisms are consistent with the model that we
have used.

Finally, we note that ion trap quantum computation offers many advantages to the re-
cently proposed NMR quantum computation model [27], as summarized in Reference 28.
Ion trap qubit coherence is limited by spontaneous emission processes whereas NMR qubit
decoherence is thermally dominated (kT � hn). Ion trap quantum information is conse-
quently much more robust. Furthermore, gate times in an ion trap QC could be as short as
1 ms (set by achievable laser intensities, and two-level breakdown), whereas NMR gate
times will typically be � 0:1±±1 s (set by the strength of spin-spin interactions and the need
to avoid crosstalk with unintended qubits). Readout in an NMR QC is problematic, with an
exponential reduction in magnetization signal with additional qubits, whereas ion trap QC
readout is a robust process independent of the number of qubits involved. Moreover, an ion
trap QC has the advantage that logic operations can be performed between arbitrary qubits
in the register, whereas in NMR only nearest-neighbor operations are possible. Therefore,
computation in an NMR QC would use much of the available coherence time in moving
qubits around the register until they are adjacent to each other. We estimate that a realistic
bound to the computation possible in NMR QC is about 10 qubits and 100 logic opera-
tions. Of these 100 operations many would be used in a typical computation by moving
qubits until they are adjacent. A more detailed comparison of ion trap QCs and NMR will
be the subject of a forthcoming paper [29].
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