Cellular immune response to *Cryptosporidium parvum* in *Cryptosporidium*-HIV co-infected patients

Kirti Kaushik, Sumeeta Khurana, Ajay Wanchu*, Nancy Malla

Departments of Parasitology and Internal Medicine* Post Graduate Institute of Medical Education & Research, Chandigarh India

Introduction

AIDS - global emergency with far reaching effects

World

40 million had HIV infection, December 2006

(UNAIDS/WHO, 2006)

- India
 - 5.3 million infected in 2005
 - 124995 had reached stage of AIDS August, 2006

(NACO, 2006)

- Gastrointestinal tract major target organ in HIV related opportunistic infections
- *Cryptosporidium* important enteric pathogen in AIDS & other immunosuppressed patients
- Tops the list out of parasitic infections in HIV patients in India
- Small protozoan parasite, infects digestive tract of a wide range of vertebrate hosts
- First human case 1976
- Route of infection Faeco-oral
- Infectious agent Oocyst (4-6 µm with 4 sporozoites)

- Clinical manifestations Asymptomiatic to profuse watery diarrhoea
 - Immunocompetent 3 to 12 days, resolves spontaneoulsy
 - Immunocompromised >12 weeks, severe, unremitting diarhhoea, refractory to treatment
- Host immune responses
 - prevent initial infection
 - limit its spread
 - facilitate its clearance
- Poorly understood but probably include both B and T lymphocytes mediated processes

CMI - Pathogenesis as well as protection

- Susceptability increases with decreasing CD₄ cell counts
- CD₄ < 140 cells/µl persistent disease
- Most studies Animal models
- Differences in clinical manifestations of *Cryptosporidium* in patients with or without HIV
 - Immunocompetent Self limiting
 - Immunocompromised Life threatening

Aim & Objectives

The aim of the study was to assess lymphocyte proliferation response to *Cryptosporidium parvum* antigen in HIV/AIDS patients Objectives

- Detection of *Cryptosporidium parvum* in fecal samples by Ziehl-Neelsen staining, rapid safranine methylene blue staining technique, antigen detection ELISA & PCR in HIV seropositive, HIV seronegative patients with diarrhoea & healthy control subjects
- Assessment of lympho-proliferative response to crude soluble antigen of *Cryptosporidium parvum* in HIV/AIDS patients with cryptosporidiosis & controls

Materials & Methods

Patients & control subjects

Screening (Microscopy, antigen detection ELISA, PCR)

- Group A. 200 HIV seropositive
- Group B1. 150 HIV seronegative, with history of diarrhoea
- Group B2. 50 HIV seronegative, without any history suggestive

of cryptosporidiosis

Cellular immune response

- Group 1. 11 HIV seropositive Cryptosporidium positive*
- Group 2. 20 HIV seropositive *Cryptosporidium* negative**
- Group 3. 10 HIV seronegative *Cryptosporidium* positive*
 - **3A**. 4 Post-renal transplantation
 - **3B.** 6 Immuno-competent
- Group 4. 20 HIV seronegative *Cryptosporidium* negative (healthy controls)**

*Positive for *Cryptosporidium* by either Ziehl-Neelsen staining technique or by both antigen detection and PCR **Negative for *Cryptosporidium* by all the techniques Examination of stool samples

- A. Ziehl-Neelsen
- B. Rapid safranine methylene blue
- **B.** Antigen detection ELISA (RIDASCREEN, r-Biofarm, Germany)
- C. Nested PCR
- **DNA extraction –** QIAamp Stool Mini Kit (Qiagen)

Cryptosporidium parvum DNA (gift from Dr. Striepen, University of Georgia)

Primary PCR (*Cryptosporidium*) CF201 – 5'-GGGTTGTATTTATTAGATAAAGAAC-3' CR201 – 5'-CTTTAAGCACTCTAATTTTCTC-3' Secondary PCR (*Cryptosporidium parvum*) CPF 202 – 5'-GACTTTTTGGTTTTGTAATTGGAATG-3' CPR 202 – 5'-TAAATTATTAACAGAAATCCAACTACGAGC-3'

Gold standard - Either microscopy positive or in face of its negativity positive antigen detection along with PCR

Sensitivity (S)

[Number of true positives/ (Number of true positives + Number of false negatives)] x 100

Specificity (Sp)

[Number of true negatives/ (Number of true negatives + Number of false positives)] x 100

Positive predictive value (PPV)

[Number of true positives/ (Number of true positives + Number of false positives)] x 100

Negative predictive value (NPV)

[Number of true negatives/ (Number of true negatives + Number of false negatives)] x 100

Diagnostic efficacy (DE)

[(Number of true positives + Number of true negatives) / (Number of true positives + Number of true negatives + Number of false positives + Number of false negatives)] x 100

Table 1: Demographic profile of the individuals enrolled in the study

Groups (N)	Mean Age in years (range)	Μ	F	With diarrhoea	Post transplan t patients	CD₄ counts (cells/µl)
A. HIV(206)	33.2 (21 - 67)	140 (68%)	66 (32%)	99 (48%)	Nil	275(2-583)
B1. Non HIV With diarrhoea (153)	28.1 (1.5 - 65)	101 (66%)	52 (34%)	153 (100%)	23 (15%)	-
B2. Healthy control (50)	27.4 (23-36)	25 (50%)	25 (50%)	Nil	Nil	-
Total (409)	30.6 (1.5 to 67)	266 (65%)	143 (35%)	252 (62%)	23 (5.6%)).

Cryptosporidium (Ziehl -Neelsen staining)

Cryptosporidium (Rapid safranine methylene blue staining)

Secondary PCR

M 1 2 3 4 5

- Lane M Lane 1 Lane 2,3,4 Lane 5
- = Molecular weight marker(100 bp)
- = Positive control
- = DNA samples
 - = Negative control

Table2: No of patients positive for *Cryptosporidium* by one or more techniques

	Groups	Ν	No of positives (%)
A	HIV seropositive	206	41(20)
B1	HIV seronegative with diarrhoea	153	22 (14.4)
B2	Healthy controls	50	Nil
	Total	409	63 (15.4)

 Table 3: Comparative analysis of Ziehl-Neelsen staining, rapid safranine methylene blue staining, antigen detection ELISA & PCR for detection of *Cryptosporidium parvum*

A. HIV seropositive patients (n=206)

Techniques	Positive samples (%)	S (%)	Sp (%)	PPV (%)	NPV (%)	DE (%)
ZN	10 (5%)	36	100	100	91	91
RSM	09 (4.4%)	33.3	100	100	91	91
Ag detection ELISA	39 (19%)	93	92	64	99	92
PCR	27 (13%)	100	100	100	100	100

B. HIV seronegative patients with diarrhoea (n=153)

Techniques	Positive samples (%)	S (%)	Sp (%)	PPV (%)	NPV (%)	DE (%)
ZN	07 (4.6%)	41	100	100	93	93.5
RSM	06 (4%)	35	100	100	92.5	93
Ag detection ELISA	21 (14 %)	94	96	76	96	96
PCR	17 (11%)	100	100	100	100	100

Conclusions

- Cryptosporidium parvum was detected in 20 % & 14 % in HIV seropositive & HIV seronegative patients, respectively
- Sensitivity

PCR > Ag detection ELISA > Microscopy – for detection of *Cryptosporidium* in HIV seropositive and HIV seronegative patients

 This observation is in agreement with reports from London [Pedraza-Diaz et al, 2001, Mc Lauchlin et al, 1999] and New York [Zhu et al, 1998] and in disagreement with report from California [Mayer and Palmer, 1996] whereby low sensitivity of PCR reported

Objective 2

Cellular immune response

Materials and Methods

Preparation of *Cryptosporidium parvum* crude soluble antigen

Cryptosporidium parvum oocysts (Iowa strain, NIH AIDS research and reference reagent program), freeze-thawed, sonicated, protein estimation by Lowry's method

Lymphocyte Proliferation Assay

Counting of cells

SI (Stimulation index) = Counts per minute in stimulated culture/countsper minute in un-stimulated cultureStimulation IndexPHA > 20SignificantCCA > 2Significant

Comparison of mean CPM and SI – Mann-Whitney test

Table 4: Demographic profile of the individuals studied for LPA

Groups (N)	Mean Age in years (range)	М	F	With diarrhoea	Post transplant patients	CD4 counts (cells/µl)
I (11) HIV + Crypto +	34.1 (25-46)	7	11	5	Nil	182.5 (46-379)
I (20) HIV + Crypto -	34.2 (25-64)	15	05	9	Nil	198.6 (30-583)
III (10) HIV - Crypto +	26.2 (3.5-46)	6	4	10	4	-
IV (20) HIV - Crypto - (normal healthy)	26.9 (23-35)	10	10	Nil	Nil	_
Total (61)	30.5 (3.5-64)	38	30	24	4	-

Table 5: No. of subjects with significant proliferation in responseto Cryptosporidium (CCA) and PHA

Groups	N	Number of su	Number of subjects with significant proliferation		
		CCA(SI>2)	PHA(SI>20)		
1 (HIV+Crypto+)	11	9 (82%)	3 (27%)		
2 (HIV+Crypto ⁻)	20	3 (15%)	11 (55%)		
3 (HIV ⁻ Crypto ⁺)	10	10 (100%)	3 (30%)		
4 (HIV ⁻ Crypto ⁻)	20	4 (20%)	20 (100%)		
Total	61	26 (42.6%)	37 (61%)		

Conclusions

SI in response to CCA (*Cryptosporidium*)

- Significant response was found in more no. of *Cryptosporidium* infected
 [Gp I & III] as compared to *Cryptosporidium* un-infected [Gp II & IV] individuals (p<0.05)
- Significant response was found in more no. of HIV seronegative *Cryptosporidium* positive as compared to HIV seropositive *Cryptosporidium* positive patients, however the difference is not statistically significant (p>0.05)

Conclusions

SI in response to PHA

- Significant response was found in more no. of normal healthy individuals as compared to other groups (p<0.05)</p>
- Significant response was found in more no. of HIV seronegative *Cryptosporidium* positive as compared to HIV seropositive *Cryptosporidium* positive patients, however the difference is not statistically significant (p>0.05)

Table 6: (³H) Thymidine incorporation (stimulation index) following culture of lymphocytes stimulated with PHA & *C. parvum* crude soluble antigen (CCA)

Groups	PHA	CCA	Control
	SI (SD)	SI (SD)	SI
l (n=11)	18.0 (8.8)	4.4 (3.8)	1
II (n=20)	18.3 (9.9)	1.4 (0.6)	1
III (n=10)	16.3 (4.4)	6.6 (3.7)	1
IIIA (n=04)	12.8 (2.5)	3.1(0.5)	1
IIIB (n=06)	18.6 (3.8)	9 (2.8)	1
IV (n=20)	25.1 (4.0)	1.4 (0.5)	1
p I Vs II	NS	<0.001	NS
p I Vs III	NS	NS	NS
P I Vs IIIA	NS	NS	NS
P I Vs IIIB	NS	0.03	NS
P I I I A Vs I I I B	0.03	0.01	NS
p I Vs IV	0.001	0.002	NS
p II Vs III	NS	<0.0001	NS
P II VS IIIA	NS	0.003	NS
P II Vs IIIB	NS	<0.0001	NS
p II Vs IV	<0.05	NS	NS
p I I I Vs IV	<0.0001	<0.0001	NS
p IIIA Vs IV	0.002	0.022	NS
p IIIB Vs IV	0.003	<0.0001	NS

I = HIV seropositive *Cryptosporidium* positive, II = HIV seropositive *Cryptosporidium* negative III = HIV seronegative *Cryptosporidium* positive, IV = HIV seronegative *Cryptosporidium* negative

Conclusions

Proliferation in response to specific antigen (CCA)

- No significant difference was observed in mean SI observed in HIV seropositive *Cryptosporidium* positive (Gp I) as compared to HIV seronegative *Cryptosporidium* positive (Gp III) patients
- On further analysis of Gp III, mean SI was found significantly lower in HIV seropositive *Cryptosporidium* positive (Gp I, p=0.03) and HIV seronegative *Cryptosporidium* positive (Gp III A, p=0.01) patients who had renal transplantation when compared to HIV seronegative *Cryptosporidium* positive immunocompetent patients (Gp III B)
- This observation is in agreement with the only earlier one report available from Italy [Morales et al, 1999] which showed that proliferation in response to *Cryptosporidium* was significantly different in HIV seropositve and seronegative patients infected with *Cryptosporidium*
- Mean SI significantly higher in *Cryptosporidium* infected (Gp I & III) when compared to *Cryptosporidium* un-infected (Gp II & IV) individuals (p=0.001)

Conclusions

Proliferation in response to non-specific antigen (PHA)

- Mean SI significantly higher in normal healthy (Gp IV) when compared to other (Gp I, II & III) individuals (p=0.01)
- No significant difference in mean SI observed in HIV seropositive *Cryptosporidium* positive (Gp I) as compared to HIV seronegative *Cryptosporidium* positive (Gp III) patients (p>0.05)

Summary

- The study suggests that *Cryptosporidium parvum* induces significant *in-vitro* lympho-proliferative response in sensitized HIV seropositive and HIV seronegative individuals
- Proliferation was significantly higher in *Cryptosporidium* infected,
 immunocompetent patients when compared to *Cryptosporidium* infected,
 immunocompromised patients (post-transplantation and HIV seropositive).
- The study suggests that immune status of the host does appear to play significant role in modulating proliferative responses to *Cryptosporidium* antigen. However, more studies in this regard are desired to confirm the findings.

Acknowledgement

- Cryptosporidium parvum oocysts (Iowa strain) procured from AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH
- Dr. Boris Striepen

Center for Tropical & Emerging Global Diseases University of Georgia, Athens, GA

Thank You