
Slot-Based Approaches to Airport Congestion Management

by

Jan K. Brueckner

Department of Economics

University of California, Irvine

3151 Social Science Plaza

Irvine, CA 92697

e-mail: jkbrueck@uci.edu

May 2008

Abstract

This paper analyzes slot-based approaches to management of airport congestion, using a model
where airlines are asymmetric and internalize airport congestion. Under these circumstances,
optimal congestion tolls differ across carriers, and since a slot-sale regime (with its uniform slot
price) cannot duplicate this pattern, the equilibrium it generates is inefficient. Flight volumes
tend to be too low for large carriers and too high for small carriers. Under a slot-trading
regime or a slot auction, however, the existence of a fixed number of slots causes carriers to
treat total flight volume (and thus congestion) as fixed, and this difference can lead to an
efficient outcome.
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1. Introduction

Flight delays caused by airport congestion are a growing problem in both the US and Eu-

rope, and policymakers have struggled to formulate a response. To address rising congestion

at Chicago’s O’Hare Airport, the Federal Aviation Administration (FAA) took a microman-

agement approach, prevailing on the airport’s two major carriers (United and American) to

cut their peak flight volumes while prohibiting smaller carriers from adding flights to fill the

gap. Similar FAA interventions have occurred at New York airports, initially at LaGuardia

and most recently at John F. Kennedy and Newark airports, where the FAA capped peak hour

operations while gaining carrier commitments to shift some flights to less-congested times. All

of these interventions followed surges in flights spurred by relaxation of long-standing slot con-

straints at O’Hare, LaGuardia and JFK, three airports where FAA-allocated slots give airlines

the right to operate at particular times.1 The piecemeal nature of the interventions points to

a need for a more-systematic approach to managing congestion at US airports.

Recognizing this need, recent FAA proposals envision a future role for prices as a policy

tool in attacking the congestion problem. In announcing the New York flight caps, the FAA

proposed using an auction system to allocate a portion of the available slots, with carriers

paying for slots instead of receiving them for free. Contemporaneously, a position paper issued

by the U.S. Department of Justice (Whalen et al., 2007) endorsed slot auctions as a mechanism

for addressing airport congestion. Following these New York policy decisions, the FAA took an

even more significant step by changing its rules on landing fees, which are charged to carriers

for each flight operation at an airport. While landing fees traditionally depended only on

aircraft weight, the new rules effectively allow the fees to vary by time of day. This change

permits airports to implement congestion pricing, with high landing fees charged during peak

hours and lower fees charged in off-peak periods.
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With these new developments, price-based solutions to airport congestion have gained

credibility, mirroring recent progress in implementing congestion pricing for roads (London

and Stockholm are prominent examples). But the FAA’s decisions have opened the door to

several distinct, and potentially different, pricing approaches. While slot auctions represent

one option, a related approach would involve a slot-sale regime, where the airport authority

sets a slot price and allows carriers to purchase as many slots as they wish at that price. Under

congestion pricing, carriers pay a congestion toll that is analogous to the slot price, but under

an ideal structure, tolls are carrier-specific (depending on airport flight shares) rather than

uniform. By contrast, under a slot-trading regime, the airport authority distributes slots to the

carriers, who trade them at price that is again uniform. The current system at slot-constrained

airports, where carriers can sell or lease the slots in bilateral trades, approximates such a

regime, but the current low trading volume suggests a need for institutional improvements

(see Whalen et al. (2007)).2 Given the importance of airport congestion as a policy problem,

it is important to understand the potentially different impacts of these price-based regimes.

The present paper is designed to achieve such an understanding by comparing the outcomes

achieved under congestion pricing, a slot-sale regime, a slot-trading regime, and a slot auction.

In doing so, the paper parallels the analysis of Verhoef (2008)3 while using a more tractable

set of assumptions. The main simplification, which follows Brueckner and Van Dender (2008),

is the assumption that carriers face perfectly elastic demands for air travel. This approach

eliminates the flight-reducing distortion arising from the exercise of market power, allowing

a sole focus on the distortion arising from the congestion externality, which tends to make

flight volumes excessive. With market power eliminated and a constant-returns assumption

modified, the analysis is able to derive parallel results that are simpler and more clearcut than

those of Verhoef (2008). Once the analysis is complete, the two sets of results are compared.

Although a slot-sale regime is less commonly advocated than slot trading or slot auctions,

an understanding of its performance is helpful when evaluating these other approaches. As

a result, a significant portion of the paper is devoted to analyzing the slot-sale regime and

comparing its performance to that of congestion pricing, which is known to generate the social

optimum. The difference between these two regimes arises because of internalization of airport
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congestion, which occurs because carriers at congested airports often operate a large number of

flights (road users, by constrast, operate a single vehicle). This fact means that, in scheduling

an additional flight, a carrier will take into account the additional congestion costs imposed on

the other flights it operates. The appropriate congestion toll then captures only the congestion

imposed on other carriers, excluding the congestion the carrier imposes on itself. While Daniel

(1995) was the first to recognize the potential for internalization of airport congestion, this

pricing rule was advanced by Brueckner (2002, 2005) and further explored by other authors.4

A key implication of internalization is that asymmetric carriers should pay different tolls.

A carrier with a large flight share at the congested airport, which internalizes most of the

congestion from its operation of an extra flight, should pay a low toll, while a small carrier,

which internalizes little congestion, should pay a high toll. Because a slot-sale regime, with its

uniform price, cannot duplicate this inverse relationship between a carrier’s flight share and

its charge per flight, the regime is inefficient, unable to generate the socially optimal flight

pattern. By failing to account for differences in the internalization of congestion, the uniform

slot price excessively penalizes large carriers and insufficiently penalizes small carriers for the

congestion they create.

Given this pattern, large carriers will operate too few and small carriers too many flights

under a slot-sale regime, provided the number of slots sold is close to the socially optimal flight

volume. But since a welfare-maximizing airport authority, who sets the number of slots sold

in a second-best fashion, may choose a slot total that diverges from the optimal flight volume,

these relationships are not guaranteed in general. The analysis offers some partial results and

a complete characterization in one special case, where the slot total is socially optimal and

the flight volumes of large carriers are indeed too small and those of small carriers too large.

Numerical results show the likely robustness of this result outside the special case.

If the model’s large and small airlines are replaced by symmetric carriers, then the slot-sale

regime’s common price does not constitute an inefficient constraint, and the regime is efficient.

The analysis shows that efficiency also obtains when carriers do not internalize congestion,

behavior that Daniel (1995) and Daniel and Harback (2008) claim is realistic. They argue

that non-internalizing behavior emerges in the presence of competitive-fringe carriers, who
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offset through their own flight increases any attempt by large carriers to limit self-imposed

congestion.5

The analysis then turns to a slot-trading regime, where slots are distributed to carriers

and then traded among them at a fixed price (also known as a “secondary market” for slots).

Remarkably, the analysis shows that such a regime is efficient, overcoming the slot-sale regime’s

limitations, provided that the optimal number of slots is distributed. The key difference

between the regimes is that carriers participating in a slot-trading regime understand that

the total flight volume is fixed by the number of distributed slots, while slot-sale participants

perceive no such constraint, expecting total flights (and airport congestion) to be affected by

their slot purchases. The differing view of carriers under a slot-trading regime generates an

efficient outcome.

The analysis relies on a highly stylized model, but the main conclusions should be robust

to generalizations that offer greater realism. Adapting the framework of Brueckner and Van

Dender (2008), the model portrays a congested airport served by two asymmetric carriers,

with peak and off-peak periods collapsed into a single period that is always congested. In the

analysis, carriers treat congestion tolls and slot prices as parametric and uninfluenced by their

chosen flight volumes. This view is consistent with the usual approach to Pigouvian taxation,

where the government, faced with a market distortion, computes the social optimum and levies

taxes at a fixed rate to reach it. Economic agents, even if they otherwise enjoy market power,

treat such Pigouvian taxes as parametric. Analogously, the airport authority in the present

model has the information necessary to reach the first-best optimum via tolls or a second-best

optimum via an appropriate slot price, and the carriers, even though they are nonatomistic,

view these charges as immutable and unaffected by their own choices.

In an actual implementation of congestion tolls or a slot-sale regime, different behavior

could emerge. For example, implementation of tolls might rely on an iterative approach, where

peak-period tolls are initially computed based on current traffic volumes and then adjusted

downward as traffic shifts toward off-peak periods. The carriers, perceiving a connection

between flight volumes and tolls, would then have an incentive to manipulate the system, acting

on the basis of false, understated demands for airport usage with the goal of depressing the toll.
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Similarly, under a slot-sale regime, the airport authority might take a trial-and-error approach

in setting the slot price, encouraging the airlines to view the price as endogenous and thus

subject to manipulation. The same incentive might arise under a slot-trading regime. If such

manipulative behavior occurs, then the results of the present analysis are not strictly relevant,

calling into question their usefulness as a guide for public policy. However, if the extent of

manipulation is “small,” then the results may still have some practical value. Whatever view of

carrier behavior is correct, the urgency of the airport congestion problem makes any analysis of

price-based remedies, including one based on standard Pigouvian assumptions, a high-priority

undertaking.

Slot auctions are the final focus of the analysis. The discussion assumes that slots are

allocated via a uniform-price, multi-unit auction, and in keeping with the non-manipulative

behavior assumed in the prior analysis, strategic bidding is ruled out, with carriers assumed to

make bids based on their true valuations of slots. This assumption, while strongly at variance

with the huge auction literature, may provide an approximation to the actual outcome under

a slot auction. The analysis shows that, without strategic behavior, the auction generates the

same efficient outcome as the slot-trading regime.

The plan of the paper is as follows. Section 2 characterizes the social optimum and the

laissez-faire equilibrium, where partially uninternalized congestion leads to an excessive total

flight volume, and derives the congestion tolls required to support the optimum. Section 3 an-

alyzes the slot-sale regime, providing numerical examples to supplement the analytical results,

and then analyzes the slot-trading regime and a slot auction. Section 4 offers conclusions.

2. Basic Analysis

2.1. The setup

The analysis focuses on a single congested airport served by two airlines, denoted 1 and 2,

who interact in Cournot fashion. Following Pels and Verhoef (2004), the model combines the

peak and offpeak periods from Brueckner’s (2002) analysis into a single congested period, an

assumption that rules out reallocation of traffic between periods as a response to price-based

congestion remedies. While the airlines experience common congestion, they are assumed
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to serve separate markets out of the congested airport, thus charging different fares. This

assumption serves to generate asymmetry between the carriers, a crucial component of the

ensuing analysis.

In order to maintain the simplest possible focus on the congestion phenomenon, the analysis

suppresses the market-power element found in many previous models, including Verhoef (2008).

In these models, a reduction in a carrier’s flight volume reduces the level of airport congestion

while also raising fares through a standard market-power effect. As a result, airline choices

involve both the exploitation of market power and the desire to limit congestion. To focus

solely on the congestion issue, market power is eliminated from the model by assuming that

carriers face perfectly elastic demands for air travel.6

Accordingly, it is assumed that the passengers of airlines 1 and 2 are willing to pay fixed

“full prices” of p1 and p2 for travel in and out of the congested airport, reflecting horizontal

demand curves in the two markets. Airline 1 is assumed to serve the higher-price market,

so that p1 ≥ p2. Since passengers dislike airport congestion, which imposes additional time

costs, the actual fares that the airlines charge must be discounted below these full prices.7 To

derive the discount, let f1 and f2 denote flight volumes for the two carriers, and let t(f1 + f2)

denote the extra time cost per passenger due to congestion and the resulting delays, a cost

that depends on total flights at the congested airport. The function t satisfies t(0) = 0, t′ ≥ 0

(equality may hold over a range of low traffic levels), and t′′ ≥ 0 over the function’s positive

range. Taking account of passenger congestion cost, airline 1 is then able to charge a fare equal

to p1 − t(f1 + f2), with airline 2 charging p2 − t(f1 + f2). When congestion cost is added to

these fares, the resulting full prices are p1 and p2.

Letting s denoted the fixed seat capacity of an aircraft and assuming that all seats are

filled, the total number of seats sold by carrier i is sfi, i = 1, 2. For simplicity, s is normalized

to unity, so that revenue for airline i is

[pi − t(f1 + f2)]fi, i = 1, 2. (1)

Note that, with the normalization of s, pi becomes the full price per flight.

6



In addition to raising passenger time cost, airport congestion raises an airline’s operating

cost by g(f1 + f2) for each flight. Like t(·), the function g satisfies g(0) = 0 and g′, g′′ ≥ 0.

An airline also incurs operating costs per flight that depend on its own flight volume but are

unrelated to airport-level congestion. These costs, given by τ (f1) and τ (f2), are assumed to

increase with a carrier’s flight volume, reflecting decreasing returns to scale (τ ′ > 0, τ ′′ ≥ 0

hold along with τ (0) > 0).

While the analogous τ function in Brueckner and Van Dender (2008), Verhoef and Pels

(2004), and Verhoef (2008) is constant, reflecting constant returns to scale (a constant cost

per flight), the assumption of decreasing returns is needed to generate sensible results in the

presence of perfectly elastic demands when full prices differ across carriers. If the cost per

flight were instead constant, the social optimum would involve a degenerate solution in which

only the carrier serving the high-price market operates. Decreasing returns may, in any case,

be a plausible assumption for a carrier operating at a congested airport. While intense use of

runways and other airport infrastructure used jointly by both carriers is the source of airport

congestion (an effect captured by the t(·) and g(·) functions), a busy airport will also have

intense usage of carrier-specific facilities such as gates and baggage systems (captured by τ (·)).

Such usage may well be subject to decreasing returns at high levels.

Using the above functions, total costs for the two airlines are given by [τ (f1)+g(f1 +f2)]f1

and [τ (f2) + g(f1 + f2)]f2. Airline 1’s profits can then be written

π1 = [p − t(f1 + f2)]f1 − [τ (f1) + g(f1 + f2)]f1 (2)

and rewritten as

π1 = [p − τ (f1)]f1 − c(f1 + f2)f1 (3)

where

c(f1 + f2) ≡ t(f1 + f2) + g(f1 + f2) (4)

gives passenger plus airline congestion cost per flight (note that t is multiplied by s = 1).

Given the properties of the t and g functions, c(0) = 0 holds and c ′ > 0, c ′′ ≥ 0. Analogously,
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carrier 2’s profit is given by

π2 = [p − τ (f2)]f2 − c(f1 + f2)f2. (5)

2.2. Social optimum

Consider first the social optimum. With perfectly elastic demands, consumer surplus is

zero, which means that the social optimum maximizes the combined profits of the carriers.

After adding the profit expressions in (3) and (5), differentiation with respect to f1 and f2

yields the first-order conditions

p1 − τ (f1) − f1τ
′(f1) − c(f1 + f2) − (f1 + f2)c

′(f1 + f2) = 0 (6)

p2 − τ (f2) − f2τ
′(f2) − c(f1 + f2) − (f1 + f2)c

′(f1 + f2) = 0. (7)

Computation of the Hessian determinant of total profit shows that satisfaction of the second-

order condition is not guaranteed and must be assumed.8

From (6) and (7), a carrier’s flight volume is optimal when the full price pi per flight

equals the marginal social cost of a flight, which is given by τ + fiτ
′ + c plus the marginal

congestion damage from an extra flight. This latter cost is computed taking into account the

congestion cost imposed on both carriers when an extra flight is operated. In particular, when

f1 is increased, passenger plus airline congestion costs for airline 1 (given by f1c) increases by

c + f1c
′, while these costs for airline 2 (given by cf2) increase by f2c

′. The sum of the terms

involving c ′, equal to (f1 + f2)c
′(f1 + f2) ≡ MCD, gives the marginal congestion damage from

an extra flight.

Inspection of (6) and (7) shows that airline 1, which serves the high-price market, operates

more flights than airline 2 at the optimum. Denoting the social optimally values with an

asterisk, f∗

1
> f∗

2
then holds. This conclusion follows because τ (f) + fτ ′(f) is increasing in f

under the maintained assumptions, implying that f1 > f2 must hold for both (6) and (7) to

be satisfied given p1 > p2. For future reference, let q = f1 + f2 denote the total flight volume,

and let q∗ = f∗

1
+ f∗

2
denote its optimal value.
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2.3. The laissez-faire equilibrium and congestion tolls

Consider next the laissez-faire equilibrium. Each airline, behaving in Cournot fashion,

maximizes profit viewing the other airline’s flight volume as fixed, yielding the first-order

conditions

p1 − τ (f1) − f1τ
′(f1) − c(f1 + f2) − f1c

′(f1 + f2) = 0 (8)

p2 − τ (f2) − f2τ
′(f2) − c(f1 + f2) − f2c

′(f1 + f2) = 0. (9)

The carriers’ second-order conditions are satisfied, and it is easily seen that (8) and (9) generate

downward-sloping reaction functions. Airline 1’s reaction function has a slope between −1 and

0 (f1 is on the vertical axis) and is thus flatter than 2’s function, which has a slope less than

−1. As a result, the laissez-faire equilibrium is unique and stable. As in the case of the social

optimum, f1 > f2 holds in the equilibrium.9

Focusing on airline 1, the difference between conditions (8) and (6) is the absence of f2c
′ in

the last term. This absence shows that, in scheduling an extra flight, airline 1 takes into account

the additional congestion costs imposed on its own flights (f1c
′), ignoring the congestion

imposed on airline 2 (f2c
′). Thus, while the airline internalizes some of the congestion from an

extra flight, it ignores the impact on the other carrier. Airline 2 behaves in analogous fashion.

With both carriers ignoring a portion of the congestion they create, the total flight volume

in the laissez-faire equilibrium is excessive relative to the social optimum. This conclusion

follows from noting that the locii generated by (8) and (9) in (f2, f1) space, whose intersection

determines the optimum, are both lower than the reaction functions generated by (6) and (7), a

consequence of the larger multiplicative factor in the last term. As result, the socially optimal

point must lie below both reaction functions. This conclusion in turn implies that the optimum

lies below the line where f1 + f2 is constant at the equilibrium level, a line that lies between

the reaction functions on either side of the equilibrium (it passes through the equilibrium point

and has a slope of −1). However, even though the socially optimal point must lie below this

line (yielding a smaller flight total), both individual flight volumes need not be smaller than

the equilibrium levels, as would occur in the symmetric case. For example, the socially optimal
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point could lie to the northwest of the equilibrium (making f1 larger and f2 smaller than the

equilibrium levels). A location to the southwest of the equilibrium is ensured if the degree

of asymmetry between the carriers (the difference between p1 and p2) is sufficiently small.10

Summarizing yields

Proposition 1. The laissez-faire equilibrium has a larger total flight volume than the
social optimum. If the degree of carrier asymmetry is small, flight volumes for the two
carriers are individually larger than the optimal levels.

The divergence between the laissez-faire equilibrium and the optimum can be eliminated

by imposition of congestion tolls. The toll per flight is equal to that portion of the congestion

damage from an extra flight not internalized by a carrier. The toll is thus equal to f2c
′ for

carrier 1 and f1c
′ for carrier 2, with both expressions evaluated at the optimum. Thus, the

tolls are given by

T1 = f∗

2 c ′(f∗

1 + f∗

2 ) = (1 − φ)(f∗

1 + f∗

2 )c ′(f∗

1 + f∗

2 ) = (1 − φ)MCD∗ (10)

T2 = f∗

1 c ′(f∗

1 + f∗

2 ) = φ(f∗

1 + f∗

2 )c ′(f∗

1 + f∗

2 ) = φMCD∗ (11)

where

φ ≡
f∗

1

f∗

1
+ f∗

2

>
1

2
(12)

is airline 1’s airport flight share and MCD∗ is marginal congestion damage, both evaluated at

the optimum. With imposition of these tolls, f1T1 and f2T2 are subtracted from the profit

expressions in (3) and (5). Assuming that the carriers view the tolls as parametric, as discussed

in the introduction, T1 and T2 are then subtracted from the expressions in the airline first-order

conditions (8) and (9), and the solutions to these modified conditions coincide with the social

optimum.

The key feature of the toll structure is that, because of airline 1’s higher flight share, it

pays a lower toll than airline 2. In other words, T1 = (1 − φ)MCD∗ < φMCD∗ = T2. The

reason is that, since airline 1 has more flights, it internalizes more of the congestion damage
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from its operation of an extra flight than does airline 2. Since less congestion damage then

goes uninternalized, airline 1 can be charged a lower toll. While this toll pattern is required for

efficiency, the inverse association between a carrier’s size and the toll it pays would generate

controversy and political opposition from smaller carriers.

3. Slot-Based Regimes

3.1. The slot-sale regime

Alternate price-based approaches to reducing congestion rely on airport slots, with carriers

needing to acquire a slot for each flight operated at the airport. Under one approach, the airport

authority sells slots, allowing carriers to purchase as many as they wish at an announced price.

This slot price is set by the authority to generate the desired total flight volume, and as

discussed above, both carriers treat the price as parametric.

Let z denote the price of a slot and n denote airport authority’s target flight volume.

Then, since the terms f1z and f2z are subtracted from the profit expressions in (3) and (5),

the slot-sale regime’s equilibrium is characterized by the following conditions:

p1 − τ (f1) − f1τ
′(f1) − c(f1 + f2) − f1c

′(f1 + f2) = z (13)

p2 − τ (f2) − f2τ
′(f2) − c(f1 + f2) − f2c

′(f1 + f2) = z. (14)

f1 + f2 = n. (15)

Eqs. (13) and (14) are the carriers’ first-order conditions, while (15) indicates that total slot

purchases (equal to the total flight volume) equals the target level n. Note that (13) and (14)

differ from the laissez-faire conditions (8) and (9) only in the appearance of z (rather than

zero) on the RHS.

The equilibrium conditions in (13)–(15) generate solutions for f1, f2, and z conditional on

n. Let the flight-volume solutions be denoted f1(n) and f2(n). As before, f1(n) > f2(n) holds,

so that carrier 1 operates more flights than carrier 2 for any given n.

Taking into account the dependence of f1 and f2 on the number of slots sold, a welfare-

maximizing airport authority would select n in an optimal fashion, with the goal of maximizing
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total airline profit. The resulting n, denoted n̂, generates the second-best social optimum,

conditional on use of the slot-sale regime. The corresponding second-best optimal f1 and f2

values are denoted f̂1 ≡ f1(n̂) and f̂2 ≡ f2(n̂). The conditions characterizing n̂ are developed

below.

When carriers are asymmetric, the slot-sale regime is inefficient, as can be seen by con-

trasting (13) and (14) with the analogous conditions for the toll regime. Under that regime,

z in (13) is replaced by T1 and z in (14) is replaced by T2. Since these tolls have different

magnitudes, whereas carriers pay a common slot price, a slot-sale regime will not be able to

generate the social optimum. By not taking into account airline 1’s greater internalization of

congestion, a slot-sale regime will tend to penalize airline 1 too much and airline 2 not enough

for the congestion they create. Thus, the regime will tend to make the flight volume too small

for the large carrier and too large for the small carrier.

Whether these tendencies end up making f̂1 smaller and f̂2 larger than the first-best optimal

values f∗

1
and f∗

2
depends on the relationship between n̂, the optimal number of slots sold, and

q∗, the socially optimal total flight volume. As will become clear below, the relationship

between n̂ and q∗ is ambiguous in general. If n̂ happens to equal q∗, then the above tendencies

will indeed make f̂1 too small and f̂2 too large under the slot-sale regime. But when n̂ 6= q∗,

these relationships could be disrupted. For example, if n̂ ≥ q∗, then airline 2’s insufficient

congestion penalty combined with an excessive total number of flights will again make f̂2 too

large. But with the flight total excessive, airline 1’s overly severe congestion penalty could lead

to an f̂1 value that is either larger or smaller than f∗

1
. A formal statement is as follows:

Proposition 2. If n̂ ≤ q∗, so that the optimal number of slots sold is less than or

equal to the socially optimal total flight volume, then f̂1 < f∗

1
, implying that the larger

carrier operates too few flights, while f̂2 > (<) f∗

2
. If n̂ ≥ q∗ holds, then f̂2 > f∗

2
, so

that the smaller carrier operates too many flights, while f̂1 > (<) f∗

1
. Combining this

information, n̂ = q∗ implies f∗

1
> f̂1 > f̂2 > f∗

2
, so that the slot-sale regime inefficiently

narrows the difference between the flight volumes of the large and small carriers.

The proposition thus shows that at least one of the inequalities f̂1 < f∗

1
and f̂2 > f∗

2
must

hold, providing a partial characterization of the slot-sale regime’s inefficiency.
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To establish these results, first note that, after combining (8) and (9) and eliminating f2,

q∗ and f∗

1
must satisfy

p1 − τ (f∗

1 ) − f∗

1 τ ′(f∗

1 ) = p2 − τ (q∗ − f∗

1 ) − (q∗ − f∗

1 )τ ′(q∗ − f∗

1 ). (16)

Similarly, after combining (13) and (14), n̂ and f̂1 must satisfy

p1 − τ (f̂1) − f̂1τ
′(f̂1) = p2 − τ (n̂− f̂1) − (n̂ − f̂1)τ

′(n̂ − f̂1) + (f̂1 − f̂2)c
′(n̂)

> p2 − τ (n̂− f̂1) − (n̂ − f̂1)τ
′(n̂ − f̂1), (17)

where the inequality uses f̂1 > f̂2. Now suppose that n̂ ≤ q∗ holds while f̂1 ≥ f∗

1
. Since

τ (f) + fτ ′(f) is increasing in f , the LHS of (17) is then no larger than the LHS of (16).

Similarly, the last expression in (17) is then at least as large as the RHS of (16). But the

equality in (16) then implies that the last expression in (17) should be at least as large as

the LHS expression, and the resulting contradiction establishes that f̂1 < f∗

1
must hold when

n̂ ≤ q∗. The remainder of Proposition 2 is proved in similar fashion.

3.2. Choosing the optimal n

As seen in Proposition 2, whether the flight volumes of the individual carriers are too large

or too small under the slot-sale regime depends in part on the relationship between n̂ and q∗.

To investigate this relationship, the conditions determining the optimal number of slots sold

must be derived. The first step is to substitute the solutions f1(n) and f2(n) into the welfare

function, which equals total airline profit (net of slot purchases) plus the airport authority’s

slot revenue. Since slot revenue cancels, the objective function reduces to π1 + π2 and can be

written

W (n) = (p1 − τ [f1(n)])f1(n) + (p2 − τ [f2(n)])f2(n) − nc(n). (18)

The airport authority chooses n to maximize (18), and resulting the first-order condition is

[p1 − τ (f1) − f1τ
′(f1)]f

′

1 + [p2 − τ (f2) − f2τ
′(f2)](1 − f ′

1) = c(n) + nc ′(n), (19)
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where the n arguments of f1 and f2 are suppressed. Note that (19) requires a weighted

average of pi − τ (fi) − fiτ
′(fi), i = 1, 2, to equal the RHS expression, where the weights are

the derivatives f ′

1
and 1 − f ′

1
= f ′

2
.

To compute f ′

1
, (13) and (14) are combined, eliminating z, and f2 is eliminated using (15).

Total differentiation of the resulting condition yields

f ′

1(n) =
2τ ′(f2) + f2τ

′′(f2) + c ′(n) − (2f1 − n)c ′′(n)

2τ ′(f1) + f1τ ′′(f1) + 2τ ′(f2) + f2τ ′′(f2) + 2c ′(n)
, (20)

where n arguments on the RHS are again suppressed. Since f1(n) > f2(n), it follows that the

expression (2f1 − n)c ′′(n) in the numerator of (20) is nonnegative. Inspection of (20) then

establishes 0 < f ′

1
(n) < 1, as required for the weights in (19) to be positive.

The first-order condition (19) in conjunction with (20) yields n̂, the optimal value of n,

telling the airport authority the optimal number of slots to sell. Given the complexity of

(19) and (20), a general comparison of n̂ to the socially optimal flight volume q∗ appears to be

infeasible. However, a simple statement is available in a particular special case. This is the case

where the τ (·) and c(·) functions are linear, with τ (fi) ≡ θ + αfi and c(f1 + f2) ≡ β(f1 + f2).

In this case, the second derivatives in (20) are zero and f ′

1
= (2α + β)/(4α + 2β) = 1

2
. As a

result, the weighted averaging in (19) involves equal weights of one-half.

The implications of this fact for the relationship between n̂ and q∗ can be seen by adding

the social optimality conditions (6) and (7) and dividing by two, which yields (after inserting

asterisks)

[p1 − τ (f∗

1 ) − f1τ
′(f∗

1 )]/2 + [p2 − τ (f∗

2 ) − f∗

2 τ ′(f∗

2 )]/2 = c(q∗) + q∗c ′(q∗). (21)

With f ′

1
= 1

2
, it is clear that, aside from notation, (19) and (21) are the same condition.

Moreover, with linearity of τ , the LHS expression in (21) reduces to 1

2
(p1 + p2 − 2αq∗), while

the LHS expression in (19) is 1

2
(p1 + p2 − 2αn). With the individual flight volumes dropping

out, the two equations directly determine the optimal values of q and n, and the solutions are

the same, with n̂ = q∗. Summarizing yields
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Proposition 3. When operating and congestion costs per flight depend linearly on
flight volumes, the optimal number of slots n̂ sold under a slot-sale regime equals the

socially optimal flight volume q∗. As a result, f∗

1
> f̂1 > f̂2 > f∗

2
.

Making use of Proposition 2, Proposition 3 thus generates a full characterization of the in-

efficiency of the slot-sale regime. Explicit solutions for the linear case are presented in the

appendix.

A final question concerns the magnitude of the slot price z. Substituting (13) and (14)

into (19) and rearranging yields

z = [(1 − f ′

1)f1 + f ′

1f2]c
′(n). (22)

Thus, the slot price equals a weighted average of the flight volumes times marginal congestion

cost, although the weights are reversed from (19). With linearity and the weights thus equal

to one-half, (22) reduces to z = nc ′(n)/2, and since n̂ = q∗, the slot price associated with

n̂ is ẑ = 1

2
MCD∗. Recall that the optimal tolls for carriers 1 and 2 are respectively smaller

and larger than this value (see (10) and (11)). However, ẑ is equal to the average of the two

optimal tolls.

3.3. Numerical examples

Since further general analysis of the difference between the slot-sale and toll regimes is not

feasible, this section presents numerical examples to determine whether some of the patterns

seen with linear cost functions persist under nonlinearity. Consideration of two examples is

sufficient to establish several points. In the examples, τ (fi) ≡ θ + 4f4

i
and c(f1 + f2) ≡

4(f1 + f2)
4. While variation in the multiplicative constants in these functions (which are

arbitrarily set equal to the quartic exponents) has little qualitative effect, use of quadratic

rather than quartic functions generates an insufficient degree of decreasing returns unless the

multiplicative constants are very large.

Table 1 shows numerical results in two cases with different values of pi − θ. In the first

case, p1 − θ = 9 and p2 − θ = 5, while in the second case p1 − θ equals 7 instead of 9. Starting

with a comparison between q values, the upper panel shows that n̂ < q∗ holds when p1 − θ
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is high, with the reverse inequality holding in the second panel where p1 − θ is lower (the

values are close in each case, however). This reversal shows that optimal number of slots sold

may be either larger or smaller than the socially optimal flight volume, with the linear case

representing a particular instance where the two values are equal.

In each panel, comparison of the flight volumes reveals a relationship seen in the linear

case. In both cases, the difference between f1 and f2 is narrower under the slot-sale regime

than under the toll regime, with f1 smaller and f2 larger than the respective socially optimal

values. This tendency may therefore be fairly general, holding under a variety of functional

specifications.

Table 1 also shows the laissez-faire equilibrium, illustrating its excessive total flight volume

and lower welfare level. Note that slot-sale regime achieves around 70 to 75 percent of the

welfare gain generated by the first-best toll regime. Observe also that, in both cases, the

socially optimal f1 is larger than the equilibrium level, with the opposite relationship holding

for f2. Thus, the social optimum lies to the northwest of the equilibrium point, a possibility

recognized in the earlier discussion. Additional computations confirm that a more-natural

southwesterly location for the optimum (with both flight volumes smaller than the equilibrium

levels) arises when the difference between p1 and p2 is sufficiently small.

The numerical results highlight the main source of inefficiency of a slot-sale regime relative

to a toll regime: its tendency to overpenalize large carriers, whose high internalization of

congestion is not taken into account, while underpenalizing small carriers. As long as the

total flight volumes are not too different under both regimes, as in the present examples, this

tendency will generate flight volumes that are smaller than optimal for large carriers and larger

than optimal for small carriers.

3.4. When is the slot-sale regime efficient?

Although the results have given a negative picture of the efficiency of slot sales, such a

regime is efficient under some circumstances. One such case is where carriers are symmetric,

with p1 = p2. Since each carrier pays the same toll under symmetry, the slot-sale regime

(with its common price) can perfectly replicate the toll regime and thus generate the first-best

optimum.11
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Slot sales are also efficient when carriers do not internalize congestion, behavior that Daniel

(1995) and Daniel and Harback (2008) view as realistic. They argue that, when a Stackel-

berg leader interacts with competitive-fringe airlines, the offsetting behavior of these carriers

(which increase their flights in one-for-one fashion as the leader reduces its flights) eliminates

that carrier’s incentive to take account of self-imposed congestion. To incorporate such be-

havior, suppose that both carriers, despite their nonatomistic sizes, treat airport congestion as

parametric, ignoring the fact that the c(·) function depends on both flight volumes.12

With congestion viewed as parametric, the terms containing c ′ on the LHS of the laissez-

faire conditions (8) and (9) vanish. The tolls required to generate the optimum are then the

same across carriers and equal to q∗c ′(q∗) = MCD∗, so that each carrier is charged for the

full congestion damage done by an extra flight (including the damage done to its existing

flights). Since tolls are uniform even though carriers are asymmetric, a slot-sale regime can

again generate the social optimum.13

Summarizing yields

Proposition 4. A slot-sale regime is efficient when (i) carriers do not internalize
congestion or (ii) carriers internalize congestion but are symmetric, with p1 = p2. To
achieve the first-best optimum, the airport authority sets n̂ equal to the relevant q∗

value.

3.5. Slot trading

Instead of slot sales, consider now a slot-trading regime, where the airport authority dis-

tributes slots free of charge to the carriers, who then trade them at a mutually agreed price

in order to adjust flight volumes (this setup, also known as a secondary market, follows Ver-

hoef (2008)). Let n1 and n2 denote the numbers of slots allocated to the two carriers, with

n1 + n2 = n. Letting w denote the price at which the carriers agree to trade slots, profits for

carriers 1 and 2 are now equal to

π1 = [p − τ (f1)]f1 − c(n)f1 − w(f1 − n1) (23)

π2 = [p − τ (f2)]f2 − c(n)f2 − w(f2 − n2). (24)
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Several features of these expressions deserve note. First, if fi > ni, then carrier i is a buyer

of slots and makes an outlay of w(fi − ni) > 0, while fi < ni means that the carrier is a slot

seller, earning revenues equal to the negative of the previous expression. Second, because a

carrier understands that total flight volume remains constant when it trades a slot with the

other carrier, the f1 + f2 argument of the congestion-cost function c remains constant at n,

the fixed slot total.

The equilibrium conditions for slot trading are

p1 − τ (f1) − f1τ
′(f1) − c(n) = w (25)

p2 − τ (f2) − f2τ
′(f2) − c(n) = w (26)

f1 + f2 = n. (27)

The first two conditions determine a carrier’s desired flight volume (and thus the magnitude

of its slot purchase or sale) when faced with the price w, while (27) says that the slot trades

balance. This requirement implies f1 − n1 = −(f2 − n2), which reduces to (27).

The key implication of (25) and (26) is that the expressions pi − τ (fi) − fiτ
′(fi), i = 1, 2,

are set equal to a common value. Since this same property holds at the social optimum (see (6)

and (7)), slot trading is potentially efficient. The pi − τ (fi)− fiτ
′(fi) expressions, by contrast,

do not assume a common value in the slot-sale equilibrium (see (13) and (14)). The reason is

that those equations include airline-specific congestion impacts (the fic
′ terms), a feature that

accounts for the inefficient distortion of individual flight volumes. With total flights (and thus

congestion) perceived as fixed under slot trading, these impacts are absent in (25) and (26).

To generate an efficient outcome under slot trading, the airport authority sets n, the

number of slots distributed, equal to q∗, the socially optimal flight volume, and distributes

the slots in some arbitrary fashion to the carriers. Then, it is easily seen that the solution to

(25)–(27) has f1 = f∗

1
, f2 = f∗

2
and w = q∗c ′(q∗) = MCD∗. This conclusion follows because

(25) and (26) are then identical to the conditions (6) and (7) evaluated at the social optimum.

Summarizing yields
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Proposition 5. The slot-trading regime is efficient. To reach the social optimum, the
airport authority distributes q∗ slots to the carriers and allows them to trade.

Observe that the equilibrium price for slots equals the atomistic congestion toll, MCD∗,

which was seen to be relevant in the absence of internalization. By contrast, the equilibrium

value for the price z under a slot-sale regime was half as large (1

2
MCD∗) in the linear case.

Note also that the optimality of slot trading is independent of the distribution of slots to the

carriers. That distribution affects equilibrium profit levels but not the chosen flight volumes.

While much of the previous analysis generalizes naturally to a model with more than two

carriers, the generalization of the slot-trading setup requires some discussion. When more than

two carriers are present, bilateral trading would be replaced by a clearing house for slots, a

structure similar to a slot-sale regime except that slots could be sold as well as bought. The

airport authority (or other market maker) would adjust the price w until slot purchases and

sales are equal. The essential behavioral difference between this setup and the slot-sale regime

is the carriers’ recognition that, regardless of their choices, the total flight volume is fixed at a

value equal to the total number of slots distributed. As seen above, this recognition is the key

to the efficiency of the slot-trading regime.

One could ask whether the same recognition might apply under the slot-sale regime. In

other words, carriers might understand that the airport authority sets the slot price to achieve

a target total flight volume, thereby viewing total flights as fixed. Even though this view might

be appealing, it is not logically defensible given the rules governing slot sales. To view total

flights as fixed, carrier 1 must anticipate that carrier 2 would reduce its flights on a one-for-one

basis in response to its own slot purchases. While this view is correct when slots are traded,

it is untenable in the context of sale regime, where carriers are free to purchase as many slots

as they wish.

3.6. Slot auctions

Consider now an auction system as a means of allocating slots. Since a large number slots

must be allocated, a multi-unit auction is the appropriate setup, and two variants exist. Under

a “pay-as-bid” multi-unit auction (analogous to a standard first-price auction), carriers offer
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unit-specific bids for slots, specifying different prices for first, second, and later slots requested.

The auctioneer then allocates a fixed slot supply to the highest bidders, making them pay their

winning bids. Since bidders trade off the surplus gain from a lower price against a smaller

chance of winning, the pay-as-bid system can elicit understatement of valuations. Under a

“uniform-price” auction, which is analogous to a second-price auction, the bidders with the

highest (unit-specific) bids again win slots, but they pay a common price equal to the highest

bid not accepted. Since, in the event of winning at least one slot, a carrier’s bids on later units

may set the price that is paid (potentially being the highest unaccepted bid), an incentive again

exists to understate the valuations of these later units. This latter conclusion is established

by Ausubel and Cramton (2002), and the useful survey by Burguet (2000) provides further

discussion.

Suppose that a uniform-price auction is used to allocate slots, and in keeping with the

maintained assumption of non-manipulative behavior on the part of the carriers, imagine that

strategic behavior is absent, so that carriers act on the basis of their true valuations for slots.

This assumption is strongly at variance with the usual auction modeling approach, but it

may yield a rough approximation to the actual outcome under a uniform-price auction while

facilitating a simple analysis.

As explained above, a carrier reports to the auctioneer a bid function giving its marginal

willingness-to-pay for incremental slots, and without strategic behavior, this function coincides

with actual marginal valuations. Carrier i thus reports a bid function equal to pi − τ (fi) −

fiτ
′(fi)− c(n), where n now represents the number of slots to be auctioned. Since this number

is announced in advance by the auctioneer, a carrier’s bid function treats total flights (and

thus the level of congestion) as fixed, as in the slot-trading regime.

Based on these bid functions, the auctioneer then sets a price y such that: carriers bidding

at least y for incremental slots receive them; a total of n slots is allocated. It is easy to see

that the resulting equilibrium conditions are identical to those from the sloting-trading regime,

being given by (25)–(27) with y in place of w. As a result, the previous argument establishing

efficiency of slot trading applies as well to a slot auction under the present assumptions,

yielding14
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Proposition 6. With non-strategic behavior, a uniform-price, multi-unit slot auction
is efficient. To reach the optimum, the airport authority auctions q∗ slots.

3.7. The effect of market power

In a closely related paper, Verhoef (2008) analyzes slot-based regimes when demand is

imperfectly elastic, allowing carriers to exercise market power. Uninternalized congestion again

tends to make flight volumes excessive, but carriers have a new incentive to limit their flight

volumes in order to raise fares. The net effect of these two distortions is ambiguous, so that

flight volumes in the laissez-faire equilibrium could either be too large or too small. Since

Verhoef (2008) assumes that, under the toll regime, the two distortions must be addressed

using a single toll instrument, the possibility of insufficient flight volumes means that optimal

tolls could be negative.15

In Verhoef’s model, two carriers serve the same market (facing a downward-sloping, linear

demand curve), and asymmetry between them is generated by a difference in costs. The τ (·)

function is constant in his model (yielding constant returns), the c(·) function is linear, and the

functions differ across carriers in a way that gives one carrier lower costs at any flight volume.

Given the assumed cost structure and service to a single market, the high-cost carrier does not

operate at the social optimum, an outcome that is supported by levying a positive toll on that

carrier. By contrast, the low-cost carrier faces a negative toll (receives a subsidy), which raises

its flight volume and corrects the market-power distortion. Note that uninternalized congestion

vanishes with the absence of the other carrier, making this the only distortion present.

As in the present analysis, a slot-sale regime eliminates the differentiation of tolls required

to support the social optimum. One consequence is that the high-cost carrier may operate

under the slot-sale regime rather than being forced out of business, an undesirable second-best

outcome. This pattern matches one of the conclusions of Proposition 3 (too large a flight

volume for the smaller carrier), although Verhoef is not able to state an equally clearcut result

given the greater complexity of his model. Nevertheless, the two papers offer a similar verdict

on slot sales by highlighting the inefficiency of a structure that imposes a common charge on

asymmetric carriers.
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Verhoef also analyzes slot trading and shows that the trading equilibrium efficiently removes

the high-cost carrier from the market. However, unless the airport authority can compel

the low-cost carrier to use all of the slots it ends up holding, the social optimum cannot be

generated. In other words, the authority can issue total slots equal to the socially optimal flight

volume, but the low-cost carrier, even though it ends up holding this many slots, can choose

instead the smaller flight volume corresponding the best monopoly output, leaving some slots

unused.

4. Conclusion

This paper has analyzed slot-based regimes for management of airport congestion, using a

model where airlines are asymmetric and internalize congestion. Under these circumstances,

optimal congestion tolls differ across carriers, and since a slot-sale regime (with its uniform slot

price) cannot duplicate this pattern, the equilibrium it generates is inefficient. Flight volumes

tend to be too low for large carriers and too high for small carriers. Under a slot-trading

regime, however, the distribution of a fixed number of slots causes carriers to treat total flight

volume (and thus congestion) as fixed, and this difference leads to an efficient outcome as long

as the number of slots is optimally chosen. A slot auction is efficient for the same reason.

All of these conclusions presume the absence of manipulative or strategic behavior on

the part of the carriers, a view that may be inaccurate. Nevertheless, the results provide a

benchmark for the evaluation of slot-based regimes, which may give an approximation to actual

outcomes under more-sophisticated behavior by the carriers. Other aspects of the model are

also highly stylized, but since the principles underlying the results would also emerge in more

detailed and realistic frameworks, the findings are likely to be highly robust.

A key lesson of the analysis is that a slot-trading regime, where slots are distributed to

the carriers and then traded through a clearing house, is equivalent to an efficient regime of

carrier-specific congestion tolls. Since such a toll regime is bound to be controversial given

that the tolls it generates are inversely related to carrier size, the analysis generates a clear

presumption in favor of the equivalent slot-trading regime. This conclusion is welcome, given

that trading already occurs at slot-constrained US airports, although at low volumes.16 To
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foster more-active trading, the current bilateral system should be replaced by a central clearing

house, and a slot purchase should confer clear property rights, replacing the current tenuous

arrangement in which slots are ultimately the property of the FAA (Whalen et al. (2007) stress

this point).

Although the analysis shows that a slot auction can also achieve efficiency, free distribution

of slots might be preferable given the beleaguered airline industry’s strenuous opposition to

new, cost-increasing charges. Slots could be allocated in proportion to current flight volumes,

and trading would occur when carriers seek to adjust these volumes. Hoarding of unused slots,

meant to deny airport access to a carrier’s competitors, could be prevented by “use-it-or-lose-

it” requirements, which are already in place. It might appear that new entrants (who hold

no slots) are disadvantaged under this system, but their status is no different from that of an

incumbent carrier seeking to increase its flight volume, which must purchase new slots to do

so.

Future work could relax some of the stylized assumptions of the model. One limitation

is the absence of any distinction between peak and off-peak periods, and if this feature were

added to the model, traffic reallocation between periods would occur in response to price-

based interventions. While a multi-period model like that of Brueckner (2002) involves greater

complexity, such a model would presumably generate results similar to those of the present

analysis, a conjecture that could be verified through additional research.

Another limitation of the analysis, mentioned in the introduction, is the assumption that

the airport authority has the necessary information (on carrier congestion costs and passenger

time values) for computing optimal congestion tolls or the optimal number of slots to auction

or to distribute under a slot-trading regime. While good estimates of the relevant parameters

are available, as seen in the carefully calibrated numerical models of Daniel (1995) and Daniel

and Harback (2008), it seems likely that actual implementation of price-based remedies would

involve much less precision, while also relying on iterative or trial-and-error procedures that

invite manipulation.17 Such implementation problems were illustrated by the recent contro-

versy over flight caps at the New York airports, where the carriers argued (possibly with some

justification) that FAA caps were much too tight.18 While these obstacles may make achieve-
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ment of the optimum difficult, conceptual clarity regarding the effects of price-based remedies

for airport congestion is nevertheless important, and this paper has attempted to provide it.
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Appendix

In the linear case, the optimal total flight volume (which equals the optimal number of

slots sold) is given by

q∗ = n̂ =
p1 + p2 − 2θ

2α + 4β
. (a1)

Note that positivity of this expression is ensured if the intercept θ of the τ function is smaller

than both of the full prices, a condition that is assumed to hold. Carrier 1’s flight volumes at

the optimum and under the slot-sale regime are given by

f∗

1 =
(p1 − θ)(α + β) − β(p2 − θ)

α(2α + 4β)
>

(8α + 10β)(p1 − θ) − 6β(p2 − θ)

(4α + 8β)(4α + 2β)
= f̂1, (a2)

where the inequality follows from some algebra. Since f∗

1
+ f∗

2
= f̂1 + f̂2, (a2) implies f∗

2
<

f̂2. Note that, although f∗

1
and f̂1 are both positive, positivity of f∗

2
and f̂2 (given by the

expressions in (a2) with p1 and p2 reversed) requires a sufficiently large value of α. This

fact shows the need for a sufficient degree of decreasing returns in order to generate interior

solutions.
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Table 1

Numerical Examples

Toll Slot Sale Laissez Faire

p1 − θ = 9
p2 − θ = 5

q, n 0.707105 0.694426 0.842159

f1 0.668742 0.550228 0.545672

f2 0.038363 0.144198 0.296488

W 4.96840 4.82512 4.49634

p1 − θ = 7
p2 − θ = 5

q, n 0.706804 0.708284 0.816954

f1 0.562943 0.458862 0.478234

f2 0.143861 0.249401 0.338720

W 3.72792 3.66090 3.46772
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Footnotes

∗I am indebted to Ami Glazer for very helpful suggestions and to Volodymyr Bilotkach,
Ricardo Flores-Fillol, and especially Ken Small for additional comments. Any shortcomings
in the paper, however, are my responsibility.

1Washington Reagan (National) Airport is also slot-constrained. See Gillen (2008) for a
discussion of the history of the slot system at these airports, and see Forsyth and Niemeier
(2008) for a good discussion of the economics of airport slots.

2Many European airports have slot systems, but while slot trading occurs in the UK, it is
illegal at other EU airports (see Gillen (2008)).

3Erik Verhoef and I began discussing slot-based remedies for congestion several years ago,
and he produced the main elements of a single-authored paper based on his preferred set of
assumptions, a paper recently finalized as Verhoef (2008). Meanwhile, I recognized that the
different approach of Brueckner and Van Dender (2008) could be applied fruitfully to the
problem, leading to the present paper. The paper owes a debt to the original discussions
with Verhoef, and it borrows directly from his treatment of slot trading, as explained further
below.

4See Pels and Verhoef (2004), Zhang and Zhang (2006), Basso and Zhang (2007), and Morrison
and Winston (2007). For an earlier contribution predating the analysis of internalization,
see Oum and Zhang (1990). For representative studies in the road-pricing literature, see
Small (1992) and Braid (1996).

5Brueckner (2002) and Mayer and Sinai (2003) provide evidence in favor of internalizing
behavior, while Daniel (1995) and Daniel and Harback (2008) provide contrary evidence
against it. A recent paper by Rupp (2008) provides additional negative evidence using an
extension of Mayer and Sinai’s methodology.

6Uncertainty regarding demand or costs is not present in the analysis. For an analysis of the
impact of uncertainty in an airport-congestion model, see Czerny (2008).

7See Forbes (2006) for empirical evidence that airport congestion reduces fares.

8A sufficient condition for positivity of the Hessian determinant is c ′′ ≡ 0. However, when τ
is a constant, the second-order condition fails, indicating that the optimum involves a corner
solution with f2 = 0.
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9Since p1 > p2 holds and τ (f)+fτ ′(f)+fc ′(q) is increasing in f holding q fixed, the f1 value
satisfying (8) must be larger than the f2 value satisfying (9).

10This conclusion follows by continuity from the symmetric case, where the carriers’ common
optimal flight volumes are smaller than the common equilibrium level.

11To generate the optimum, the airport authority sets n̂, the number of slots sold, equal to the
socially optimal flight volume, q∗ = 2f∗, where f∗ gives the carriers’ common optimal flight
volume (the value that satisfies (6) and (7) when p1 = p2). The equilibrium slot price z is
then equal to the common optimal congestion toll, 1

2
MCD∗ = q∗c ′(q∗)/2. These conclusions

follow from verifying that, when n̂ = q∗, the solution to (13)–(15) yields f1 = f2 = q∗/2
along with z = q∗c ′(q∗)/2.

12Brueckner and Van Dender (2008) show how the presumed non-internalizing behavior can
occur using a simple model like the present one, but where carrier 2 is viewed as a collection
of fringe airlines. However, to sustain the fringe’s competitive behavior, their model requires
constant returns to scale, with the τ (·) function taking a constant value. Although decreasing
returns in the present model precludes the use of Brueckner and Van Dender’s approach, the
effect of internalization’s absence can still be investigated by imposing such behavior in ad
hoc fashion, as described above.

13With the terms containing c ′ in the slot-sale first-order conditions (13) and (14) vanishing,
it is easily seen that the solution to (13)-(15) coincides with the social optimum when the
airport authority sets n̂ = q∗. The equilibrium slot price is equal to the optimal (uniform)
congestion toll, with ẑ = MCD∗. Note that Brueckner and Van Dender (2008) refer to this
toll as “atomistic” given that it would normally apply in a case where carriers are small
enough to ignore their influence on congestion. This smallness is not satisfied in the present
context; hence the ad hoc nature of the approach.

14Efficiency also obtains under a pay-as-bid auction.

15Another approach, suggested by Brueckner (2005), is to correct the market-power distortion
through subidies paid at the level of the city-pair market (which can vary according to the
extent of market competition) combined with congestion tolls levied at the airport level.

16Kasper (2008) stresses the overall virtues of a slot-trading regime (a secondary market)
relative to congestion pricing.

17Johnson and Savage (2006) provide “back-of-the-envelope” toll calculations applied to O’Hare
Airport, showing that even simple methods can be useful.
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18See Schofield (2007).
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