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Outline
• Development of CF8C-Plus

− Materials Needs: Cost Effective Performance
− Engineered Microstructure Approach
− Casting Considerations

• Creep Behavior
− CF8C vs. CF8C-Plus
− Compared with Alloys of Interest

• Additional Mechanical Properties
• Current and Future Commercial Interest
• Additional Alloy Modifications 
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Materials Needs
• Increased Efficiency of Diesel 

Engines = Higher Exhaust 
Temperatures
− Load at Temperature: Creep
− Start-up/Shut-down: Fatigue
− Oxidation

• CRADA between ORNL & CAT
− Unacceptable failure rate 

anticipated by CAT for SiMo
Cast Iron applications

− Evaluate New Cast Materials for 
Diesel Exhaust Manifolds, 
Turbo-charger housings, and 
turbine casings

− Cast Stainless Alloy 
Development

Turbo 
Bridge 
Failure
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Materials Needs: High Performance Low-Cost 
Alloy is needed to Replace SiMo Cast Iron

Some Candidate Alloy Compositions (wt%)Some Candidate Alloy Compositions (wt%)
• SiMo Cast Iron: Fe-3.45C-4Si-0.6Mo-0.3Mn
• CF8C: Fe-19Cr-10Ni-0.07C-1.0Nb-0.7Mn-1Si
• CN-12: Fe-25Cr-13Ni-0.4C-1Mn-1.7Nb-0.3N-0.15S
• Ni-Resist: Fe-2Cr-35Ni-0.5Mn-5Si-1.9C
• Hitachi 20/20 – Fe-20Cr-20Ni-0.45C-2Nb-3W-1Mn-0.6Si-0.15S

Improving the properties of 
less expensive alloys 
without the costly addition 
of Ni offered the best 
opportunity

CF8C-Plus = Best Results
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Engineered Microstructure Approach
• Austenitic Alloy Design is based on achieving 

desired microstructure for High-Temperature 
Strength and Stability

• Additions made using ‘alloying rules’ developed 
using 30+ years of experience at ORNL
− Reactant, Catalytic, Inhibitor, and Interference Effects

• Started with base CF8C composition (wrought 
equivalent = 347 stainless steel)

• Desired microstructure and properties were 
produced during the 1st year of development

• 500 lb (1100kg) Commercial trials began during 2nd

year 
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Mn and N Additions can improve CF8C 
Austenite Stability

• Large Costly Additions of Ni are NOT needed for fully 
austenitic stainless steel

• CF8C = 15% Delta Ferrite, CF8C-Plus = 0% Delta Ferrite
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Detrimental Phases can be avoided
• CF8C

− Delta (δ) ferrite Aging 
Sigma (σ) Phase
• Loss of Ductility & 

Toughness
• Weakened Grain 

Boundaries
− Large Residual Carbides

(Optical metallography, polished and etched)

50 μm

As-cast

NbC

FeCr delta-ferrite

50 μm

As-cast

NbC + Cr23C6

• CF8C-Plus
− No δ-ferrite
− Strong Grain Boundaries 

(mix of MC and M23C6
carbides)

− Fine stable MC carbide 
precipitate early during aging

CF8C CF8C-Plus 
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Nano-scale Carbide Strengthening
• CF8C-Plus Has “Super” Creep Resistance at 

850oC Because Abundant, Stable Nano-Scale NbC 
Pin Dislocations

Commercial, Standard CF8C

(TEM, as cast)

500 nm

Creep Tested 850°C/500 h

NbC

CF8C-Plus

500 nm

Creep Tested 850°C/23,000 h

NbC
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Additional Casting Considerations
• Melt Fluidity:

− CF8C has Si to improve fluidity
− CF8C-Plus has reduced Si, but Mn improves fluidity and shows as 

good or better melt fluidity compared to CF8C
• Hot Tearing:

− CF8C is susceptible to hot tearing
− No hot tears have been observed in any CF8C-Plus castings including 

components with cross sections ranging from 0.1” (2mm) to 9”
(220mm) thick

• Post-Casting Heat-Treatment
− CF8C is typically solution annealed after casting to homogenize 

structure
− CF8C-Plus shows the best properties in the as-cast condition = 

process cost reduction
• Machining

− Machining characteristics of CF8C-Plus are comparable to other 
austenitic alloys

• Welding
− All weld trials have been successful on CF8C-Plus using commercially 

available weld fillers



Metals and Ceramics Division               
Oak Ridge National Laboratory September 12, 2005      10

Typical Composition (wt%)
Cr Ni Fe Mn Mo Nb C Si Other

CF8C 19.0 10.0 Bal. <1 0.3 0.80 0.07 1.0

CF8C-Plus 19.0 12.5 Bal. 4.0 0.3 0.80 0.10 0.5 0.25N

SiMo Bal. 0.3 0.6 3.45 4.0

Ni-Resist 2.0 35.0 Bal. 0.5 1.90 5.0

SiMo Cast Iron = Current Alloy of Choice for 
Diesel Applications

NiResist = Austenitic Iron used in some 
applications in place of cast iron (good 
casting properties – many variants)
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CF8C-Plus has much greater creep strength  
compared to current materials and shows large 

improvements compared to CF8C
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CF8C-Plus has improved creep strength & ductility 
compared to CF8C
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Reasons for Creep Strength Improvement

• Fully Austenitic Structure
• Elimination of Deleterious Phases (sigma)
• N Solid Solution Strengthening
• Synergistic Effect of Mn and N

− Mn improves the solubility of N in austenite
− Mn and N alter MC carbide precipitate structure

• Stacking Fault – Partial Dislocation precipitation 
mechanism (Silcock and Tunstall)

• Rejection of Mn and N at NbC interface
• Solidification differences between CF8C and CF8C-

Plus
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CF8C-Plus shows improved Mechanical 
Properties compared to CF8C for:

• Yield Strength at Temperature
• Tensile Strength at Temperature
• Tensile Ductility at Temperature
• Low Cycle Fatigue Resistance at 650 to 850C
• Thermal-Mechanical Fatigue
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CF8C-Plus show a dramatic improvement over 
SiMo Cast Iron in Thermal Mechanical Fatigue 

(TMF)

TMF Tests at 300 - 760C, 50C/min, Out of Phase, Air
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CF8C-Plus shows improved Low-Cycle Fatigue 
(LCF) Resistance over CF8C

Low Cycle Fatigue (LCF) test results at 750 and 800C 
show CF8C-Plus approaches endurance limit at higher 
strain ranges 

Slow strain rate and creep-fatigue studies ongoing
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Commercial Interest Within CAT: Redesign 
and Replacement of SiMo Cast Iron

• Potential for use in turbocharger housings and exhaust 
manifolds across the board as emissions requirements lead to 
increased exhaust temperatures.

*Prototype Parts Being Produced
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Commercial Applications – Direct Replacement of 
NiResist for Natural Gas Reciprocating Engines at  

Reduced Cost (Cost of CF8C-Plus = 80% of NiResist)

80 lb (180kg) static sand-cast CF8C-Plus exhaust component 
cast by Stainless Foundry and Engineering, Inc.
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Solar Turbines Mercury 50 gas turbine 
application: CF8C Upgrade

6,700 lb (14,800 kg) CF8C-
Plus end-cover cast by 
MetalTek

Solar Turbines 4.6 MW 
Mercury 50 recuperated low 
NOx gas turbine engine
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Centrifugally cast  CF8C-Plus steel 
tubes for a global petrochemical 
company technology application

21,000 lbs (46,000kg) of Thin Wall Tubing Produced by MetalTek
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Commercialization Summary
• Good high temperature strength, castability, and cost are 

driving applications of CF8C-Plus inside and outside of 
Caterpillar

• Trial licensees: MetalTek International, Wollaston Alloys, 
and Stainless Foundry & Engineering

• Over 30,000 lb of CF8C-Plus steel have been melted to date 
− Static and centrifugal castings
− No Casting Defects or difficulties encountered
− Casting sizes/weights range from 0.5 to 7,000 lbs with thin and 

thick walls
• Additional Alloy Modifications are being examined to:

− Maximize Creep Strength: Cu and W
− Improve corrosion resistance in steam/water vapor

• Potential for High-Temperature Plant applications such as 
USC turbine casings
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Creep strength of CF8C-Plus compared to 
wrought austenitics and Ni-based alloys

Creep Strength and potential for further alloy modifications at low cost is 
driving additional interest including high-temperature plant applications
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