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Abstract

The topic of virtualization has received renewed attention.

Xen is a popular open source type-I hypervisor. The Xen hy-

pervisor currently has limited capabilities for runtime mod-

ification to the core hypervisor, which impairs research into

dynamic adaptation for system-level virtualization. This pa-

per discusses recent investigations into the feasibility of ex-

tending Xen to support runtime adaptation for core hypervi-

sor service, e.g., scheduler.

Categories and Subject Descriptors D.4 [Software]: Op-

erating Systems

General Terms Virtualization, Adaptation

Keywords Xen, Linux, Loadable modules

1. Introduction

The recent resurgence in virtualization has led to new

avenues of research leveraging virtual machine monitors

(VMM), also referred to as hypervisors. These hypervisors

provide the basic services needed to manage virtual ma-

chines (VMs) and in the case of Xen leverage existing host

operating systems (host OS) for device drivers, etc.

The Xen hypervisor [1] has gained much attention in re-

cent years. This interest is in part due to the fact that it is

open source and provides an avenue for research and exper-

imentation into system-level virtualization. However, Xen

provides no facilities for dynamic (run-time) adaptation of

the core hypervisor. That is to say, any changes to the hyper-

visor require a recompilation and reboot, which requires any

running VMs to be stopped and saved (check pointed).

The ability to perform dynamic adaptation of a running

hypervisor can be helpful for a number of reasons. Exam-

ples include, adding new mechanism/capabilities or simply

providing alternatives to existing services and policies, e.g.,
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the VM scheduler. These dynamic hypervisor modules also

can be beneficial during development phases where new ap-

proaches are prototyped and/or profiled, or simply for up-

grading portions of the system. Such an adaptation mecha-

nism has been implemented in the Linux kernel, via the dy-

namic management of kernel modules. This mechanism may

be used as a reference for the implementation of mechanisms

for dynamic hypervisor adaptation.

The remainder of this paper focuses on the aspects re-

lated to adding such a feature to Xen v3. We begin with

some general background material in Section 2 followed by

a brief discussion regarding the motivation for such a fea-

ture in Section 3. Then we outline some of the basic steps

involved and discuss some details based on Linux’s loadable

kernel modules in Section 4. In Section 5 we mention some

related work. Lastly, in Section 6 we mention future work

and provide concluding remarks.

2. Background

In a later section we discuss Linux’s loadable kernel mod-

ules. These modules are roughly analogous to the loading

of dynamic libraries in user-space applications. This section

will review a few of the details related to object files and

associated tools, which come in to play when providing run-

time alterations, i.e., system-level dynamic modules.

The Executable and Linkable Format (ELF) is a standard

for creating and interacting with object files in a portable

fashion [13]. The ELF file format is commonly used in

UNIX like systems – Linux uses ELF as does the Xen hy-

pervisor. The object file encodes the data and code for a pro-

gram, i.e., compilation of a high level language to a lower

level machine oriented format. The file is structured into sec-

tions or segments that are used by the linker (link editor) or

loader (dynamic loader), respectively.

There are three types of ELF object files [7, 13]: (i) relo-

catable, (ii) shared, and (iii) executable. The first two are in-

volved with program linking to different extents. They differ

in that relocatable object files provide data and code (sym-

bols) that can be used to create shared objects or executables



but shared object files are also shared libraries that can pro-

vide code for direct runtime execution. The shared object

files are used to dynamically load commonly used routines

at program load time (dynamic loader). Lastly, executable

object files are just as the name implies, those files that are

suitable for stand alone execution, i.e., all symbols have been

resolved, barring any shared objects that are loaded at run-

time [7, 13]. An example for the three ELF object types,

taken from Linux v2.6 system files: (i) relocatable – de-

vice driver module e100.ko1, (ii) shared – standard C li-

brary libc.so.6, and (iii) executable – uncompressed ker-

nel vmlinux.

As mentioned above the ELF files are used by the linker

and loader. The role of these two tools is quite similar and

basically involves the replacement of generic references to

the actual definitions (linker) and then the loading of the

data into memory for execution, which might involve relo-

cating reference as well (loader). In Figure 1, the basic lay-

out is shown for an executable ELF object file, e.g., Linux

kernel vmlinux. These sections (or segments when working

with loading) organize the various aspects of the object file

and ultimately are used to setup the process image upon ex-

ecution (see [13] for further details). The linker is typically

the final phase of compilation and is called ld. The loader is

used to resolve references2, e.g., to shared libraries, when-

ever the program is being loaded into memory for execution.

The loader is typically called ld.so or ld-linux.so under

Linux.

3. Motivation

The operating system provides services to applications and

manages available resources. What services and how the re-

sources are managed are key design decisions that influence

program execution. The ability to tailor an execution envi-

ronment to suite application needs can be done at many lev-

els but often these are fixed at compile time. One approach

to providing a customized environments is to support adap-

tation at the lowest levels. In the context of virtualized envi-

ronments this adaptation could take place at either the virtual

machine (guest OS) level or at the hypervisor level.

There are several approaches for achieving customization

and adaptation of operating systems and runtime environ-

ments [5]. The two main criteria identified by [5] for clas-

sifying these approaches to system-level customization are:

(i) initiator of the adaptation (e.g., human, application, OS),

and (ii) time of the adaptation (e.g., static: design, build, in-

stall, or dynamic: boot, runtime).

1 The kernel modules show as relocatable (REL) via readelf but details

from the Linux Kernel Mailing List (LKML) and other references [10] lead

us to believe they are a special form of a relocatable ELF binary with some

traits of shared binaries (ET DYN).
2 Due to this linkage editing during the image load, the loader is sometime

referred to as the “dynamic linker” or “dynamic loader”.
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Figure 1. ELF file layout with example content similar that

found in a Linux kernel image (based on [13] Figure 1-1)

Based on this taxonomy, the Xen hypervisor supports

static human initiated customization, i.e., change the code

manually, build, and boot. This is an acceptable level in

many cases but disallows the ability to do dynamic adapta-

tions at runtime, regardless of how they are initiated. There-

fore, in order to do experimentation of core hypervisor ser-

vices and policies at runtime some level of dynamic adapta-

tion is necessary. Otherwise, the entire state of the system,

running Virtual Machines, etc., must be stopped in order to

make even minor changes to the hypervisor. Additionally,

this capability would allow for basic runtime patching to the

hypervisor.

As observed by [12], in some instances system-level

adaptation may target improved execution time for an ap-

plication, where in other circumstances it may be more ap-

propriate to focus on things like fairness or responsiveness.

Having the capability to perform dynamic adaptation is the

first step toward more ambitious goals such as automatic

adaptation at runtime [5, 12].

This capability also provides a basic mechanism to en-

able customization for things like Quality of Service (QoS)

or Fault Tolerance (FT) policies without having to tear down

the execution environment. This could be beneficial for

changing workloads or even different phases within a par-

ticular application set. These capabilities may ultimately be

requested by the virtual machines which house the appli-

cations, but lower level services might need to change to

support such features, e.g., I/O schedulers or VMM by-pass

facilities.



Another motivation for runtime system-level changes is

to support profiling or debugging. The use of fine-grained

techniques like those employed by “KernInst” [11] allow for

changes to the machine code that splice (insert) jumps to

patches that can be used for dynamic instrumentation. This

can then be used to target specific functions for performance

reasons, diagnostic purposes, or possibly to specialize for a

given application (process).

Lastly, an argument could be made to simply provide al-

ternate capabilities into the hypervisor at compile time and

simply select from the available options at runtime. How-

ever, this limits the extent to which changes can be made and

eliminates the ability to do dynamic experimentation without

having to stop-rebuild-boot for each variation. This would

also increase the size of the hypervisor footprint and con-

sume more resources for potentially useless services. This

is unacceptable, especially in an HPC context, because you

need to keep the size of the hypervisor as small as possible

to limit the memory overhead.

A common example of system-level dynamic adapta-

tion is the loadable kernel modules found in systems like

Linux [5, 6]. In the next section we summarize the approach

taken by Linux, using it as a potential basis for adding such

functionality to Xen.

4. Dynamic Hypervisor Adaptation

Recently we began looking into the feasibility of adding dy-

namic adaptation to Xen. In order to gather a better grasp of

the techniques required to implement such functionality we

began with an investigation into the Linux modules facility.

Xen and Linux share a common binary format (ELF), and

Linux modules are simply relocatable ELF object files [2, 8].

This is an important factor because it forms the basis for

the executable memory image. Another reason we chose to

look at Linux is that it has supported some form of dynam-

ically loadable modules since Linux v1.0/1.2 [6, 9]. Also,

starting with v2.6 the entire modules system has been re-

implemented with most of the work being done directly in

the kernel [4, 6, 8].

4.1 Overview of the Linux Module Mechanism

The loading of a module begins with the user-space appli-

cation insmod, which attempts to install a given module

into the running kernel. There are more intelligent tools like

modprobe that are typically used to resolve module depen-

dencies but ultimately they use the same mechanisms to load

the module. Once the module file has been read the sys-

tem call init module is invoked, which attempts to load

the module into the running kernel. A rough outline of the

steps involved follow [8]:

1. allocate user-space buffer and fill with contents of relo-

catable ELF object (module file)

2. call init module()

3. enter kernel space, sys init module()

4. check permissions & do needed locking

5. call load module() to allocate space and copy data

from user-space to kernel-space. Setup symbols, relocate

references, exception table, update instruction cache, etc.

6. link module into list of available modules

7. free lock and notify system of newly loaded module

8. initialize newly loaded module

9. acquire lock and update module state (fully loaded)

10. remove any temporal storage and finalize module book

keeping

11. free lock and return

The general approach is similar to the process of the

standard linker and loading done at user space. However, in

this case the kernel module files are prepared in user space

using the standard GNU tool-chain. The build system creates

stub files that are combined with the module object files to

embedded additional data, e.g., module version information,

into the resulting binary kernel modules, i.e., *.ko [8, 10].

This approach helps to streamline the in-kernel dynamic

loader. For example, the exported symbols for the module

are added to a program defined section (“PROGBITS”), e.g.,

ksymtab, and/or ksymtab gpl [6, 8, 13].

There are hooks to tie the kernel symbol table to a /proc

entry that allow for simple access to the current address/symbol

mappings. This shows both the static kernel information as

well as all dynamic additions.

The approach taken by Linux to provide dynamic adapta-

tion is relatively straight forward, although the implementa-

tion is far from trivial, and is widely used. It enables a priv-

ileged user to add or remove data/code to a running operat-

ing system. Based on these ideas, it seems that a similar ap-

proach could be used in the Xen hypervisor. They share the

same object file format and some of the Linux implemen-

tation might be transferable to Xen. At this stage it seems

interesting and would provide a nice enhancement for Xen

adaptation efforts.

This capability would allow for experimentation with

alternate policies at the hypervisor level, which could be

adapted on the fly. For example, these mechanisms could be

used to investigate alternate scheduler policies for the virtual

machines.

Our investigations are just beginning but the current plans

are to begin to add basic support facilities, e.g., symbol

table and related routines for exporting symbols, etc. Then

experiment with switching between modules that are loaded

at boot time, to ensure proper operation before introducing

dynamic loading/linking. In parallel, we plan to investigate

how dynamic adaptation can be leveraged by the hypervisor

and to identify relevant candidates. Initially we plan to target



the Xen scheduler so that we can make changes at runtime

to the scheduling of virtual machines.

4.2 Loadable Hypervisor Modules

Here we will discuss some of the considerations and issues

involved with adding dynamic adaptation to the Xen hyper-

visor in the form of runtime loadable hypervisor modules.

To help structure the discussion we will consider the exam-

ple of using such a facility to perform runtime adaptation to

the Xen scheduler.

Xen Terminology A few comments regarding Xen termi-

nology. In Xen, domains house the guest virtual machines.

The first domain, domain0, is a special case that provides the

control interface to the hypervisor and is often referred to as

the host OS. Xen (hypervisor) and domain0 (host OS) inter-

act through published interfaces called hypercalls, which are

analogous to system calls in a traditional kernel. The hyper-

visor is responsible for allocating and then marshalling the

physical resources. For example, scheduling of multiple do-

mains (virtual machines) for access to the CPU and for coor-

dinating any privileged instructions they may perform. This

latter aspect is essential in order to maintain proper isolation

between domains.

Hypervisor Symbols The addresses for in-hypervisor code

and data, i.e., hypervisor symbol table, will need to be ac-

cessible in order to do the dynamic loading of modules. The

modules will need access to existing data and symbols in

order to access global variables and common code routines,

e.g., global scheduler queues, spin lock irq(). The mod-

ules may also want to export data for use by others. This can

then be used to resolve references in the binary modules.

It might be beneficial to make such data available from

the host OS via a standard /proc interface, by adding an ad-

ditional hypercall to access the hypervisor symbol table. As

mentioned previously, in Linux v2.6 references are resolved

via an in-kernel dynamic loader. A similar approach could

be taken with Xen by providing an in-hypervisor dynamic

loader, or you could use information from the /proc area to

do the relocation at the host OS (domain0) level.

Allocation and Loading The loading of the module will

span several steps. The initial step being the loading of the

ELF binary module into memory. This could be achieved

in a number of ways but it will originate from one of the

domains, likely domain0 (host OS). A transfer would then

take place to copy (or map) this into the hypervisor space,

which would dynamically allocate space, e.g., xmalloc().

As mentioned above, the relocation could be done in the host

OS or possibly through an in-hypervisor dynamic loader.

The dynamic modification of the hypervisor will require

the addition of some basic mechanisms to manage “mod-

ules”. This will include some sort of bookkeeping to track

the name and location of the module. A hypervisor symbol

table will be used in this process in order to locate any com-

mon data/code used by the dynamic modules. Additionally,

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���symtab

VMM Host OS

H
y

p
er

ca
ll

  
 I

n
te

rf
ac

e

/proc/vmm/symtab

Figure 2. Hypervisor symbol table access from the Host

OS.

any dynamic additions that are intended to replace existing

hypervisor resident aspects will need access to the symbol

table in order to locate and ultimately redirect calls to the

newly loaded replacement instance. For example, if you are

planning to replace the scheduler with an alternate imple-

mentation you will need to update the current address for

the scheduler with the alternate version, i.e., splice in the lo-

cation of the alternate scheduler.

State Management The loading of modules into a running

hypervisor will require state management for the individual

modules, i.e., loading, ready, unloading. The procedure will

transition from the loading and allocation phase into some

module specific initialization phase. Once the module is

ready for use it would move to ready and be useable by the

rest of the system.

As mentioned in Section 5, a key differentiating factor

among approaches to dynamic adaptation is the extent to

which they require quiescence of state. Teller et al. [12]

note that the management of state-full and state-less services

is a key challenge when working with dynamic adaptation.

Therefore, the degree of isolation for a given service influ-

ences the extent to which you can dynamically adapt.

Returning to our modular Xen scheduler example, the

API for the routine would be fixed and the domain queues

would be global data. Once the new module was available

(ready) the global symbol table would be updated to ref-

erence the address of the alternate scheduler. This switch

would require quiescence of the domains to some acceptable

state, and assumes the hypervisor supports some facility to

acquire a global mutex to perform the change and then re-

sume execution. It is unclear at this point how things like

VMM-bypass would effect matters. However, it is clear that

the ordering of events will be important as the hypervisor

will use domain0 during module load, and then when chang-



ing to the new scheduler all domains will be paused during

the switch to the alternate scheduler. Lastly, the code splicing

work by Tamches [11] could be another approach to avoid

some of the locking during the switch.

Xen Running

Module running

Xen Reconfigure

Module initialize

module_load

module_finalize

module_init

module_ready

Figure 3. Xen state transitions for loading a module.

5. Related Work

The topic of dynamic operating system adaptation has been

explored by a number of projects, with a good survey pro-

vided by Denys et al. [5].

As mentioned previously, Linux offers dynamic kernel

modules, which provide a mechanism to make changes to

select portions of kernel code and data at run-time. This is

most commonly used in Linux to provide support for device

drivers at run-time, which eliminates the need to compile

all possible drivers into one monolithic kernel image. It is

worth noting that the Linux module system underwent a

major change between Linux v2.4 and v2.6. The majority

of the work is now done directly by the kernel with only

a minimum of work being performed by the user space

tools [2, 4, 6, 8].

The work by Teller and Seelam [12] mentions that the

problem of policy adaptation is complex, noting for exam-

ple the issues of dealing with state-full and state-less re-

sources. Their work has focused on I/O scheduler policy

adaptation with experimentations done using the Linux ker-

nel. The work provides some guidelines for dynamic operat-

ing system adaptation in HPC environments.

The “KernInst” tool by Tamches and Miller [11] enables

dynamic instrumentation of unmodified kernels. Their work

was done using Solaris but the techniques should be appli-

cable to other systems. KernInst provides mechanisms for

splicing (inserting) alternate code at runtime into a commod-

ity operating system. Their approach allows for fine-grained

changes that can be used for dynamic adaptation or for per-

formance analysis purposes.

In [3], Chen et al. have a slightly different objective than

hypervisor level modifications, namely live updates to Linux

kernels running in virtual machines. Their work is similar in

nature to that of Tamches et al. but their use of system-level

virtualization enables a slightly different approach which

uses binary patches to splice (insert) changes into the run-

ning VM and perform patching without having to stop or

even quiesce the system (VM). The hypervisor also controls

the VM’s page tables in order to instrument traps when mak-

ing changes to existing code/data. Although they focus on

VM changes at runtime and not the actual hypervisor, the

motivations are similar and some of their techniques might

be of interest, e.g., “stack inspection” and hardware trace fa-

cilities (execution stepping).

6. Conclusion

The ability to perform system-level dynamic adaptation is

a mechanism that lays the groundwork for more advanced

techniques like automatic adaptation, e.g., fault tolerance, or

fault avoidance. The resurgence of system-level virtualiza-

tion introduces new avenues to explore dynamic adaptations

at the hypervisor level. These mechanisms enable the modi-

fication of core capabilities, e.g., scheduler, at runtime with-

out having to tear down all active virtual machines in order

to change policies and recompile the hypervisor.

This paper discussed our recent investigations into the

Linux implementation of loadable kernel modules. The

Linux work, or a subset, may be a potential starting point for

adding loadable hypervisor modules to Xen. Additionally,

due to its wide usage and recent re-implementation in Linux

v2.6, it is a good source for seeing how such mechanism are

implemented on a real world system.

We discuss some aspects that would be involved in a sim-

ilar approach to Linux kernel modules, but for a Xen hyper-

visor. The key points are access to the hypervisor symbol

table, likely from the host OS (domain0), to allow for link-

ing and loading of binary modules. Also mentioned is the

relationship between the domain0 and the hypervisor for dy-

namic allocation and loading of modules at runtime. These

dynamic capabilities will require additional state manage-

ment for tracking the phases of the module.

As highlighted by Teller & Seelam [12] the use of dy-

namic adaptation is compelling but poses a significant re-

search challenge. As system-level virtualization usage in-

creases the need for runtime customization is likely to be-

come more pronounced. This may be done at the virtual ma-

chine level or as discussed here, it could be done at the hy-

pervisor itself.
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