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The Hydriding Kinetics of Organic Hydrogen Getters

G. L. Powell
Y-12 National Security Complex*, Oak Ridge, Tennessee 37831-8096

Abstract
The aging of hermetically sealed systems is often accompanied by the gradual production of
hydrogen gas that is a result of the decay of environmental gases and the degradation of
organic materials. In particular, the oxygen, water, hydrogen “equilibrium” is affected by the
removal of oxygen due the oxidation of metals and organic materials.  This shift of the above
“equilibrium” towards the formation of hydrogen gas, particularly in crevices, may eventually
reach an explosive level of hydrogen gas or degrade metals by hydriding them. The latter
process is generally delayed until the oxidizing species are significantly reduced.  Organic
hydrogen getters introduced by Allied Signal Aerospace Company, Kansas City Division have
proven to be a very effective means of preventing hydrogen gas accumulation in sealed
containers.  These getters are relatively unaffected by air and environmental gases. They can
be packaged in a variety of ways to fit particular needs such as porous pellets, fine or coarse
[gravel] powder, or loaded into silicone rubber.  The hydrogen gettering reactions are
extremely irreversible since the hydrogen gas is converted into an organic hydrocarbon.

These getters are based on the palladium-catalyzed hydrogenation of triple bonds to double
and then single bonds in aromatic aryl compounds. DEB (1,4 bis (phenyl ethynyl) benzene)
typically mixed with 25% by weight carbon with palladium (1% by weight of carbon) is one
of the newest and best of these organic hydrogen getters.  The reaction mechanisms are
complex involving solid state reaction with a herteogeneous catalyst leading to the many
intermediates, including mixed alkyl and aryl hydrocarbons with the possibilities of many
isomers.  The reaction kinetics mechanisms are also strongly influenced by the form in which
they are packaged.  For example, the hydriding rates for pellets and gravel have a strong
dependence on reaction extent (i.e., DEB reduction) and a kinetic order in pressure of 0.76.
Silicone rubber based DEB getters hydride at a much lower rate, have little dependence on
reaction extent, have a higher kinetic order in pressure (0.87), and have a lower activation
energy.  The kinetics of the reaction as a function of hydrogen pressure, stoichiometry, and
temperature for hydrogen and deuterium near ambient temperature (0o to 75oC) for pressures
near or below 100 Pa over a wide range (in some cases, the complete) hydrogenation range
are presented along with multi-dimensional rate models.
__________________________
*Managed by BWXT Y-12, L.L.C for the U. S. DEPARTMENT OF ENERGY under contract
DE-AC05-00OR22800
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Introduction

The aging of hermetically sealed systems is often accompanied by the gradual production of
hydrogen gas that is a result of the decay of environmental gases and the degradation of
organic materials. In particular, the oxygen, water, hydrogen “equilibrium” is affected by the
removal of oxygen due the oxidation of metals and organic materials.  This shift of the above
“equilibrium” towards the formation of hydrogen gas, particularly in crevices, may eventually
reach an explosive level of hydrogen gas or degrade metals by hydriding them. The latter
process is generally delayed until the oxidizing species are significantly reduced.  Organic
hydrogen getters introduced by Allied Signal Aerospace Company, Kansas City Division have
proven to be a very effective means of preventing hydrogen gas accumulation in sealed
containers. These getters are relatively unaffected by air and environmental gases. They can
be packaged in a variety of ways to fit particular needs such as porous pellets, fine or coarse
[gravel] powder, or loaded into silicone rubber.  The hydrogen gettering reactions are
extremely irreversible since the hydrogen gas is converted into an organic hydrocarbon.

These getters are based on the palladium catalyzed hydrogenation of triple bonds to single
bonds in aromatic aryl compounds have been described by Balooch et al1. DEB (1,4 bis
(phenyl ethynyl) benzene) (A) mixed with 25% by weight catalyst (C-1% Pd) is one of the
newest and best of these organic hydrogen getters.  The reaction mechanisms are complex,
involving solid state reaction with a heteogeneous catalyst leading to the many intermediates
shown in Figure 1.  Note that intermediates B and E have two isomers, cis and trans at the
double bond, and that D has three isomeric forms, cis-cis, trans-trans. and cis-trans. There is,

Figure 1:  Reaction paths and intermediates in the palladium catalyzed hydrogenation of DEB.

however, little known of the kinetics of the reaction as a function of hydrogen pressure and
stoichiometry of the hydrogenated organic species. The process becomes even more complex
if deuterium is substituted for hydrogen as a means of tracing these mechanistic steps.  This
paper describes the measurement of the hydrogen and deuterium gettering rates of these
materials at low pressures over the complete hydrogenation of the getter material.
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Experimental

As a means of studying the rate of reaction of these getters, a gas buret system was chosen
that consisted of a ~1-L volume having a pressure gauge (MKS 390AHA-00001, 1 Torr)
serviced by an ultra-high-vacuum (UHV) system and an ultra-pure hydrogen, deuterium, and
argon supply.  This system was replicated four fold with all four systems serviced by the same
vacuum system and gas supply. The hydrogen, deuterium (99.7% D), and argon were
nominally Ultra High Purity Grade and with the hydrogen filtered through an UH3 or UD3
bed, respectively. The 1-L volumes and their valves (typically a Nupro H series with Cajon
4VCR fittings) were individually calibrated by weighing before and after filling them with
water.  They were attached to a smaller volume containing the pressure gauge, the vacuum
port, and the sample chamber. These volumes were calibrated against the 1-L volume by
argon expansion.  The sample chamber (~30 mL) was attached to this 1-L volume to contain
the getter material. The getter was reacted by gas expansion.  The pressure drop of the
reacting gas was monitored using a Nicolet 4094 digital oscilloscope with 15-bit precision and
digital data storage. These gas buret techniques are similar to those previously applied to the
study of the reactions of H2 and D2 with Pd and U2-7.

Programs for the Nicolet oscilloscopes manipulated the data to yield the ideal gas law
calculation of the moles of gas consumed from the pressure drop, and smoothed and
differentiated these results to yield the rate of H consumption as a function of both time and
pressure.  These digital data were also transferred to a personal computer and converted to a
spread sheet or text format taking the final form of four columns of text that included time,
pressure, hydrogen (or getter) consumed, and rate of consumption.  The pellet and gravel data
processing took in all the sets of pressure drop data as a function of time for each sample, and
did the ideal gas law calculations for a running balance of H and DEB consumption. A
smoothing/differentiation/data-elimination routine reduced each data set from thousands of
points to approximately 200 that span the range from 120 Pa to 0.1 Pa.  For the silicone rubber
“O-ring” specimen, the smoothing/differentiation/data-elimination process was done by fitting
the logarithm of the pressure versus time data to a fifth-order polynomial using TableCurve2D
(SSPS Science) software.

The experiments reported here used DEB getter in the form of 20-mg pellets (6-each, 120
mg), gravel (powder sieved -14/+40, 110 mg), and a silicone rubber “O-ring” (60% by weight
silicone rubber, ~3-mm D, 3.111g, 0.00385 m2).  Measurements were made as a function of
pressure (0.1 to 120 Pa), hydrogen isotope (H and D), and extent of reaction with the DEB (0
to 8 added H atoms per DEB molecule) at ambient temperature (nominally 20 +/- 2 oC).
These specimens of DEB were obtained from Allied Signal Kansas City Division and were
75% DEB and 25% catalyst (C-1%Pd). The fundamental system of units used were the moles
hydrogen per grams getter, but was sometimes expressed as DEB hydrogenation
stoichiometry.  The system was sized such that 1 L of gas expanded onto 100 mg of DEB
getter would convert ~5% of the getter, enough to yield small changes in the DEB
stoichiometry for each experiment, yet allow complete conversion of the DEB in a finite
number of experiments.  The DEB conversion extent was accumulated from run to run.

Results

The results of a typical run for one gas buret expansion is shown in Figure 2 for the fourth
expansion of deuterium onto DEB pellets (120 mg, 6 pellets). The pressure decay appears to be
exponential, indicating a first order reaction rate. A closer look (amplified by the derivative)
shows a fast rate component at early times and a less than perfect match of hydrogen conversion
to an exponential rise.

A
uthor's nam

e____G
. L. Pow

ell_______________ page __3__of___9___



Figure 2:  The fourth expansion of deuterium onto DEB pellets (120 mg, 6 pellets). Solid decay
curve-D2 pressure drop, Dashed rising curve-D uptake, Solid rising curve-simple exponential
rise, Dotted curve-rate.

During early stages of hydrogenation of pellets and gravel, rate versus pressure for DEB
hydrogen getter showed little effect of getter form or hydrogen isotope. As the experiment
proceeded, the rate remained almost linear in pressure (~0.84 order) and decreased
exponentially with DEB conversion. The fast component of the rate at early times persisted, but
scaled as the overall rate.  For pellets and gravel, hydrogen and deuterium, the initial rate spike
was discarded by truncating all the data sets above 100 Pa. The remaining data are shown in
Figures 3-6.  The surface shown in Figs. 3-6 was generated using TableCurve-3D software
fitting the data obtained at ambient temperature as the as the natural logarithm of rate (Rate,
mol H (g DEB s)-1) versus the natural logarithm of pressure (P, Pa), and the linear form of DEB
reaction extent (X, mmol H (g DEB)-1) to a somewhat planar surface. Equation 1 gives the
model that to date gives the best description of the data.

   Rate = A PB [(De-EX  + e-CX)(1-X/F)/(D + 1)] (mol H g-1 s-1)                     (1)

The rate is expressed as a scaling factor A, the kinetic order for pressure B, and the term in
square brackets for the decrease in rate due to the depletion of DEB involving two exponential
processes (C, D, and E), and one stoichiometry limitation (F = 21.57 mmol H (g DEB)-1).  The
fitting process found A, B, C, D, and E.  The two exponential decay processes became apparent
when a single exponential (i.e., D = 0) failed to adequately fit the high-pressure, low-
consumption (i.e., the highest rate) part of the data.  Fits using Eq. 1 to data of the form of Figs.
3-6 are given in Table I.  The parameters in Table I were obtained by multiple curve  fittings
with  some parameters being fixed within their error limits until most of the variability was
dumped into parameter A.  The parameters are not a unique set, but rather a simplified set that
adequately represents the data.
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Figure 3: Hydriding rate of pellets as a function of pressure and reaction extent.  Surface is
described by Eq. 1 and parameters from Table I.

Figure 4:  Deuteriding rate of pellets as a function of pressure and reaction extent.  Surface is
described by Eq. 1 and parameters from Table I.
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Figure 5: Hydriding rate of gravel as a function of pressure and reaction extent.  Surface is
described by Eq. 1 and parameters from Table I.

Figure 6: Deuteriding rate of gravel as a function of pressure and reaction extent.  Surface is
described by Eq. 1 and parameters from Table I.
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Table I.  Parameters describing the hydriding rates of pellets and gravel.

    A        B          D            E          C        First Std. Err       Yield
       molH (gDEB PaB s)-1                      Factor

________________________________________________________________________
H-Pellets         1.2 E-08    0.78            2.43         0.61     0.08         1.35               21.02
D-Pellets         1.2 E-08    0.78            2.43         0.61     0.08         1.41               21.37
H-Gravel         1.2 E-08    0.78            3.52         0.61     0.20         1.42               15.25
D-Gravel         1.2 E-08    0.78            3.52         0.61     0.20         1.42               15.24
________________________________________________________________________

The addition of the D, E fast term at early times resulted in all the gravel and pellet A values
being identical, which is apparently accidental.  For pellets and gravel, the hydriding rates for
these materials can be calculated over the range of 100 Pa to 100 mPa within an accuracy of
~50%.  The accuracy is better at the high-pressure end of the data and to some extent the error is
a result of ambient temperature fluxuations of ~2oC, so the uncertainty in the prediction
incorporates reasonable uncertainties in temperature being constant.  The increase in the C and
D values for the gravel results from the much more dramatic slowdown in hydriding rate with
consumption of the DEB.  The Yield values in Tab. 1 are the measured total DEB consumption
for each experiment. The pellets reacted to completion as indicated by the Yield and its
description of the rate data through parameter F. During the experiment, it appeared that the
gravel had stopped reacting.  In hindsight, the reaction probably just slowed below the practical
range of the experiment.

Similar measurements for the DEB O-ring in the same apparatus under the same ambient
temperature conditions yielded much slower reaction rates.  No DEB consumption dependence
was observed over the range of 0-9% DEB conversion, and no initial accellerated rate were
observed.  Over the 130 Pa to 100 mPa pressure range is described by Equation 2 and the
surface fit to the data is shown in Figure 7.

                                  Rate (mol H Pa-1 g-1 s-1) = 1.84 E-11 P0.86                                               (2)

Based on 21 pressure drop measurements, the intercept standard error factor was 1.09 and the
exponent standard error was 0.02.

Discussion

DEB is demonstrated to hydride in a very consistent and predictable rate over the pressure range
of 100 Pa to 0.1 Pa.   The deuteriding rate for this material is indistinguishable from the
hydriding rate within the precision of the data.  The porosity in the pellets play a very important
in maintaining sufficiently high hydriding rates to allow the full DEB stoichiometry of the
pellets to be utilized.  Over the useful capacity of these pellets, the hydriding rate decreases by
three orders of magnitude so that predictive modeling of performance requires knowledge of the
remaining capacity of the DEB.  The behavior of the gravel indicates that the fully dense
DEB/C-Pd material limits the access of hydrogen, probably by diffusion, to the full charge of
getter. Gravel with a smaller particle size should react to a higher value of DEB conversion. The
high rate at early times, the decrease in rate with increasing stoichometry, and the less than first
order pressure dependence may be due to subtle migration of DEB to the Pd.  In a typical
reaction, the DEB specimen exists in a vacuum for some time before it is subjected to hydrogen.
During this time DEB can migrate and locate unsaturated bonds in the vicinity of Pd atoms.
When hydrogen pressure is applied stepwise, these bonds are rapidly reduced until these bonds
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Figure 7: The hydriding rate of O-ring as a function of pressure and reaction extent.  Surface is
described by Eq. 2.

in close proximity to Pd atoms no longer are available.  After that some migration of DEB is
required for the reaction to proceed.  As the pressure drops, the reaction slows, allowing more
time for DEB migration to the Pd.  Thus, the reaction speeds up relative to the pressure, which
is the definition of a reaction of kinetic order less than one.  As consumption of DEB proceeds,
the reacting DEB must migrate through reduction products to bring the unsaturated bonds into
contact with Pd.

The mechanism of the hydriding of the silicone rubber loaded specimen is very different from
pellets and gravel.  The gross reaction rate is less by a factor of ~500 when compared to
previously unreacted pellets or gravel.  The fact that a measurable rate was found was due to the
fact that the O-ring specimen contained 10 times the amount of DEB used for the pellets and
gravel.  The kinetic order of the reaction in pressure is also less that that observed for the pellets
and gravel.  The reaction mechanism must regulate the accessible area of the specimen to a
constant value in order to have a rate independent of consumption.  Equation 1 for unreacted
DEB pellets gives a hydriding rate of 9 E-08 molH (g DEB s)-1 compared to a value of 4.4 E-07
molH (g DEB s)-1 obtained from the results of Balooch et al.1 for fine powders used in their
experiments.  The reaction rate of these DEB getter forms apparently has a very strong
dependence on the particular form of the getter, and perhaps on the processing conditions for a
particular form of getter.
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