Evaluation of SiC Diodes for SMPS Applications

Prof. K Shenai

250V/ 0.1A SiC Schottky Diode

Electrical Engineering and Computer Science University of Illinois at Chicago

Ideality Factor

- Anomalies in forward conduction
- Material parameters vary at defect sites
- Ideality factor (n) represents quality of the diode
- A good diode has n ~ 1

Si Diode

4H-SiC Diode

Si diodes have much lower on-state voltage than SiC diodes
Defect-induced excess current in SiC Schottky and PN diodes at low forward bias

Test Circuit

- Forward current adjusted with pulse width of Q_{1} gate pulse
- Gate pulse is applied to Q1 to intiate reverse recovery of diode
- Turn-off dI/dt is controlled by R_{G}
- Reverse recovery performance under various conditions of $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{ON}}, \mathrm{di}_{\mathrm{R}} / \mathrm{dt}$

Reverse Recovery

I_{ON} : Forward Current di ${ }_{R} / \mathrm{dt}$: Turn-off di/dt dv/dt: Recovery dv/dt
$I_{\text {rr }}$: Peak Reverse Recovery Current
$t_{r r}$: Reverse Recovery Time

Tail in turn-off current appears because of junction capacitance Schottky diode reverse recovery independent of temperature PN diode reverse recovery weakly dependent on on-state current

DC-DC Buck Converter for Diode Testing

Hard Switching

Zero Voltage Switching

- Comparable switching performance of low-voltage SiC and Si PiN Diodes
- Negligible switching transient in zero voltage switching configuration
- Low voltage SiC devices only offer advantage of high-temperature operation

Hard-Switching Buck Converter Performance

Converter Parameters

Switch
Inductor
Capacitor $: 1 \mu \mathrm{~F}$
Frequency : 90 kHz
I/O Voltage : $400 \mathrm{~V} / 250 \mathrm{~V}$
Output Power : 150 W

TIME ($\mu \mathrm{s}$)
Si diode converter failed at $90 \mathrm{~W}, 30 \mathrm{kHz}, 290 \mathrm{~K}$

Simulation of Diode Performance Hard-Switching of PiN Diodes

$1.5 \mathrm{kV} / 10 \mathrm{~A} \mathrm{Si}$

$3 \mathrm{kV} / 1 \mathrm{~A} 4 \mathrm{H}-\mathrm{SiC}$

Reasonable match between static and switching simulations and measurement $4 \mathrm{H}-\mathrm{SiC}$ material parameters from recent published reports

ZVS Buck Converter Performance PiN Diodes

$$
\mathrm{V}_{\mathrm{BUS}}=200 \mathrm{~V}, \mathrm{I}_{\mathrm{MAX}}=0.6 \mathrm{~A}
$$

Reasonable match between static and switching simulations and measurement $4 \mathrm{H}-\mathrm{SiC}$ material parameters from recent published reports

Comparison of Si and $4 \mathrm{H}-\mathrm{SiC}$ High-Voltage PiN Diodes

Hard-Switching $\mathrm{V}_{\text {BUS }}=300 \mathrm{~V}, \mathrm{~J}_{\mathrm{F}}=100 \mathrm{~A} / \mathrm{cm}^{2}$

TIME ($\mu \mathrm{s}$)

Soft-Switching
$\mathrm{V}_{\text {BUS }}=200 \mathrm{~V}, \mathrm{~J}_{\mathrm{F}}=100 \mathrm{~A} / \mathrm{cm}^{2}$

SiC has negligible reverse recovery compared to Si under identical switching conditions Considerable performance improvement in Si diode with soft-switching (lower $d i / d t$)
$1.5 \mathrm{kV} / 1 \mathrm{~A} \mathrm{Si}$

DISTANCE FROM SURFACE ($\mu \mathrm{m}$)
$3 \mathrm{kV} / 1 \mathrm{~A} 4 \mathrm{H}-\mathrm{SiC}$

Si diode has very high excess charge in drift region Rapid charge decay in SiC diode because of low carrier lifetime Current tail because of excess charge trapped in quasi-neutral drift region

Simulated PiN Diode Buck Converter Electical Engineering Performance Trend

$$
P_{D}=D V_{O N} I_{O N}+E_{S w} f_{s w}
$$

- Total power loss in Si diode is very sensitive to switching frequency
- Frequency dependence of SiC diode above 300 kHz
- Total loss in SiC diode dominated by conduction loss
- Switching loss in Si diode appears because of excess charge removal
- Switching loss in SiC diode appears because of junction capacitance

Reliability Testing of Diodes

TEST CIRCUIT

- Performance evaluation was conducted at voltage and current levels much lower than rated values
- Fragile SiC devices

TYPICAL WAVEFORMS

- Assessment of device reliability is crucial
- Dynamic stress testing to determine avalanche rating of SiC diodes

- Performance evaluation of 4H-SiC schottky diodes was conducted
- Comparative study of diodes with different perimeters and areas was conducted
- Tests were conducted to evaluate the dv/dt withstanding capability of the diodes
- 5 identical samples of each device were tested for consistency in results
- All devices were rated at I kV

MEASURED RESULTS

- Strong area dependence of breakdown voltage was observed
- Highest breakdown voltage of 750 V was measured on a $50 \mu \mathrm{~m}$ device
- Lowest breakdown voltage of 100 V was measured on a $200 \mu \mathrm{~m}$ device
- High temperature breakdown measurements were not performed

NON - DEFECTIVE DIODE I-V

DEFECTIVE DIODE I-V

- Leakage current increases with temperature
- Defective diode current starts rising rapidly at very low bias voltages

Forward J-V Characteristics

MEASURED WAVEFORMS

- Influence of perimeter on leakage current density is negligible

- Saturation current densities were extracted from the J-V characteristics
- Saturation current density is independent of P/A ratio
- No perimeter recombination current along the periphery because of absence of a junction

- Ideality factor was extracted from forward I-V characteristics

$$
n=\frac{1}{\frac{\partial\left(\ln I_{F}\right)}{\partial V_{F}} V_{T}}
$$

- Room temperature ideality factor ranged from 1.22-1.33
- Ideality factor decreases with temperature
- Thermionic emission current contribution is more at higher temperatures.
- Therefore the ideality factor approaches unity

Reliability Testing of Diodes

TEST CIRCUIT

- Performance evaluation was conducted at voltage and current levels much lower than rated values
- Fragile SiC devices

TYPICAL WAVEFORMS

- Assessment of device reliability is crucial
- Dynamic stress testing to determine $\mathrm{dv} / \mathrm{dt}$ rating of SiC diodes

DIODE WAVEFORMS

- Diode current increased at higher dv/dt
- dv/dt varied from 4V/ns to $30 \mathrm{~V} / \mathrm{ns}$
- With a 250 V switch the DUT survived the highest applied dv/dt
- With a 500 V switch the device failed even for the lowest dv/dt
- Failure was voltage dependent rather than dv/dt

SiC Diodes for

 SMPS applications
MEASURED WAVEFORMS

- 5 samples of each device were tested for consistency
- Leakage current increases with temperature

MEASURED WAVEFORMS

- Breakdown voltage decreases with increase in temperature

Breakdown Performance

- 5 samples of device D1 were characterized
- Sample \# 2 failed during testing
- For every $\mathbf{1} \cdot \mathbf{C}$ rise in temperature the voltage drops by 0.5 V approximately

Breakdown Performance

- 5 samples of device D2 were characterized.
- Sample \# 2 and 5 failed during testing.
- For every $\mathbf{1} \cdot \mathbf{C}$ rise in temperature the voltage drops by 0.6 V approximately.

Ideality factor was extracted from the expression for diode forward current

$$
n=\frac{1}{\frac{\partial\left(\ln I_{F}\right)}{\partial V_{F}} V_{T}}
$$

Ideality factor approaches unity with increase in temperature.

- Thermionic emission current contribution is more at higher temperatures

Since $\mathbf{n} \equiv \mathbf{1}$ the barrier height was extracted using the simplified expression for J_{S}

$$
\phi_{B}=V_{T} \ln \left(\frac{A^{* *} T^{2}}{J_{S}}\right)
$$

Where
A** is Richardson's constant V_{T} is the Thermal Voltage

- Doping concentration and device Area were provided.
- Using the device area and the slope of the $\left(1 / C^{2}\right)-V$ plot the doping was extracted from the expression for Capacitance.

$$
C=A \sqrt{\frac{q \varepsilon_{s} N_{D}}{2\left(V_{R}+V_{b i}-\frac{k T}{q}\right)}}
$$

- Extracted value of doping was then used to estimate the barrier height

$$
\phi_{B r}=V_{i}+\frac{k T}{q}+\frac{E_{G}}{2 q}-\frac{k T}{q} \ln \left(\frac{N_{D}}{n_{i}}\right)
$$

V_{i} is voltage intercept $\left(1 / \mathrm{C}^{2}\right)-\mathrm{V}$ plot V_{bi} is the built in voltage

- Devices Under Test (DUT)
- D1
- D2
- Measurements were performed at:
- Three different forward currents (2A, 4A and 6A)
- Three different temperatures ($25^{\circ} \mathrm{C}, 75{ }^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$)
- Three different bus voltages ($200 \mathrm{~V}, 250 \mathrm{~V}, 300 \mathrm{~V}$)

Test Circuit

Electrical Engineering and Computer Science University of Illinois at Chicago

Device D2

TIME ($\mu \mathrm{s}$)

Device D1

Measured Results

Device D1

Measured Results

Electrical Engineering and Computer Science University of Illinois at Chicago

Device D2

Measured Results

Device D2

Conclusion

- SiC Schottky diodes show promise for SMPS applications.
- Needs further investigation in key SMPS circuits
- SiC device reliability needs to be investigated in detail.

