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Abstract. We describe a technique and present results for imaging the modes of a laser-cooled plasma
of 9Be+ ions in a Penning trap. The modes are excited by sinusoidally time-varying potentials applied to
the trap electrodes, or by static field errors. They are imaged by changes in the ion resonance fluorescence
produced by Doppler shifts from the coherent ion velocities of the mode. For the geometry and conditions
of this experiment, the mode frequencies and eigenfunctions have been calculated analytically. A compar-
ison between theory and experiment for some of the azimuthally symmetric modes shows good agreement.
Enhanced radial transport is observed where modes are resonant with static external perturbations, such as
those caused by misaligning the trap with respect to the magnetic field. Similarly, the plasma angular mo-
mentum can be changed through the deliberate excitation of azimuthally asymmetric modes. The resultant
torque can be much greater than that from the “rotating wall” perturbation, which is not mode-resonant.

INTRODUCTION

Non-neutral plasmas consisting exclusively of particles of a single sign of charge have been used to study
many basic processes in plasma physics [1], partly because non-neutral (as opposed to neutral or quasi-neutral)
plasmas can be confined by static electric and magnetic fields and also be in a state of global thermal equilibrium
[2,3]. A particularly simple confinement geometry for non-neutral plasmas is the quadratic Penning trap, which
uses a strong uniform magnetic field B0 = B0ẑ superimposed on a quadratic electrostatic potential
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mω2

z

2q

(
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2

)
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Here m and q are the mass and charge of a trapped ion, and ωz is the axial frequency of a single ion in the
trap. The global thermal equilibrium state for a single charged species in a quadratic Penning trap has been
well studied [3,4]. For sufficiently low temperatures, the plasma takes on the simple shape of a uniform density
spheroid. An interesting result is that all of the electrostatic modes of a magnetized, uniform density spheroidal
plasma can be calculated analytically [5,6]. This is the only finite length geometry for which exact plasma
mode frequencies and eigenfunctions have been calculated for a realistic thermal equilibrium state.

In this manuscript we describe a technique for measuring these frequencies and eigenfunctions, and compare
theory predictions and experimental results for some of the magnetized plasma modes. We also discuss several
potential applications for the modes in Penning trap experiments. In general, the mode frequencies depend on
the density and shape of the plasma spheroid. Therefore measurement of a mode frequency provides a non-
destructive method for obtaining basic diagnostic information about the plasma. This is especially important
in anti-matter plasmas [7,8], where conventional techniques for obtaining information about these plasmas
involve ejecting the plasma from the trap. Measurement of the damping of the modes can provide information
on the plasma’s viscosity [9,10]. Other applications arise from the fact that the modes can strongly influence
the dynamical behavior of trapped plasmas. For example, certain azimuthally asymmetric modes can have zero
frequency in the laboratory frame and be excited by a static field error of the trap. These zero-frequency modes
can strongly limit the achievable density in a Penning trap [11]. Similarly, the plasma angular momentum can
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be changed through the deliberate excitation of azimuthally asymmetric modes [12,13], and the applied torque
can be much greater than that from the “rotating wall” perturbation [14,15], which is not mode-resonant.

Previous experimental mode studies on spheroidal plasmas have been limited to frequency measurements
on a small class of modes. With laser-cooled Be+ ion plasmas, some quadrupole mode frequencies have been
measured and agree well with theory [6,11]. Mode frequencies have also been measured on spheroidal cryogenic
electron plasmas [16], 0.025–0.5 eV electron and positron plasmas [17], and room temperature Ar+ ion plasmas
[18]. In these cases qualitative agreement with theory was observed and the modes provided some basic
diagnostic information. However, deviations from the model of a constant density spheroid in a quadratic trap
limited the comparison with the ideal linear theory. Here, in addition to measuring mode frequencies, we also
measure the mode eigenfunctions. The eigenfunctions permit direct identification of the modes. In addition,
they contain much more information than the frequencies and therefore may be useful for observing nonlinear
effects such as mode couplings. Mode eigenfunctions have been measured for low frequency, z-independent
(diocotron) modes on cylindrical electron columns [19]. In that work, the mode measurements were important
in identifying two coexisting modes.

EXPERIMENTAL APPARATUS

Figure 1 shows a schematic of the apparatus [20,21] used for the mode measurements. The trap consists of a
127 mm long stack of cylindrical electrodes at room temperature with an inner diameter of 40.6 mm, enclosed
in a 10−8 Pa vacuum chamber. A uniform magnetic field B0 = 4.465 T is aligned parallel to the trap axis within
0.01◦, and results in a 9Be+ cyclotron frequency Ω = qB0/m = 2π× 7.608 MHz. The magnetic field is aligned
by minimizing the excitation of zero-frequency modes produced by a tilt of the magnetic field with respect
to the trap electrode symmetry axis [6,11]. Positive ions are confined in this trap by biasing the central ring
electrode to a negative voltage −V0 with respect to the endcaps. Because the dimensions of the Be+ plasmas
(<∼ 2 mm) are small compared to the diameter of the trap electrodes, the quadratic potential of Eq. (1) is a good
approximation for the trap potential. For most of the work reported here, V0 was set at 2.00 kV which results in
ωz = 2π × 1.13 MHz and a single-particle magnetron frequency ωm = [Ω− (Ω2 − 2ω2

z)
1
2 ]/2 = 2π × 84.9 kHz.

We create a Be+ plasma by ionizing neutral Be atoms in a separate trap (not shown) and then transferring
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FIGURE 1. Schematic of the experimental apparatus. Azimuthally symmetric m = 0 modes were excited by applying

in-phase or 180◦ out-of-phase sinusoidal potentials to the trap endcaps.
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the ions to the main trap. For the work discussed here, the number of ions was typically 6 × 104. While
the total charge in the trap is conserved after loading, the relative abundance of contaminant, heavier-mass
ions increases, presumably due to reactions between Be+ ions and background neutral molecules. Because
we analyze our experimental results using an existing theory [5] for the electrostatic modes of a single-species
plasma, we took data for mode studies only with relatively clean clouds (<3% impurity ions). The plasmas
were cleaned approximately every 30 minutes by transferring the ions to the load trap where, with a shallow
3 V deep well, contaminant ions were driven out of the trap by exciting their axial frequencies. Cleaning
therefore results in a decrease in the number of trapped ions. Over a 12–14 hour period, the number of ions is
reduced by a factor of 2. Because the mode frequencies and eigenfunctions in a quadratic trap are independent
of the number of ions, the mode measurements described here are not affected.

The trapped Be+ ions are Doppler cooled by two laser beams at wavelength λ ≈ 313.11 nm. The main cooling
beam is directed parallel to B0 as shown in Fig. 1, and a second cooling beam propagating perpendicular to B0

(not shown and turned off during measurements) is also used to compress the plasma by applying a radiation
pressure torque [3,11]. For mode eigenfunction measurements the axial cooling-laser frequency is fixed about
one natural linewidth (∼ 20 MHz) below the transition frequency. Ions which, due to excitation of a mode,
have an axial velocity vz < 0 therefore fluoresce more strongly than ions with vz > 0. The ion temperature
was not measured; however, based on previous work [3], we expect T <∼ 20 mK.

An f/5 imaging system detects the Be+ resonance fluorescence scattered perpendicularly from the axial
cooling beam (waist ≈ 0.5 mm, power ≈ 50 µW) to produce a side-view image of the Be+ ions. The side-view
image is obtained with a photon-counting camera system which records the spatial and temporal coordinates
of the detected photons. This data is processed to obtain the mode eigenfunctions by constructing side-view
images as a function of the phase of the external drive used to excite the modes.

ELECTROSTATIC MODES OF A SPHEROIDAL PLASMA

A constant-density, spheroidal plasma model is a good approximation for our work. In thermal equilibrium,
a Penning trap plasma rotates as a rigid body at frequency ωr, where ωm < ωr < Ω− ωm, about the trap’s ẑ
axis [2,4]. In this work the rotation frequency was precisely set by a rotating dipole electric field [14,15]. As the
ions rotate through the magnetic field they experience a Lorentz force which provides the radial confining force
of the trap. This ωr-dependent confinement results in an ωr-dependent ion density and plasma shape. At the
low temperatures of this work, the plasma density is uniform over distances large compared to the interparticle
spacing (∼ 10 µm) and is given by n0 = ε0mω

2
p/q

2 where ωp = [2ωr(Ω− ωr)]
1
2 is the plasma frequency. With

the confining potential of Eq. (1), the plasma is spheroidal with boundary z2/z2
0 + x2/r2

0 + y2/r2
0 = 1. The

spheroid aspect ratio α ≡ z0/r0 is determined by ωr [3,4]. We have neglected the effect of image charges,
because the plasma dimensions are small compared to the trap dimensions.

The modes of these spheroidal plasmas can be classified by integers (l,m), where l ≥ 1 and 0 ≤ m ≤ l [5,6].
For an (l,m) mode with frequency ωlm [22] the perturbed potential of the mode inside the plasma is given by
a symmetric product of Legendre functions,

Ψlm ∝ Pml (ξ̄1/d̄)P
m
l (ξ̄2)ei(mφ−ωlmt). (2)

Here ξ̄1 and ξ̄2, discussed in Ref. [5], are scaled spheroidal coordinates where the scaling factor depends on the
frequencies ωr, Ω, and ωlm, and d̄ is a shape-dependent parameter which also depends on these frequencies. In
general, for a given (l,m) there are many different modes. In this paper we report measurements of the mode
frequencies and eigenfunctions of several magnetized plasma modes, which are defined as those modes with
frequencies |ωlm| < |Ω − 2ωr| [5,6]. For ωr � Ω/2, these modes principally consist of oscillations parallel to
the magnetic field at a frequency on the order of ωz. In the experiment we detect the axial velocity of a mode.
In the linear theory, this is proportional to ∂Ψlm/∂z.

We excite azimuthally symmetric (m = 0) plasma modes by applying sinusoidally time-varying potentials
to the trap electrodes. Even-l (l, 0) modes are excited by applying in-phase potentials to the endcaps (even
drive), while odd-l (l, 0) modes are excited by applying 180◦ out-of-phase potentials to the endcaps (odd drive).
Azimuthally asymmetric (m 6= 0) modes can be excited by applying potentials to the compensation electrodes,
which have 6-fold azimuthal symmetry. In Refs. [6,11] quadrupole (l = 2) mode frequencies were measured by
observing the change in the total ion fluorescence from the plasma, averaged over the phase of the drive, which
occurred when the drive frequency equaled the mode frequency. However, in order to observe such a change,
the mode excitation must be large enough so that either the fluorescence from an ion nonlinearly depends on
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its velocity or there is some heating of the plasma by the mode. The large amplitude drive required by this
technique decreases the precision of the mode measurements.

The technique described here entails reducing the drive amplitude until the change in the phase-averaged
ion fluorescence is negligible, and detecting the mode’s coherent ion velocities by recording side-view images
as a function of the phase and frequency of the external drive [23]. These Doppler images provide direct
measurements of the mode’s axial-velocity eigenfunction [24]. In addition, an accurate measurement of the
mode’s frequency (both real and imaginary parts) can be obtained from measurements of the mode amplitude
as a function of drive frequency. High order modes have been excited and detected with this technique, such
as the (11, 0) and (12, 1) modes. Imaging is not required for the (1,0) and (1,1) modes because there is no
spatial variation in their eigenfunction. The driven mode amplitude and phase of these center-of-mass modes
can therefore be obtained by coherently detecting the spatially integrated fluorescence as a function of the
phase of the external drive [25].

EXPERIMENTAL RESULTS

Mode Frequency And Eigenfunction Measurements

In Fig. 2 we plot measured mode frequencies, along with the theoretical predictions, for several azimuthally
symmetric magnetized plasma modes as a function of ωr for ωz/2π = 1.13 MHz and Ω/2π = 7.608 MHz. Many
different mode frequencies at various values of ωz have been measured with the Doppler imaging technique,
and on very clean clouds agreement between the observed and predicted mode frequencies is typically better
than 1%. However, as the percentage of impurity ions increases, the shift between the measured frequency and
the value predicted by the single-species theory also increases. Both positive and negative frequency shifts have
been observed. We think that these frequency shifts are caused by changes in the cloud shape which perturb
the spheroidal geometry of the single-species cloud, arising because impurity ions centrifugally separate from
the Be+ [26].
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FIGURE 2. Plots of the frequencies of several m = 0 magnetized plasma modes as a function of rotation frequency for

Ω/2π=7.608 MHz and ωz/2π=1.13 MHz. The solid lines are the theoretical predictions and the symbols are experimental

measurements. Only the highest frequency (9, 0) plasma mode and the second highest frequency (8, 0) plasma mode

are plotted.
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FIGURE 3. (a) Phase-coherent sideview image data obtained on a plasma with ωr/2π= 1 MHz while driving a

(2,0) mode at ω2,0/2π=1.656 MHz. The magnetic field and axial laser beam point up. The ion cloud dimensions are

2z0 = 0.76 mm and 2r0 = 0.24 mm, and the density n0 = 2.70 × 109 cm−3. Comparison of the amplitude (b) and

phase (c) extracted from the (2, 0) mode in (a) with the predictions of linear theory. The theory predictions for (b) and

(c) are on the right. From Ref. [23].

Figure 3 illustrates phase-coherent detection and Doppler imaging of the (2, 0) mode. This is one of the
simplest modes that is not merely a center-of-mass oscillation of the plasma. In this mode the plasma stays
spheroidal but the aspect ratio (and density) oscillate at ω2,0. For ωr � Ω/2, the oscillation in r0 is very small,
so the mode principally consists of oscillations in z0 at ω2,0. Ions above the z = 0 mid plane oscillate 180◦ out
of phase with ions below z = 0.

Figure 3(a) shows one of a sequence of 18 side-view images taken as a function of the phase of the mode
drive at ω2,0/2π = 1.656 MHz. A movie of the entire sequence is included in Ref. [23]. The plasma’s rotation
frequency was set to ωr/2π = 1 MHz and the m = 0 even drive rms amplitude was 7.07 mV. In the images, the
magnetic field and the axial laser beam point up. As expected for the (2, 0) mode, the detected fluorescence in
the upper half of the plasma is bright when the lower half is dark and vice versa. We analyze the data of Fig.
3(a) by performing a least-squares fit of the intensity at each point to A0 +A2,0 cos(ω2,0t+ϕ2,0). Figures 3(b)
and 3(c) show the resultant images of the measured mode amplitude A2,0(x, z) and phase ϕ2,0(x, z). These
are compared with the theoretically predicted values of these quantities. Because the plasma is optically thin,
the theoretical predictions were obtained by integrating ∂Ψlm/∂z over y. The amplitude of the theoretical
prediction is scaled to match the experiment, and both amplitudes are normalized to 1.

From the fitted values of A2,0 and A0 we can estimate the coherent-ion mode velocities if the dependence of
the ion fluorescence on velocity (through Doppler shifts) is known. For the low temperatures of this experiment
a good approximation is to assume a Lorentzian profile with a full width at half maximum of 19 MHz due to
the natural linewidth of the optical cooling transition. With the 20 MHz detuning used in this measurement,
we estimate for the data of Fig. 3 that the maximum coherent mode velocity, which occurs at z = ±z0, is
∼1.5 m/s. The spatial and density changes in the plasma spheroid for this excitation are too small to be
resolved (∆z/z0,∆n/n0 < 10−3). Therefore the observed variation in the fluorescence intensity is entirely due
to Doppler shifts induced by the coherent ion velocities of the mode.

We have measured the mode eigenfunctions of a number of different azimuthally symmetric modes including
the l=2,3,4,5,7, and 9 modes. Like the data of Fig. 3, good agreement with the predicted eigenfunction
amplitude and phase distribution is obtained in the limit of low laser power and drive amplitude. Surprisingly
high-order odd modes could be excited with the odd drive on the trap endcaps. Figure 4(a) shows one
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FIGURE 4. (a) Phase-coherent sideview image data obtained on the plasma of Fig. 3 with ωr/2π= 1.00 MHz while

driving a (9,0) mode at ω9,0/2π=2.952 MHz. Comparison of the amplitude (b) and phase (c) extracted from the (9, 0)

mode in (a) with the predictions of linear theory. The theory predictions are on the right. From Ref. [23].

of a sequence of 18 sideview images obtained with the highest frequency (9, 0) mode excited by a drive at
ω9,0/2π = 2.952 MHz. For a given (l,0), the highest frequency magnetized plasma mode does not have any
radial nodes. Figures 4(b) and 4(c) show the fitted amplitude and phase from the sequence, along with
the predictions from theory. Similar high-order even (l, 0) modes are more difficult to excite. The mode
eigenfunctions of some of the azimuthally asymmetric (m=1 and m=2) modes, such as the (1,1), (2,1), (3,1)
(4,1), (6,1), (8,1) and (3,2) modes, have also been imaged. In general, the qualitative agreement with the
predictions of theory is good.

Figure 5 shows images from a plasma with ωr/2π = 638 kHz driven by an even drive at 1.619 MHz. This case
demonstrates the utility of the Doppler imaging diagnostic. These data were initially taken during a survey of
the (2, 0) mode eigenfunction as a function of the plasma’s rotation frequency. Analysis of the phase-coherent
data revealed additional, higher-order structure. An examination of the predictions for the mode frequencies
revealed that at this particular rotation frequency, as shown in Fig. 2, both the (2, 0) mode and an (8, 0) mode
with a radial node have similar frequencies. Characteristics of both modes are seen in the data. However,
subsequent measurements of the (2, 0) mode frequency near this crossing indicated that any frequency shifts
due to a nonlinear coupling with the (8, 0) mode are less than a few kilohertz. The (2, 0) mode driven in Fig.
3 occurs near a crossing with a (9, 0) mode (see Fig. 2). In this case no evidence for an excitation of a (9, 0)
is observed, presumably because it is an odd mode which does not couple to even drives, and because there is
little or no mode coupling between the (2, 0) and (9, 0).

Doppler imaging also provides a technique for measuring the damping of plasma modes. This is done by
sweeping the frequency ωpert of the sinusoidally time-varying perturbation through a mode frequency, while
measuring the mode’s resultant amplitude and phase. If the perturbation amplitude is kept low to avoid large
amplitude effects the system can be modeled as a damped harmonic oscillator driven by a periodic external
force, which has a characteristic lineshape for its amplitude response and a phase difference of π above and
below resonance [27].

Figure 6 shows a measurement of the (2, 0) mode amplitude and phase response. The axial laser intensity
was reduced in an attempt to make mode damping from viscous dissipation dominant over that from laser
cooling, and the z > 0 upper half of the plasma was blocked off to permit phase-coherent detection with-
out spatial discrimination. At each perturbation drive frequency ωpert the fluorescence intensity was fitted to
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0                 Amplitude 1 -S       Phase S

FIGURE 5. (a) Phase-coherent sideview image data obtained on a plasma with ωr/2π= 638 kHz while driving with

an even drive at 1.619 MHz. At this rotation frequency there is a crossing of the (2, 0) mode and an (8, 0) mode with a

radial node. Comparison of the amplitude (b) and phase (c) extracted from the data in (a) with the predictions of linear

theory. The predictions of both the (2, 0) and (8, 0) modes are given. For this plasma 2z0 = 0.70 mm and 2r0 = 0.29

mm. From Ref. [23].
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A0 +A2,0 cos(ωpertt+ϕ2,0). Figure 6(a) shows the measured amplitude A2,0 along with a 4-parameter fit to the

damped harmonic oscillator lineshape a0 +a1ωpert/(ω2,0

√
(ωpert − ω2,0)2 + λ2), where λ is the damping coeffi-

cient. Figure 6(b) shows the measured phase ϕ2,0 along with a 3-parameter fit to ϕ0 − arctan((ωpert − ω2,0)/λ).
The two fits give damping coefficient values of λ = 1405 and 1409 s−1. These are consistent with the rates of
viscous damping seen in simulations [9].

Angular Momentum Transport From Resonant Modes

In principle, the confinement time of non-neutral plasmas in Penning traps is infinite because angular mo-
mentum conservation in an ideal, cylindrically symmetric trap places a constraint on the radial transport of
the plasma [28]. In practice radial transport of the plasma always occurs, and at rates which, with ultrahigh
vacuum, are greater than can be explained by collisions of the plasma with the neutral background gas. Be-
cause the rates of this “ambient” transport increase with increasing static field errors in the trap, it is thought
to be caused by couplings between the confining field asymmetries and the plasma [29].

Although ambient transport is at present poorly understood, progress has been made on the related but
simpler mechanism of mode-resonant transport. Here, torques are imparted because azimuthally asymmetric
plasma modes can have zero frequency in the laboratory frame and hence be excited by the static field errors
[6,11,30–32]. Because these modes need to have negative (backward) frequencies in the rotating frame of the
plasma to come into resonance with a static field error, any torque they exert will slow the plasma down and
hence increase transport. An analysis based on the second law of thermodynamics yields the same result [28].

When the trap walls are well away from the plasma and the ambient field errors are small, as in our
experiment, it is particularly easy to study mode-resonant transport. Reference [11] demonstrated that torque
and heating of the plasma occur when one of the (2,1) plasma modes is resonant with a static field error
produced by a tilt between the trap symmetry axis and the magnetic field. The presence of additional heating
resonances at lower rotation frequencies was also noted. We have used Doppler imaging to identify these
resonances and find that they arise from (l, 1) modes which come into resonance with the tilted-field error.
We have also established that they exert a torque when they are resonant. Experimentally this tilt can be
applied either mechanically by tilting the trap electrodes, or electrically with m = 1 perturbations applied to
the compensation electrodes; we find no difference in the transport caused by the two methods.

Figure 7 is a plot of rotation frequency (as determined by side-view images [3]) versus time for a plasma when
the trap has been electrically tilted from its aligned value by an amount equivalent to ∼5 ×10−4 radians of
mechanical tilt. Radial transport, which is measured here by decreases in rotation frequency (corresponding in
this experimental regime to increases in the plasma radius), is enhanced by roughly a factor of 10 as compared
with the aligned case. The rotation frequencies where transport is especially rapid can be identified with the
mode resonances indicated on the plot. The lines show the predictions from theory for where the indicated
mode has ωlm = −ωr, and Doppler imaging was used to verify the identity of these resonant zero-frequency
modes. We find that the tilted-field error couples to modes with m = 1 and odd axial symmetry. Since with a
single-species cloud only the (2, 1) is predicted in linear theory to couple with a tilted-field error, the transport
displayed in Fig. 7 might require the presence of impurity ions. In ion traps these are usually present at some
level, and comprised ∼ 20% of the cloud of Fig. 7.

Because small-amplitude static field errors can be so effective in causing outward transport, it is not surprising
that the process can be usefully inverted by actively driving modes which travel faster than the cloud’s rotation.
With the laser-cooled Be+ plasmas, we have demonstrated mode-resonant inward transport with the (1,1),
(2,1), (3,1) and (2,2) modes. The (1,1) is particularly easy to excite, as only an axially uniform rotating dipole
field is required, and is useful for driving clouds into the regime where ωr approaches Ωc. The mode-resonant
technique can do this in a few seconds, while doing the same thing with laser torque takes many seconds, and
with the rotating wall perturbation at least several minutes. We note that the (1,1) mode requires an effect
to break the separation between the center-of-mass and the internal degrees of freedom of the plasma. In our
work, a small number of impurity ions could do this.

In comparison with the rotating wall technique for controlling an ion cloud’s rotation frequency [14,15], the
mode-resonant technique is less precise. The mechanism by which the rotating wall is believed to work with
strongly correlated plasmas is that the plasma comes into equilibrium with rotating distortions of its surface
which are imposed by the perturbation. Hence, the torque from a perturbation applied at frequency fRW goes
to 0 when fRW = fr, and changes sign about this point. In contrast, the torque imparted by a driven (l,m)
mode usually has only one sign and is experimentally observed to depend sensitively upon such parameters
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FIGURE 7. Measured plasma rotation frequency vs. time obtained when the trap was electrically tilted ∼5 ×10−4

radians from its aligned value. The lines are predictions from theory for where the indicated modes have zero frequency

in the lab frame.

as the temperature of the plasma. As a consequence the rotation frequency at which the cloud comes into
equilibrium with the mode, which is determined by a balance between the inward mode torque and the outward
ambient torque, is difficult to calculate in advance and is experimentally observed to change with variations in
the cooling laser power or frequency.

However, an important advantage of mode-resonant coupling is that it can be used to transfer angular
momentum to hot (uncorrelated: Γ � 1) plasmas. The phase-locked rotating wall control [14,15] described
above has only been demonstrated with laser-cooled plasmas. In contrast, mode-resonant coupling has been
used to increase angular momentum in non-neutral plasmas with temperatures up to 5 eV (which is where
ionization of neutrals begins to change the density profile). Reference [12] demonstrated inward radial transport
of a hot (T=0.9 eV) spheroidal electron cloud through the use of (l, 1) modes. This transport was accompanied
by a heating of the electrons, since there were no cooling processes in the experiment. At higher magnetic
fields the heating can be balanced by cyclotron radiation cooling; steady-state confinement of uncorrelated
electron plasmas in a 4 T field through the application of azimuthally asymmetric modes has recently been
demonstrated [33].

SUMMARY AND FUTURE DIRECTIONS

We have described a technique, Doppler imaging, for studying the mode properties of laser-cooled ion
plasmas. In general, for the magnetized plasma modes of spheroidal plasmas discussed here, good agreement
is obtained between linear theory and the experimental measurements we have made to date. In the future
the technique should be a useful tool for studying deviations from the linear theory such as large amplitude
frequency shifts, non-linear corrections to the mode eigenfunction, and mode coupling. Because the width of
the resonant lineshape of the mode amplitude as a function of the drive frequency provides a measurement of
the mode damping, lineshape measurements may be able to provide information on the collisional viscosity of
the strongly correlated plasma, about which little is currently known. Enhanced radial transport is observed
when modes are resonant with static external perturbations, and future work may permit a quantitative
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comparison to be made between experiment and theory for this basic transport process. Finally, we described
how the plasma angular momentum can be usefully changed through the deliberate excitation of azimuthally
asymmetric modes.
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