The Chemistry Performance Database and Computational Quality of Service (CQoS)

Introduction

The goal of a chemistry database is to provide chemists more insight into the performance of computations provided by GAMESS, MPQC and NWChem. These packages usually provide more than one method for a computation to be used under different circumstances. Currently the decision to use one method instead of another one is determined by chemists – based upon their experience. A performance database that collects and analyzes performance data for each quantum chemistry computation may provide useful information for chemists to select a good method to provide the expected performance.

CQoS research can directly benefit from this performance database. A chemistry component usually wraps a computation provided in the original package; if we cannot get insight into the performance of the original codes, it’s not likely we can predict the performance of the component on top of the code. By providing more understanding of a computation wrapped within a component, it may also help in designing tuning rules.

Outline of the Project

[image: image1.png]Developing Procedures of Automatic Tuning Systems

N -
|
|

Tasks in Developing Chemistry CQoS Systems

Figure 1. Mapping of developing process between automatic
tuning systems and CQoS system for Quantum Chemistry.

To develop a database that can also support CQoS research, we refer to the process of developing an automatic tuning system (adaptive computing system). The developing process can be roughly divided into four stages as shown in Figure 1. In the first stage, methods capable of providing good performance must be collected or developed. In the second stage, performance evaluations of each computation are conducted to acquire performance data. The third stage is to analyze the collected performance data and explore the parameters that have significant impact to the overall performance. The last stage is to develop tuning rules. The whole process is an iterative process in that for the developed tuning rules, we will need to go through performance evaluation, data analysis and may have to develop new tuning rules again.

Mapping the above four stages onto developing a chemistry database for CQoS, we outline the required tasks in the following. In the first stage, the focus is not on collecting/developing capable implementations, but on developing mechanisms to interoperate computations from different packages so one package can seamlessly use computations provided by another package. The overhead of incorporating CCA framework into the original package, and using computations from different packages should be minimized. These are the goals of the current CCA chemistry project.

The challenges in the second stage are: 1. Conduct performance evaluations in proper granularity, 2. Collect and organize performance data in a database so chemists can access this data easily. GAMESS (and maybe the other two chemistry packages too) currently provides coarse-grain level performance data, e.g., the run time of a whole computation. For CQoS, more detailed performance data such as cache utilization, communication latency, time spent in I/O etc., may be needed. Performance tools such as TAU have the capability to instrument source code and acquire fine-grain performance data; some manual work is required for integrating TAU performance functions with GAMESS. It would be better if acquiring/maintaining performance data can be handled mostly by a system instead of asking every chemist to produce/handle/maintain their performance data manually.

The third stage involves analysis of performance data collected in the second stage. The issues include exploring: 1.parameters that have significant impact to the performance of a computation, 2.the relationships between these parameters, and 3.the relationships between application characteristics and system characteristics. Performance tools such as PerfExplorer provides help to explore the relationships between the above parameters. Hardware information such as communication or IO bandwidth are important to chemistry computations, thus data generated by benchmarking suites may need to be incorporated into the performance database since TAU only extracts basic system characteristics such as cache size and CPU type during the performance evaluation process.

The last stage is to develop tuning rules. Performance modeling that predicts the runtime of a computation on a certain platform is a common approach. Quantum chemistry computations usually involve a large number of parameters and performance modeling for quantum chemistry computations is regarded as extremely difficult (quotes from very experienced computational chemists: “The holy grail problem in QC”, “Next to impossible”). A more practical approach may be to develop heuristic tuning rules base on statistical data analysis, and this may be the method we will try first. Another challenge in this stage is to incorporate tuning rules into the original codes. It is very likely that the original codes have to be modified to incorporate tuning mechanisms, and we want such changes to be as few as possible.

The development of GAMESS involves many chemists over more than two decades, and the large number of computations provided by GAMESS implies that a chemist usually knows only some of them. To build a practical performance database for chemistry computations we will need participation of chemists. Our goal is to develop a system to help chemists deal with procedures in each stage, reduce their efforts to facilitate research progress, and hopefully help CQoS research for large-scale scientific packages in the long run.

Approaches and Current Progress

The tasks in Figure 1 would be easier to develop if we consider only one computation, and one chemist in the whole development process. For GAMESS, we need those tasks for many computations and many chemists, so we prefer a systematic design. The simplest approach is to have every chemist sends their GAMESS input files to a poor computer guy (a.k.a. me), and let him run these computations, collect performance data, upload performance data to the database, conduct performance analysis and send emails of results back to chemists. It sounds scary; a lot of jobs have to be handled manually and can be error-prone. We prefer to make the whole process as automatic as possible.

Figure 2 shows the flow of data and the dependence between tasks, which is what we used in developing the automation procedures. Most tasks in Figure 2 used data provided by their previous tasks. For example, we must have source code instrumented properly before we can conduct performance evaluations to collect data, and performance analysis cannot be processed without the performance database being properly built. Here we describe our approaches and current progress for underdevelopment tasks.

1. Source code instrumentation: A more flexible program to instrument GAMESS is required. For example, to get the total time used in I/O, or time spent in communication ‘within’ certain parts of a computation (not the whole computation). Current automatic instrumentation programs cannot provide these capabilities, and we have developed supplemental programs for this purpose.

2. Data collecting process: One major challenge here, from data collecting to performance analysis, is to make the whole process as trivial as possible to chemists. Our approach is that, chemists need only to provide their input files and indicating certain system settings, and then they can wait for the results of performance analysis. We have a front-end program (a web page http://www.scl.ameslab.gov/Projects/borges/QCUpload.php) that allows chemists to upload their input files and select the type of package to run the computation. The details of how to extract metadata, conduct performance evaluation and handle the database is a block box (handled by back-end programs) to chemists. The back end programs retrieve the input files form the front end, process the computation, extract the metadata from input files (and maybe GAMESS output log files), and upload performance data and metadata.

[image: image2.png]Figure 2. Dependence of tasks in developing chemistry database.

3. Performance database: MySQL is used as the underlying database. On top of MySQL we use PerfDMF to provide data uploading and controlling interface without using SQL function calls directly. PerfDMF is required if we want to use PerfExplorer for performance analysis. There are certain restrictions in the database schema provided by PerfDMF, and we need to arrange our data according to these restrictions in order to conduct the desired performance analysis provided by PerfExplorer.

4. Application characteristics/System characteristics: Application characteristics are actually metadata extracted from GAMESS input files (or output log files from computations). Basic system characteristics such as CPU type and cache size are available when conducting performance evaluation using TAU. Some more complex system characteristics such as communication bandwidth and memory bandwidth can only be acquired by using hardware benchmarking suites. For example, NetPIPE can be used to extract communication bandwidth. Again, these data must be arranged properly in the PerfDMF for PerfExplorer to provide the desired analysis.

5. Performance analysis: There are quite a lot of things to do to conduct performance analysis and get the results we need for developing tuning rules. We will need more capabilities provided by tools available today. Details are in the following section.

6. Tuning rules development: Nothing at the moment. We need useful data in the database and the analysis procedures constructed first in order to develop tuning rules.

Performance Analysis Issues

Figure 3 is a SCF computation on two different platforms. The simple case study can give a glimpse of what kind of analyses are required, and how difficult it may be to develop tuning rules.

[image: image3.png]Seaborg

Bassi

oMisc
OGSUM
BPWRT
oPRD

0
Ieb 18 Izl6 2x4 28 2x16 4xd 4B 4xl6

On Seaborg, parallel write (PWRT) is not an issue until
we use 16 processors per node. On Bassi, we did not
have problem with parallel write.

800,

700)

600)
ouisc

400) OGSUM
BPWRT
BFRD

200)

100f

o

12 Ixé 138 22 24 28 42 dnd 48

On Bassi, the latency of global sum (GSUM) increase
to certain ratio that’s not neglectable when we increase
the number of processors used per node. On Seaborg,
the ration of global sum is not very important.

Figure 3. A case study for developing tuning rules

On both platforms, our experiment varies combination of number of nodes, and number of processors per node used in the computation. The left panel shows the results on Seaborg, and the right panel shows the results on Bassi.

On Seaborg, the cost of parallel write (PWRT) dramatically increases when we use 16 processors per node; possibly caused by I/O channel contention. On Bassi the ratio of PWRT is trivial. On the other hand, the ratio of the latency of global sum (GSUM) in the overall cost increases when we use more processors per node, but this latency is a small portion when running the computation on Seaborg even when using 16 processors per node. In fact, the latency of GSUM on Bassi using 8 processors per node is more than that of using 16 processors per node on Seaborg, even though Bassi is a newer machine.

Based on the two performance figures, consider the information we may need to develop tuning rules:

1. Under what circumstance does PWRT affect the overall performance? What is the relationship between the bandwidth of I/O channels and the amount of data being written per processor (or the overall data being written by all processors)? How about developing an equation to describe this relationship?

2. The same set of questions for GSUM, substituting I/O with communication.

3. This computation uses the CONVENTIONAL method, which means the result of integral computation is written to disk to be used in later iterations. GAMESS also provides a DIRECT method in which integrals are computed on the fly in each iteration. In order to decide scenarios of using conventional vs. direct methods, we may need to figure out the relationships between CPU speed to compute an integral, I/O bandwidth, data amount, etc.

4. This is just a simple case. How many experiments do we need to explore parameters, subroutines that have significant impact on the overall performance for a computation? And for ALL computations provided by GAMESS?

Consider the scope of GAMESS, we can expect that there will be a huge amount of performance data if we want to explore the answers to the above questions. Handling these performance data manually can be problematic.

[image: image4.png]Application Experiment Trial

!Metadata (conv, .., etc)

Application characteristics

System characteristics

Metadata (dir, .. etc)

Figure 4. A possible experiment arrangement base on PerfDMF schema

