What field performance can we expect from the gun

Jacek Sekutowicz

- 1. Niobium Limit and Cavity Shapes
- 2. SC Cavity Performance
- 3. Tests of SRF guns
- 4. Final Remarks

Assumption: SRF guns will be made of bulk Niobium (at least for the next decade)

The limits in the performance of a SRF-gun cavity are due:

- *superconducting properties of niobium*
- *geometry of the cavity*
- *crystallographic structure of Nb and roughness of the surface*
- quality of the surface preparation
- *performance of auxiliaries (FPC, HOM couplers…)*

Superconducting properties of niobium

 $B_{c1} = 180-190 mT$ $T_c = 9.26 K$

Cavity Shape

The limit in maximum E_{peak} on the wall is simply:

Various shapes on the market (can be scaled to meet F requirements).

r _{iris}	[mm]	35	30	33	
k _{cc}	[%]	1.9	1.52	1.8	
E _{peak} /E _{acc}	-	1.98	2.36	2.21	1 3 GHz
B_{peak}/E_{acc}	[mT/(MV/m)]	4.15	3.61	3.76	
Max E _{peak}	[MV/m]	90.7	124.2	111.7	

KEK single-cell tests in September 2005 !!!!!!!

Courtesy K. Saito

KEK single-cell tests in September 2005 !!!!!!!

Courtesy K. Saito

Recent KEK results (ICHIRO ≈ LL shape)

 $E_{peak} = E_{acc} * 1.9$

 $E_{peak} = \langle 83.4 \rangle$, 92.7> @ $Q = \langle 5.4E9 \rangle$, 1.2 E10>

		IS#2	IS#3	IS#4	IS#5	IS#6	IS#7
ILC WG5-Asia Recipe	Eacc,max	36.9	31.4	45.1	44.2	48.8	28.3
	Qo@Emax	1.53E10	8.66E9	9,07E9	5.38e9	9.56E9	1.94e9
+re-HPR+No Bake(48hr)	Eacc,max	37.6	32.7	43.7	22.0	51.4	29.9
	Qo@Emax	1.42E10	7.27E9	6.07E9	8.28E9	7.77E9	1.10E10
+HF rinsing+No Bake,	Eacc,max	37.1	36.7	50.4	Troubled	50.2	30.0
No Q-disease!	Qo@Emax	1.64E10	1.43E10	9.97E10		3.90E9	3.33E9
+CP(10)+HPR+Bake(48)	Eacc,max					41.0	40.5
	Qo@Emax					6.65E9	5.57E9
+EP(3, closed, new acid)+	Eacc,max	41.6	40.3	41.1			
HPR+Bake(48)	Qo@Emax	1.00E10	1.28E10	1.17E10			
+EP(20+3, closed, new acid)+	Eacc,max	47.1		47.8			
HPR+Bake(48)	Qo@Emax	1.06E10		7.81E9			
+EP(20+3, closed, new acid)+	Eacc,max		44.7	May 9			43.9
HF rinsing+HPR+Bake(48)	Qo@Emax		0.98E10	May 9			1.17E10

BNL Collaboration Meeting Jacek Sekutowicz, May 24-26, 2006.

Courtesy Kenji Saito

Generally speaking we are approaching with *E*_{peak} => 100 MV/m

What about **Q**, can make it higher than > **1**. **E10** at that field level ?

Crystallographic structure of Nb and roughness of the surface

First improvement : use EP instead of BCP

roughness ~10 μm

The standard (BCP) procedure is with an acid mixture containing **1 part HF, 1 part** HNO_3 and **2 parts H_3PO_4** in volume.

roughness ~1 μm

The standard EP procedure is with electrolyte **HF** and H_2SO_4 in volume ratio of **1:9**.

Courtesy P. Kneisel

Second improvement : use single crystal material instead of poly-crystal

The most effective "knob" to lower the cryogenic load.

Single crystal material

DES

<u>Qo ~ 2.10¹⁰ for 1.3 GHz at E_{peak} = 85.5 MV/m if R_s dominated by BCS</u>

BNL Collaboration Meeting Jacek Sekutowicz, May 24-26, 2006.

11/21

✤ Performance of auxiliaries (FPC, HOM couplers, chokes...)

Many problems may arise from the auxiliaries:

- 1. FPC: Multipacting and heating
- 2. HOM: Thermal instability of the output antenna and feedthrough in cw mode
- 3. Choke: Multipacting

Projects	Cavity	F [GHZ]	E _{cath} [MV/m]	
FZ Rossendorf	Coding Finance Coding F	1.3	S: 25 M: 22 (4K) / 46 (2K)	
IHIP Peking University		1.3	M: 2.7 (4K)	
BNL		1.3	M: 48 (2K)	
BNL/AES	Tester Assession Tester Pare Transition Cristole Assession Optimier Ware Calar Optimier Ware Calar Optier Ware Calar Optier Ware	0.704	S: 30	
DESY, BNL, JLab,		1.3	S: 60	
INS, SUNY,SLAC			M: 25	

DES

BNL Collaboration Meeting Jacek Sekutowicz, May 24-26, 2006.

15/21

DESY Half-cell

No Lead coating

DES

Ultimate performance:

single crystal niobium

the shape and material if Rs is BCS dominated (scaled from the JLab result on 2.3 GHz full-cell)

High **Q** means: low cryogenic losses, low (or no) dark current, very low radiation

Ultimate performance due to HOM couplers

Auxiliaries of TESLA cavity has been designed for pulse operation with duty factor of the order of 1%.

One of feature of that design is that HOM couplers are placed outside the LHe vessel. This made the design cheaper but: it may lead to warming up of the HOM coupler

The main problem is heating of the output line.

Additional cryogenic losses at higher duty factor (and cw) operations

Limit in performance due to FPC:

FPC: high current RF-guns of a 1 A class for cw operation

With design energy of 2 MeV

- *E_{cath} is ~ 30 MV/m (Eacc ~ 20 MV/m)*
- Power transferred to the beam is 2 MW (1MW/FPC)

Limit (with high probability) will be due to the FPC performance

