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Polynomial chaos expansions (PCE) are an attractive technique for uncertainty quan-
tification (UQ) due to their strong mathematical basis and ability to produce functional
representations of stochastic variability. When tailoring the orthogonal polynomial bases
to match the forms of the input uncertainties in a Wiener-Askey scheme, excellent conver-
gence properties can be achieved for general probabilistic analysis problems. Non-intrusive
PCE methods allow the use of simulations as black boxes within UQ studies, and involve
the calculation of chaos expansion coefficients based on a set of response function evalua-
tions. These methods may be characterized as being either Galerkin projection methods,
using sampling or numerical integration, or regression approaches (also known as point col-
location or stochastic response surfaces), using linear least squares. Numerical integration
methods may be further categorized as either tensor product quadrature or sparse grid
Smolyak cubature and as either isotropic or anisotropic. Experience with these approaches
is presented for algebraic and PDE-based benchmark test problems, demonstrating the
need for accurate, efficient coefficient estimation approaches that scale for problems with
significant numbers of random variables.

I. Introduction

Uncertainty quantification (UQ) is the process of determining the effect of input uncertainties on response
metrics of interest. These input uncertainties may be characterized as either aleatory uncertainties, which
are irreducible variabilities inherent in nature, or epistemic uncertainties, which are reducible uncertainties
resulting from a lack of knowledge. Since sufficient data is generally available for aleatory uncertainties,
probabilistic methods are commonly used for computing response distribution statistics based on input
probability distribution specifications. Conversely, for epistemic uncertainties, data is generally sparse,
making the use of probability theory questionable and leading to nonprobabilistic methods based on interval
specifications.

In this work, we focus on the analysis of aleatory uncertainties using the polynomial chaos expansion
(PCE) approach to UQ. In particular, we focus on generalized polynomial chaos using the Wiener-Askey
scheme,1 in which Hermite, Legendre, Laguerre, Jacobi, and generalized Laguerre orthogonal polynomials are
used for modeling the effect of continuous random variables described by normal, uniform, exponential, beta,
and gamma probability distributions, respectivelya. These orthogonal polynomial selections are optimal for
these distribution types since the inner product weighting function and its corresponding support range
correspond to the probability density functions for these continuous distributions. In theory, exponential
convergence rates can be obtained with the optimal basis. When transformations to independent standard
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aOrthogonal polynomial selections also exist for discrete probability distributions, but are not explored here.
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random variables (in some cases, approximated by uncorrelated standard random variables) are used, the
variable expansions are uncoupled, allowing the polynomial orthogonality properties to be applied on a per-
dimension basis. This allows one to mix and match the polynomial basis used for each variable without
interference with the Galerkin projection scheme for the response.

In non-intrusive PCE, simulations are used as black boxes and the calculation of chaos expansion coeffi-
cients for response metrics of interest is based on a set of simulation response evaluations. To calculate these
response PCE coefficients, two primary classes of approaches have been proposed: Galerkin projection and
linear regression. The Galerkin projection approach projects the response against each basis function using
inner products and employs the polynomial orthogonality properties to extract each coefficient. Each inner
product involves a multidimensional integral over the support range of the weighting function, which can be
evaluated numerically using quadrature, cubature, or sampling approaches. The linear regression approach
(also known as point collocation or stochastic response surfaces) uses a single linear least squares solution to
solve for the PCE coefficients which best match a set of response values obtained from a design of computer
experiments.

Section II describes the generalized polynomial chaos process in additional detail, Section III describes
non-intrusive approaches for calculating the polynomial chaos coefficients, Section IV presents computational
results, and Section V provides concluding remarks.

II. Generalized Polynomial Chaos

A. Askey scheme

Table 1 shows the set of polynomials which provide an optimal basis for different continuous probability
distribution types. It is derived from the family of hypergeometric orthogonal polynomials known as the
Askey scheme,2 for which the Hermite polynomials originally employed by Wiener3 are a subset. The
optimality of these basis selections derives from the use of inner product weighting functions that correspond
to the probability density functions (PDFs) of the continuous distributions when placed in a standard form.
The density and weighting functions differ by a constant factor due to the requirement that the integral of
the PDF over the support range is one.

Table 1. Linkage between standard forms of continuous probability distributions and Askey scheme of contin-
uous hyper-geometric polynomials.

Distribution Density function Polynomial Weight function Support range

Normal 1√
2π
e

−x2

2 Hermite Hen(x) e
−x2

2 [−∞,∞]

Uniform 1
2 Legendre Pn(x) 1 [−1, 1]

Beta (1−x)α(1+x)β

2α+β+1B(α+1,β+1)
Jacobi P

(α,β)
n (x) (1 − x)α(1 + x)β [−1, 1]

Exponential e−x Laguerre Ln(x) e−x [0,∞]

Gamma xαe−x

Γ(α+1) Generalized Laguerre L
(α)
n (x) xαe−x [0,∞]

Note that Legendre is a special case of Jacobi for α = β = 0, Laguerre is a special case of generalized

Laguerre for α = 0, the Beta function is defined as B(a, b) = Γ(a)Γ(b)
Γ(a+b) , and the Gamma function Γ(a) is

an extension of the factorial function to real values. Some care is necessary when specifying the α and β
parameters for the Jacobi and generalized Laguerre polynomials since the orthogonal polynomial conventions4

differ from the common statistical PDF conventions. The former conventions are used in Table 1.

B. Polynomial Chaos

The set of polynomials from Section II.A are used as an orthogonal basis to approximate the functional form
between the stochastic response output and each of its random inputs. The chaos expansion for a response
R takes the form

R = a0B0 +

∞∑

i1=1

ai1B1(ξi1) +

∞∑

i1=1

i1∑

i2=1

ai1i2B2(ξi1 , ξi2) +

∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

ai1i2i3B3(ξi1 , ξi2 , ξi3) + ... (1)

2 of 22

American Institute of Aeronautics and Astronautics Paper 2008–1892



where each additional set of nested summations indicates an additional order of polynomials in the expansion.
This expression can be simplified by reformulating from an order-based indexing to a term-based indexing

R =

∞∑

j=0

αjΨj(ξ) (2)

where there is a one-to-one correspondence between ai1i2...in
and αj and between Bn(ξi1 , ξi2 , ..., ξin

) and
Ψj(ξ). Each of the Ψj(ξ) are multivariate polynomials which involve products of the one-dimensional
polynomials. For example, a multivariate Hermite polynomial B(ξ) of order n is defined from

Bn(ξi1 , ..., ξin
) = e

1
2
ξT ξ(−1)n ∂n

∂ξi1 ...∂ξin

e−
1
2
ξT ξ (3)

which can be shown to be a product of one-dimensional Hermite polynomials involving a multi-index mj
i :

Bn(ξi1 , ..., ξin
) = Ψj(ξ) =

n∏

i=1

ψmj
i
(ξi) (4)

The first few multidimensional Hermite polynomials for a two-dimensional case (covering zeroth, first, and
second order terms) are then

Ψ0(ξ) = ψ0(ξ1) ψ0(ξ2) = 1

Ψ1(ξ) = ψ1(ξ1) ψ0(ξ2) = ξ1

Ψ2(ξ) = ψ0(ξ1) ψ1(ξ2) = ξ2

Ψ3(ξ) = ψ2(ξ1) ψ0(ξ2) = ξ21 − 1

Ψ4(ξ) = ψ1(ξ1) ψ1(ξ2) = ξ1ξ2

Ψ5(ξ) = ψ0(ξ1) ψ2(ξ2) = ξ22 − 1

A generalized polynomial basis is generated by selecting the univariate basis that is most optimal for
each random input and then applying the products as defined by the multi-index to define a mixed set
of multivariate polynomials. Similarly, the multivariate weighting functions involve a product of the one-
dimensional weighting functions and the multivariate quadrature rules involve a tensor product of the one-
dimensional quadrature rules. The use of independent standard random variables is the critical component
that allows decoupling of the multidimensional integrals in a mixed basis expansion. It is assumed in this work
that the uncorrelated standard random variables resulting from the transformation described in Section II.C
can be treated as independent. This assumption is valid for uncorrelated standard normal variables (and
motivates the popular approach of using a strictly Hermite basis), but is an approximation for uncorrelated
standard uniform, exponential, beta, and gamma variables. For independent variables, the multidimensional
integrals involved in the inner products of multivariate polynomials decouple to a product of one-dimensional
integrals involving only the particular polynomial basis and corresponding weight function selected for each
random dimension. The multidimensional inner products are nonzero only if each of the one-dimensional
inner products is nonzero, which preserves the desired multivariate orthogonality properties for the case of
a mixed basis.

In practice, one truncates the infinite expansion at a finite number of random variables and a finite
expansion order

R =

P∑

j=0

αjΨj(ξ) (5)

where the total number of terms N in a complete polynomial chaos expansion of arbitrary order p for a
response function involving n uncertain input variables is given by

N = 1 + P = 1 +

p∑

s=1

1

s!

s−1∏

r=0

(n+ r) =
(n+ p)!

n!p!
(6)
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C. Transformations to uncorrelated standard variables

Polynomial chaos is expanded using orthogonal polynomials which are functions of independent standard
random variables ξ. The dimension of ξ is typically chosen to correspond to the dimension of the original
random variables x, although this is not required. In fact, the dimension of ξ should be chosen to represent
the number of distinct sources of randomness in a particular problem, and if individual xi mask multiple
random inputs, then the dimension of ξ can be expanded to accommodate. For simplicity, all subsequent
discussion will assume a one-to-one correspondence between ξ and x.

This notion of uncorrelated standard space is extended over the notion of “u-space” used in reliability
methods5,6 in that in includes not just uncorrelated standard normals, but also uncorrelated standardized
uniforms, exponentials, betas and gammas. For problems directly involving independent normal, uniform,
exponential, beta, and gamma distributions for input random variables, conversion to standard form in-
volves a simple linear scaling transformation (to the form of the density functions in Table 1) and then the
corresponding chaos can be employed. For correlated normal, uniform, exponential, beta, and gamma dis-
tributions, the same linear scaling transformation is applied followed by application of the inverse Cholesky
factor of the correlation matrix (similar to Eq. 8 below, but the correlation matrix requires no modification
for linear transformations). As described previously, the subsequent independence assumption is valid for
uncorrelated standard normals but introduces error for uncorrelated standard uniform, exponential, beta,
and gamma variables. For other distributions with a close explicit relationship to variables supported in the
Askey scheme (i.e., lognormals and loguniforms), a nonlinear transformation is employed to transform to
the corresponding Askey distributions (i.e., normals and uniforms) and the corresponding chaos polynomials
(i.e., Hermite and Legendre) are employed. For other less directly-related distributions (e.g., extreme value
distributions), the nonlinear Nataf transformation is employed to transform to uncorrelated standard nor-
mals as described below and Hermite chaos is employed. Future work will explore nonlinear transformations
to other standard variables that allow a better match between the original distribution and the support
ranges shown in Table 1.

The transformation from correlated non-normal distributions to uncorrelated standard normal distribu-
tions is denoted as u = T (x) with the reverse transformation denoted as x = T−1(u). These transformations
are nonlinear in general, and possible approaches include the Rosenblatt,7 Nataf,8 and Box-Cox9 transfor-
mations. The nonlinear transformations may also be linearized, and common approaches for this include
the Rackwitz-Fiessler10 two-parameter equivalent normal and the Chen-Lind11 and Wu-Wirsching12 three-
parameter equivalent normals. The results in this paper employ the Nataf nonlinear transformation, which
is suitable for the common case when marginal distributions and a correlation matrix are provided, but
full joint distributions are not knownb. The Nataf transformation occurs in the following two steps. To
transform between the original correlated x-space variables and correlated standard normals (“z-space”), a
CDF matching condition is applied for each of the marginal distributions:

Φ(zi) = F (xi) (7)

where Φ() is the standard normal cumulative distribution function and F () is the cumulative distribution
function of the original probability distribution. Then, to transform between correlated z-space variables
and uncorrelated u-space variables, the Cholesky factor L of a modified correlation matrix is used:

z = Lu (8)

where the original correlation matrix for non-normals in x-space has been modified to represent the corre-
sponding correlation in z-space.8

III. Non-intrusive polynomial chaos

A. Galerkin projection

The Galerkin projection approach projects the response against each basis function using inner products and
employs the polynomial orthogonality properties to extract each coefficient. From Eq. 5, it is evident that

αj =
〈R,Ψj〉

〈Ψ2
j 〉

=
1

〈Ψ2
j 〉

∫

Ω

RΨj ̺(ξ) dξ, (9)

bIf joint distributions are known, then the Rosenblatt transformation is preferred.
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where each inner product involves a multidimensional integral over the support range of the weighting
function. In particular, Ω = Ω1 ⊗ · · · ⊗ Ωn, with possibly unbounded intervals Ωj ⊂ R and the tensor
product form ̺(ξ) =

∏n
i=1 ̺i(ξi) of the joint probability density (weight) function. The denominator in

Eq. 9 is the norm squared of the multivariate orthogonal polynomial, which can be computed analytically
using the product of univariate norms squared

〈Ψ2
j 〉 =

n∏

i=1

〈ψ2
mj

i

〉 (10)

where the univariate inner products have simple closed form expressions for each polynomial in the Askey
scheme.4 Thus, the primary computational effort resides in evaluating the numerator, which is evaluated
numerically using either quadrature or sampling approaches.

1. Sampling

In the sampling approach, the integral evaluation is equivalent to computing the expectation (mean) of the
response-basis function product (the numerator in Eq. 9) for each term in the expansion when sampling
within the density of the weighting function.

In computational practice, coefficient estimations based on sampling benefit from first estimating the
response mean (the first PCE coefficient) and then removing the mean from the expectation evaluations for
all subsequent coefficients.13 While this has no effect for quadrature methods (see Section III.A.2 below) and
little effect for fully-resolved sampling, it does have a small but noticeable beneficial effect for under-resolved
sampling.

2. Tensor product quadrature

In quadrature-based approaches, the simplest general technique for approximating multidimensional inte-
grals, as in Eq. 9, is to employ a tensor product of one-dimensional quadrature rules. In the case where Ω
is a hypercube, i.e. Ω = [−1, 1]n, there are several choices of nested abscissas, included Clenshaw-Curtis,
Gauss-Patterson, etc.14–16 In the more general case, we propose to use Gaussian abscissas, i.e. the zeros
of the orthogonal polynomials with respect to some positive weight, e.g. Gauss-Hermite, Gauss-Legendre,
Gauss-Laguerre, generalized Gauss-Laguerre, or Gauss-Jacobi.

In this section we begin by recalling tensor product quadrature. We first introduce an index i ∈ N+,
i ≥ 1. Then, for each value of i, let {yi

1, . . . , y
i
mi

} ⊂ Ωi be a sequence of abscissas for quadrature on Ωi.
For f ∈ C0(Ωi) and n = 1 we introduce a sequence of one-dimensional quadrature operators

U
i(f)(ξ) =

mi∑

j=1

u(ξi
j)w

i
j , (11)

with mi ∈ N given. When utilizing Gaussian quadrature, Eq. 11 integrates exactly all polynomials of degree
less than 2mi −1, for each i = 1, . . . , n. Given an expansion order p, the highest order coefficient evaluations
(Eq. 9) can be assumed to involve integrands of at least polynomial order 2p (Ψ of order p and R modeled
to order p) in each dimension such that a minimal Gaussian quadrature order of p + 1 will be required to
obtain good accuracy in these coefficients.

Now, in the multivariate case n > 1, for each u ∈ C0(Ω) and the multi-index i = (i1, . . . , iN ) ∈ N
n
+ we

define the full tensor product quadrature formulas

Qn
i
u(y) =

(
U

i1 ⊗ · · · ⊗ U
in
)
(f)(ξ) =

mi1∑

j1=1

· · ·

min∑

jn=1

f
(
ξi1
j1
, . . . , ξin

jn

) (
wi1

j1
⊗ · · · ⊗ win

jn

)
. (12)

Clearly, the above product needs
∏n

j=1mij
function evaluations. Therefore, when the number of input

random variables is small, full tensor product quadrature is a very effective numerical tool. On the other
hand, approximations based on tensor product grids suffer from the curse of dimensionality since the number
of collocation points in a tensor grid grows exponentially fast in the number of input random variables. For
example, if Eq. 12 employs the same order for all random dimensions, mij

= m, then Eq. 12 requiresM = mn

function evaluations.

5 of 22

American Institute of Aeronautics and Astronautics Paper 2008–1892



3. Sparse grid Smolyak cubature

If the number of random variables is moderately large, one should rather consider sparse tensor product spaces
as first proposed by Smolyak17 and further investigated by Refs. 14–16, 18–20 that reduce dramatically the
number of collocation points, while preserving a high level of accuracy.

Here we follow the notation and extend the description in Ref. 14 to describe the Smolyak isotropic

formulas A (w, n). The Smolyak formulas are just linear combinations of the product formulas in Eq. 12
with the following key property: only products with a relatively small number of points are used. With
U 0 = 0 and for i ∈ N+ define

∆i := U
i − U

i−1. (13)

Moreover, given an integer w ∈ N+, hereafter called the level, we define the sets

X(w, n) :=

{
i ∈ N

n
+, i ≥ 1 :

n∑

k=1

(ik − 1) ≤ w

}
, (14a)

X̃(w, n) :=

{
i ∈ N

N
+ , i ≥ 1 :

n∑

k=1

(ik − 1) = w

}
, (14b)

Y (w, n) :=

{
i ∈ N

n
+, i ≥ 1 : w − n+ 1 ≤

n∑

k=1

(ik − 1) ≤ w

}
, (14c)

and for i ∈ N
n
+ we set |i| = i1 + · · · + in. Then the isotropic Smolyak quadrature formula is given by

A (w, n) =
∑

i∈X(w,n)

(
∆i1 ⊗ · · · ⊗ ∆in

)
. (15)

Equivalently, formula Eq. 15 can be written as21

A (w, n) =
∑

i∈Y (w,n)

(−1)w+n−|i|
(

n− 1

w + n− |i|

)
·
(
U

i1 ⊗ · · · ⊗ U
in
)
. (16)

To compute A (w, n)(f), one only needs to know function values on the “sparse grid”

H (w, n) =
⋃

i∈Y (w,n)

(
ϑi1 × · · · × ϑin

)
⊂ Ω, (17)

where ϑi =
{
yi
1, . . . , y

i
mi

}
⊂ Ωi denotes the set of abscissas used by U i. If the sets are nested, i.e. ϑi ⊂ ϑi+1,

then H (w, n) ⊂ H (w + 1, n) and

H (w, n) =
⋃

i∈ eX(w,n)

(
ϑi1 × · · · × ϑin

)
. (18)

By comparing Eq. 18 and Eq. 17, we observe that the Smolyak approximation that employs nested points
requires less function evaluations than the corresponding formula with non-nested points.

Examples of isotropic sparse grids, constructed from the nested Clenshaw-Curtis abscissas and the non-
nested Gaussian abscissas are shown in Figure 1, where Ω = [−1, 1]2. There, we consider a two-dimensional
parameter space and a maximum level w = 5 (sparse grid H (5, 2)). To see the reduction in function
evaluations with respect to full tensor product grids, we also include a plot of the corresponding Clenshaw-
Curtis isotropic full tensor grid having the same maximum number of points in each direction, namely
2w + 1 = 33.

Note that the Smolyak approximation formula, as presented in this Section, is isotropic, since all directions
are treated equally. This can be seen from Eq. 15 observing that if a multi-index i = (i1, i2, . . . , in) belongs
to the set X(w, n), then any permutation of i also belongs to X(w, n) and contributes to the construction of
the Smolyak approximation A (w, n). Observe that if we take m points in each direction, the isotropic full
tensor grid will contain mn points while the analogous isotropic Smolyak grid H (w, n) will contain much less
points. Figure 2 shows the total number of points contained in the full tensor grid and in the Smolyak sparse
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Figure 1. For a two-dimensional parameter space (N = 2) and maximum level w = 5, we plot the full tensor
product grid using the Clenshaw-Curtis abscissas (left) and isotropic Smolyak sparse grids H (5, 2), utilizing
the Clenshaw-Curtis abscissas (middle) and the Gaussian abscissas (right).

Figure 2. For a finite dimensional ΓN with N = 5, 11 and 21 we plot the log of the number of distinct Clenshaw-
Curtis points used by the isotropic Smolyak method and the corresponding isotropic full tensor product method
versus the level w (or the maximum number of points m employed in each direction).

grid as a function of the level w (or the corresponding maximum number m of points in each direction), for
dimensions n = 5, 11, 21.

To exhibit the efficiency of the isotropic sparse grid method we briefly compare its convergence with
isotropic tensor product methods. For more details, see Ref. 14. An isotropic full tensor product quadrature
method converges roughly like C(σ, n)M−σ/N , where σ is related to the smoothness of the integrand and
M is the total number of samples. The slowdown effect that the dimension N has on the last convergence
is known as the curse of dimensionality and it is the reason for not using isotropic full tensor quadrature
for large values of N . On the other hand, the isotropic Smolyak approximation seems to be better suited
for this case. Indeed, in Ref. 14 it was shown that the convergence of the Smolyak techniques has a much
faster exponent O( σ

log(2N) ). This is a clear advantage of the isotropic Smolyak method with respect to the
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full tensor and justifies how the Smolyak approximation greatly reduces the curse of dimensionality.
Furthermore, Ref. 14 revealed that the isotropic Smolyak algorithm is effective for problems whose input

data depend on a moderate number of random variables, which “weigh equally” in the solution. For such
isotropic situations the displayed convergence is faster than standard quadrature techniques built upon full
tensor product spaces. On the other hand, the convergence rate of the sparse grid algorithm deteriorates
for highly anisotropic problems, such as those appearing when the input random variables come e.g. from
Karhunen-Loève -type truncations of “smooth” random fields. In such cases, a full anisotropic tensor product
approximation22,23 may still be more effective for a small or modest number of random variables. However, if
the number of random variables is large, anisotropic Smolyak cubature methods have been developed which
exhibit improved scaling with problem size.15 Since most of these anisotropic ideas have been developed in
the context of Stochastic Collocation we will not explore these methods in this paper as we are continuing
to extend them for the polynomial chaos setting.

B. Linear regression

The linear regression approach (also known as point collocation or stochastic response surfaces24,25) uses a
single linear least squares solution of the form:

Ψα = R (19)

to solve for the complete set of PCE coefficients α that best match a set of response values R. The set
of response values is typically obtained by performing a design of computer experiments within the density
function of ξ, where each row of the matrix Ψ contains the N multivariate polynomial terms Ψj evaluated at
a particular ξ sample. An over-sampling is generally advisable (Ref. 25 recommends 2N samples), resulting
in a least squares solution for the over-determined system. In the case of 2N oversampling, the simulation

requirements for this approach scale as 2(n+p)!
n!p! , which can be significantly more affordable than isotropic

tensor-product quadrature (e.g., (p+ 1)n) for larger problems.

IV. Computational Results

Wiener-Askey generalized polynomial chaos has been implemented in DAKOTA,26 an open-source soft-
ware framework for design and performance analysis of computational models on high performance comput-
ers. This section presents PCE performance results for several algebraic benchmark test problems and an
elliptic PDE problem. PCE-based optimization under uncertainty computational experiments and results
are presented in Ref. 27.

A. Lognormal ratio

This test problem has a limit state function (i.e., a critical response metric which defines the boundary
between safe and failed regions of the random variable parameter space) defined by the ratio of two correlated,
identically-distributed random variables.

g(x) =
x1

x2
(20)

The distributions for both x1 and x2 are Lognormal(1, 0.5) with a correlation coefficient between the two
variables of 0.3. Hermite chaos is used based on the close relationship between lognormal and normal random
variables.

For the UQ analysis, 24 response levels (.4, .5, .55, .6, .65, .7, .75, .8, .85, .9, 1, 1.05, 1.15, 1.2, 1.25,
1.3, 1.35, 1.4, 1.5, 1.55, 1.6, 1.65, 1.7, and 1.75) are mapped into the corresponding cumulative probability
levels. For this problem, an analytic solution is available and is used for comparison to CDFs generated from
sampling on the chaos expansions using 105 samples. Figure 3 shows computational results for increasing
expansion orders for each of the coefficient estimation approaches.

In Figure 3(a), it is evident that 200 expansion samples (approach from Section III.A.1) are insufficient to
allow convergence in the higher order PCE coefficients, such that the higher order expansions can actually be
less accurate than the lower order expansions. In Figures 3(b,c,d), superior convergence behavior is observed
when using point collocation (Section III.B), tensor-product Gaussian quadrature (Section III.A.2), and
sparse-grid Gaussian cubature (Section III.A.3) approaches. The number of simulations is fixed at two times
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(a) Expansion samples = 200.
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(b) Point collocation ratio = 2.
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Figure 3. Convergence of PCE for increasing expansion orders for lognormal ratio test problem.
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the number of expansion terms (2, 6, 12, 20, 30, 42, 56, 72, 90, 110, and 132 simulations for expansion
orders 0–10) in the point collocation case, at 10th order quadrature (102 simulations for 2 variables) in the
quadrature case, and at cubature level = 4 (221 simulations) for the sparse grid case. In each of these three
cases, the CDFs are visually indistinguishable by fourth order.

In Figure 4, CDF residuals are plotted for quadrature, point collocation, and sampling on a log-linear
graph as a function of increasing expansion order. It is worth highlighting that this breaks with the common
convention of plotting convergence in the first two moments, instead focusing on the full CDF (including
tails). It is evident that improvement stalls for the 200 expansion samples case following the second order
expansion. Improvement continues with a linear convergence rate with respect to expansion order for the
quadrature and point collocation approaches and appears to primarily be limited by the resolution of the
sample set used to evaluate the PCE. Cubature results (not shown) are essentially identical to the quadrature
results for this plot.
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Figure 4. Log-linear convergence of PCE for increasing expansion orders for lognormal ratio test problem.

In Figure 5, CDF residuals are plotted for each of the coefficient estimation approaches on a log-log
graph as a function of increasing simulation evaluations. For the quadrature approach, the expansion order
p is varied from 0 to 10, with the quadrature order set at p + 1. For the cubature approach, the cubature
level w is varied from 0 to 4, with the expansion order p set based on 2p ≤ m for m = 2w+1 − 1. For the
point collocation approach, the expansion order is varied from 0 to 10 with the over-sampling ratio set at
2. And for the sampling approach, the expansion order is fixed at 10 and the expansion samples are varied
between 1 and 105 by orders of 10. It is evident that the convergence rates for quadrature, cubature, and
point collocation are super-algebraic/exponential in nature with respect to simulation evaluations, whereas
the convergence rate for sampling is algebraic with the expected slope of 1

2 (sample estimates converge as
the square root of the number of samples). From these results, it can be concluded that Hermite chaos
is also an excellent basis choice for lognormal random variables, which should not be surprising given the
exact analytic transformation from (correlated) lognormals in x-space to uncorrelated standard normals in
u-space (where the chaos expansion is applied). This analytic relationship is stronger than one based only
on CDF equivalence. From this, it can be inferred that Legendre chaos would also be an excellent choice for
loguniform distributions.

B. Rosenbrock

The Rosenbrock function is a popular test problem for gradient-based optimization algorithms due to its
difficulty for first-order methods. It turns out that this is also a challenging problem for certain UQ methods
(especially local reliability methods), since a particular response level contour involves a highly nonlinear
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Figure 5. Log-log convergence of PCE for increasing simulation evaluations for lognormal ratio test problem.

curve that encircles the mean point. The two-variable version of this function is a fourth order polynomial
of the form:

f(x1, x2) = 100(x2 − x2
1)

2 + (1 − x1)
2 (21)

A three-dimensional plot of this function is shown in Figure 6(a), where both x1 and x2 range in value from
-2 to 2. Figure 6(b) shows a contour plot for Rosenbrock’s function, demonstrating the encircling of the
mean.
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Figure 6. Rosenbrock’s function.

For the UQ analysis, x1 and x2 are modeled as uncorrelated standard normals (N(0,1), ρ12 = 0.) and six
response levels (.1, 1., 50., 100., 500., and 1000.) are mapped into the corresponding cumulative probability
levels. Hermite chaos is used and would be expected to demonstrate optimal convergence for these variables.
Since analytic CDF solutions are not available for this problem or any of the test problems to follow,
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accuracy comparisons involve comparisons of statistics generated by sampling on the PCE approximation
with statistics generated by sampling on the original response metric, where the sampling sets are of the
same size and generated with the same random seed. The only difference in the sample sets is that the PCE
samples are generated based on ξ (independent distributions in standard form) whereas the original response
samples are generated based on x (correlated distributions in original form), such that minor discrepancies
could be introduced in cases where the transformations (Eqs. 7-8) are not exact (e.g., some correlation
warping expressions from Ref. 8). Outside of this case, however, it can be inferred that the PCE captures
the input/output relationship highly accurately, and in some cases exactly, when there is no detectable
difference in the sample-generated CDFs. Computational results demonstrating these types of comparisons
are shown for increasing expansion orders in Figure 7 and for fixed expansion order in Figure 8.
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(a) Expansion samples = 200.
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(b) Point collocation ratio = 2.
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(c) Quadrature order = 10.
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(d) Cubature level = 3.

Figure 7. Convergence of PCE for increasing expansion orders for Rosenbrock test problem.
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In Figure 7(a), it is evident that 200 expansion samples again do a poor job in converging the PCE
coefficients and order convergence to the LHS result is not obtained. In Figures 7(b,c,d), superior conver-
gence behavior is again observed when using point collocation (simulations equal to two times the number
of expansion terms), Gaussian quadrature (10th order quadrature using 102 simulations), and Gaussian cu-
bature (level = 3 using 73 simulations) approaches. In each of these three cases, the expansion is exact by
fourth order, as would be expected in this problem (a fourth order polynomial function of normal variates).
Increasing the expansion order beyond four has no effect as all higher-order coefficients are calculated to be
less than 10−15.

In Figure 8, the expansion order has been fixed at four, since it is known that higher order expansion
terms do not contribute for this problem. In Figure 8(a), the number of expansion samples is increased to
assess the convergence rate to the exact expansion coefficients. It is evident that the rate is unacceptably
slow, with the PCE coefficients resulting from 106 simulations still not producing the accuracy of a fifth order
isotropic quadrature (25 simulations). In Figure 8(b), the exact coefficients are obtained for a quadrature
order of five or greater, as expected for integrals (Eq. 9) involving a product of a fourth order function and
fourth order expansion terms (refer to Section III.A.2). Thus with a priori knowledge of the order of the
problem (or a smart adaptive technique), excellent accuracy can be obtained using a fourth order chaos
expansion and fifth order quadrature, at the expense of only 25 simulations. Furthermore, with anisotropic
integration tailoring, the expansion can be integrated exactly with fifth order quadrature in x1 and fourth
order quadrature in x2, reducing the expense to 20 simulations. Cubature results in Figure 8(c) are exact
by level three, at an expense of 73 simulations, demonstrating that quadrature can outperform cubature for
low dimensional problems.
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(a) Increasing expansion samples.
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(b) Increasing quadrature order.
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Figure 8. Convergence of PCE for fixed expansion order = 4 for Rosenbrock test problem.

In Figure 9, the expansion order is again fixed at four, and we vary the distribution type and polynomial
basis, including two standard normal variables using a Hermite basis, two uniform variables on [−2, 2] using
a Legendre basis, two exponential variables with β = 2 using a Laguerre basis, two beta variables with
α = 1 and β = 0.5 using a Jacobi basis, two gamma variables with α = 1.5 and β = 2 using a generalized
Laguerre basis, and five variables (normal, uniform, exponential, beta, and gamma with the same distribution
parameters) using a mixed basis. For the mixed expansion over five variables, the standard two-dimensional
Rosenbrock is generalized to n-dimensions as defined in Ref. 28. In each case, fifth-order tensor product
quadrature is used (25 evaluations each for Hermite, Legendre, Laguerre, Jacobi, and generalized Laguerre
cases, and 3125 evaluations for the mixed case). For point collocation with an oversampling ratio of two, the
same results can be generated using 30 evaluations for Hermite, Legendre, Laguerre, Jacobi, and generalized
Laguerre cases and only 252 evaluations for the five variable mixed case. In all cases, the expansion is exact
as expected, which provides verification of the Askey basis implementation.

C. Short column

This test problem involves the plastic analysis of a short column with rectangular cross section (width b = 5
and depth h = 15) having uncertain material properties (yield stress Y ) and subject to uncertain loads
(bending moment M and axial force P ).29 The limit state function is defined as:
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Figure 9. Varying distribution type and PCE basis for Rosenbrock test problem with fixed expansion order
= 4 and fixed quadrature order = 5.

g(x) = 1 −
4M

bh2Y
−

P 2

b2h2Y 2
(22)

The distributions for P , M , and Y are Normal(500, 100), Normal(2000, 400), and Lognormal(5, 0.5),
respectively, with a correlation coefficient of 0.5 between P and M (uncorrelated otherwise). 43 response
levels (-9.0, -8.75, -8.5, -8.0, -7.75, -7.5, -7.25, -7.0, -6.5, -6.0, -5.5, -5.0, -4.5, -4.0, -3.5, -3.0, -2.5, -2.0, -1.9,
-1.8, -1.7, -1.6, -1.5, -1.4, -1.3, -1.2, -1.1, -1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0, 0.05, 0.1,
0.15, 0.2, 0.25) are mapped into the corresponding cumulative probability levels. Computational results
are shown in Figure 10 for increasing expansion orders of Hermite chaos, where tensor-product Gaussian
quadrature is used in each case with quadrature order set to p+ 1. Results generated from sampling on the
expansion are compared to a set of reference results generated from sampling on the original limit state. By
expansion order = 2 (at an expense of 27 simulations), the CDF shape has been captured (Figure 10(a)), and
by expansion order = 4 (at an expense of 125 simulations), the statistics are converged in the extreme tails
(Figures 10(b,c)). Alternatively, point collocation generates similar results using 20 simulations for p = 2
and 70 simulations for p = 4, and Gaussian cubature generates similar results for both orders using 159
simulations (cubature level = 3).
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Figure 10. Convergence of PCE for increasing expansion orders for short column test problem.
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D. Cantilever beam

The next test problem involves the simple uniform cantilever beam30,31 shown in Figure 11.

L = 100”

w

t
X

Y

Figure 11. Cantilever beam test problem.

Random variables in the problem include the yield stress R and Youngs modulus E of the beam material
and the horizontal and vertical loads, X and Y , which are modeled with normal distributions using N(40000,
2000), N(2.9E7, 1.45E6), N(500, 100), and N(1000, 100), respectively. Problem constants include L = 100
in. and D0 = 2.2535 in. The beam response metrics have the following analytic form:

stress =
600

wt2
Y +

600

w2t
X ≤ R (23)

displacement =
4L3

Ewt

√
(
Y

t2
)2 + (

X

w2
)2 ≤ D0 (24)

When formulated as scaled optimization constraints ( stress
R − 1 and displacement

D0
− 1, where negative values

are feasible), 11 response levels (0.0 to 1.0 in 0.1 increments) are mapped into the corresponding cumulative
probability levels for each function. Computational results are shown in Figures 12 and 13 for increasing
expansion orders of Hermite chaos, where tensor-product Gaussian quadrature is used in each case with
quadrature order set to p + 1. For both metrics, the basic CDF shape has been captured using only a
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Figure 12. Convergence of PCE for increasing expansion orders for scaled stress metric in cantilever beam
test problem.

first-order expansion (Figures 12(a) and 13(a)) at an expense of only 16 simulations (10 for point collocation,
9 for cubature with level = 1), and the statistics are converged in the tails (Figures 12(b,c) and 13(b,c)) by
third- or fourth-order expansions at an expense of 256 or 625 simulations, respectively (70 or 140 for point
collocation, 289 for cubature with level = 3).

E. Steel Column

The final test problem involves the trade-off between cost and reliability for a steel column.29 The cost is
defined as

Cost = bd+ 5h (25)
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Figure 13. Convergence of PCE for increasing expansion orders for scaled displacement metric in cantilever
beam test problem.

where b, d, and h are the means of the flange breadth, flange thickness, and profile height, respectively.
This problem demonstrates the efficiency of different coefficient estimation approaches when scaled to larger
dimensional UQ problems. Nine uncorrelated random variables are used in the problem to define the yield
stress Fs (lognormal with µ/σ = 400/35 MPa), dead weight load P1 (normal with µ/σ = 500000/50000 N),
variable load P2 (gumbel with µ/σ = 600000/90000 N), variable load P3 (gumbel with µ/σ = 600000/90000
N), flange breadth B (lognormal with µ/σ = b/3 mm), flange thickness D (lognormal with µ/σ = d/2 mm),
profile height H (lognormal with µ/σ = h/5 mm), initial deflection F0 (normal with µ/σ = 30/10 mm), and
Youngs modulus E (weibull with µ/σ = 21000/4200 MPa). The limit state has the following analytic form:

g = Fs − P

(
1

2BD
+

F0

BDH

Eb

Eb − P

)
(26)

where

P = P1 + P2 + P3 (27)

Eb =
π2EBDH2

2L2
(28)

and the column length L is 7500 mm. Computational results are shown in Figure 14 for increasing expansion
orders of Hermite chaos, where 21 response levels (-500 to 1500 in 100 increments) are mapped into the
corresponding cumulative probability levels and (b, d, h) are fixed at (300, 20, 300). Since this problem
contains extreme value distributions (gumbel and weibull) which lack an optimal Askey basis, convergence
can be expected to be suboptimal, and it is evident that the CDF is not converging. In fact, the variance is
diverging (see standard deviation in Figure 14(c)), resulting in more slowly varying CDFs as the expansion
order is increased. Figures 15 and 16 show similar results for tensor-product Gaussian quadrature with
quadrature order set to p + 1 and for sparse grid Gaussian cubature with level fixed at three. While the
quadrature results appear to be the best of the three, only the lowest order quadrature solutions were
computationally tractable and it is evident in all cases that the variance is diverging.

To determine whether this convergence difficulty stems from the use of non-optimal bases or some other
issue (e.g., a singularity resulting from subtractive cancellation in the denominator of Eq. 26), the steel
column problem may be modified to replace the gumbel and weibull extreme value distributions with normal
distributions (using the same means and standard deviations reported above) such that only normal and
lognormal distributions are present. Figure 17 shows results for this modified problem for increasing expan-
sion orders and a modified set of response levels. It is evident that convergence is rapid in this case and
the expansion is accurate by first order. In addition, an LHS convergence study run to 106 samples for the
original, unmodified problem did not demonstrate any divergence in variance, so evidence for a singularity
is currently lacking. Rather, the use of Hermite bases for standard normals transformed from extreme value
distributions appears to be problematic. Similar difficulties have been observed in Ref. 1 for non-optimal
basis selections.
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(c) Standard deviation convergence.

Figure 14. Convergence of PCE for increasing expansion orders for steel column test problem; point collocation
ratio = 2.
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Figure 15. Convergence of PCE for increasing expansion orders for steel column test problem; quadrature
order = p + 1.
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(c) Standard deviation convergence.

Figure 16. Convergence of PCE for increasing expansion orders for steel column test problem; cubature level
= 3.
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Figure 17. Convergence of PCE for increasing expansion orders for modified steel column test problem; point
collocation ratio = 2.

F. Simulation Requirements

Table 2 summarizes the simulation evaluation requirements of the different algebraic test problems for tensor-
product Gaussian quadrature (TP), sparse grid Gaussian cubature (SG), and point collocation (PC), with
increasing random variable dimensionality of n = 2 (lognormal ratio, Rosenbrock), n = 3 (short column),
n = 4 (cantilever beam), n = 5 (generalized Rosenbrock), and n = 9 (steel column) and chaos expansion
order ranging from p = 0 to p = 10. For all test cases, quadrature and cubature integrations are isotropic
and point collocation uses an over-sampling ratio of two. Required cubature levels are approximated, but
the approximation is consistent across all problems. It is evident that tensor-product quadrature is the most

Table 2. Simulation evaluation expense for algebraic benchmark test problems.

Log Ratio/Rosen Short Column Cantilever Beam Gen Rosen Steel Column

p TP/SG/PC TP/SG/PC TP/SG/PC TP/SG/PC TP/SG/PC

0 1/1/2 1/1/2 1/1/2 1/1/2 1/1/2

1 4/5/6 8/7/8 16/9/10 32/11/12 512/19/20

2 9/21/12 27/37/20 81/57/30 243/81/42 19683/217/110

3 16/21/20 64/37/40 256/57/70 1024/81/112 262144/217/440

4 25/73/30 125/161/70 625/289/140 3125/471/252 1953125/1879/1430

5 36/73/42 216/161/112 1296/289/252 7776/471/504 10077696/1879/4004

6 49/73/56 343/161/168 2401/289/420 16807/471/924 40353607/1879/10010

7 64/73/72 512/161/240 4096/289/660 32768/471/1584 134217728/1879/22880

8 81/221/90 729/608/330 6561/1268/990 59049/2341/2574 387420489/13525/48620

9 100/221/110 1000/608/440 10000/1268/1430 100000/2341/4004 1000000000/13525/97240

10 121/221/132 1331/608/572 14641/1268/2002 161051/2341/6006 2357947691/13525/184756

affordable for the smallest problems (two random variables or less), but quickly becomes computationally
intractable. Point collocation, on the other hand, is more affordable than quadrature for larger problems
and higher expansion orders, and is the most affordable overall within a middle ground. Finally, cubature is
the most affordable for the largest dimensionalities and expansion orders.

A common occurrence in practice for production engineering uncertainty analysis is the presence of a
particular computational budget (e.g., 10, 100, perhaps 1000 simulations) for a UQ problem with a particular
dimensionality n. In these cases, one can be left in the awkward situation of selecting between a TP/SG/PC
approach using a lower expansion order than one would like (due to the type of minimum simulation re-
quirements discussed above) or retaining the desired expansion order and resorting to random sampling
for the coefficient estimation (since this technique does not enforce any minimum simulation requirements).
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The answer to this question of accurate expansion of lower order vs. inaccurate expansion of higher order
will be application-dependent in general, as dictated by the truncation of critical terms in the former case.
Thus, an important goal in this work is to lower the barriers to the adoption of the techniques with superior
convergence behavior such that the occurrences of this dilemma can be minimized.

G. Elliptic PDE

Consider the model elliptic problem with one spatial dimension,

−
∂

∂x

(
α(x, ξ0, . . . , ξd)

∂

∂x
u(x, ξ0, . . . , ξd)

)
= f, x ∈ [0, 2π] (29)

with boundary conditions u(0) = u(2π) = 0. The spatially varying coefficients are given by a function of d
stochastic parameters as

α(x, ξ0, . . . , ξd) = 11 +
d∑

i=0

ξi cos(ωix),

where ξ0, . . . , ξd are independent and distributed uniformly over the interval [−1, 1]. The wave numbers are
chosen as ω0 = 1 and ωi = i for i = 1, . . . , d.

To verify convergence of the CDF computed with the non-intrusive polynomial chaos method, we man-
ufacture a solution to Eq. 29. We choose

ū(x, ξ0, . . . , ξd) =

(
d∑

i=0

ξ4i

)
sin(x). (30)

We can compute the approximate CDF of ū at a particular spatial coordinate x∗ by sampling techniques to
get a reference quantity to compare with the results from the non-intrusive polynomial chaos technique. We
call the reference quantity the “exact” solution and denote it by CDFu(x∗).

By applying the differential operator of Eq. 29 to ū, we generate a “right hand side” f̄ that guarantees
that the solution to Eq. 29 is indeed ū.

f̄ ≡ −
∂

∂x
(α

∂

∂x
ū) =

(
d∑

i=0

ξ4i

)[
11 + cos(x)

(
d∑

i=0

ξiωi sin(ωix)

)
+ sin(x)

(
1 +

d∑

i=0

ξi cos(ωix)

)]
(31)

We have a short C++ code that implements a Chebyshev spectral method to solve the deterministic analogue
of Eq. 29 given ξ0, . . . , ξd, and f̄ . Using DAKOTA to interface with this code, we employ the non-intrusive
polynomial chaos method with the Legendre basis polynomials. We examine two variants of this problem: a
three-dimensional variant (d = 2) and a ten-dimensional variant (d = 9). For the three-dimensional problem,
we plot the CDFs computed with both a Gauss quadrature-based tensor grid and a Clenshaw-Curtis-based
sparse grid. In the tensor grid case, we approximate the PCE coefficients using quadrature order = 3, 5,
and 9 in each coordinate yielding a total of 27, 125, and 729 respective deterministic simulations. In the
sparse grid case, we increase the level parameter in the sparse grid algorithm from 2 to 5 when computing
the PCE coefficients; the number of deterministic simulations per level is 25, 69, 177, and 441, respectively.
These plots are shown in figure 18, where it is evident that the CDF has converged by quadrature order =
5 and cubature level = 4 (at the expense of 125 and 177 evaluations, respectively). For the ten-dimensional
problem, the tensor grid method becomes very expensive, so we only compute the CDF for at most a three
point rule along each coordinate. The number of deterministic simulations for these computations are 1, 1024,
and 59049, respectively. The number of necessary deterministic simulations for the sparse grid computations
at levels 1 through 5 are 21, 221, 1581, 8801, and 41265, respectively. These plots are shown in Figure 19,
where it is evident that the CDF has not yet converged by quadrature order = 3 (using 59049 evaluations;
the required quadrature order = 5 would use 9765625 evaluations), but has converged by cubature level =
4 (using 8801 evaluations).

V. Conclusions

The coefficients of chaos expansions in non-intrusive polynomial chaos methods can be calculated through
Galerkin projection, based on sampling, quadrature, or cubature, or through linear regression analysis.
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Figure 18. CDF of PCE response surface of u(x∗), where u solves the elliptic problem with three random
parameters.

This paper has investigated the relative performance of these techniques within Wiener-Askey generalized
polynomial chaos approaches applied to algebraic benchmark problems with known solutions and an elliptic
PDE problem with a manufactured solution.

UQ results for the first two test problems demonstrated that quadrature, cubature, and regression ap-
proaches are to be strongly preferred over sampling, with super-algebraic/exponential convergence rates
with respect to simulation evaluation counts for quadrature/cubature/regression, as compared to the well
known algebraic rate of 1

2 for sampling. The only advantage to the sampling technique is flexibility, in that
any number of samples can be selected for coefficient estimation. While the accuracy obtained for a given
simulation budget will be much lower for a sampling technique, the simulation requirements imposed by
quadrature/cubature/regression may be impractical for the desired expansion order, forcing the undesirable
situation of selecting between a quadrature/cubature/regression-based expansion of a lower, affordable or-
der and a sampling-based expansion of the desired order. Thus, lowering the simulation requirements in
preferred techniques is clearly desirable so that they are deployable for applications of practical interest.

Within the three higher-performing coefficient estimation approaches, tensor-product quadrature is an
excellent technique when analyzing a small number of random variables. Regression, on the other hand, is the
most affordable for middle size problems, and sparse grid cubature is preferred for scalability to larger random
variable sets. A final important distinction is that quadrature and cubature methods are explicit, whereas
point collocation is implicit, requiring a potentially large-scale least squares matrix solution. Numerical ill-
conditioning has been observed in some cases involving large sample sets, which appears to be the primary
weakness of the regression approach.

Each of the test problems shows excellent accuracy using low-order polynomial chaos expansions, with one
exception. When an optimal Askey basis is not available (e.g., for extreme value distributions), distribution
transformation techniques used in combination with Askey bases may be insufficient. In particular, the
first moment of the expansion for the steel column test problem failed to converge, and the second moment
diverged. For these types of problems, additional random discretization (e.g., Refs. 32–34), either to resolve
discontinuities or more accurately represent arbitary input PDFs, may be required.

The current direction of this work is focused on the development of adaptive Wiener-Askey schemes that
can tailor the basis, the expansion order, and the numerical integration order to the problem at hand. In
addition, stochastic collocation methods are of interest, with the primary distinction of replacing the Askey
orthogonal polynomials used in generalized PCE with Lagrange interpolating polynomials. Relative to PCE,
these methods hold the advantage of reducing the complexity of the algorithm controls, as expansion order
is dictated directly by the integration points and no longer needs to be specified independently.
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Figure 19. CDF of PCE response surface of u(x∗), where u solves the elliptic problem with ten random
parameters.
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