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Abstract: We describe a technique and present results for imaging the
modes of a laser-cooled plasma of 9Be+ ions in a Penning trap. The
modes are excited by sinusoidally time-varying potentials applied to
the trap electrodes. They are imaged by changes in the ion resonance
fluorescence produced by Doppler shifts from the coherent ion veloci-
ties of the mode. For the geometry and conditions of this experiment,
the mode frequencies and eigenfunctions have been calculated analyt-
ically. A comparison between theory and experiment for some of the
azimuthally symmetric modes shows good agreement.
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1. Introduction

Non-neutral plasmas consisting exclusively of particles of a single sign of charge have
been used to study many basic processes in plasma physics [1], partly because non-
neutral (as opposed to neutral or quasi-neutral) plasmas can be confined by static
electric and magnetic fields and also be in a state of global thermal equilibrium [2–4].
A particularly simple confinement geometry for non-neutral plasmas is the quadratic
Penning trap, which uses a strong uniform magnetic field B0 = B0ẑ superimposed on
a quadratic electrostatic potential

φT (r, z) =
mω2

z

2q

(
z2 − r2

2

)
. (1)

Here m and q are the mass and charge of a trapped ion, and ωz is the axial frequency of a
single ion in the trap. The global thermal equilibrium state for a single charged species in
a quadratic Penning trap has been well studied [4,5]. For sufficiently low temperatures,
the plasma takes on the simple shape of a uniform density spheroid. An interesting result
is that all of the electrostatic modes of a magnetized, uniform density spheroidal plasma
can be calculated analytically [6,7]. This is the only finite length geometry for which
exact plasma mode frequencies and eigenfunctions have been calculated for a realistic
thermal equilibrium state. In this manuscript we describe a technique for measuring
these frequencies and eigenfunctions, and compare theory predictions and experimental
results for some of the azimuthally symmetric modes.

The modes have several potential applications in Penning trap experiments. In
general, the mode frequencies depend on the density and shape of the plasma spheroid.
Therefore measurement of a mode frequency provides a non-destructive method for
obtaining basic diagnostic information about the plasma. This is especially important
in anti-matter plasmas [8–10], where conventional techniques for obtaining information
about these plasmas involve ejecting the plasma from the trap. Other applications arise
from the fact that the modes can strongly influence the dynamical behavior of trapped



plasmas. For example, certain azimuthally asymmetric modes can have zero frequency
in the laboratory frame and be excited by a static field error of the trap. These zero
frequency modes can strongly limit the achievable density in a Penning trap [11]. Simi-
larly, the plasma angular momentum can be changed through the deliberate excitation
of azimuthally asymmetric modes, and the applied torque can be much greater than
that from the “rotating wall” perturbation [12], which is not mode-resonant. Finally,
the modes may provide useful information on the internal state of a plasma. For exam-
ple, measurement of the damping of the modes can provide information on the plasma’s
viscosity. This measurement could presumably be done in the interesting regime where
the plasma is strongly correlated [13,14].

Previous experimental mode studies on spheroidal plasmas have been limited
to frequency measurements on a small class of modes. With laser-cooled Be+ ion plas-
mas, some quadrupole mode frequencies have been measured and agree well with theory
[7,11]. Mode frequencies have also been measured on spheroidal cryogenic electron plas-
mas [15], 0.025–0.5 eV electron and positron plasmas [16], and room temperature Ar+

ion plasmas [17]. In these cases qualitative agreement with theory was observed and the
modes provided some basic diagnostic information. However, deviations from the model
of a constant density spheroid in a quadratic trap limited the comparison with the ideal
linear theory. Here, in addition to measuring mode frequencies, we also measure the
mode eigenfunctions. The eigenfunctions permit direct identification of the modes. In
addition, they contain much more information than the frequencies and therefore may
be useful for observing nonlinear effects such as mode couplings. Mode eigenfunctions
have been measured for low frequency, z-independent (diocotron) modes on cylindri-
cal electron columns [18]. In that work, the mode measurements were important in
identifying two coexisting modes.

2. Experimental apparatus

Figure 1 shows a sketch of the apparatus [19,20] used for the mode measurements. The
trap consists of a 127 mm long stack of cylindrical electrodes at room temperature
with an inner diameter of 40.6 mm, enclosed in a 10−8 Pa vacuum chamber. A uniform
magnetic field B0 = 4.465 T is aligned parallel to the trap axis within 0.01◦, and
results in a 9Be+ cyclotron frequency Ω = qB0/m = 2π × 7.608 MHz. The magnetic
field alignment is accomplished by minimizing the excitation of zero-frequency modes
produced by a tilt of the magnetic field with respect to the trap electrode symmetry
axis [7,11]. Positive ions are confined in this trap by biasing the central “ring” electrode
to a negative voltage −V0 with respect to the endcaps. Because the dimensions of the
Be+ plasmas (. 2 mm) are small compared to the diameter of the trap electrodes, the
quadratic potential of Eq. (1) is a good approximation for the trap potential. For the
work reported here, V0 = 2.00 kV which results in ωz = 2π × 1.13 MHz and a single
particle magnetron frequency ωm = [Ω− (Ω2 − 2ω2

z)
1
2 ]/2 = 2π × 84.9 kHz.

We create a Be+ plasma by ionizing neutral Be atoms in a separate trap (not
shown) and then transferring the ions to the main trap. For the mode work discussed
here, the number of ions was typically 6×104. While the total charge in the trap is con-
served after loading, the relative abundance of contaminant, heavier-mass ions increases,
presumably due to reactions between Be+ ions and background neutral molecules. Be-
cause we analyze our experimental results using an existing theory [6] for the electro-
static modes of a single-species plasma, we took data only with relatively clean clouds
(< 3% impurity ions). The plasmas were cleaned approximately every 30 minutes by
transferring the ions to the load trap where, with a shallow 3 V deep well, contaminant
ions were driven out of the trap by exciting their axial frequencies. Cleaning therefore
results in a decrease in the number of trapped ions. Over a 12–14 hour period, the num-
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Figure 1. Sketch of the experimental apparatus. Modes were excited by applying
in-phase or 180◦ out-of-phase sinusoidal potentials to the trap endcaps.

ber of ions is reduced by a factor of 2. Because the mode frequencies and eigenfunctions
in a quadratic trap are independent of the number of ions, the measurements described
here are not affected.

The trapped Be+ ions are Doppler-cooled by two laser beams at wavelength
λ ≈ 313.11 nm. The main cooling beam is directed parallel to B0 as shown in Fig.
1, and a second beam propagating perpendicular to B0 (not shown and turned off
during the mode eigenfunction measurements) is also used to compress the plasma by
applying a radiation pressure torque [4,11]. For mode measurements the axial cooling-
laser frequency is fixed about one natural linewidth (∼ 20 MHz) below the transition
frequency. Ions which, due to excitation of a mode, have an axial velocity vz < 0 therefore
fluoresce more strongly than ions with vz > 0. The ion temperature was not measured;
however, based on previous work [4], we expect T . 20 mK.

An f/5 imaging system detects the Be+ resonance fluorescence scattered per-
pendicularly from the axial cooling beam (waist≈ 0.5 mm, power≈ 50 µW) to produce a
side-view image of the Be+ ions. The side-view image is obtained with a photon-counting
camera system which records the spatial and temporal coordinates of the detected pho-
tons. This data is processed to obtain the mode eigenfunctions by constructing side-view
images as a function of the phase of the external drive used to excite the modes.

3. Electrostatic modes of a cryogenic plasma

The constant-density, spheroidal plasma model is a good approximation for our work.
In thermal equilibrium, a Penning trap plasma rotates as a rigid body at frequency
ωr, where ωm < ωr < Ω − ωm, about the trap’s ẑ axis [2,5]. In this work the rotation
frequency was precisely set by a rotating dipole electric field [12]. As the ions rotate
through the magnetic field they experience a Lorentz force which provides the radial



confining force of the trap. This ωr-dependent confinement results in an ωr-dependent
ion density and plasma shape. At the low temperatures of this work, the plasma density
is uniform over distances large compared to the interparticle spacing (∼ 10 µm) and

is given by n0 = ε0mω
2
p/q

2 where ωp = [2ωr(Ω − ωr)]
1
2 is the plasma frequency. With

the confining potential of Eq. (1), the plasma is spheroidal with boundary z2/z2
0 +

x2/r2
0 + y2/r2

0 = 1. The spheroid aspect ratio α ≡ z0/r0 is determined by ωr [4,5]. We
have neglected the effect of image charges, because the plasma dimensions are small
compared to the trap dimensions.

The modes of these spheroidal plasmas can be classified by integers (l,m), where
l ≥ 1 and 0 ≤ m ≤ l [6,7]. For an (l,m) mode with frequency ωlm [21], the perturbed
potential of the mode inside the plasma is given by a symmetric product of Legendre
functions,

Ψlm ∝ Pml (ξ̄1/d̄)Pml (ξ̄2)ei(mφ−ωlmt). (2)

Here ξ̄1 and ξ̄2, discussed in Ref. [6], are scaled spheroidal coordinates where the scaling
factor depends on the frequencies ωr, Ω, and ωlm, and d̄ is a shape-dependent parameter
which also depends on these frequencies. In general, for a given (l,m) there are many
different modes. In this paper we report measurements of the mode frequencies and
eigenfunctions of a few magnetized plasma modes, which are defined as those modes
with frequencies |ωlm| < |Ω − 2ωr| [6,7]. In addition, we only discuss measurements
of azimuthally symmetric (m = 0) modes. For ωr � Ω/2, these modes principally
consist of oscillations parallel to the magnetic field at a frequency on the order of ωz.
In the experiment we detect the axial velocity of a mode. In the linear theory, this is
proportional to ∂Ψlm/∂z.

We excite plasma modes by applying sinusoidally time-varying potentials to the
trap electrodes. Azimuthally symmetric (m = 0) even l modes are excited by applying
in-phase potentials to the endcaps (even drive), while odd l modes are excited by apply-
ing 180◦ out-of-phase potentials to the endcaps (odd drive). Azimuthally asymmetric
(m 6= 0) modes can be excited by applying time-varying potentials to the compensation
electrodes, which have 6-fold azimuthal symmetry. In Refs. [7, 11] quadrupole (l = 2)
mode frequencies were measured by observing the change in the total ion fluorescence
from the plasma, averaged over the phase of the drive, which occurred when the drive
frequency equaled the mode frequency. However, in order to observe such a change, the
mode excitation must be large enough so that either the fluorescence from an ion non-
linearly depends on its velocity or there is some heating of the plasma by the mode. The
larger amplitude drive required by this technique decreases the precision of the mode
measurements.

The new technique reported here entails reducing the drive amplitude until the
change in the phase-averaged ion fluorescence is negligible, and detecting the mode’s
coherent ion velocities by recording side-view images as a function of the phase and
frequency of the external drive. These Doppler images provide direct measurements
of the mode’s axial-velocity eigenfunction [22]. In addition, an accurate measurement
of the mode’s frequency can be obtained from the line center of the mode amplitude
as a function of drive frequency. High order modes have been excited and detected
with this technique, such as the (11, 0) and (12, 1) modes. We note that for the (1,0)
and (1,1) modes, imaging is not required because there is no spatial variation in their
eigenfunction. The driven mode amplitude and phase of these center-of-mass modes can
therefore be obtained by coherently detecting the spatially-integrated fluorescence as a
function of the phase of the external drive [23].
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Figure 2. Plots of the frequencies of several magnetized plasma modes as a func-
tion of rotation frequency for Ω/2π=7.608 MHz and ωz/2π=1.13 MHz. The solid
lines are the theoretical predictions and the symbols are experimental measure-
ments. Only the highest frequency (9, 0) plasma mode and the second highest fre-
quency (8, 0) plasma mode are plotted.

4. Experimental results

In Fig. 2 we plot several measured mode frequencies, along with the theoretical pre-
dictions, for azimuthally symmetric magnetized plasma modes as a function of ωr for
ωz/2π = 1.13 MHz and Ω/2π = 7.608 MHz. Many different mode frequencies at various
values of ωz have been measured, and on clean clouds agreement between the observed
and predicted mode frequencies is typically better than 1%. In this manuscript we con-
centrate on describing the images obtained of the (2, 0) and the highest frequency (9, 0)
magnetized plasma modes. For a given (l, 0), the highest frequency magnetized plasma
mode does not have any radial nodes.

Figure 3 demonstrates the phase-coherent detection of the (2, 0) mode. This is
one of the simplest modes that is not merely a center-of-mass oscillation of the plasma.
In this mode the plasma stays spheroidal but the aspect ratio (and density) oscillate at
ω2,0. For ωr � Ω/2, the oscillation in r0 is very small, so the mode principally consists
of oscillations in z0 at ω2,0. Ions above the z = 0 plane oscillate 180◦ out of phase with
ions below z = 0.

Figure 3(a) shows a sequence of 18 side-view images as a function of the phase
of the mode drive at ω2,0/2π = 1.656 MHz. The plasma’s rotation frequency was set to
ωr/2π = 1.00 MHz and the m = 0 even drive rms amplitude was 7.07 mV. In the images,
the magnetic field and the axial laser beam point up. As expected for the (2, 0) mode,
the detected fluorescence in the upper half of the plasma is bright when the lower half is
dark and vice versa. We analyze the data of Fig. 3(a) by performing a least-squares fit
of the intensity at each point to A0 +A2,0 cos(ω2,0t+ϕ2,0). Figures 3(b) and 3(c) show
the resultant images of the measured mode amplitude A2,0(x, z) and phase ϕ2,0(x, z).
These are compared with the theoretically predicted values of these quantities. Because
the plasma is optically thin, the theoretical predictions were obtained by integrating
∂Ψlm/∂z over y. The amplitude of the theoretical prediction is scaled to match the



Figure 3. (a) Movie of sideview image data obtained on a plasma with ωr/2π=
1.00 MHz while driving a (2,0) mode at ω2,0/2π=1.656 MHz. The magnetic field
and axial laser beam point up. The ion cloud dimensions are 2z0 = 0.76 mm and
2r0 = 0.24 mm, and the density n0 = 2.70 × 109 cm−3. Comparison of the ampli-
tude (b) and phase (c) extracted from the (2, 0) mode in (a) with the predictions
of linear theory. The theory predictions are on the right.

Figure 4. (a) Movie of sideview image data obtained on the plasma of Fig. 3 with
ωr/2π= 1.00 MHz while driving a (9,0) mode at ω9,0/2π=2.952 MHz. Comparison
of the amplitude (b) and phase (c) extracted from the (9, 0) mode in (a) with the
predictions of linear theory. The theory predictions are on the right.

experiment, and both amplitudes are normalized to one.
From the fitted values of A2,0 and A0 we can estimate the coherent ion mode

velocities if the dependence of the ion fluorescence on velocity (through Doppler shifts)



is known. For the low temperatures of this experiment a good approximation is to
assume a Lorentzian profile with a 19 MHz full-width-at-half-maximum due to the
natural linewidth of the optical cooling transition. With the 20 MHz detuning used in
this experiment, we estimate for the data of Fig. 3 that the maximum coherent mode
velocity, which occurs at z = ±z0, is ∼1.5 m/s. The spatial and density changes in the
plasma spheroid for this excitation are too small to be resolved (∆z/z0,∆n/n0 < 10−3).
Therefore the observed variation in the fluorescence intensity is entirely due to Doppler
shifts induced by the coherent ion velocities of the mode.

Figure 5. (a) Movie of sideview image data obtained on a plasma with ωr/2π=
638 kHz while driving with an even drive at 1.619 MHz. At this rotation frequency
there is a crossing of the (2, 0) mode and an (8, 0) mode with a radial node. Com-
parison of the amplitude (b) and phase (c) extracted from the data in (a) with the
predictions of linear theory. The predictions of both the (2, 0) and (8, 0) modes are
given. For this plasma 2z0 = 0.70 mm and 2r0 = 0.29 mm.

We have measured the mode eigenfunctions of a number of different azimuthally
symmetric (m=0) modes including the l=2,3,4,5,7 and 9 modes. Like the data of Fig.
3, good agreement with the predicted eigenfunction amplitude and phase distribution
is obtained in the limit of low laser power and drive amplitude. Surprisingly high-
order odd modes could be excited with the odd drive on the trap endcaps. Figure 4(a)



shows a sequence of 18 sideview images obtained with the (9, 0) excited by a drive at
ω9,0/2π = 2.952 MHz. Figures 4(b) and 4(c) show the fitted amplitude and phase from
this sequence, along with the predictions from theory. Similar high-order even (l, 0)
modes are more difficult to excite.

Finally, Fig. 5 shows images from a plasma with ωr/2π = 638 kHz driven by
an even drive at 1.619 MHz. This case demonstrates the utility of the Doppler imaging
diagnostic. These data were initially taken during a survey of the (2, 0) mode eigenfunc-
tion as a function of the plasma’s rotation frequency. Analysis of the phase-coherent
data revealed additional, higher-order structure. An examination of the predictions for
the mode frequencies revealed that at this particular rotation frequency, as shown in
Fig. 2, both the (2, 0) mode and an (8, 0) mode with a radial node have similar fre-
quencies. Characteristics of both modes are seen in the data. Measurements of the (2, 0)
mode frequency near this crossing indicate that any frequency shifts due to a non-linear
coupling with the (8, 0) mode are less than a few kilohertz. We note that the (2, 0) mode
driven in Fig. 3 occurs near a crossing with a (9, 0) mode (see Fig. 2). In this case, no
evidence for the excitation of a (9, 0) is observed, presumably because this is an odd
mode.

5. Summary and conclusion

We have described a technique for imaging the eigenfunctions of a laser-cooled ion
plasma. In general, for the azimuthally symmetric modes on spheroidal plasmas dis-
cussed here, good agreement is obtained between linear theory and experimental measure-
ments made with low mode drive amplitude and laser power. The technique should be
a useful tool for studying deviations from the linear theory, such as large amplitude
frequency shifts and non-linear corrections to the mode eigenfunction. Data like that
of Fig. 5 should be useful for studying the coupling between modes. Finally, the width
of the resonant lineshape of the mode amplitude as a function of the drive frequency
provides a measurement of the mode damping. With low laser power and a sufficiently
clean plasma this should provide information on the viscosity of a strongly correlated
plasma.
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