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Outline

e Development of CF8C-Plus
— Materials Needs: Cost Effective Performance
— Engineered Microstructure Approach
— Casting Considerations

e Creep Behavior
— CF8C vs. CF8C-Plus
— Compared with Alloys of Interest

e Additional Mechanical Properties
e Current and Future Commercial Interest
e Additional Alloy Modifications
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Materials Needs

e Increased Efficiency of Diesel
Engines = Higher Exhaust
Temperatures

— Load at Temperature: Creep
— Start-up/Shut-down: Fatigue
— Oxidation

e CRADA between ORNL & CAT

— Unacceptable failure rate
anticipated by CAT for SiMo
Cast Iron applications

— Evaluate New Cast Materials for
Diesel Exhaust Manifolds,
Turbo-charger housings, and
turbine casings

— Cast Stainless Alloy Turbo
Development Bridge
Failure
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Materials Needs: High Performance Low-Cost
Alloy Is needed to Replace SiMo Cast Iron

Some Candidate Alloy Compositions (wt%o)

e SiMo Cast Iron: Fe-3.45C-4Si-0.6Mo0-0.3Mn

e CF8C: Fe-19Cr-10Ni-0.07C-1.0Nb-0.7Mn-1Si

e CN-12: Fe-25Cr-13Ni-0.4C-1Mn-1.7Nb-0.3N-0.15S

e Ni-Resist: Fe-2Cr-35Ni-0.5Mn-5Si-1.9C

e Hitachi 20/20 — Fe-20Cr-20Ni-0.45C-2Nb-3W-1Mn-0.6Si-0.15S

Improving the properties of Nickel (LME), US$/lb.

less expensive alloys T
without the costly addition  sso -
of Ni offered the best |
opportunity 2.50
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Engineered Microstructure Approach

e Austenitic Alloy Design is based on achieving
desired microstructure for High-Temperature
Strength and Stability

e Additions made using ‘alloying rules’ developed
using 30+ years of experience at ORNL
— Reactant, Catalytic, Inhibitor, and Interference Effects

o Started with base CF8C composition (wrought
equivalent = 347 stainless steel)

e Desired microstructure and properties were
produced during the 1st year of development

e 500 Ib (1100kg) Commercial trials began during 2nd
year
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Mn and N Additions can improve CF8C
Austenite Stability
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e Large Costly Additions of Ni are NOT needed for fully
austenitic stainless steel

e CF8C =15% Delta Ferrite, CF8C-Plus = 0% Delta Ferrite
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Detrimental Phases can be avoided

e CF8C e CF8C-Plus
— Delta (3) ferrite > Aging > — No §-ferrite
Sigma (c) Phase — Strong Grain Boundaries

e Loss of Ductility & (mix of MC and M,;Cq

Toughness M=)
_ — Fine stable MC carbide

e \Weakened Gralin precipitate early during aging
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Nano-scale Carbide Strengthening

e CF8C-Plus Has “Super” Creep Resistance at
850°C Because Abundant, Stable Nano-Scale NbC
Pin Dislocations

Commercial, tgggard ‘CF8C

CF8C-Plus
Y S

Creep Tested 850°C/500 h (TEM, ascast)  Creep Tested 850°C/23,000 h
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Additional Casting Considerations

e Melt Fluidity:
— CF8C has Si to improve fluidity

— CF8C-Plus has reduced Si, but Mn improves fluidity and shows as
good or better melt fluidity compared to CF8C

e Hot Tearing:
— CF8C is susceptible to hot tearing

— No hot tears have been observed in any CF8C-Plus castings including
components with cross sections ranging from 0.1” (2mm) to 9”
(220mm) thick

e Post-Casting Heat-Treatment

— CF8C is typically solution annealed after casting to homogenize
structure

— CF8C-Plus shows the best properties in the as-cast condition =
process cost reduction
e Machining

— Machining characteristics of CF8C-Plus are comparable to other
austenitic alloys

e Welding

— All weld trials have been successful on CF8C-Plus using commercially
available weld fillers
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Typical Composition (wt%)

Cr Ni Fe Mn Mo Nb C Si Other
CF8C 19.0 10.0 Bal. <1 0.3 080 0.07 1.0
GESC-PlUus"“W1910 ~ ""12.50"*Bal G = 1°0 0538k 40,80+ 0RO Ofb 0.25N
SiMo Bal. 0.3 0.6 345 4.0
Ni-Resist 240, S-350m TBalw', 05 1.90 5.0

SiMo Cast Iron = Current Alloy of Choice for
Diesel Applications

NiResist = Austenitic Iron used in some
applications in place of cast iron (good
casting properties — many variants)
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CF8C-Plus has much greater creep strength
compared to current materials and shows large

Improvements compared to CF8C

Temperature (°C) for Rupture in 10,000 Hours
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CF8C-Plus has improved creep strength & ductility
compared to CF8C
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Creep-Rupture Ductility for CF8C and CF8C-Plus tested at
650 to 850C and 35 to 180 MPa
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Reasons for Creep Strength Improvement

e Fully Austenitic Structure
e Elimination of Deleterious Phases (sigma)
e N Solid Solution Strengthening

e Synergistic Effect of Mn and N
— Mn improves the solubility of N in austenite
— Mn and N alter MC carbide precipitate structure

e Stacking Fault — Partial Dislocation precipitation
mechanism (Silcock and Tunstall)

e Rejection of Mn and N at NbC interface
e Solidification differences between CF8C and CF8C-

Plus
Metals and Ceramics Division W e . ¢,
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CF8C-Plus shows improved Mechanical
Properties compared to CF8C for:

e Yield Strength at Temperature

e Tensile Strength at Temperature

e Tensile Ductility at Temperature

e Low Cycle Fatigue Resistance at 650 to 850C
e Thermal-Mechanical Fatigue
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CF8C-Plus show a dramatic improvement over
SiMo Cast Iron In Thermal Mechanical Fatigue

(TMF)

TMF Tests at 300 - 760C, 50C/min, Out of Phase, Air
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CF8C-Plus shows improved Low-Cycle Fatigue
(LCF) Resistance over CF8C
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Low Cycle Fatigue (LCF) test results at 750 and 800C
show CF8C-Plus approaches endurance limit at higher
strain ranges

Slow strain rate and creep-fatigue studies ongoing
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Commercial Interest Within CAT: Redesign
and Replacement of SiMo Cast Iron

e Potential for use in turbocharger housings and exhaust
manifolds across the board as emissions requirements lead to
Increased exhaust temperatures.

DE: ClZ-mnfd-ss-Tm

*Prototype Parts Being Produced
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Commercial Applications — Direct Replacement of
NiResist for Natural Gas Reciprocating Engines at
Reduced Cost (Cost of CF8C-Plus = 80% of NiResist)

80 Ib (180kgq) static sand-cast CF8C-Plus exhaust component
cast by Stainless Foundry and Engineering, Inc.
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Solar Turbines Mercury 50 gas turbine
application: CF8C Upgrade

Solar Turbines 4.6 MW il
Mercury 50 recuperated low 6,700 Ib (14,800 kg) CF8C-

NO, gas turbine engine Plus end-cover cast by
MetalTek
Metals and Ceramics Division b
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Centrifugally cast CF8C-Plus steel
tubes for a global petrochemical
company technology application

21,000 lbs (46,000kg) of Thin Wall Tubing Produced by MetalTek
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Commercialization Summary

e Good high temperature strength, castability, and cost are
driving applications of CF8C-Plus inside and outside of
Caterpillar

e Trial licensees: MetalTek International, Wollaston Alloys,
and Stainless Foundry & Engineering
e Over 30,000 Ib of CF8C-Plus steel have been melted to date
— Static and centrifugal castings
— No Casting Defects or difficulties encountered

— Casting sizes/weights range from 0.5 to 7,000 Ibs with thin and
thick walls

e Additional Alloy Modifications are being examined to:
— Maximize Creep Strength: Cu and W
— Improve corrosion resistance in steam/water vapor

Potential for High-Temperature Plant applications such as
USC turbine casings
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Creep strength of CF8C-Plus compared to
wrought austenitics and Ni-based alloys

TEMPERATURE (°C) FOR RUPTURE IN 100,000 HOURS

600 640 680 720 760 800 840
‘ ‘ ‘ T T T ‘ T T T ‘ T T T ‘ T T ‘
300 .. CF8C-Plus: Solid Diamonds
L CF8C-Plus+Cu/W: Cross
““&; .......... (Arrows indicate test in progress)
=, _ Alloy 617
0 Bk T
Q 60 | WA /
% R4 G Sl BN *- iy -t~
40 A
\
\
Super 304H
20 L | | | ‘ I | L | ‘ | | | L ‘ | | | | ‘ L | | | ‘ L L L | ‘ | L | L
21,000 22,000 23,000 24,000 25,000 26,000 27,000 28,000
LMP (C=20)

Creep Strength and potential for further alloy modifications at low cost is
driving additional interest including high-temperature plant applications
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