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Abstract

Consider the three-component time series model that decomposes observed data (Y ) into the sum of

seasonal (S), trend (T ), and irregular (I) portions. Assuming that S and T are nonstationary and

that I is stationary, it is demonstrated that widely-used Wiener-Kolmogorov signal extraction estimates

of S and T can be obtained through an iteration scheme applied to optimal estimates derived from

reduced two-component models for Y S = S + I and Y T = T + I. This “bootstrapping” signal extraction

methodology is reminiscent of X-11’s iterated nonparametric approach. The analysis of the iteration

scheme provides insight into the algebraic relationship between full model and reduced model signal

extraction estimates.
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1 Introduction

Extraction of a nonstationary signal from an observed, finite sample time series is a problem of both

theoretical and practical interest. Work on stationary signal extraction from a signal plus noise model for

an infinite sample dates back to Wiener (1949) and Kolmogorov (1939, 1941), whose celebrated solution has

become classical in the time series literature. However, in many realistic situations, such as the project of

deseasonalizing economic data, the ambient signal is a nonstationary stochastic process. Essentially the same

Wiener-Kolmogorov filter gives optimal extractions when the signal can be made stationary by appropriate
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differencing, and the noise is stationary – Cleveland and Tiao (1976) obtained results for this case. Also see

Hannan (1967) and Sobel (1967) for earlier work. However, when the noise process is itself nonstationary

– for example, in seasonal component estimation the noise consists of trend plus irregular – the situation

becomes more complicated. Bell (1984) brought this issue to the forefront with a very deep paper, which

produced extraction estimates under a variety of assumptions; in particular, Bell demonstrated that in order

to obtain optimal estimates (in the sense of mean-squared error), it was essential to make assumptions about

the data-generation process. Bell considered two main premises – Assumption A and Assumption B – neither

of which is typically verifiable from the observed data.

Assumption A states that the initial observed values are probabilistically independent of the differenced

signal and differenced noise processes. When the differencing operators for the signal and noise components

have no unit roots in common, Assumption A has the consequence that the initial values are independent of

forecasts made from the differenced data – an assumption that is often made in the modelling and forecasting

of time series. Assumption B states that the initial values of signal and noise are generated independently of

each other, as well as from the differenced signal and noise processes. Although Assumption B is arguably

more natural from a modeling standpoint, since it entails that signal and noise be independent for all time,

Assumption A is the approach that is implicitly adopted in the literature. One of the reasons is that given

above – namely, future values of the differenced series are independent of the initial observed data; a second

reason is that the formulas for the optimal signal extraction estimates are much simpler analytically – Bell

(1984) shows that these formulas are analogous to those used in the stationary components scenario. A third

appeal of Assumption A is that we are not required to know the covariance matrix of the initial conditions

of the nonstationary process, whereas Assumption B does require this unattainable knowledge. Fourthly,

signal extraction estimates obtained under Assumption A are also locally optimal when Assumption A is

removed – namely, those signal extractions are optimal (in the sense of having minimal mean squared error)

within the class of linear functions of the data such that the error in the estimate does not depend on the

initial values. This property underlies the “transformation approach” of Ansley and Kohn (1985), and is

appealing because no assumptions need be made on the data-generation process. See also Kohn and Ansley

(1986, 1987) and Bell and Hilmer (1991) for implementations of the Kalman filter and smoother to produce

estimates that are optimal under Assumption A.

In a three component model – consisting of trend, seasonal, and irregular portions – used to describe

economic data, quite often the trend and seasonal are modelled as nonstationary processes, whereas the

irregular is stationary. If one is interested in obtaining the trend, one must use signal extraction methods

for a nonstationary signal (the trend) plus a nonstationary noise (the seasonal plus irregular) component.

Under Assumption A, the finite-sample matrix formulas of Bell and Hilmer (1988) and Bell (2004) can be

used; equivalently, a state space smoother (see Anderson and Moore (1979)) can produce the trend estimate

once a model has been specified for each component. Another approach is to first detrend the data, by using
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trend extraction methods for a reduced “trend plus irregular” model; although this is an inaccurate depiction

of reality, the matrix form of this estimate is easy to write down, since the noise (i.e., the irregular) is now

stationary. After subtracting off this pilot trend estimate, one can then extract the seasonal component

using a reduced “seasonal plus irregular” model – again, this model is not true to reality. However, one

may iterate this algorithm and hope for convergence to the optimal signal extraction estimates. The Census

Bureau program X-11 follows a similar procedure under a nonparametric umbrella, but one could conceive

of implementing an analogous algorithm with parametric models for each of the components. This paper

explores such an algorithm, and shows that iterations of these reduced model filters converge rapidly to the

signal extraction filters that are optimal linear estimates under Assumption A.

This work is appealing on several grounds. It provides a natural, intuitive approach to the construction

of optimal signal extraction estimates, built up from the less complicated filters coming from the stationary

noise theory. In particular, the complicated initial value estimates of the trend and seasonal signals are

automatically produced by the iterative structure of the algorithm presented in Section 4. From a theoretical

perspective, this paper’s results provide insight into the algebraic relationship between trend and seasonal

extraction.

Besides these aesthetic insights into signal extraction, analysis of this paper’s main algorithm provides

insight into the rate of convergence of iterative methods. Many practitioners in the economics and engineering

communities will apply certain bandpass or lowpass filters to extract seasonal (or cycle) and trend components

respectively. The most popular in the econometrics community are the Butterworth and Hodrick-Prescott

filters – see Hodrick and Prescott (1997), which are essentially designed for stationary noise models, i.e., they

are minimum mean squared error optimal for certain models that have nonstationary signal and stationary

noise. Also see Pollock (2000, 2001) for examples of filtering nonstationary time series. Typically an economic

practitioner interested in cycle estimation will apply a low-pass filter, remove the estimated trend, and then

follow up with a band-pass filter to estimate the cycle. But this procedure does not produce the optimal

estimate of the cycle, because in the first step a trend plus irregular model is assumed in lieu of the actual

three component model. See Harvey and Trimbur (2003) for a discussion of these points. In fact, this

consecutive use of low-pass and band-pass filters is identical to the first iteration of the general algorithm

explored in this paper – an algorithm that converges exponentially fast. Thus, analysis of the convergence

of our algorithm provides insight into how close the above common practice takes one to optimality.

This paper first sets up nonstationary signal extraction for a three component model, giving full matrix

formulas for various estimation procedures. This material, although mostly obtained from Bell and Hilmer

(1988), is somewhat new in its formulation. Section Two develops these formulas and the attendant notations

and gives a motivating example. Section Three discusses the main original theoretical results – namely the

mathematical relationship between full model and reduced model signal extraction matrices. The iterative
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algorithm, which builds up the optimal full model filters from the reduced model filters, is analyzed in

Section Four, and its rate of convergence is assessed through matrix norms. Section Five discusses the

implementation of these ideas, and presents the results of a simulation study and the analysis of U.S. Shoe

Store Sales data. We conclude in Section Six, and provide one technical proof in the Appendix B. Appendix

A contains some additional material regarding the calculation of finite-sample Mean Squared Errors of signal

extraction estimates.

2 Background and Notation

We attempt to follow the notation of Bell and Hilmer (1988), and all formulas are presented in a vector

framework. Thus, a sample of n observed data Y1, Y2, · · · , Yn will be denoted by the column vector Y . Our

basic model is

Y = S + T + I

where Y is observed data, S represents the seasonal component (this should not be confused with the common

use of S for signal), T is the trend, and I is the irregular. If we use the notation Xt for some stochastic

process {Xt}, then we denote a single variate; if we just write X then we refer to the whole finite sample of

{Xt} written as a vector. We make the following assumptions:

• All covariance matrices are assumed to be invertible.

• The differenced seasonal, the differenced trend, and the irregular series are uncorrelated with one

another. This will be referred to as the orthogonality property of the components.

• Both S and T are nonstationary, with associated differencing polynomials δS and δT respectively that

have distinct roots. Their orders are dS and dT respectively, and we let d = dS + dT .

• The irregular component I is stationary.

• The data have a multivariate normal distribution.

A separate assumption, which we will sometimes impose below, is essentially Assumption A of Bell (1984),

applied to a three component model: we assume that the initial values Y1, · · · , Yd are independent of the

differenced trend, differenced seasonal, and the irregular.

Because the roots of δS and δT are distinct, their product is the minimal degree d polynomial δ, which is

sufficient to reduce Y to stationarity, i.e.,

δ(B)Yt = Wt

is a stationary stochastic process (B denotes the backshift operator). Later we will discuss the integrating

power series, which are simply the algebraic inverses of the differencing polynomials:

ξ(z) = 1/δ(z) ξT (z) = 1/δT (z) ξS(z) = 1/δS(z)
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If we wish to extract the seasonal, then we would write

Wt = δT (B)US
t + δS(B)V S

t

where US
t = δS(B)St is the differenced seasonal (in this case our signal), and V S

t = δT (B)(Tt + It) is our

differenced noise. Notice that the superscripts on U and V are necessary to distinguish differenced signal

and noise for the seasonal extraction problem and the trend extraction problem, i.e., if we wish to extract

trend, then we decompose as

Wt = δS(B)UT
t + δT (B)V T

t

where UT
t = δT (B)Tt is our differenced signal and V T

t = δS(B)(St + It) is our differenced noise.

Next, we develop filters from two-component models – either trend plus irregular or seasonal plus irregular.

These models will be called reduced models, and typically represent an over-simplification of reality. For

example, the additive X-11 procedure initially assumes a trend plus irregular model for the data – even

though this is unrealistic – in order to obtain initial trend estimates. For notation, write

Y T
t = Tt + It

Y S
t = St + It

for the two reduced models. In the first, δT is the appropriate differencing operator, while δS is appropriate

for the second model. Note that signal extraction is much simpler for these reduced models, since estimation

of a nonstationary signal (either T or S in these scenarios) when stationary noise (i.e., the irregular I) is

present is reasonably straightforward. In particular, there is no explicit estimation of initial values of the

nonstationary signal (this is performed implicitly through estimation of the stationary noise’s initial values)

as described in Bell and Hilmer (1988). If we apply the differencing operators to the reduced models, we

obtain:

WT
t = δT (B)Y T

t = UT
t + δT (B)It

WS
t = δS(B)Y S

t = US
t + δS(B)It

We seek a relationship between the trend and seasonal extraction filters for the reduced models and the

analogous filters for the full model. For practicality, all relationships are explored in a matrix form, since

this is appropriate for finite samples. The estimates that we will consider are:

E(T |Y T ) = FT
TI Y T

E(S|Y S) = FS
SI Y S

Because of the normality assumption on the stochastic process, these conditional expectations are given by

linear operators acting on the data. If normality fails, one can still use the linear estimates, but there is
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no guarantee that they yield the conditional expectation. In other words, the conditional expectations of

the signals T and S under their respective reduced models, are given by the left multiplication of certain n

by n filter matrices acting on data vectors Y T and Y S respectively. We use the letter F for “filter,” with

superscript denoting the desired signal and subscript referencing the model – SI for Y S , TI for Y T , and

STI for Y . Hence, our full model estimates are:

E(T |Y ) = FT
STI Y

E(S|Y ) = FS
STI Y

The main result of this paper is to produce an elegant mathematical relationship between these various

matrices F ; associated with these formulas is a simple algorithm that will build up nonstationary signal

extraction estimates for the full model completely from the overly simplistic reduced model estimates.

In order to express these matrices F explicitly, we must use appropriate matrix versions of the differencing

operators. Let ∆∗
S be an n − dS by n matrix which operates on Y , and let ∆∗

T be an n − dT by n matrix

that also operates on Y with entries given by:

(∆∗
S)ij = −δS

i−j+dS
(∆∗

T )ij = −δT
i−j+dT

where −δS
k is the kth coefficient of δS . We follow the convention of Bell (1984) in writing these coefficients

with a minus sign. As is usual for ARIMA models, −δS
0 = 1, and of course the kth coefficient is zero if either

k is negative or exceeds dS . The analogous notation is used for δT and the full differencing polynomial δ.

More explicitly, we have

∆∗
S =




−δS
dS

−δS
dS−1 · · · 1 0 · · · 0

0 −δS
dS

· · · −δS
1 1 · · · 0

· · ·
0 0 · · · 0 0 · · · 1




Each row of these matrices corresponds to the action of the differencing polynomial on the data; it is easy

to see that

UT = ∆∗
T T V T = ∆∗

S (S + I)

US = ∆∗
S S V S = ∆∗

T (T + I)

WT = ∆∗
T Y T WS = ∆∗

S Y S

Now for the next round of differencing, we need matrices that act on n− dT and n− dS component vectors,

producing n− d values afterwards. So define ∆S and ∆T to have the same entries as their cousins ∆∗
S and

∆∗
T , but with dimensions n− d by n− dT and n− d by n− dS , respectively. Then we have

W = ∆SUT + ∆T V T = ∆T US + ∆SV S
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Finally, we define ∆ to be an n− d by n matrix with entries

∆ij = −δi−j+d

Then the following intuitive lemma relates these matrices:

Lemma 1

∆ = ∆S∆∗
T = ∆T ∆∗

S

Proof. We prove the first equality:

(∆S∆∗
T )ij =

n−dT∑

k=1

(−δS
i−k+dS

)(−δT
k−j+dT

) =
i+dS−1∑

l=i+d−n

(−δS
l )(−δT

i−j−l+d)

The bounds on the sum can be taken from −∞ to ∞, due to 1 ≤ i ≤ n− d and the order of δS ; but the kth

coefficient of δ, by simple algebra, is given by

−δk =
∑

l

(−δS
l )(−δT

k−l)

Hence the ijth coefficient of the above product of matrices is −δi−j+d = ∆ij . 2

This provides us with new expressions for W :

W = ∆T US + ∆SWT

= ∆SUT + ∆T WS

= ∆T US + ∆SUT + ∆I

It will be convenient to observe that V T = WS and V S = WT , which can be checked directly.

Example We flesh out these notations through an airline model example. The airline model is given by

(1−B)2U(B)Yt = (1− θB)(1−ΘB12)εY
t (1)

for monthly data Yt. The polynomial U(z) = (1 − z12)/(1 − z) is the seasonal summation operator. The

model parameters are θ, Θ, and the variance of the white noise sequence εY
t . So our various differencing

operators are:

δT (B) = (1−B)2 δS(B) = U(B) = 1 + B + · · ·+ B11 δ(B) = (1−B)(1−B12)

It follows from (1) that

Wt = (1− θB)(1−ΘB12)εY
t

and the inverses of the differencing polynomials (which may be power series) can be computed, e.g.,

ξT (z) = (1− z)−2 = 1 + 2z + 3z2 + · · ·
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In practice, a modeler needs to decompose (1) into its component parts. If we form the canonical decompo-

sition, assuming admissability (see Hilmer and Tiao (1982)), then we obtain component models

U(B)St = θS(B)εS
t = US

t

(1−B)2Tt = θT (B)εT
t = UT

t

It = εI
t

for various independent white noise sequences εS
t , εT

t , and εI
t . We have made identifications with differenced

signals Ut in the last equalities. Finally, the differenced noises are

V S
t = (1−B)2(Tt + It) = θT (B)εT

t + (1−B)2It

V T
t = U(B)(St + It) = θS(B)εS

t + U(B)It

Computer software exists to estimate the airline model parameters and compute the component model

parameters – the authors used the Ox programming language, along with various SsfPack routines (Doornik

(1998) and Koopman, Shepherd, and Doornik (1999)).

Our next task will be to give explicit formulas for the F matrices. Bell and Hilmer (1988) provide

expressions for the estimates, but here we write down the matrices explicitly. In the sequel we let 1n denote

the n by n identity matrix, and generally ΣX denotes the covariance matrix for a random vector X. For any

matrix M , we denote its transpose by M ′. Before proceeding, we observe a complex issue pointed out to

us by Bill Bell. Whereas we define the reduced model filter extraction matrices by applying Assumption A

to both reduced models (and that this leads to the correct filter relationships is borne out by Theorem 1),

these assumptions are not compatible with Assumption A on the full model. Hence, the use of Assumption

A on the reduced models in the following proposition should be seen as a motivation for the derivation of

the appropriate reduced model filters.

Proposition 1 If we make Assumption A for the reduced models, we can write down a simple formula for

either FT
TI or FS

SI . These are given by:

FT
TI = 1n − ΣI∆∗

T
′Σ−1

W T ∆∗
T =

(
1n + ΣI∆∗

T
′Σ−1

UT ∆∗
T

)−1
(2)

FS
SI = 1n − ΣI∆∗

S
′Σ−1

W S ∆∗
S =

(
1n + ΣI∆∗

S
′Σ−1

US ∆∗
S

)−1

Proof. From equation (4.4) of Bell and Hilmer (1988), we have

FT
TI Y = E(T |Y T ) = Y − ΣI∆∗

T
′Σ−1

W T WT =
(
1n − ΣI∆∗

T
′Σ−1

W T ∆∗
T

)
Y

For the second equality, which shows that FT
TI is invertible, use the Sherman-Morrison-Woodbury formula

(see Golub and Van Loan (1996))

(A + UV ′)−1 = A−1 −A−1U(1 + V ′A−1U)
−1

V ′A−1
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on the formula

ΣW T = ΣUT + ∆∗
T ΣI∆∗

T
′

to obtain (with A = ΣUT , U = ∆∗
T ΣI , and V ′ = ∆∗

T
′)

Σ−1
W T = Σ−1

UT − Σ−1
UT ∆∗

T ΣI

(
1n + ∆∗

T
′Σ−1

UT ∆∗
T ΣI

)−1
∆∗

T
′Σ−1

UT

Then apply to this the matrix identity

1−AB + ABA(1 + BA)−1
B = (1 + AB)−1

which holds if A or B is invertible. This establishes the invertibility of FT
TI and explicitly provides the

inverse. A similar proof yields the expressions for FS
SI as well. 2

Remark 1 We have essentially used Assumption A only to derive formulas for the filters we wish to use. It

follows from the “transformation approach” that the filters given by (2) are optimal signal extraction filters

within the class of linear estimators whose error does not depend on the initial values, even when Assumption

A does not hold. However, if Assumption A is true as well, then these filters (2) are also globally optimal.

In order to express the full model extraction matrices, we utilize notation developed in Bell and Hilmer

(1988), which is repeated here for convenient reference. Let ∆̃T be the invertible matrix defined by

∆̃T =


 1dT 0

∆∗
T




Then the trend extraction estimate, under Assumption A, is given by

E(T |Y ) = ∆̃−1
T


 T̂∗

ÛT




where T̂∗ is a dT dimensional vector that estimates the initial values of the trend, and ÛT is an estimate of

the differenced trend derived from the differenced data W , i.e. according to (4.7) of Bell and Hilmer (1988),

ÛT = ΣUT ∆S

′
Σ−1

W W = ΣUT ∆S

′
Σ−1

W ∆Y

Let us name this latter matrix T :

T = ΣUT ∆S

′
Σ−1

W ∆

In a similar fashion,

V̂ T = ΣV T ∆T

′
Σ−1

W W = ΣV T ∆T

′
Σ−1

W ∆Y

Now T̂∗ is given by (4.10) of Bell and Hilmer(1988):

T̂∗ = [1dT
0dT × dS

] [H1 H2]
−1

(
Y∗ − C1[1dS

0dS ×n−d]ÛT − C2[1dT
0dT ×n−d]V̂ T

)
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Here Y∗ denotes the first d values of Y , i.e., Y∗ = [1d 0]Y . The matrices H1 and H2 are intimately involved

in the initial value equations expounded in (3.2) of Bell (1984). In particular,

H1 =




1dT

AT
dT +1

′

· · ·
AT

d

′




with the ith entry of the column vector AT
j given by

dT−i∑

l=0

(−δT
l )ξT

j−i−l

for 1 ≤ i ≤ dT . Also ξT
k denotes the kth coefficient of the polynomial ξT (x), which is zero if k is negative.

So H1 has d rows and dT columns. In a similar fashion, the d by dS matrix H2 is defined by

H2 =




1dS

AS
dS+1

′

· · ·
AS

d

′




and the ith entry of AS
j is

dS−i∑

l=0

(−δS
l )ξS

j−i−l

for 1 ≤ i ≤ dS . Bell (1984) establishes that the matrix [H1 H2] is invertible. The matrices C1 and C2 are d

by dS and d by dT dimensional respectively. Their entries are given by

C1ij = ξT
i−j−dT

C2ij = ξS
i−j−dS

Let J denote the matrix [H1 H2]
−1; then the expression for T̂∗ can be simplified to

T̂∗ = [1dT 0]J
{
[1d 0]− (

C1[1dS 0]ΣUT ∆S
′ + C2[1dT 0]ΣW S ∆T

′) Σ−1
W ∆

}
Y = TY

where we define T to be the above dT by n matrix. In an analogous derivation, letting K = [H2 H1]
−1,

S = [1dS
0]K

{
[1d 0]− (

C1[1dS
0]ΣW T ∆S

′ + C2[1dT
0]ΣUS ∆T

′)Σ−1
W ∆

}

= [0 1dS
]J

{
[1d 0]− (

C1[1dS
0]ΣW T ∆S

′ + C2[1dT
0]ΣUS ∆T

′)Σ−1
W ∆

}

Also let

S = ΣUS ∆T

′
Σ−1

W ∆

The next result follows from the above formulas:

Proposition 2 For the full model under Assumption A, the signal extraction matrices are given by:

FT
STI = ∆̃−1

T


 T

T


 FS

STI = ∆̃−1
S


 S

S
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Remark 2 In principle, these above formulas are sufficient to generate optimal (in a minimal mean squared

error sense) linear signal extraction estimates under Assumption A. However, the formulas for S and T ,

which produce initial value estimates for the signals, are quite complicated; in contrast, signal extraction for

the reduced models is simpler. In Section Four, an iterative method is developed to produce the full model

signal extraction matrices without explicit recourse to the initial value matrices S and T .

3 Formulas Relating the Full Model Filters to the Reduced Model

Filters

Below, we will need to examine the eigenvalues of FS
SIF

T
TI . For notation, we let λ1(A), · · · , λn(A) denote

the eigenvalues of a matrix A in descending order. The following proposition summarizes some important

properties of this matrix.

Proposition 3 Define FS
SI and FT

TI as in Proposition 1. We have 0 < λn(FS
SIF

T
TI) ≤ λ1(FS

SIF
T
TI) <

1. Also the inverse of 1n − FS
SIF

T
TI exists. The series

∑∞
k=0 (FS

SIF
T
TI)

k is convergent with sum equal to

(1n − FS
SIF

T
TI)

−1. The same results hold for FT
TIF

S
SI in place of FS

SIF
T
TI .

Proof. We first show the invertibility of 1n − FS
SIF

T
TI . Observe that

1n − FS
SIF

T
TI = FS

SI

(
(FS

SI)
−1

(FT
TI)

−1 − 1n

)
FT

TI

= FS
SI

(
ΣI ∆∗

S
′ Σ−1

US ∆∗
S + ΣI ∆∗

T
′Σ−1

UT ∆∗
T + ΣI ∆∗

S
′ Σ−1

US ∆∗
S ΣI ∆∗

T
′ Σ−1

UT ∆∗
T

)
FT

TI

If the central matrix in parentheses is invertible, then so is 1n−FS
SIF

T
TI . We begin by computing the minimal

eigenvalue of (FS
SI)

−1(FT
TI)

−1. Note that ΣI is positive definite, so its square root is well-defined. Using

λ(A) = λ(Σ−1/2
I AΣ1/2

I ), we obtain

λn

(
1n + ΣI ∆∗

S
′ Σ−1

US ∆∗
S + ΣI ∆∗

T
′Σ−1

UT ∆∗
T + ΣI ∆∗

S
′ Σ−1

US ∆∗
S ΣI ∆∗

T
′ Σ−1

UT ∆∗
T

)

= λn

(
(1n + Σ1/2

I

′
∆∗

S
′ Σ−1

US ∆∗
S Σ1/2

I )(1n + Σ1/2
I

′
∆∗

T
′ Σ−1

UT ∆∗
T Σ1/2

I )
)

= λn(GH)

Both of these matrices G and H are symmetric, and it is easy to check that their minimal eigenvalues are

≥ 1, so that they are positive definite too. Hence they have a Cholesky factorization, and

λn(GH) = λn(G1/2′HG1/2) = inf
x6=0

x′G1/2′HG1/2x

x′x
= inf

y 6=0

y′Hy

y′G−1y
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We can compute the inverse of G:

G−1 = (1n + Σ1/2
I

′
∆∗

S
′ Σ−1

US ∆∗
S Σ1/2

I )
−1

= Σ−1/2
I (1n + ΣI ∆∗

S
′Σ−1

US ∆∗
S)
−1

Σ1/2
I

= Σ−1/2
I (1n − ΣI ∆∗

S
′Σ−1

W S ∆∗
S)Σ1/2

I

= 1n − Σ1/2
I

′
∆∗

S
′Σ−1

W S ∆∗
S Σ1/2

I

Now the minimal eigenvalue of G−1 is the reciprocal of the maximum eigenvalue of G, which is ≥ 1. So

λn(G−1) > 0, and this in turn implies that

x′Σ−1
I x− x′∆∗

S
′Σ−1

W S ∆∗
Sx > 0

for all x 6= 0. Hence

λn(GH) = inf
z 6=0

z′Σ−1
I z + z′∆∗

T
′ Σ−1

UT ∆∗
T z

z′Σ−1
I z − z′∆∗

S
′ Σ−1

W S ∆∗
Sz

is nonnegative and bounded. Now this quantity, using the non-negative definiteness of ∆∗
T
′Σ−1

UT ∆∗
T and

∆∗
S
′Σ−1

W S ∆∗
S , is at least one, and is equal to one if and only if z is in the null space of ∆∗

T and ∆∗
S . This

only happens if z = 0, as the following lemma demonstrates, and hence λn(GH) > 1.

Lemma 2 If δT and δS share no common roots, then the intersection of the null spaces of ∆∗
T and ∆∗

S is

zero.

Proof. The equation

∆∗
T x = 0

involves a choice of dT initial values for x, with the subsequent components determined by the difference

equation

−δT
dT

xk − δT
dT−1xk+1 · · · − δT

1 xk+dT−1 − δT
0 xk+dT

= 0

If we denote the h distinct roots of δT by zi, which each have multiplicity mi, then according to page 586 of

Henrici (1988) the general solution is a linear combination of

x
(i,j)
t = tjz−t

i

for i = 1, · · · , h and j = 0, 1, · · · ,mi − 1; t = 1, · · · , n. Note that dT =
∑h

i=1 mi, so the indices (i, j) specify

a basis for all dT solutions by Henrici (1988). Now the solutions to

∆∗
Sy = 0

have the form

y
(k,l)
t = tlw−t

k

12



for wk the roots of δS . Now fix (i, j) and (k, l), and let α and β be constants such that

0 = αx
(i,j)
t + βy

(k,l)
t = αtjz−t

i + βtlw−t
k

for all t = 1, 2, · · · , n. Hence

0 = αtj−l(wk/zi)
t + β

which implies that either α = 0 = β or

β/α = −tj−l(wk/zi)
t

But since wk 6= zi for all i and k, this ratio must depend on t, implying that either α or β depends on t, an

absurdity. Hence α = 0 = β, so that the basis vectors are linearly independent. Hence only the zero vector

can lie in the null spaces of both ∆∗
T and ∆∗

S . 2

Now since λn(GH) > 1, we have

λn((FS
SI)

−1
(FT

TI)
−1 − 1) = λn(GH)− 1 > 0

which implies that this matrix is invertible. Hence (1− FS
SIF

T
TI)

−1 exists.

For the first assertion of the proposition, the inequality involving the eigenvalues of FS
SIF

T
TI , we consider

λj(FS
SIF

T
TI) = λj(G−1H−1)

for any j. Letting j = 1, and using the positive definiteness of G−1, we obtain

λ1(G−1H−1) = λ1(G−1/2H−1G−1/2) =
1

λn(G1/2HG1/2)
=

1
λn(GH)

< 1

Similarly λn(G−1H−1) ≥ λn(G−1)λn(H−1) > 0 by Corollary 3.14 of Axelsson (1996).

Finally, we compute the Schur decomposition of FS
SIF

T
TI as follows:

Q′FS
SIF

T
TIQ = Λ + N

for Q orthogonal, Λ a diagonal matrix with the eigenvalues as entries, and N strictly upper triangular. Then

by Lemma 7.3.2 of Golub and Van Loan (1996), we can choose any θ ≥ 0 and obtain the bound

‖(FS
SIF

T
TI)

k‖2 ≤ (1 + θ)n−1(
λ1(FS

SIF
T
TI) + ‖N‖F /(1 + θ)

)k
(3)

where ‖ · ‖F denotes the Frobenius norm. Set

θ =
2‖N‖F

1− λ1(FS
SIF

T
TI)

− 1

and then

λ1(FS
SIF

T
TI) + ‖N‖F /(1 + θ) =

1
2
(1 + λ1(FS

SIF
T
TI) < 1

13



Denote this quantity by η, and let C = (1 + θ)n−1. Then the partial sums of the powers of FS
SIF

T
TI are a

Cauchy sequence: ∥∥∥∥∥
M+L∑

k=M

(FS
SIF

T
TI)

k

∥∥∥∥∥
2

≤
M+L∑

k=M

‖(FS
SIF

T
TI)

k‖2 = CηM 1− ηL+1

1− η

for any positive integers M and L. This clearly tends to zero as M and L tend to infinity, and hence the

series
∑

k≥0 (FS
SIF

T
TI)

k converges. Also letting L = 0, we see that (FS
SIF

T
TI)

k → 0. So taking the limit as

n →∞ in
n∑

k=0

(FS
SIF

T
TI)

k
(1− FS

SIF
T
TI) = 1− (FS

SIF
T
TI)

n+1

shows that
∑

k≥0 (FS
SIF

T
TI)

k = (1− FS
SIF

T
TI)

−1
2

If all three components were stationary, we would easily see that

FT
STI = FT

TI

(
1n − FS

STI

)

since FT
TI = ΣT Σ−1

TI , FT
STI = ΣT Σ−1

Y , and FS
STI = ΣS Σ−1

Y , and by orthogonality of components, it follows

that ΣY = ΣT + ΣS + ΣI . The proof of the above relation is then

FT
TI

(
1n − FS

STI

)
= ΣT (ΣT + ΣI)

−1 (
1n − ΣS Σ−1

Y

)

= ΣT (ΣY − ΣS)−1 (ΣY − ΣS) Σ−1
Y

= ΣT Σ−1
Y = FT

STI

This result also holds when the trend and seasonal are nonstationary, as the following theorem demonstrates.

Theorem 1 Given the definitions of the FT
TI and FS

SI matrices in (2), suppose that the assumptions made

in the beginning of Section Two are true. Also, suppose that Assumption A holds for the stochastic process

Y . Then the following formulas hold:

FT
STI = FT

TI

(
1n − FS

STI

)
(4)

FS
STI = FS

SI

(
1n − FT

STI

)

These equations can be solved simultaneously to yield

(
1n − FT

TI FS
SI

)
FT

STI = FT
TI

(
1n − FS

SI

)
(5)

(
1n − FS

SI FT
TI

)
FS

STI = FS
SI

(
1n − FT

TI

)

In addition, the matrices (1n − FS
SI FT

TI) and (1n − FT
TI FS

SI) are invertible, which results in the explicit

formulas

FT
STI =

(
1n − FT

TI FS
SI

)−1
FT

TI

(
1n − FS

SI

)
(6)

FS
STI =

(
1n − FS

SI FT
TI

)−1
FS

SI

(
1n − FT

TI

)

14



Remark 3 Bill Bell has pointed out that this result is true under Assumption B as well, in which case the

proof is extremely simple:

FT
STIY = E[T |Y ] = E[E[T |Y T , S]|Y ] = E[(E[T |Y T ] + E[T |S])|Y ]

= E[FT
TIY

T |Y ] = FT
TIE[Y T |Y ] = FT

TI(1− FS
STI)Y

which relies on the orthogonality of Y T and S in the third equality, and the orthogonality of T and S in

the fourth. Also note that we do not make Assumption A for the reduced models Y T and Y S , whose filter

matrices FT
TI and FS

SI are constructed according to the transformation approach.

Remark 4 The first pair of formulas (4) give an intuitive interpretation of the relationship between FT
STI

and FS
STI . For example, trend extraction is actually the same as seasonal adjustment followed by trend

extraction for a “perfectly deseasonalized” series. Likewise, seasonal extraction is detrending followed by

seasonal estimation for a detrended series. The latter formulas (6) express these full model filters entirely in

terms of reduced model filters.

Proof. Define Ct = Tt + St; then if we wish to extract the nonstationary signal C from the full model Y ,

we have the simple formula (since the noise I is stationary):

FC
STI = 1n − ΣI ∆′ Σ−1

W ∆

which is derived in a similar fashion to the matrices in Proposition 1. Now we wish to show that

FC
STI = FT

STI + FS
STI (7)

These three matrices are defined under Assumption A, and thus the first and last equalities of

FC
STI Y = E(C|Y ) = E(T + S|Y ) = E(T |Y ) + E(S|Y ) = FT

STI Y + FS
STI Y

are valid for all Y ; hence (7) must hold (a completely algebraic proof of (7) is included in the appendix).

From (7) we can write

FT
STI = (1n − ΣI ∆′ Σ−1

W ∆)− FS
STI

= −ΣI ∆′ Σ−1
W ∆ + (1n − FS

STI)

The rest of the proof of the formula is a calculation:

FT
TI(1− FS

STI) = FT
TI(F

T
STI + ΣI ∆′Σ−1

W ∆)

= FT
STI − ΣI ∆∗

T
′Σ−1

W T ∆∗
T FT

STI − ΣI ∆∗
T
′ Σ−1

W T ∆∗
T ΣI ∆′Σ−1

W ∆ + ΣI ∆′ Σ−1
W ∆

= FT
STI − ΣI ∆∗

T
′Σ−1

W T ΣUT ∆S
′Σ−1

W ∆− ΣI ∆∗
T
′Σ−1

W T ∆∗
T ΣI ∆′Σ−1

W ∆ + ΣI ∆′Σ−1
W ∆

= FT
STI − ΣI ∆∗

T
′Σ−1

W T

(
ΣUT + ∆∗

T ΣI ∆∗
T
′ − ΣW T

)
∆S

′Σ−1
W ∆ = FT

STI

15



which uses the fact that

∆∗
T FT

STI = [0 1n−dT
]∆̃T ∆̃−1

T [T
′
T ′]

′
= T = ΣUT ∆S

′Σ−1
W ∆

The second equation in (4) has a similar proof.

Now if we solve the pair of equations in (4) we immediately obtain (5). The invertibility of 1− FS
SIF

T
TI is

demonstrated in Proposition 3. We note in passing that if S and T are stationary, the above formula reduces

to

(1n − ΣI Σ−1
Y S ) ΣI Σ−1

S ΣY Σ−1
T (1n − ΣI Σ−1

Y T ) = ΣS Σ−1
Y S ΣI Σ−1

S ΣY Σ−1
Y T

whose invertibility is now obvious. With analogous calculations for the second line of (6), the proof is

complete. 2

4 The Main Algorithm and Its Analysis

The idea of the algorithm of this section is to use (4) to define an iteration scheme. The resulting algorithm

produces estimates of signal and trend Ŝ and T̂ that satisfy

T̂ = FT
TI(Y − Ŝ)

Ŝ = FS
SI(Y − T̂ )

which is essentially (4) applied to Y . This is done by essentially by constructing the solutions to the

linear system defined by applying (6) to the vector Y . These signal extraction estimates are the unique

conditional expectation estimates under Assumption A, and are still locally optimal if Assumption A is not

true, as discussed in the introduction. A nice feature of the algorithm is its idempotency, i.e., if one inputs the

limiting values into the algorithm as initial values, the same limiting values are returned unaltered as output.

The algorithm converges quickly; below, a geometric convergence rate is derived. When implemented on

some airline models – we performed the canonical decomposition into trend, seasonal and irregular in the

sense of Hilmer and Tiao (1982) on a Box-Jenkins airline model – the algorithm was essentially convergent

by the third iteration. Any initialization of the algorithm can be used.

Theorem 2 Consider the following algorithm:

Ŝ(0) is any given vector

for i = 1 to convergence

T̂ (i) = FT
TI(Y − Ŝ(i−1))

Ŝ(i) = FS
SI(Y − T̂ (i))

end for

The algorithm converges geometrically fast to Ŝ(∞) = FS
STI Y and T̂ (∞) = FT

STI Y .
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Proof. We will analyze the iterations of Ŝ(i). Simple algebra produces

Ŝ(i+1) = FS
SI (1n − FT

TI)Y + FS
SI FT

TI Ŝ
(i)

from which it follows that

Ŝ(i+1) − Ŝ(i) = FS
SI (1n − FT

TI)Y − (1n − FS
SI FT

TI)Ŝ
(i)

At this stage, note that if Ŝ(i) = FS
Y Y , then by (5) we have

Ŝ(i+1) − Ŝ(i) = FS
SI (1n − FT

TI)Y − (1n − FS
SI FT

TI)FS
STI Y = 0

so that this is a fixed point of the mapping. One interesting aspect of this is “double idempotency,” i.e., if

Ŝ(i) = FS
STI Y , then automatically T̂ (i+1) = FT

STI Y as well. Now through a simple induction on i we obtain

Ŝ(i+1) =
i∑

j=0

(FS
SI FT

TI)
j
FS

SI (1n − FT
TI) Y + (FS

SIF
T
TI)

i+1
Ŝ(0)

Similarly, we can compute the iterate of the trend to be

T̂ (i+1) =
i∑

j=0

(FT
TI FS

SI)
j
FT

TI (1n − FS
SI)Y + (FT

TIF
S
SI)

i
FT

TI(F
S
SIY − Ŝ(0))

Now, using the fact that
∑

j≥0 (FT
TI FS

SI)
j and

∑
j≥0 (FS

SI FT
TI)

j are convergent, as shown in Proposition 3,

and the fact that (FT
TI FS

SI)
i and (FS

SI FT
TI)

i tend to zero as i →∞, we see that the iterates converge to

Ŝ(∞) =
∞∑

j=0

(FS
SI FT

TI)
j
FS

SI (1n − FT
TI)Y = (1n − FS

SIF
T
TI)

−1
FS

SI (1n − FT
TI) Y = FS

STIY

T̂ (∞) =
∞∑

j=0

(FT
TI FS

SI)
j
FT

TI (1n − FS
SI)Y = (1n − FT

TIF
S
SI)

−1
FT

TI (1n − FS
SI) Y = FT

STIY

independent of the initialization Ŝ(0). As for the rate of convergence, the difference between successive

iterates will decay at geometric rate, as shown in relation (3). 2

Remark 5 It is interesting that the algorithm gradually computes the inverse of 1n−FT
TIF

S
SI , along with a

decaying error matrix that multiplies the initialization Ŝ(0). This algorithm has been implemented in the Ox

language and tested on airline model decompositions. In most cases the estimates had essentially converged

by the third iteration. This convergence can be slowed down by erratic choices of Ŝ(0), such as a white noise

sequence with high variance, but the proof of Theorem 2 shows that the initialization has no effect in the

long term. For most applications, one would take Ŝ(0) to be the zero vector – a “noninformative” choice.

5 Computer Implementation

This section contains a short discussion of the computer implementation of the main algorithm. First

we present two examples of Theorem (2) in action. We simulated a monthly series of length 49 from the
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airline model (1) with parameters θ = .6, Θ = .4, and innovation variance 1. The series was initialized with

13 values from a real series (though these were not plotted) exhibiting locally linear trend and stochastic

seasonality. The algorithm was initialized with Ŝ(0) = 0 the zero vector. For the simulated series, θ, Θ,

and the innovation variance were then estimated (since these determine the filters, and the estimated values

can differ significantly from truth, it is important to estimate). Once the full model is known, we used

the canonical decomposition approach of Hilmer and Tiao (1982) to obtain the component models. Then

we explicitly computed the reduced model filter formulas from these model parameters. For the full model

filters, which we obtained in order to check our results, we used the Kalman filter and smoother of SsfPack

(Koopman, Shepherd, and Doornik (1999)). Then we implemented the algorithm directly with the computed

filter matrices.

Figure 1: Seasonal Iterates
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Data
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The algorithm converged after seven iterations, where convergence was measured by whether the vector

two-norm of successive seasonal and trend iterates was less than .1. Notice that in earlier iterations, some

seasonality is present in the trend estimates, and some trend is in the seasonal estimates, but this confusion

of signals is gradually weeded out – compare Figures 1 and 2 with Figure 3. In fact, an examination of

the filter weights at the center of the sample (Figures 4 and 5) shows that the reduced model trend filters

are somewhat shorter (i.e., more of their weights are close to zero) than the full model filters. Not only is

the full model trend filter a bit longer than the reduced, but one can easily see the seasonal suppression

that it performs, which is the visual analogue of (4). This simulation example was chosen to demonstrate a

situation where only weak seasonality is present – this allows one to visualize the convergence of the seasonal
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Figure 2: Trend Iterates
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Figure 3: Optimal Estimates
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iterates. Typically, simulation with more distinct seasonality produced seasonal iterates that had essentially

converged by the first iteration.

Figure 4: Reduced Model Weights
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Next, we analyzed the U.S. Retail Sales of Shoe Stores data from the monthly Retail Trade Survey, from

1984 to 1998. After adjusting for outliers using X-12 ARIMA, the logged data was fit to an airline model as

in the simulation study. This produced values of θ = .572 and Θ = .336, and innovation standard deviation

.031. The algorithm was initialized with Ŝ(0) = 0 the zero vector, and under the same convergence criterion,

it converged in 10 iterations. Figures 6 and 7 show the seasonal and trend iterates for the first five years of

data, together with the final estimates. In comparing the squared gains (Figures 8 and 9) for the reduced

and full model filters, one can again see the seasonal suppression of the full model trend filter, whereas the

reduced model gains are comparatively simpler.

Notes on Implementation These plots were produced through Ox code – see Doornik (1998). One may

use a State Space Representation and SsfPack (Koopman, Shephard, and Doornik (1999)) to produce the

various filters, but this is not necessary for the reduced model filters, since their formulas are so simple. The

basic portions of the program were: simulation, estimation, decomposition, filter construction, application

of the algorithm, and visualization of the results. For simulation, we note that the initial values can have a
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Figure 5: Full Model Weights
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significant impact on the data generated; this in turn can affect the estimated parameter values and thereby

change the filters. It is necessary to obtain models for the S, T , and I components, and there are two popular

choices. The Structural Models approach estimates the model parameters for the components directly from

the data. The canonical decomposition approach is different in that it first estimates a model for the full

data Y = S + T + I, and then analytically computes component models such that the irregular innovation

variance is maximized – see Hilmer and Tiao (1982). In this paper we have followed the latter approach,

though the second author has done some implementations with Structural Models as well.

Once models for the components are known, we can apply the results of this paper. To compute the

filters FT
TI and FS

SI it is necessary to know, by Proposition 1, ΣI , ΣUT , and ΣUS . These are simply the

Toeplitz autocovariance matrices of the irregular, differenced trend, and differenced seasonal – hence they

are easily obtained from the component models. We chose to use the first formula in Proposition 1 so that

only one matrix inversion would be necessary. Alternatively, these matrices can be produced automatically

by software that does Kalman smoothing, such as SsfPack. Once the filters have been computed, we simply

apply the algorithm. Again, in our implementation in Ox we produced the full filters FT
STI and FS

STI from

SsfPack to check the results of the algorithm – the two methods produced identical matrices (up to the error

inherent in iterating our algorithm only a finite number of steps).
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Figure 6: Seasonal Iterates for Shoe Sales
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6 Conclusion

This paper has linked the trend and seasonal extraction matrices when these components are nonstationary.

Of course, Theorem 1 will apply to any three component model where at least one of the components is

stationary, e.g., trend plus cycle plus irregular econometric models. The algorithm of Section Four presents

a method for building up the correct signal extraction filters from less complicated, more intuitive (and more

commonly used) reduced model filters.

Note that many practitioners may be essentially using the first iteration of this paper’s algorithm, with

the filters FT
TI and FS

SI . In the model-based analogue of the first iteration of the additive X-11 algorithm,

we first estimate trend with a trend extraction matrix for the two-component trend plus irregular model –

we are essentially applying FT
TI to the data; if we then detrend, we have

Y − FT
TIY

Then this would be followed up with a seasonal extraction filter for a reduced two component model, which

is FS
SI . Our resultant seasonal estimate is

FS
SI(1n − FT

TI)Y
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Figure 7: Trend Iterates for Shoe Sales
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which is the first iteration of our algorithm with an initial value of Ŝ(0) = 0. Similarly, in the arena of cycle

estimation, one typically first detrends with a low-pass filter and follows up with a high-pass or band-pass

filter to extract the cycle – see Harvey and Trimbur (2003). In this case, one could conceptually replace

the seasonal S above by a cycle component C. Again, this would be step one of our algorithm with an

initialization of zero (here replacing the seasonal with trend and the trend with a cycle). Simulation work

seems to indicate that at least two or three iterations, rather than one, should be performed in order to get

reasonably close to the optimal estimates. This paper suggests that practitioners will obtain better results

by iterating their entire signal extraction procedure a few times.
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Figure 8: Reduced Model Squared Gain

Radians/Pi

Sq
ua

re
d 

Ga
in

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2 Trend

Seasonal

7 Appendix A: MSE Formulas

In this appendix, we present some formulas for the finite-sample Mean Squared Errors of signal extraction

estimates. We introduce the notations

MS =
∑

j≥0

(
FT

TIF
S
SI

)j
= (1− FT

TIF
S
SI)

−1
MT =

∑

j≥0

(
FS

SIF
T
TI

)j
= (1− FS

SIF
T
TI)

−1

which are used in the following theorem.

Theorem 3 The following formulas for the signal extraction MSE’s hold:

MSE[T̂ ] = Cov[T − T̂ ] = MSFT
TIΣI

MSE[Ŝ] = Cov[S − Ŝ] = MT FS
SIΣI

MSE[Î] = Cov[I − Î] = ΣI − ΣI∆′Σ−1
W ∆ΣI

Remark 6 These formulas are quite similar to those given for MSE’s of signal from a 2-component (i.e.,

reduced) model, as shown in Bell and Hilmer (1988); it is trivial to show that for the reduced models TI

and SI respectively,

MSE[T̂ ] = FT
TIΣI MSE[Ŝ] = FS

SIΣI
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Figure 9: Full Model Squared Gain
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Proof of Theorem 3. We prove the first formula.

T − T̂ = T − FT
STIY = (1− FT

STI)T − FT
STIS − FT

STII

Now since ∆∗
SS = US , we have

FT
STIS = MSFT

TIΣI∆∗
S
′Σ−1

W S US

which is stationary. Likewise, using ∆∗
T T = UT ,

(1− FT
STI)T = (FS

SI)
−1

FS
STIT = (FS

SI)
−1

MT FS
SIΣI∆∗

T
′Σ−1

W T UT

which is also stationary. Now I is orthogonal to US which is orthogonal to UT , so

Cov[T − T̂ ] = MSFT
TIΣI∆∗

S
′Σ−1

W S ΣUS Σ−1
W S ∆∗

SΣIF
T
TI

′
MS

′

+ (FS
SI)

−1
MT FS

SIΣI∆∗
T
′Σ−1

W T ΣUT Σ−1
W T ∆∗

T ΣIF
S
SI

′
MT

′(FS
SI)

−1′

+ FT
STIΣIF

T
STI

′

Now the third term is easily seen to be

MSFT
TIΣI∆∗

S
′Σ−1

W S ∆∗
SΣI∆∗

S
′Σ−1

W S ∆∗
SΣIF

T
TI

′
MS

′
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so that the first and third terms sum to

MSFT
TIΣI∆∗

S
′Σ−1

W S ∆∗
SΣIF

T
TI

′
MS

′

using ΣW S = ΣUS + ∆∗
SΣI∆∗

S
′. The second term, using the above identity again, is:

MSΣI∆∗
T
′Σ−1

W T ΣUT Σ−1
W T ∆∗

T ΣIMS
′

= MSΣI∆∗
T
′Σ−1

W T ∆∗
T ΣIMS

′ −MSΣI∆∗
T
′Σ−1

W T ∆∗
T ΣI∆∗

T
′Σ−1

W T ∆∗
T ΣIMS

′

= MSFT
TIΣI∆∗

T
′Σ−1

W T ∆∗
T ΣIMS

′

Now adding all the terms together produces

Cov[T − T̂ ] = MSFT
TI

(
ΣI∆∗

S
′Σ−1

W S ∆∗
SΣI + ΣI∆∗

T
′Σ−1

W T ∆∗
T ΣI(FT

TI)
−1′)

FT
TI

′
MS

′

= MSFT
TI

(
ΣI∆∗

S
′Σ−1

W S ∆∗
SΣI + ΣI∆∗

T
′Σ−1

W T ∆∗
T ΣI(1 + ∆∗

T
′Σ−1

UT ∆∗
T ΣI)

)
FT

TI

′
MS

′

= MSFT
TIΣI

(
∆∗

S
′Σ−1

W S ∆∗
S + ∆∗

T
′Σ−1

UT ∆∗
T

)
ΣIF

T
TI

′
MS

′

This can be further simplified:

ΣI

(
∆∗

S
′Σ−1

W S ∆∗
S + ∆∗

T
′Σ−1

UT ∆∗
T

)
ΣI = ΣI((FT

TI)
−1′ − FS

SI

′
)

= ΣI(1− FS
SI

′
FT

TI

′
)(FT

TI)
−1′

implies that

Cov[T − T̂ ] = MSFT
TIΣI(1− FS

SI

′
FT

TI

′
)MS

′ = MSFT
TIΣI

We know this must be a symmetric matrix, which can be verified also by writing

ΣI

(
∆∗

S
′Σ−1

W S ∆∗
S + ∆∗

T
′Σ−1

UT ∆∗
T

)
ΣI = (FT

TI)
−1

(1− FT
TIF

S
SI)ΣI

which yields

Cov[T − T̂ ] = ΣIF
T
TI

′
MS

′

This concludes the calculation of the MSE of T̂ , and the computation for S is similar. The formula for I is

given in Bell and Hilmer (1988). 2

This theorem can be used to compute MSE’s very simply – no Kalman smoother is needed – and the

formulas are easy to implement. They also suggest an iterative approach to computing errors, which –

as in the case of signal estimation – has the advantage of permitting extreme value adjustment and other

non-model based tinkering. The next result computes the variance of the appropriately differenced signals;

as can be guessed, the formulas are similar to that for the MSE of the irregular given above.

Proposition 4 The variance of the differenced seasonal and trend components are given by

Cov[∆∗
T T̂ ] = ΣUT −∆∗

T MSE[T̂ ]∆∗
T
′ = ΣUT −∆∗

T MSFT
TIΣI∆∗

T
′

Cov[∆∗
SŜ] = ΣUS −∆∗

SMSE[Ŝ]∆∗
S
′ = ΣUS −∆∗

SMT FS
SIΣI∆∗

S
′

where the formulas for the MSE’s are given in Theorem 3.
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Proof of Proposition 4. Note that the first equality holds, since the differenced signals have mean zero

(being stationary). Now write

∆∗
T T̂ = ∆∗

T T −∆∗
T (T − T̂ ) (8)

The first term is just UT , whereas the second term is – using the calculations in the proof of Theorem 3 –

∆∗
T (1− FT

STI)T plus other terms that are orthogonal to UT . Hence

E[∆∗
T (T − T̂ )UT ′] = ∆∗

T (FS
SI)

−1
MT FS

SIΣI∆∗
T
′Σ−1

W T ΣUT

= ∆∗
T MSΣIF

T
TI

′
∆∗

T
′

= ∆∗
T MSFT

TIΣI∆∗
T
′

= ∆∗
T MSE[T̂ ]∆∗

T
′

using the fact that FT
TIΣI = ΣIF

T
TI
′. Now compute the covariance in equation (8), and we obtain the first

formula (with a similar proof for S). 2

Remark 7 Alternative formulas for the MSE of differenced trend and seasonal are due to Bill Bell (personal

communication):

Cov[∆∗
T T̂ ] = ΣUT ∆S

′Σ−1
W ∆SΣUT

Cov[∆∗
SŜ] = ΣUS ∆T

′Σ−1
W ∆T ΣUS

These follow simply from the fact that

∆∗
T T̂ = ∆∗

T FT
STIY = ΣUT ∆S

′Σ−1
W ∆Y

which has the stated variance. That this expression is equal to the one given in Proposition 4 is not obvious,

but can be shown with a little work. Let B = ∆∗
T MSFT

TIΣI∆∗
T
′, so that

BΣ−1
W ∆∗

T = ∆∗
T MSFT

TI(1− FT
TI)

= ∆∗
T (1− FT

STI)F
T
TI

= ∆∗
T FT

TI −∆∗
T FT

STIF
T
TI

= ΣUT Σ−1
W T ∆∗

T − ΣUT ∆S
′Σ−1

W ∆SΣUT Σ−1
W T ∆∗

T

=
(
ΣUT − ΣUT ∆S

′Σ−1
W ∆SΣUT

)
Σ−1

W T ∆∗
T

using the fact that 1− FT
STI = MS(1− FT

TI). Now we can right multiply by

ΣI∆∗
T
′(∆∗

T ΣI∆∗
T
′)
−1

ΣW T

(the above inverse exists, since ∆∗
T has rank n− dT ) to obtain

B = ΣUT − ΣUT ∆S
′Σ−1

W ∆SΣUT

as desired.
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An Algorithm In this section, we present an iterative algorithm to generate the seasonal and trend MSE’s.

Suppose that J iterations are desired.

Theorem 4 Consider the following algorithm:

ÊT
(0)

= 1

ÊS
(0)

= FS
SI

for i = 1 to J

ÊT
(i)

= FT
TIÊS

(i−1)
+ ÊT

(0)

ÊS
(i)

= FS
SIÊT

(i)

end for

ÊT
(J) ← ÊT

(J)
FT

TIΣI

ÊS
(J) ← ÊS

(J)
ΣI

The algorithm converges geometrically fast to ÊT
(∞)

= MSFT
TIΣI and ÊS

(∞)
= MT FS

SIΣI .

Proof of Theorem 4. By simple algebra, the Jth iterates are

ÊT
(J)

=
J∑

j=0

(FT
TIF

S
SI)

j
FT

TIΣI

ÊS
(J)

=
J∑

j=0

(FS
SIF

T
TI)

j
FS

SIΣI

Hence, the two-norms of the Jth iterates minus the true MSE’s are bounded by

∑

j≥J+1

‖(FT
TIF

S
SI)‖

j

2‖FT
TIΣI‖2

∑

j≥J+1

‖(FS
SIF

T
TI)‖

j

2‖FS
SIΣI‖2

which tend to zero at geometric rate, since the 2-norms are bounded above by one. 2

It turns out that the MSE iterates above are approximately equal to the MSE’s of the signal extraction

iterates:

Proposition 5 The MSE’s of T̂ (J) and Ŝ(J) are equal to the Jth iterates in Theorem 4 above, plus some

error that is order O(ηJ+1) for some η < 1.

Proof of Proposition 5. Let M
(J)
S =

∑J
j=0 (FT

TIF
S
SI)

j , and similarly define M
(J)
T . Then

T − T̂ (J) = (1−M
(J)
S FT

TI(1− FS
SI))T −M

(J)
S FT

TI(1− FS
SI)S −M

(J)
S FT

TI(1− FS
SI)I
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and the first term simplifies to

1−M
(J)
S FT

TI + M
(J)
S FT

TIF
S
SI = M

(J+1)
S −M

(J)
S + M

(J)
S (1− FT

TI)

which operates on T . Now the matrix M
(J+1)
S −M

(J)
S , denoted by ε(J), has 2-norm of order ηJ+1, where

η = ‖FT
TIF

S
SI‖2. It follows that

Cov[T − T̂ (J)] = M
(J)
S ΣI∆∗

T
′Σ−1

W T ΣUT Σ−1
W T ∆∗

T ΣIM
(J)
S

′

+ M
(J)
S FT

TIΣI∆∗
S
′Σ−1

W S ΣUS Σ−1
W S ∆∗

SΣIF
T
TI

′
M

(J)
S

′

+ M
(J)
S FT

TI(1− FS
SI)ΣI(1− FS

SI)
′
FT

TI

′
M

(J)
S

′

+ O(ηJ+1)

where the last term is to be interpreted in terms of the matrix 2-norm. Now by the same arguments used in

the proof of Theorem 3, the first three terms above simplify to

M
(J)
S FT

TIΣIMS
−1′M (J)

S

′
= M

(J)
S FT

TIΣI(1− (FS
SI

′
FT

TI

′
)
J+1

)

which is M
(J)
S FT

TIΣI plus terms that have matrix 2-norm of order O(ηJ+1). As seen in the proof of Theorem

4,

M
(J)
S FT

TIΣI = E
(J)
T

as desired. The same proof holds for the seasonal iterates. 2

8 Appendix B: Technical Proof

Herein is an algebraic proof of equation (7). We first verify this equation left multiplied by ∆:

∆FC
STI = ∆−∆ΣI ∆′ Σ−1

W ∆

= (ΣW −∆ΣI ∆′) Σ−1
W ∆

=
(
∆T ΣUS ∆T

′
+ ∆S ΣUT ∆S

′)
Σ−1

W ∆

= ∆ FS
STI + ∆ FT

STI

where the last line follows from

∆ FT
STI = ∆S ∆∗

T FT
STI = ∆S [0 1n−dT

]∆̃T FT
STI = ∆S T = ∆S ΣUT ∆S

′
Σ−1

W ∆

and a similar expression for ∆ FS
STI . Next, we show that (7) is valid when left multiplied by [1d 0]. We need

to write out ∆̃−1
T explicitly; write

∆̃T =


 1dT 0

GT HT
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with GT a n − dT by dT matrix, and HT a square n − dT dimensional lower triangular matrix. So HT is

invertible, and it is easy to check that

∆̃−1
T =


 1dT

0

−H−1
T GT H−1

T




We use the same notations for ∆̃−1
S . Then it follows that

[1d 0] FT
STI =


 T

−[1dS
0]H−1

T GT T + [1dS
0]H−1

T T




=





 1dT

0


−


 0

1dS


 [1dS

0]H−1
T GT


T +


 0

1dS


 [1dS

0]H−1
T T

In a similar fashion, we compute

[1d 0] FS
STI =





 1dS

0


−


 0

1dT


 [1dT

0] H−1
S GS


 S +


 0

1dT


 [1dT

0]H−1
S S

Now, the actual entries of HT and HS are

(HT )ij = −δT
i−j (HS)ij = −δS

i−j

from which the inverses are easily calculated to be

(HT )−1
ij = ξT

i−j (HS)−1
ij = ξS

i−j

Likewise we can write

GT = ∆∗
T


 1dT

0


 GS = ∆∗

S


 1dS

0




Now [0 1dS
]′[1dS

0] times H−1
T is just C1 times [1dS

0dS n−d], with a similar result involving C2 for FS
STI .

Next, we claim that the coefficient matrices of T and S are

[1dT 0]′ − C1 [1dS 0] ∆∗
T [1dT 0]′ = H1 (9)

[1dS
0]′ − C2 [1dT

0]∆∗
S [1dS

0]′ = H2

First, computation reveals that

(C2 [1dT 0] ∆∗
S)ij =

n−dS∑

k=1

ξS
i−k−dS

(−δS
k−j+dS

)

=
dS∑

l=1−j+dS

−δS
l ξS

i−j−l

=
dS−j∑

l=0

δS
l ξS

i−j−l + 1{i=j}
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which is the jth entry of the column vector −AS
i , plus the Kronecker delta 1{i=j}. This calculation uses a

change of variable, the fact that δS is an order dS polynomial, and the coefficient expansion of δS(x)ξS(x) = 1,

as well as the definition of AS
i . Representing this result in matrix form gives

C2 [1dT
0]∆∗

S =




0 0

−AS′
dS+1 1dT

· · ·


 [1d 0]

From this it follows that

C2 [1dT
0] ∆∗

S = [1d 0]−H2 [1dT
0] (10)

C1 [1dS
0]∆∗

T = [1d 0]−H1 [1dS
0]

A little matrix algebra now produces (9). Hence

[1d 0]FT
STI = H1T + C1 [1dT

0]ΣUT ∆S

′
Σ−1

W ∆

[1d 0]FS
STI = H2S + C2 [1dS

0]ΣUS ∆T

′
Σ−1

W ∆

Now we must investigate the initial value estimation matrices T and S. Define

Q = [1d 0]−
(
C1 [1dT 0] ΣUT ∆S

′
Σ−1

W ∆ + C2 [1dS 0]ΣUS ∆T

′
Σ−1

W ∆
)

Then, using the fact that

ΣW S = ΣUS + ∆∗
S ΣI ∆∗

S

′

ΣW T = ΣUT + ∆∗
T ΣI ∆∗

T

′

we can write

T = [1dT
0]J

(
Q− C2 [1dS

0]∆∗
S (1− FC

STI)
)

S = [0 1dS
] J

(
Q− C1 [1dT

0]∆∗
T (1− FC

STI)
)

Putting this all together, using [H1 0]J + [0 H2]J = 1d, we obtain

[1d 0]FT
STI + [1d 0]FS

STI = H1 T + H2 S + [1d 0]−Q

= [H1 0] JQ + [0 H2] JQ + [1d 0]−Q

− ([H1 0]JC2 [1dS
0]∆∗

S + [0 H2] JC1 [1dT
0]∆∗

T ) (1− FC
STI)

= [1d 0]− ([H1 0] JC2 [1dS 0] ∆∗
S + [0 H2]JC1 [1dT 0]∆∗

T ) (1− FC
STI)

Using the above (10), we have the coefficient of 1− FC
STI equal to

[H1 0] J ([1d 0]− [H2 0]) + [0 H2] J ([1d 0]− [H1 0])

= [1d 0]− J−1


 1dT

0

0 0


 JJ−1


 0 0

1dS
0


− J−1


 0 0

0 1dS


 JJ−1


 1dT

0

0 0




= [1d 0]
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Thus we’ve shown (7) left multiplied by [1d 0], and hence

∆̃FT
STI + ∆̃FS

STI = ∆̃FC
STI

where

∆̃ =


 1d 0

∆




is an invertible matrix. Inverting this expression now yields (7) as desired.
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