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Low-lying one-particle anomalous excitations are studied for Gutzwiller-projected strongly correlated BCS
states. It is found that the one-particle anomalous excitations are highly coherent, and the numerically calcu-
lated spectrum can be reproduced quantitatively by a renormalized BCS theory, thus strongly indicating that
the nature of low-lying excitations described by the projected BCS states is essentially understood within a
renormalized Bogoliubov quasiparticle picture. This finding resembles the well-known fact that a Gutzwiller-
projected Fermi gas is a Fermi liquid. The present results are consistent with numerically exact calculations of
the two-dimensional t-J model as well as recent photoemission experiments on high-TC cuprate
superconductors.
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Since their discovery in 1986,1 high-TC cuprate supercon-
ductors and related strongly correlated electronic systems
have become one of the largest and most important fields in
current condensed matter physics.2 In spite of enormous the-
oretical and experimental effort since their discovery, under-
standing the mechanism of the superconductivity and the un-
usual normal state properties of the high-TC cuprate
superconductors remains unresolved and there is still exten-
sive debate. This is mainly because of the strong-correlation
nature of the problems, which is widely believed to be a key
ingredient. Immediately after the discovery, Anderson3 pro-
posed a Gutzwiller-projected BCS state to incorporate
strong-correlation effects in the superconducting state. While
the ground state properties of projected BCS states have been
studied extensively,4 it is only very recently that the low-
energy excitations of projected BCS states have been ex-
plored by numerically exact variational Monte Carlo
techniques,5–8 which in fact have found many qualitative as
well as very often quantitative similarities to the main fea-
tures observed experimentally in high-TC cuprate supercon-
ductors. It is therefore very important and timely to under-
stand the nature of low-lying excitations described by
Gutzwiller-projected BCS states because of their great rel-
evance to the high-TC cuprate superconductors. Furthermore,
a Gutzwiller-projected single-particle state is one of the most
widely used correlated many-body wave functions in a vari-
ety of research fields,9–11 and thus better understanding of the
nature of projected BCS states is also highly desirable. This
is precisely the main purpose of this study.

In this paper, one-particle anomalous excitations are stud-
ied for Gutzwiller-projected BCS superconductors. It is
shown that one of the characteristic properties for the
Gutzwiller-projected BCS states is their highly coherent one-
particle anomalous excitations. It is found that the numeri-
cally calculated one-particle anomalous excitations can be
reproduced quantitatively by a renormalized BCS theory.
This finding thus strongly indicates that the low-lying exci-
tations of the Gutzwiller-projected BCS states are described
within a renormalized Bogoliubov quasiparticle picture,

which resembles the well-known fact that a Gutzwiller-
projected Fermi gas is a Fermi liquid.12 The present results
also provide a theoretical justification for utilizing a simple
mean-field-based BCS theory to analyze low-energy experi-
mental observations for the high-TC cuprate superconductors.

A Gutzwiller-projected BCS state ��0
�N�� with N electrons

is defined by

��0
�N�� = P̂NP̂G�BCS� , �1�

where �BCS�=�k,��̂k��0� is the ground state of the BCS
mean-field Hamiltonian13 with singlet pairing and �̂k� is the
standard Bogoliubov quasiparticle annihilation operator with
momentum k and spin � �=↑ , ↓ �,

� �̂k↑

�̂−k↓
† � = �uk

* − vk
*

vk uk
�� ĉk↑

ĉ−k↓
† � , �2�

P̂G=�i�1− n̂i↑n̂i↓� is the Gutzwiller projection operator ex-

cluding sites doubly occupied by electrons, and P̂N the pro-
jection operator onto even number N of electrons. ĉk�

=�ie
−ik·iĉi� /	L �L: number of sites� is the Fourier transform

of the electron annihilation operator ĉi� at site i with spin �,
and n̂i�= ĉi�

† ĉi�. Note that, since the number N of electrons is
even, ��0

�N�� is a spin singlet with zero total momentum. In
the following, it is implicitly assumed that the gap function
in �BCS� is real and the spatial dimensionality is two dimen-
sional �2D�. However, the generalization of the present study
is straightforward.

A single-hole �single-electron� added excited state
��k�

�N−1�� ���k�
�N+1��� is similarly defined5,6,14–16 by

��k�
�N±1�� = P̂N±1P̂G�̂k�

† �BCS� , �3�

which has momentum k, total spin 1/2, and z component of
total spin �. Hereafter, the normalized wave functions for the
N- and �N±1�-particle states are denoted simply by ��0

�N��
and ��k�

�N±1��, respectively. The quasiparticle weights for the
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one-particle added and removed normal excitations are thus
defined as

Z+
�N��k�� = 
��k�

�N+1��ĉk�
† ��0

�N��
2 �4�

and

Z−
�N��k�� = 
��−k�̄

�N−1��ĉk���0
�N��
2, �5�

respectively, where �̄ is the opposite spin to �.
The one-particle anomalous excitation spectrum is gener-

ally defined as

F�k,�� = −
1

�
Im��0

�N+2�
	ĉk↑

† 1

� − Ĥ + E0
�N� + i0+

ĉ−k↓
† �0

�N�� ,

where ��n
�N�� is the nth eigenstate �n=0,1 ,2 , . . ., with 0 cor-

responding to the ground state� of a system described by

Hamiltonian Ĥ with its eigenvalue En
�N� and N electrons.17

The spectral representation thus leads

F�k,�� = �
n=0

��0
�N+2��ĉk↑

† ��n
�N+1����n

�N+1��ĉ−k↓
† ��0

�N��

	
�� − En
�N+1� + E0

�N�� . �6�

Note that F�k ,�� is a real function provided that spin rota-
tion and reflection invariance as well as time-reversal sym-
metry are assumed.18 The frequency integral of the one-
particle anomalous excitation spectrum, Fk

�N�

=�−�
� d� F�k ,��= ��0

�N+2��ĉk↑
† ĉ−k↓

† ��0
�N��, provides a well-

known sum rule which will be used later.
To study the one-particle anomalous excitations for the

projected BCS state, let us first defined the following quan-
tity similar to Fk

�N� for the projected BCS states:

Z2
�N��k� = ��0

�N+2��ĉk↑
† ĉ−k↓

† ��0
�N�� . �7�

Here ��0
�N+2�� is constructed in exactly the same way as ��0

�N��
except that the number of electrons onto which the state is
projected is N+2. Using the previously derived relations for
the projected BCS states,16 one can now easily show that

Z2
�N��k� = ��0

�N+2��ĉk↑
† ��−k↓

�N+1����−k↓
�N+1��ĉ−k↓

† ��0
�N�� , �8�

i.e., as will be shown later, the quasiparticle weight for the
one-particle anomalous excitations is Z2

�N��k�. It is also inter-
esting to notice that the above equation relates Z2

�N��k� to the
quasiparticle weights for the one-particle normal excitations,
i.e.,

�Z2
�N��k��2 = Z+

�N��− k↓�Z−
�N+2��k↑� , �9�

which should be useful for computing Z−
�N��k��.19

The validity of Eq. �9� can be checked numerically by
computing all quantities, Z+

�N��−k↓ �, Z−
�N+2��k↑ �, and �Z2

�N�

	�k��2, independently. A typical set of results calculated by a
standard variational Monte Carlo technique on finite clusters
is shown in Figs 1�a� and 1�b�, where one can see that indeed
Eq. �9� holds within the statistical error.20

Now let us assume that there exists a system �with Hamil-

tonian Ĥ� for which the ground state and the low-energy
excited states can be described approximately by the pro-
jected BCS states ��0

�N�� and ��k
�N±1��, i.e., ��0

�N�����0
�N�� and

��n
�N+1�����k

�N+1��, etc. One immediate consequence of this
assumption is that the sum rule for F�k ,�� is now
�−�

� d� F�k ,��=Z2
�N��k�. Another consequence is that the

spectral representation of the one-particle anomalous excita-
tions is

F�k,�� = Z2
�N��k�
�� − E−k

�N+1� + E0
�N�� + �

n��0�
�other terms� ,

�10�

i.e., the quasiparticle weight for the one-particle anomalous

excitations is Z2
�N��k�. Here E0

�N�=E��0
�N��= ��0

�N��Ĥ��0
�N��, and

E−k
�N+1�=E��−k↓

�N+1��. This is because of the equality derived
here in Eq. �8�. Since the spectral weight is not positive
definite, the above equation along with the sum rule does not
immediately imply that the contribution of incoherent “other
terms” in Eq. �10� is negligible. However, using the property
of the projected BCS states reported previously that the one-
particle added normal excitations are coherent,15,16,22 one can
easily show that indeed the one-particle anomalous excita-
tions consist of a single coherent part for each k with no
incoherent contributions. It is interesting to note that numeri-
cally exact diagonalization studies of small clusters have also
found that the one-particle anomalous excitations for the 2D
t-J model are highly coherent with relatively small incoher-
ent contributions.17

Let us now calculate the one-particle anomalous excita-

FIG. 1. �Color online� �a� and �b� �Z2
�N��k��2 �circles� and

Z+
�N��−k↓ �Z−

�N+2��k↑ � �crosses� for different momenta k and
N=222 �n�0.87�. �c� ���2= 
��0

�N+2��ci↑
† ci+x↓

† ��0
�N��
2 �circles� as a

function of electron density n. ��0
�N�� is optimized for the 2D t-t�

-J model with t� / t=−0.2 and J / t=0.3 on an L=16	16 cluster with
periodic boundary conditions �Refs. 6 and 21�. For comparison,
zB

2 ��BCS�2 for a renormalized BCS theory �see the text� is also pre-
sented by crosses in �c�.
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tion spectrum F�k ,�� for the projected BCS states. For this
purpose, here we will consider the 2D t-t�-J model on the
square lattice.6 This model has been studied extensively and
found to show a d-wave superconducting regime in the phase
diagram.17,23 Furthermore, it is well-known that a
Gutzwiller-projected BCS state with d-wave pairing symme-
try �Eq. �1�� is a faithful variational ansatz for the supercon-
ducting state of this model.4 The model parameters used here
are set to be t� / t=−0.2 and J / t=0.3.24

The results of the numerically calculated F�k ,�� for rep-
resentative momenta are shown in Fig. 2, where ��0

�N�� is
optimized to minimize the variational energy for N=222 on
an L=16	16 cluster �n�0.87� with periodic boundary
conditions.21 As is expected for a d-wave superconductor, the
spectral weight becomes smaller toward the nodal line in the
�0,0�-�� ,�� direction �see also Figs. 1�a� and 1�b��, and it
changes the sign across the nodal line where the weight is
zero.

To understand the nature of the low-lying excitations ob-
served in F�k ,��, here the results are analyzed based on a
renormalized BCS theory with d-wave pairing symmetry.13

The procedure adopted is as follows: �i� the excitation energy
E�k�=Ek

�N+1�−E0
�N� is fitted for all momenta k in the whole

Brillouin zone by a standard Bogoliubov excitation
spectrum,25 �ii� using the fitting parameters determined in �i�,
the BCS spectral weight for the one-particle anomalous ex-

citations uk
�BCS�*

vk
�BCS� is calculated, and �iii� the BCS spec-

trum is renormalized by a momentum-independent constant
zB in such a way that

�
k

�Z2
�N��k��2 = zB

2�
k

�uk
�BCS�vk

�BCS��2. �11�

The obtained renormalized BCS spectra are shown in Fig. 2
by dashed lines. It is clearly seen in Fig. 2 that the renormal-
ized BCS spectra can reproduce almost quantitatively
F�k ,�� for the projected BCS states. It should be empha-
sized that the procedure employed above is highly nontrivial
and it is beyond a simple fitting of numerical data. Similar
agreement is also found for different sets of model param-
eters, one of which is exemplified in Fig. 3. The surprisingly
excellent agreement found here strongly indicates that the
low-lying excitations described by the projected BCS states
can be well understood within a renormalized Bogoliubov
quasiparticle picture.

To further examine the validity of the renormalized Bo-
goliubov quasiparticle picture for the projected BCS states,
let us finally study the superconducting order parameter,
which is here defined as �= ��0

�N+2��ci↑
† ci+x↓

† ��0
�N�� �x being the

unit vector in the x direction�. The electron density �n� de-
pendence of � is shown in Fig. 1�c� for the 2D t-t�-J model,
where ��0

�N�� is optimized for each n.21 As seen in Fig. 1�c�,
���2 vs n shows a domelike behavior, similar to the pairing
correlation function at the maximum distance as a function
of n reported before.5 It is also interesting to notice that ���2
is proportional to 1−n for small 1−n. The corresponding
quantity �BCS for the BCS state with uk

�BCS� and vk
�BCS�, de-

termined by the procedure mentioned above, can also be cal-

culated by �BCS= �1/L��keik·xuk
�BCS�*

vk
�BCS�. If a renormal-

ized Bogoliubov quasiparticle picture is valid, ��zB�BCS is
expected. As seen in Fig. 1�c�, this is in fact clearly the case.
This result also gives a clear physical meaning to the renor-
malization factor zB introduced in Eq. �11�.

As is well known, a Gutzwiller-projected Fermi gas is
described within a Fermi liquid picture.12 The present results
thus strongly suggest that analogously a Gutzwiller-

FIG. 2. �Color online� The one-particle anomalous excitation
spectrum F�k ,�� for the projected BCS states �Eq. �10�� �solid
lines�. ��0

�N�� used here is optimized for the 2D t-t�-J model with
t� / t=−0.2, J / t=0.3, and N=222 on an L=16	16 cluster �n
�0.87� with periodic boundary conditions �Ref. 21�. The momenta
k studied are indicated in the figures. For comparison, F�k ,�� for a
renormalized BCS theory �see the text� is also presented by dashed
lines. The momentum independent renormalization factor zB is 0.30.
The delta function 
��� is represented by a Lorentzian function
� /���2+�2� with �=0.02t.

FIG. 3. �Color online� The same as in Fig. 2 but for N=240
�n�0.94� �Ref. 21�. The momentum-independent renormalization
factor zB is 0.18.
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projected, correlated BCS state �“projected BCS gas”� can
still be described within a renormalized BCS-Bogoliubov
quasiparticle picture �“BCS liquid”�.26 This is in fact in ac-
cordance with recent photoemission spectroscopy experi-
ments on high-TC cuprate superconductors for which low-
lying excitations consistent with a BCS theory have been
revealed.27 Moreover, the present results would also provide
a theoretical justification for employing a mean-field-based
BCS-like theory to analyze the low-energy dynamics ob-
served experimentally in the superconducting state of high-
TC cuprate superconductors.28

To summarize, the one-particle anomalous excitations
have been studied to understand the nature of the low-lying
excitations of strongly correlated superconductors described
by the Gutzwiller-projected BCS states. It was found that the

low-lying excitations, which are highly coherent, can be es-
sentially described within a renormalized Bogoliubov quasi-
particle picture. This finding thus resembles the well-known
result that a Gutzwiller-projected Fermi gas is a Fermi liquid.
Finally, the present study has demonstrated that a variational
Monte Carlo–based approach can be also utilized to explore
low-lying excitations, and hopefully this work will stimulate
further studies in this direction for other dynamical quanti-
ties.
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