Oxide-Semiconductor Materials for Quantum Computation

Jeremy Levy

North American Molecular Beam Epitaxy Conference (NA-MBE)

Keystone, CC

2 October 2003

Outline

- Introduction to quantum computation
- COSMQC architecture
- Selected results
- Future directions

What is a Quantum Computer?

 A quantum computer processes quantum information

What is quantum information?

Quantum information is stored in quantum bits (qubits)

Qubit can be in a quantum superposition of |0> and |1>

What can quantum computers do?

 Quantum computers can factor numbers
 <u>exponentially</u> faster than classical computers (Shor, 1994)

Difficulty of factoring numbers is foundation of public key encryption 114381625757888867669235 779976146612010218296721 242362562561842935706935 245733897830597123563958 705058989075147599290026 879543541

349052951084765094914784 961990389813341776463849 3387843990820577 **X** 327691329932667095499619 881908344614131776429679 92942539798288533

Why are quantum computers so much faster?

Qubit Phase Space

• A single qubit exists in a 2-dimensional space

$$|\psi\rangle = a_0 |0\rangle + a_1 |1\rangle, \qquad |a_0|^2 + |a_1|^2 = 1$$

Qubit Phase Space

• A single qubit exists in a 2-dimensional space

$$|\psi\rangle = a_0 |0\rangle + a_1 |1\rangle, \qquad |a_0|^2 + |a_1|^2 = 1$$

• For *n*-qubit system, 2^{*n*} complex numbers required

$$|\Psi\rangle = a_0 |\underbrace{000\cdots000}_{n}\rangle + a_1 |000\cdots001\rangle + a_2 |000\cdots010\rangle + \dots + a_{2^n-1} |111\cdots111\rangle$$

A state with *n*=100 qubits is specified by $2^{100} \approx 10^{30}$ coefficients !

A quantum program is specified by $(2^{100})^2 \cong 10^{60}$ coefficients !!

(Final answer is a string of *n* classical bits)

Figure 6-1. Solid state QC developmental timeline

Five Requirements for Quantum Computation

(D. P. Divincenzo, quant-ph/0002077)

Materials

- Darrell G. Schlom (Penn State U.)
 - » Venugopalan Vaithyanathan
 - » Lisa Edge
 - » Sven Clemens
- John T. Yates, Jr. (U. Pittsburgh)
 - » Olivier Guise
 - » Sergey Mezhenny
 - » Hubertus Marbach
- Joachim Ahner (Seagate)
- Rodney A. McKee (ORNL)

Experiments

- Jeremy Levy (Director, U. Pittsburgh)
 - » Petru Fodor
 - Patrick Irvin
 Amlan Basal
 - » Amlan Basak
 » Ajay Kochhar
 - » Scott Rothenberger
- Keith Nelson (MIT)
 - » Joshua Vaughan
- David D. Awschalom (UCSB)
 - » Yuichiro Kato
- Bruce Kane (U. Maryland)
 - » Kenton Brown

Theory

- Michael E. Flatté (U. Iowa)
 - » Craig Pryor
 - » Jian-Ming Tang
 - » Wayne Lau
 - » Zhi Gang Yu
 - » Ionel Tifrea
 - » Michael Leuenberger
 - » Ben Moehlmann
- Daniel Loss (U. Basel) » Florian Meier

Center for Oxide-Semiconductor Materials for Quantum Computation COSMQC

•Principal Investigator

•Graduate Student

Undergraduate

•Postdoc

COSMQC architecture

J. Levy, Phys. Rev. A **64**, 052306 (2001).

(R1) Qubit

 » Electron spin(s) localized near Ge QDs

(R2) Initialization

 » Optical orientation in Ge quantum dots

(R3) Long Coherence Times

» $T_2 \sim ms$ for Si ; $T_{gate} \sim ps$

(R4) Gating

» Ferroelectric coupling / optical rectification

(R5) Readout

» Optical (weak); SET (strong)

Charge bits vs. spin qubits

Electronics: $\Psi = \psi(\vec{r}) \cdot \chi_s$

• Use ferroelectric to mediate spin interactions in semiconductors

Ferroelectric Gating of Electron Spin

Ferroelectric enables fast, local optical control of electric fields

Zeeman one-qubit Heisenberg two-qubit

One-qubit and two-qubit gates sufficient for universal quantum computation

Designer qubits

"Logical" qubit is formed from a 2-dimensional subspace of *m* "physical" qubits

Designer qubits

- Example: *m*=3
 - DiVincenzo et al., Nature 408, 339 (2000).

- Heisenberg exchange interaction is *universal*
 - » 3-4 Heisenberg operations \leftrightarrow
 - » 19 Heisenberg operations ↔ cNOT operation

single qubit operation

Universal Quantum Computation with Spin-1/2 Pairs and Heisenberg Exchange

Jeremy Levy

Center for Oxide-Semiconductor Materials for Quantum Computation, and Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, Pennsylvania 15260 (Received 23 January 2001; published 17 September 2002)

An efficient and intuitive framework for universal quantum computation is presented that uses pairs of spin-1/2 particles to form logical qubits and a single physical interaction, Heisenberg exchange, to produce all gate operations. Only two Heisenberg gate operations are required to produce a controlled π -phase shift, compared to nineteen for exchange-only proposals employing three spins. Evolved from well-studied decoherence-free subspaces, this architecture inherits immunity from collective decoherence mechanisms. The simplicity and adaptability of this approach should make it attractive for spinbased quantum computing architectures.

Quantum computing with spin cluster qubits

Florian Meier, Jeremy Levy, and Daniel Loss, PRL 90, 047901 (2003)

- Design of spin-based qubits and qugates challenging
 - » Control over electron exchange, magnetic interactions
 - » Encoded qubits eliminate Zeeman, but still sensitive to internal structure

Loss addle Win Benyzo, Reby & 64, v523576, (22001).998).

- Ideal "designer" qubit:
 - large compared compared to electron $w^{50\,nm}_{a}$ vertices of the sector $w^{50\,nm}_{a}$
 - » insensitive to variations smaller than <u>qubit</u>

Spin chains as qubits

Open spin chain with n_c sites: (*e.g.*, neighboring QDs)

For n_c odd, ground state is doubly degenerate, with $S_{tot}=1/2$

$$\hat{H}_{*} = J_{*}(t)\hat{s}_{n_{c}}^{I} \cdot \hat{s}_{1}^{II} \qquad \int_{s_{1}} \int_{s_{2}} \int_{s_{3}} \int_{s_{4}} \int_{s_{5}} \int_{s_{5}}$$

DARPA

Scaling of Decoherence

- Fluctuating fields and nuclear spins contribute to spin decoherence in semiconductors
 - » Magnetic moment of spin cluster qubit same as for single spin
- For spatially uniform (random) magnetic fields $\hat{H}_{\phi}^{B} = b(t) \sum_{i=1}^{n_{c}} \hat{S}_{i,z} \qquad \left\langle b(t)b(0) \right\rangle = 2\pi \gamma^{B} \delta(t)$

decoherence independent of n_c

• For independent fluctuating fields

$$\hat{H}_{\phi}^{B} = \sum_{i=1}^{n_{c}} b_{i}(t) \hat{S}_{i,z} \qquad \left\langle b_{i}(t) b_{j}(0) \right\rangle = 2\pi \gamma^{B} \delta(t) \delta_{ij}$$

decoherence proportional to n_c

Additional properties of spin cluster qubits

- Spin cluster qubit is robust against
 - » disorder
 - » topology of intra-cluster exchange
 - »symmetry of exchange (e.g., Heisenberg, XY)
- Significant advantage

»quantum computing possible without local control over spin interactions

Applications to ferroelectrically coupled quantum dots

Original proposal¹ with spin cluster qubit

Improvement: electrons are localized

¹J. Levy, Phys. Rev. A **64**, 52306 (2001).

Physical Qugates

One-qubit gates

(voltage-controlled electron spin resonance)

$$H_{Z} = \mu_{\rm B} \vec{s} \cdot \vec{\mathbf{g}}(\vec{E}) \cdot \vec{B}$$

Sciencexpress

Report

Gigahertz Electron Spin Manipulation Using Voltage-Controlled g-Tensor Modulation

Y. Kato,^{1,2} R. C. Myers,¹ D. C. Driscoll,¹ A. C. Gossard,¹ J. Levy,^{1,2} D. D. Awschalom^{1,2}*

¹Center for Spintronics and Quantum Computation, University of California, Santa Barbara, CA 93106. ²Center for Oxide-Semiconductor Materials for Quantum Computation, University of Pittsburgh, Pittsburgh, PA 15260

*To whom correspondence should be addressed. E-mail: awsch@physics.ucsb.edu

We present a scheme that enables gigahertz-bandwidth three-dimensional control of electron spins in a semiconductor heterostructure using a single voltage signal. Microwave modulation of the Landé g-tensor produces frequency-modulated electron spin precession. Driving at the Larmor frequency results in g-tensor modulation resonance, functionally equivalent to electron spin resonance but without the use of time-dependent magnetic fields. These results provide proof of concept that quantum spin information can be locally manipulated using high-speed electrical circuits.

.

Electron spin dynamics can be described by an effective Hamiltonian $H(t) = (\mu_B / \hbar) \mathbf{S} \cdot \mathbf{\ddot{g}} \cdot \mathbf{B} \equiv \mathbf{S} \cdot \Omega(t)$, where μ_B is the Bohr magneton, \hbar is the Planck's constant, \mathbf{S} is the spin angular momentum operator, $\mathbf{\ddot{g}}$ is the Landé g-tensor, and \mathbf{B} is the magnetic field. The Hamiltonian is conventionally separated into two terms $H(t) = H_0 + H_1(t)$, where $H_0 = (\mu_B / \hbar) \mathbf{S} \cdot \mathbf{\ddot{g}} \cdot \mathbf{B}_0 \equiv \mathbf{S} \cdot \Omega_0$ is time-independent and $H_1(t) = \mathbf{S} \cdot \Omega_1(t)$ governs spin dynamics in the rotating frame. The effect of $\Omega_1(t)$ can be seen by resolving it into

Background: g-factor engineering

- g-factor tuning in a parabolic quantum well
 - » Electric field shifts electron into region of GaAs/AlGaAs with varying g-factor

G. Salis, Y. Kato, K. Ensslin, D. C. Driscoll, A. C. Gossard, and D. D. Awschalom, Nature **414**, 619 (2001).

Exploiting g-Tensor Anisotropy

$$H(t) = (\mu_B / \hbar) \mathbf{S} \cdot \mathbf{\ddot{g}} \cdot \mathbf{B} \equiv \mathbf{S} \cdot \mathbf{\Omega}(t)$$

where $\vec{\mathbf{g}} = \vec{\mathbf{g}}(V(t))$ and **B** is static

• Precession vector $\boldsymbol{\Omega}$ is not always parallel to B

- » Changes in <u>magnitude</u> of Ω produce frequencymodulated spin precession
- » Changes in direction of Ω produce effective ESR

g-Tensor Modulation

$$\boldsymbol{\Omega}_{0}\left(V_{0}\right) = \begin{pmatrix} \boldsymbol{\Omega}_{0x} \\ \boldsymbol{\Omega}_{0z} \end{pmatrix} = \frac{\mu_{\mathrm{B}}}{\hbar} \begin{pmatrix} g_{90}\left(V_{0}\right) & 0 \\ 0 & g_{0}\left(V_{0}\right) \end{pmatrix} \cdot \begin{pmatrix} B_{0}\sin\alpha \\ B_{0}\cos\alpha \end{pmatrix} = \frac{\mu_{\mathrm{B}}}{\hbar} B_{0} \begin{pmatrix} g_{90}\left(V_{0}\right)\sin\alpha \\ g_{0}\left(V_{0}\right)\cos\alpha \end{pmatrix}$$

$$V(t) = V_0 + V_1(t) \implies \Omega(t) = \Omega_0 + \Omega_1(t)$$

Frequency-Modulated Spin Precession $\Omega_1(t) = \Omega_{\parallel}(t) + \Omega_{\perp}(t)$

• Electrical "pump" (red) modulates electron spin precession (blue) at GHz frequencies

g-Tensor Modulation Resonance $\Omega_1(t) = \Omega_{\parallel}(t) + \Omega_{\perp}(t)$

Discussion

- Full 3D electrical control of spin coherence demonstrated
 - » voltage gating compatible with existing Si technology
- Universal gating possible
 - » with Heisenberg exchange "backbone"
- Future directions
 - » Ferroelectric control of ESR
 - » scaling down to single spin

Two-qubit gates

(ferroelectrically controlled spin exchange)

$$H_{ex} = J(\vec{E}) \ \vec{s}_1 \cdot \vec{s}_2$$

Optical Rectification and Controlled Exchange

- Optical illumination reduces magnitude of ferroelectric polarization
- Tunneling barrier can be modulated optically
 - With ultrafast lasers 10,000
 GHz rates achievable
 - » Can be used to create a universal quantum gate

Optical Rectification and Controlled Exchange

- Optical illumination reduces magnitude of ferroelectric polarization
- Tunneling barrier can be modulated optically
 - With ultrafast lasers 10,000
 GHz rates achievable
 - » Can be used to create a universal quantum gate

Magnitude of Nonlinear Polarization

$$P_{\rm max}^{(2)} = \left(\frac{3.93 \times 10^{11} {\rm e}^{-}/{\rm cm}^{2}}{10 {\rm mW}} \right) \left(\frac{l_{\rm avg}}{\mu {\rm m}} \right)^{2} * \left(\frac{76 {\rm MHz}}{\Omega} \right) \left(\frac{r}{1.95 \times 10^{-11} {\rm m/V}} \right) \left(\frac{\tau_{\rm opt}}{100 {\rm fs}} \right) \left(\frac{n}{2.45} \right)^{3}$$

 I_{avg} = average laser powerr = electrooptic coefficientd = spot diameter τ_{opt} = pulse widthW = repetition raten = refractive index

COSMQC Materials Ferroelectric Oxides on Silicon

Rodney McKee, ORNL

Darrell Schlom, Penn State U.

COSMQC oxides on silicon

- Requirements for quantum computing architecture

 strong ferroelectric field effect for qubit gating
 uniform, uniaxial out-of-plane polarization
 large electrooptic response for optical rectification
- Two approaches taken so far by Schlom group
 » commensurate SrTiO₃/Si
 - » commensurate BaTiO₃/Relaxed (Ba,Sr)TiO₃/Si

BaTiO₃ with Out-of-Plane Polarization on Si to Control Spin Interactions

Darrell G. Schlom, Penn State University

- Prior BaTiO₃ / Si Films have all had In-Plane Polarization because
 - Large lattice mismatch (3.8%)
 - Large thermal expansion mismatch
- To Achieved Out-of-Plane Polarization in BaTiO₃ / (Ba,Sr)TiO₃ / Si
 - Use epitaxial strain to counteract thermal expansion strain
 - > Rocking curve <0.5° for BaTiO₃
- To Improve Control of Spin Interactions want Thinner (Ba,Sr)TiO₃ Buffer Layer
 - ➤ 100 Å works
 - > 40 Å does not work so far, but optimizing

Ge/Si Quantum Dots

- Grow by self-assembly methods
 - » Natural diameter too large (d>20 nm)
- Direct/indirect crossover occurs near 10 nm
- Smaller QDs nucleate around carbon
 - » Diameters <10 nm
 - » Strong photoluminescence observed
 - » "directed" self-assembly

- (a) D. Gruetzmacher, www1.psi.ch/ www_lmn_hn/shine/sigec.htm
- (b) (b) X-TEM image of Si-C-Ge quantum dots with 4 ML Ge.
- (c) (c) Same as (b), but without Carbon present, showing absence of QDs. [O. G. Schmidt *et al.*, Appl. Phys. Lett. **71**, 2340-2 (1997)].

Thermal Properties of Patterned C-Dots

Annealing at 1300K (30") – no change

300nm

Optical and Scanning Probes of Ferroelectric/Semiconductor Heterostructures

- Apertureless NSOM (ANSOM)
- Ti:Sapphire \rightarrow OPO (1 μ m-2 μ m)
- Three cryostats
 - Microcryostat for photoluminescence (PL), Kerr microscopy
 - » Non-magnetic for ANSOM
 - » Vector field (8T/2T) for ANSOM, transport
- Two spectrometers
 - » 0.55meter spectrometer with cooled InGaAs array for PL
 - » 2.0 meter spectrometer with 2D focal plane array for spectrally resolved Kerr rotation

Coherent Spin Dynamics of a Single Quantum Dot: Background

spectroscopy combines spatial and spectral resolution, but does not probe spin coherence

Time-resolved Faraday Rotation

 $\theta_{\rm F} \propto M$

 Δt

probed large numbers of quantum dots...

Gupta et al, PRB 59, R10421 (1999).

Time (ps)

200

T = 5K-300K

300

400

Center for Oxide-Semiconductor Materials for Quantum Computation COSMQC

0

100

Our Approach

Combine high spatial and spectral resolution to measure coherent spin dynamics in single quantum dots

Spatial Resolution

Spectral Resolution

Variable-temperature Apertureless NSOM

Lock-in Optical Spectrometer

Lock-in Spectrometer

InAs:GaAs Quantum Dots

G. Medeiros-Ribeiro Laboratório Nacional de Luz Síncrotron, Campinas, Brazil

- Interband absorption energies comparable to Ge quantum dots
 - » 950 meV-1 eV, $\lambda {=} 1.25 {-} 1.3 \mu m$
 - » Density $10^8\,cm^{\text{-2}} \rightarrow$ ~100 dots/ μm^2

InAs:GaAs (001)

Experiment in Progress...

Summary

- Quantum computation presents many materials, experimental and theoretical challenges
- New device applications for ferroelectric/ semiconductor heterostructures

