GCDB USER'S GUIDE

Welcome to the BLM, Nevada Geographic Coordinate Data Base (GCDB) user's guide.

INTRODUCTION

This User's Guide has been compiled in order to give the novice user an introduction to the Geographic Coordinate Data Base (GCDB). The guide will familiarize users with corner identification (point identification [PID]) and some of the file formats used in the files created by the various software packages including Public Land Survey System Coordinate System (PCCS) software, GCDB Measurement Management (GMM) software, and National Integrated Lands System (NILS).

The GCDB has been developed in order to render the most dependable coordinates available for the U.S. Public Land Survey System (PLSS) corners. The Nevada State BLM Office has the responsibility of producing the GCDB for the state of Nevada. Of the over 3300 townships in the State of Nevada, 3187 have GCDB data available on the Nevada Land Records web site (http://www.nv.blm.gov/LandRecords). Several other townships will be added in the future, except for townships in the Nellis Air Force Range and Nevada Test Site.

To satisfy the need for a more accurate and complete set of coordinates of the PLSS corners, a system of computer programs, PCCS, GMM and NILS, have been developed to:

1. Compute the geographic coordinates of PLSS corners using official cadastral survey record data.
2. Provide an estimate of the approximate relative position coordinate dependability.

BLM began the GCDB project using PCCS software and changed to GMM software which is currently being used. This software is available for PC's. Many of the townships computed with PCCS have been converted to GMM, but over 700 townships remain in PCCS format.

BLM is participating in a project with US Forest Service to develop new software to replace GMM. The new product is called NILS (National Integrated Lands System), and is expected to be deployed in mid-2007.

The geographic coordinates are computed using the North American Datum 1927 (NAD27). With the deployment of NILS, all existing data will be converted to NAD83, and future calculations will take place in that datum.

The data obtained from this computer software provides the theoretical positions of PLSS corners. The information is used primarily for a Geographic Information System (GIS) type environment to give the relationship of the townships to a point on the earth's surface. These geographic positions should never be used to replace lost or missing PLSS corners. Refer to the Manual of Surveying Instructions, 1973 for official survey procedures.

For additional information concerning the GCDB, contact the Contact Specialist in the BLM IAC or the State Data Administrator. Detailed information can be obtained from the GCDB staff in the Nevada State Office, (775) 861-6400.

PLSS Corner Identification

PCCS, GMM and NILS utilize a six digit, fixed length, numerically logical point identification code for all PLSS corners. The following diagram illustrates the point ID (PID) scheme used to identify the section corners of a standard township:

100700	200700	300700	400700	500700	600700	700700
$\begin{aligned} & \text { Sec. } 6 \\ & 100600 \end{aligned}$		$\begin{array}{r} 4 \\ 300600 \end{array}$	$\begin{array}{r} 3 \\ 400600 \end{array}$		$\begin{aligned} & \text { Sec. } 1 \\ & 600600 \end{aligned}$	700600
	$\begin{array}{r} 8 \\ 200500 \end{array}$	$\begin{array}{r} 9 \\ 300500 \end{array}$	$\begin{array}{r} 10 \\ 400500 \end{array}$	$\begin{array}{r} 11 \\ 500500 \end{array}$	$\begin{array}{r} 12 \\ 600500 \end{array}$	700500
18 100400	$\begin{array}{r} 17 \\ 200400 \\ \hline \end{array}$	16 300400	$\begin{array}{r} 15 \\ 400400 \\ \hline \end{array}$	14 500400	13 600400	700400
$\begin{array}{r} 19 \\ 100300 \end{array}$	$\begin{array}{r} 20 \\ 200300 \\ \hline \end{array}$	$\begin{array}{r} 21 \\ 300300 \\ \hline \end{array}$	$\begin{array}{r} 22 \\ 400300 \\ \hline \end{array}$	23 500300	24 600300	700300
$\begin{array}{r} 30 \\ 100200 \\ \hline \end{array}$	29 200200	$\begin{array}{r} 28 \\ 300200 \\ \hline \end{array}$	$\begin{array}{r} 27 \\ 400200 \\ \hline \end{array}$	$\begin{array}{r} 26 \\ 500200 \\ \hline \end{array}$		700200
$\begin{aligned} & \text { Sec. } 31 \\ & 100100 \end{aligned}$	$\begin{array}{r} 32 \\ 200100 \\ \hline \end{array}$	$\begin{array}{r} 33 \\ 300100 \\ \hline \end{array}$	$\begin{array}{r} 34 \\ 400100 \\ \hline \end{array}$	35 500100	$\begin{aligned} & \text { Sec. } 36 \\ & 600100 \\ & \hline \end{aligned}$	700100

The user will note that a grid of 7 north-south and 7 east-west lines has been constructed. The prefixes of the north-south lines begin with the number 100, on the westernmost line, beginning with Section 31, and increase in 100 unit increments as the lines proceed easterly, to the easternmost line, which is identified by the prefix of 700 , on the east boundary of Section 36 .

The 7 east-west lines begin with a suffix of 100, at the southernmost line in the township, beginning with Sections 31-36, and increase in 100 unit increments, to the northernmost line, which is identified by the suffix of 700, in Sections 1-6.

One-Quarter Section Corner Identification

The previous set of point IDs is utilized to define the four corners of specific sections within a township, but a further dissection is necessary if PLSS corners are to be identified which were created in the subdivision of sections. The following diagram illustrates the point ID scheme used to identify $1 / 4$ section corners created in the subdivision of a standard section. Section 31 will be used to demonstrate this strategy:

The user will notice that the four $1 / 4$ section corners of section 31 are located at midpoint between respective section corners, and that the $1 / 4$ section corners that fall on the east-west lines are identified with the prefix $140 y y y$, while the north-south lines have $1 / 4$ section corners are identified by a suffix of xxx140.

One-Sixteenth Section Corner Identification

The following diagram of Section 31 illustrates the point ID scheme used to further identify $1 / 16$ section corners created in the subdivision of a standard section.

This next division identifies $1 / 16$ section corners, which are located at midpoint between respective $1 / 4$ section corners. Notice that the south $1 / 16$ section corner, on the west boundary of section 31 is identified with the suffix of $x x x 120$. A standard section will identify eight exterior $1 / 16$ section corners, and eight interior $1 / 16$ section corners as illustrated. Further subdivision of sections is possible which identifies subdivisional corners subdivided below $1 / 16$ section corners, using this same strategy for point identification.

Non-Rectangular Surveys in GCDB

The previous section dealt with standard rectangular point IDs, but GCDB also identifies PLSS corners which fall outside the rectangular survey system. Non-Rectangular surveys, as the term is used in GCDB, includes meanders, small holding claims, grant boundaries, reservation boundaries, mineral surveys, homestead entry surveys, tracts, etc. These non-rectangular surveys have been broken down into four categories:

1. Boundaries with Mileposts

2. Meanders
3. Tracts
4. Mineral Surveys, Homestead Entry Surveys (HES), etc.

The following list identifies point ID prefixes used to describe these non-rectangular surveys:

1. 711-799 - Boundaries with Mileposts
2. 800-836 - Meanders
3. 837-899 - Tracts
4. 900-999 - Mineral Surveys, Homestead Entry Surveys, etc.

An example of Mineral Survey Point ID's:

FILE NAMING AND FORMATS

PCCS Files

The following list describes the most important files which were created by the PCCS process and a brief description of their contents:

File Names are usually 7 characters with a maximum of 8 characters and have no extension except the SCRIPT file (see below).
?ttN/SrrE, (e.g., R20N20E) where ? is:
R - Raw data file contains bearings and distances, with Source Identification Document (SID) code.
B - Boundary transfer file. (Adjusted coordinates)
C - Contains those coordinates used as control for the adjustment process of a particular township, expressed in latitude, longitude, and Cartesian coordinates.
U - Final coordinates expressed in Universal Transverse Mercator (UTM) format.
L - File with PID's, latitude, longitude, mean state elevation, reliability (average and maximum), and UTM coordinates.
$\mathrm{tt} \quad$ is the township number
N/S for north or south
rr is the range number
E for east.
Half townships and half ranges are designated with a 2 added to the township or range number. R012N69E is the RAW file for T $11 / 2$ N R 69 E , and U37N232E is the UTM file for T 37 N R $231 / 2 \mathrm{E}$. There are 9 instances in Nevada of townships designated as $1 / 2$ township $-1 / 2$ range. Only one of these is still in PCCS format, and the file names for that one township (?412N232E) have been changed to exceed the 8 character limit.

SCRIPT File

TttN/SrrE.SCR (e.g., T20N20E.SCR)
AutoCAD Script File, used for graphics representation using AutoCAD software.

The files are text files and have internal formats as follows:

R-File

R-file The R-File contains distance, bearing, and source ID, used to compute coordinates from one point to another within a township. (Some of the oldest PCCS files do not have a Source ID column.)

SAMPLE R-FILE (R44n56e)

```
    TWP 44N RNG 56E PM Mnt Diablo Nevada(NV) DATE 92/02/25
```

 \(999999 \leftarrow\) start of file mark

$999998 \leftarrow$ end of file mark

**Explanation of first data entry line above:

From point id 700100 (the cor. of Tps. 43 and 44 N., Rs. 56 and 57 E.) to PID 700137 (the $1 / 4 \mathrm{sec}$. cor. of sec. 31, T. 44 N., R. 57 E.) 40.00 chains distance at a bearing in quadrant 4 of $21^{\prime} 00^{\prime \prime}\left(\mathrm{N} 0^{\circ} 21^{\prime} 0\right.$ " W)

1. Source ID (SID):

Refers to a volume and a page number in a BLM field note record.
"R" refers to a rectangular Contract or Group survey record.
"M" refers to a Mineral Survey record.
"H" refers to a Homestead Entry Survey record.
"I" refers to a survey record of an Indian Reservation.
" B " refers to a State boundary survey.

L-File

The L-File has PID's, latitude, longitude, mean state elevation, reliability (average and maximum) and UTM coordinates.

SAMPLE L-FILE

TWP ? ?	RNG ? ? E	PM Mnt Dia	DATE 92/02/28					
100100	391718.9492	1192029.4353	6000.00	105	243	102	298054.33	4351208.51
100120	391732.0948	1192029.5571	6000.00	108	376	10	298061.9	4351613.88
100140	391745.2401	1192029.6792	6000.00	108	376	10	298069.47	4352019.24
100160	391758.3856	1192029.8010	6000.00	108	376	10	298077.05	4352424.61
100200	391811.5310	1192029.9230	6000.00	40	40	103	298084.63	4352829.98
100220	391824.4878	1192029.9934	6000.00	108	376	103	298093.29	4353229.50
100240	391837.4445	1192030.0640	6000.00	108	376	10	298101.9	4353629.02
100260	391850.4013	1192030.1345	6000.00	108	376	103	298110.61	4354028.54
100300	391903.3580	1192030.2050	6000.00	40	40	10	298119.27	4354428.06
100320	391916.4178	1192030.3637	6000.00	108	376	103	298125.90	4354830.81
100340	391929.4775	1192030.5225	6000.00	108	376	10		
100360	391942.5373	1192030.6812	6000.00	108	376	10	UTM	rdinates
100400	391955.5970	1192030.8400	6000.00	40	40	10	(metric	
100420	392008.6386	1192030.7719	6000.00	108	376	103		
100440	392021.6803	1192030.7038	6000.00	108	376			
100460	392034.7219	1192030.6356	6000.00	108	376	$\llcorner P$	codes for	phics ${ }^{2}$
100500	392047.7636	1192030.5675	6000.00	108	376			
100520	392100.8052	1192030.4994	6000.00	108	376	\leftarrow Relia	ility ${ }^{3}$	
100540	392113.8468	1192030.4313	6000.00					
100560	392126.8884	1192030.3631	$6000.00 \leftarrow$ State mean elevation					
100600	392139.9300	1192030.2950						
100620	392152.9847	1192030.1274	\leftarrow Latitude and Longitude					
100640								
100660	\leftarrow Point ID							

2 The pen codes are a remnant of old technology, and consist of three columns:

First column Second column	line number line color
Third column	pen commands
2	pen down (start new line)
3	continue
4	pen up (finish line)

3 Reliability is indicated by two values. The first value is the average distance in feet and the second value is the maximum distance in feet that points adjusted for a particular survey. Control points in PCCS do not adjust and will have the same average and maximum reliability as shown below.

11 (ft.) 3rd order control or better
$10 \quad 10$ (ft.) 4th order control
4040 (ft.) Digitized control points from $71 / 2 \mathrm{~min}$. USGS quads.
100100 (ft.) Digitized control points from 15 min . USGS quads.

GMM SECTION

The following list describes some of the files which are created by the GMM process using the method of least squares analysis and a weighting process with initial error estimates based on the year of the survey.

File names have the general format of: TttN/SRrr.eee (i.e., T20NR20E.RAW) where
$\mathrm{tt} \quad$ is the township number
$\mathrm{rr} \quad$ is the range number
eee is the extension as follows:
. CON Control available, typically from National Geodetic Survey (NGS, formerly U.S. Coast and Geodetic Survey (USC\&GS), U.S. Geological Survey (USGS), Nevada Department of Transportation (NDOT) and digitized found corners from USGS quadrangle maps $71 / 2$ and 15 min . series). ${ }^{4}$

- This file is similar to the CttN/SrrE in PCCS.
. COR Coordinates in feet listed by PID.
- See the .DEF file for State Plane Zone.
. DEF The Definition file for GMM. Sets parameters for use by GMM software, prominent among which is the State Plane Zone used by GMM for calculations.
. DXF AutoCAD file, used for graphics and hard copies using AutoCAD, ArcMap and other software. DXF files use either State Plane coordinates in feet, or Universal Transverse Mercator (UTM) coordinates in meters. These files are not coded for projection system, but examination of coordinate values can be used to determine the projection. State Plane values for northing are less than 2,700,000, and the northings for UTM are greater than $3,800,000$.
- This file replaces the .SCR file of PCCS
latitude, longitude, elevation, accuracy indicators, pen commands and coordinates expressed in Universal Transverse Mercator (UTM) format. (Nevada is in Zone 11)
- This file is identical with the LttN/SrrE in PCCS.

PGC File containing latitude, longitude, state mean elevation (6000 ft.), accuracy indicators and tangent plane coordinates in chains.

- This file is identical with the XttN/SrrE in PCCS.

RAW Contains point ID's, distance, bearing, and source ID, used to compute coordinates from one point to another within a township.

- This file is identical with the RttN/SrrE in PCCS.

SID Source Identifier file. Contains the Roll and page identifier, the error estimate and description for each survey. (See footnote 1 on page 7.)
. UTM latitude, longitude, elevation, accuracy indicators, and coordinates expressed in Universal Transverse Mercator (UTM) format. (Nevada is in Zone 11)

- This file is identical with the UttN/SrrE in PCCS.

Half townships and half ranges are designated with an H replacing the township or range (T or R) designation. H37NR43E.eee is for T $371 / 2$ N R 43 E , and T13NH31E.eee is for T 13 N R $311 / 2 \mathrm{E}$. There are 9 instances in Nevada of townships designated as $1 / 2$ township- $1 / 2$ range. The eight of these that are in GMM format use a double H coding, for instance H03NH51E.eee, or format similar to PCCS, such as T0062N0472E.eee.

[^0]
SAMPLE FILES

.COR file

```
1 0 0 1 0 0
1 0 0 7 0 0
2 0 0 1 0 0
2 0 0 7 0 0
3 0 0 1 0 0
300700
4 0 0 1 0 0
4 0 0 7 0 0
500100
500700
6 0 0 1 0 0
6 0 0 7 0 0
7 0 0 1 0 0
1 6 0 7 0 0
2 2 0 7 0 0
2 6 0 7 0 0
3 2 0 7 0 0
360700
4 2 0 7 0 0
4 6 0 7 0 0
5 2 0 7 0 0
560700
6 2 0 7 0 0
660700 \leftarrow-Point ID
```

```
688111.535 2417980.301
```

688111.535 2417980.301
688120.379 2418085.995
688120.379 2418085.995
693376.133 2418008.509
693376.133 2418008.509
693375.706 2418061.014
693375.706 2418061.014
698741.889 2418045.397
698741.889 2418045.397
698741.769 2418059.849
698741.769 2418059.849
703898.934 2417761.512
703898.934 2417761.512
703896.392 2418057.970
703896.392 2418057.970
709134.025 2417789.453
709134.025 2417789.453
709131.673 2418056.805
709131.673 2418056.805
714369.173 2417818.395
714369.173 2417818.395
714367.024 2418056.772
714367.024 2418056.772
718091.286 2417774.392
718091.286 2417774.392
692056.997 2417997.290
692056.997 2417997.290
694694.996 2418019.768
694694.996 2418019.768
697377.873 2418038.215
697377.873 2418038.215
700032.949 2418059.271
700032.949 2418059.271
702612.576 2417786.679
702612.576 2417786.679
705207.790 2417768.360
705207.790 2417768.360
707825.335 2417782.320\leftarrow State Plane Northing(ft)
707825.335 2417782.320\leftarrow State Plane Northing(ft)
710443.043
710443.043
713060.617\leftarrow State Plane Easting(ft)

```
713060.617\leftarrow State Plane Easting(ft)
```


.DEF file

Y
33 NEVADA EAST MERCATOR \leftarrow State Plane Zone
1
2
$6000.000 \leftarrow$ Mean elevation (ft)
N
Y
.100
4.0
30.0 $\quad 200.0 \quad \ddagger \leftarrow \underline{\text { Default error estimates }}$
25.000
25.000
Y
.000
. 0
Y
N
N
Y
H40NR63E
MDM
\leftarrow Principal Meridian
NV
$11 \leftarrow \underline{\text { UTM Zone }}$
.PGC-file The .PGC-File contains point ID's, latitude, longitude, mean state elevation, accuracy indicators and UTM coordinates.

TWP 16N	RNG 20E PM	Mnt Diablo	Nevada (NV)		DATE
ORIGIN	391440.0000	1194356.0000	6000.000	0	2000.00005000 .0000
700100	391203.5896	1194035.3435	6000.000	$12 \quad 12$	2239.41074760 .2346
700140	391229.7929	1194035.3026	6000.000	126127	2239.43484800 .4145
700200	391255.9962	1194035.2616	6000.000	126127	2239.45904840 .5944
700240	391322.1620	1194035.3573	6000.000	126127	2239.32024880 .7168
700300	391348.3277	1194035.4529	6000.000	5353	2239.18144920 .8393
700340	391414.5026	1194035.4277	6000.000	5454	
700400	391440.6774	1194035.4024	6000.000	5454	\llcorner tangent plane
700440	391506.2502	1194035.7857	6000.000		coordinates in chains
700500	391531.8230	1194036.1690	6000.000	Accu	racy Indicators
700540	391558.4227	1194035.7319	6000.000		
700600	391625.0225	1194035.2949	6000.000	\leftarrow Sta	e mean elevation
700640	391651.1307	1194035.4386			
700660	391704.1793	1194035.4745	$\leftarrow \underline{\text { Latit }}$	de and Lo	gitude
700700					
600100	$\leftarrow \underline{\text { Point ID }}$				

.RAW file The .RAW file contains point ID's, distance, bearing, and source ID, that are used to compute coordinates from one point to another within a township. This file is identical with the RttN/SrrE in PCCS.

$999998 \leftarrow$ end of file mark

*Explanation of data entry line above:
From point id 200200 (the SW cor. of Sec 29) to PID 200240 (the $1 / 4$ cor. of Secs. 29 and 30) 40.00 chains distance at a bearing in quadrant 4 of $4^{\prime} 00 "\left(\mathrm{~N}^{\circ} 4^{\prime} 0^{\prime \prime} \mathrm{W}\right)$
．SID file The ．SID－File contains source ID codes，error estimates and descriptions

```
SR0272:0000 . 100 10000.0 3600.0
C GLO 10-NOV-1882 01 MYRICK, WK
C NORTH, EAST, SOUTH & WEST BOUNDARIES
SR0272:0220 . 100 10000.0 3600.0
C GLO 10-NOV-1882 01 MYRICK, WK
C SUBDIVISION
SPD176:U081 . . 00 40000.0 14400.0
C BLM 22-JAN-1964 09
```

Where：

S．．．\leftarrow Indicates line is a SID line

SR0272 \leftarrow Roll designation in field note records
SR0272：0220ヶpage number of beginning of field note record
SR0272：0000 ． $100 \leftarrow$ Distance error estimate constant
SR0272：0000 ． 100 10000．0ヶ Distance error estimate parts per million
SR0272：0000 ． 100 10000．0 $3600.0 \leftarrow$ Angular error estimate（seconds）
C GLO 10－NOV－1882 01 MYRICK，WKヶComments
．UTM file The ．UTM－File contains point ID＇s，adjusted latitude and longitude，accuracy indicators ${ }^{5}$ and UTM coordinates．

5 The accuracy indicators are the radii in the north and east directions of the error ellipse generated by the least squares adjustment process．
6 These are easting and northing run together with no space between．They carry 2 decimal places，and the northing begins with column 65.

[^0]: 4 Control:
 Control points are allowed to move as much as 3 times their error estimates.
 Typical error estimates:
 .001 (ft.) 3rd order control or better. These control point values do not move in the Least Square Analysis.
 5. (ft.) 4th order control

 25 (ft.)digitized control points from 71/2 min. USGS quads.
 50 (ft.)digitized control points from 15 min . USGS quads.

