The UPC RT07s Evaluation Conference System

J. Luque et al.

Speaker Diarization for Conference Room: The UPC RT07s Evaluation System

Jordi Luque, Xavier Anguera and Javier Hernando

TALP Research Center Universitat Politècnica de Catalunya, UPC

RTs 2007 10-11 May 2007, Baltimore, MD

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

The UPC RT07s Evaluation Conference System

J. Luque et al.

1 Introduction

2 System Overview

3 Experiments

4 Conclusions

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Outline

The UPC RT07s Evaluation Conference System

1 Introduction

2 System Overview

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The UPC RT07s Evaluation Conference System

1 Introduction

2 System Overview

Outline

The UPC RT07s Evaluation Conference System

1 Introduction

2 System Overview

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Participation objectives

The UPC RT07s Evaluation Conference System

Introduction

System Overview

Diarization System Overview Wiener Filtering Acoustic Beamforming Speech Parameterization Speech/Nonspeech detector Shortest Segments

Experiments

Conclusions

- First participation of the UPC in the Diarization Evaluation
- Consolidation of a baseline system for further research
- Use of the Diarization System from ICSI as baseline
- Changes to the diarization system towards decreasing the runtime while maintaining the performance

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Common features with ICSI system

J. Luque et al.

Introduction

System Overview

Diarization System Overview

Acoustic Beamforming

Parameterizati Speech/Non-

detector Shortest

Segments Post-processing

Experiments

Conclusions

- The sytem is based on a reduced version of the ICSI'06 Diarization system
- Use of the agglomerative system
- Modified BIC criterion to decide when to stop merging clusters
- Linear inicialization of the number of cluster
- Use of the Wiener Filtering and multichannel capabilities from ICSI implementations

Novelties

The UPC RT07s Evaluation Conference System

J. Luque et al.

Introduction

System Overview

Diarization System Overview

Acoustic Beamforming

Speech Parameterizat

speech detector

Shortest Segments Post-processing

Experiments

Conclusions

- New Speech Activity Detector (SAD) module based on SVM
- New speech parameterization: Frequency Filtering
- Changes in the cluster merging in order to avoid small clusters
- Post-processing of the shortest segments at each iteration

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Wiener Filtering

Wiener Filtering

• Use of the ICSI implementation of the Aurora front-end

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

3

• Purpose: Avoid stationary noise

J. Luque et al.

Introduction

System Overview

Diarization System Overview Wiener Filtering

Acoustic Beamforming

Speech Parameterization Speech/Nonspeech detector Shortest Segments

Experiments

Conclusions

Use of the BeamformIt 2.0 from Xavier Anguera

Acoustic Beamforming: Delay and Sum (II)

The UPC RT07s Evaluation Conference System

J. Luque et al.

Introduction

System Overview

Diarization System Overview Wiener Filtering

Acoustic Beamforming

Speech Parameterization Speech/Nonspeech detector Shortest Segments Post-processing

Experiments

Conclusions

- We have used a window of 500 ms at a rate of 250 ms
- And all the avalaible channels

$$y(n) = x_0[n] + \sum_{i=1}^{N-1} W_i x_i[n - d(0, i)]$$

 Estimation of the Time Delay Of Arrival (TDOA) through the (GCC-PHAT)

$$egin{aligned} G_{\mathcal{PHAT}}(f) &= rac{X_i(f) ig[X_j(f)ig]^*}{ig|X_i(f) ig[X_j(f)ig]^*ig|} \ \hat{d}_{ij} &= rg\max_d \hat{R}_{\mathcal{PHAT}}(d_{ij}) \end{aligned}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Speech Parameterization: Frequency Filtering

J. Luque et al.

Introduction

System Overviev

Diarization System Overview Wiener Filtering Acoustic Beamforming

Speech Parameterization

Speech/Nonspeech detector Shortest Segments

Conclusions

• Computation of Frequency Filtering (FF) parameterization

- Average of 30 overlapped triangular filters
- 30 FF coefficients

(日)

Acoustic System: Baseline System FF parameterization

The UPC RT07s Evaluation Conference System

J. Luque et al.

Introduction

System Overview

Diarization System Overview Wiener Filtering Acoustic Beamforming

Speech Parameterization

Speech/Nonspeech detector Shortest Segments

Experiments

Conclusions

- Computationally simpler than MFCC
- Compact and uncorrelated
- Frequency meaning, which permits masking, noise subtraction . . .
- Have been shown competitive with conventional MFCC

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Speech Activity Detection

J. Luque et al.

Introduction

System Overviev

Diarization System Overview Wiener Filtering Acoustic Beamforming Speech Parameterization Speech/Non-

speech detector

Shortest Segments Post-processing

Experiments

Conclusions

- SAD based on a Support Vector Machine (SVM)
- Two specific modifications in order to adapt to the Evaluation Metrics:
 - NIST = Duration of Incorrect Decissions / Duration of all Speech
 - Missed Spkr = Missed Speech / Duration of All Speech
 - False Alarm = Missed Non-Speech / Duration of All Speech
- Penalize more the Speech class (as NIST metric does) by introducing different costs for the two classes

Speech Activity Detection

The UPC RT07s Evaluation Conference System

J. Luque et al.

Introduction

System Overviev

Diarization System Overview Wiener Filtering Acoustic Beamforming Speech Parameterization Speech/Nonspeech detector

Shortest Segments Post-processing

Experiments

Conclusions

- Dataset reduction (several hundreds of thousands) using an efficient sample selection.
- Main idea: Relaxing the hyperplane condition between two classes

 $y(wx+b) \ge 1$ y(wx+b) = 1

Speech Activity Detection: Speech Features

The UPC RT07s Evaluation Conference System

J. Luque et al.

Introduction

System Overviev

Diarization System Overview Wiener Filtering Acoustic Beamforming Speech Parameterization Speech/Nonspeech detector

Shortest Segments Post-processing

Experiments

Conclusions

- $16FF + 16\Delta + 16\Delta\Delta + \Delta E = 49$ reduced to a single scalar measure by LDA
- High, low and cross frequency spectral components (focus on the dynamics of the signal along the time)

 $xfed(t) = 1/2 * ([hfed(t-9)*lfed(t+9)]^{1/2} + [hfed(t+9)*lfed(t-9)]^{1/2})$

イロト 不得 トイヨト イヨト 二日

Speech Activity Detection: SAD results

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Shortest Segments Post-processing

The UPC RT07s Evaluation Conference System

J. Luque et al.

Introduction

System Overview

Diarization System Overview Wiener Filtering Acoustic Beamforming Speech Parameterization Speech/Nonspeech detector

Shortest Segments Post-processing

Experiments

Conclusions

- Changes in the Complexity Selection algorithm: All clusters modelled with 4 or less Gaussians are rejected
- All those segments with a duration smaller than 1.1 * MD are processed by a sliding window
- This kind of segments, usually are associated to false alarm
- The data are splitted between the adjacent clusters

Experimental Set-up and Results

The UPC RT07s Evaluation Conference System

J. Luque et al.

Introduction

System Overviev

Diarization System Overview Wiener Filtering Acoustic Beamforming Speech Parameterization Speech /Nonspeech detector Shortest Segments Post-processing

Experiments

Conclusions

- Evaluation Data from RT'05 used for the training of the SAD classes
- Evaluation Data from RT'06 used for tune the Beamforming, Parameterization and Diarization system parameters

Non-Overlap SPKR Error		
sdm	mdm-softsad	mdm-hardsad
25.06 %	19.65 %	19.75 %

Overlap SPKR Error, Primary Metric		
sdm	mdm-softsad	mdm-hardsad
27.72 %	22.70 %	22.59 %

Conclusions

The UPC RT07s Evaluation Conference System

J. Luque et al.

Introduction

System Overview

Diarization System Overviev Wiener Filtering Acoustic Beamforming Speech Parameterization Speech/Nonspeech detector Shortest

Post-processin

Conclusions

Novelties:

- The use of the Beamforming in the MDM condition improves the results obtained in the SDM.
- The SAD fine ajustment does not imply significant differences in the DER of the whole system
- Frequency Filtering parameters have obtained better results than the MFCC
- Post-Processing improves the DER over 1-2%

• Evaluation:

- Expensive tuning of the parameters of the system
- High variance in the DER between different shows i.e, 57.58 DER from CMU show and 5.62 from NIST show

Thanks!

The UPC RT07s Evaluation Conference System

J. Luque et al.

Introduction

System Overviev

Diarization System Overview. Wiener Filtering Acoustic Beamforming Speech Parameterization Speech /Nonspeech detector Shortest Segments Post-processing

Experiments

Conclusions

Thank you for your attention!

Questions?

(日) (字) (日) (日) (日)