SU(3) gauge theory at finite temperature in 2+1 dimensions

work with P. Bialas, L. Daniel, A. Morel, C. Legeland, K. Petrov, T. Reisz

I. Comparison between 2 + 1 and 3 + 1 dimensional gauge theories

II. Perturbation theory vs dimensional reduction

III. Screening masses

IV. Thermodynamics

V. Conclusions

SU(3) Gauge Theories in d + 1 dimensions Differences

2 + 1		3+1
$Dim(g^2) = 1$		$Dim(g^2)=0$
Superrenormalizable		Renormalizable
classically:	$V(r) \sim \log r$	$V(r) \sim -rac{1}{r}$
	1 gluon/colour	2 gluons/colour

"There is a serious risk that working in 2 + 1 dimensions you are wasting your time ... Nevertheless ..."

R. Feynman (1981)

Similarities

$T > T_c$

all

Gluon Plasma

$$2 + 1$$
 $3 + 1$

$$g_3^2(T) \simeq \frac{g^2}{T} \xrightarrow{T \to \infty} 0$$
 $g_4^2(T) \simeq \frac{c}{\log T/\wedge} \xrightarrow{T \to \infty} 0$

$$\begin{aligned} & \text{But IR div} \\ & f_N(T) \sim g^{2N} \prod_{i=1}^{N+1} \left(T \sum_{n_i} \int d^d k_i \right) \prod_{j=1}^{2N} \left(\bar{q}_j^2 + (2\pi l_j T)^2 + \mu^2 \right)^{-1} \\ & n_i = 0 \qquad N \ge 1 \end{aligned}$$

Non-perturbative spacelike string tension

 $\sigma_{sp}(T) \sim g^2 T$

Selfconsistent perturbation theory in 2 + 1 dimensions (SCPT) D'Hoker, 1981

• Choose the class of "static gauges"

•
$$L(\bar{x}) = Tr \, e^{i \frac{g}{T} A_0(\bar{x})}$$

• Add and subtract explicit mass term

 $\frac{1}{2}m_g^2 Tr(A_0(\bar{x}))^2$

 $\partial_0 A_0(x) = 0$

• propagator in static Feynman gauge

$$D_{00}^{ab}(0,\bar{p}) = \frac{\delta_{ab}}{\bar{p}^2 + m_g^2} \qquad D_{ij}^{ab}(p_0 \neq 0,\bar{p}) = \delta_{ab} \frac{\delta_{ij} + p_i p_j / p_0^2}{p_o^2 + \bar{p}^2}$$
$$D_{ij}^{ab}(0,\bar{p}) = \delta_{ab} \frac{\delta_{ij}}{\bar{p}^2}$$

• No further infrared divergences; choose e.g. $\partial_0 A_0 = 0$ $\int_0^{1/T} d\tau A_2(\tau, \bar{x}) = 0$ (static axial gauge) Then in A_1 static propagator one should take the principal value.

Dimensional reduction $2 + 1 \longrightarrow 2$

P. Bialas, A. Morel, B.P., K. Petrov, T. Reisz

• Choose the class of static gauges

$$\partial_0 A_0(x) = 0$$

- Integrate perturbatively over non-static modes (no infrared div.!)
- Effective 2d adjoint Higgs model for static modes

$$S = \int d^2 x Tr \left\{ \frac{1}{2} F_{ij}^2 + (D_i \phi)^2 - \frac{3g^2 T}{2\pi} \left[\frac{5}{2} \log 2 + 1 - \log aT \right] \phi^2 + \frac{g^4}{32\pi} \phi^4 \right\}$$

- **R-symmetry** $\phi \longrightarrow -\phi$
- 2 dimensional adjoint Higgs model not solved analytically
- 2 dimensional pure SU(3) gauge theory trivially solvable

(Gross, Witten)

Lattice simulation:

two parameters $\beta = \frac{6}{ag^2}; N_\tau = \frac{1}{aT}$

$$D = 2$$

$$S = \sum_{x} \left\{ \beta N_{\tau} \left(1 - \frac{1}{3} \operatorname{Re} \operatorname{Tr} U_{p} \right) + \operatorname{Tr} \left[U(\bar{x}; i) \phi(\bar{x} + \bar{i}) U(\bar{x}, i)^{-1} - \phi(\bar{x}) \right]^{2} - \frac{9}{\pi N_{\tau} \beta} \left[\frac{5}{2} \log 2 - 1 + \log N_{\tau} \right] \operatorname{Tr} \phi^{2}(\bar{x}) + \frac{9}{8\pi \beta^{2}} \operatorname{Tr} \phi^{4}(\bar{x}) \right\}$$

• Z_3 symmetry of (2 + 1)D theory explicitly broken

cf. Bialas, Morel, B.P. (2005)

Screening mass

$$\langle Re(L(p_1=0,x_2)L^+(p_1=0,0))\rangle \sim \langle L\rangle^2 + e^{-m|x_2|}$$

lowest order perturbation theory $m = 2m_g$ for $ReL(\bar{x})$ $m = 3m_g$ for $ImL(\bar{x}) \pmod{Z_3}$ SCPT:

$$\frac{m_g^2}{T^2} \sim \frac{g^2}{T} \left(a \log \frac{T}{m_g} + b + O\left(\frac{1}{\log \frac{T}{m_g}} \right) \right)$$

scales $\begin{cases} T \\ g_3(T)T = \sqrt{\frac{g^2}{T}}T \ll T \text{ for } T \text{ large} \end{cases}$ note: $\frac{g^2}{T_c} = 1.81(2)$ Legeland, B.P.

Comparison with the MC data

SCPT:
$$\frac{m_g^2}{g^2T} = \frac{3}{2\pi} \left(\log(\frac{T}{m_g}) + C \right) + O\left(\frac{1}{\log T/m_g} \right); \qquad C = -1$$

C = +1 !

Dimensional reduction

In the reduced model the two exchanged states corresponding to $Re L(\bar{x})$ and $Im L(\bar{x})$ are simple poles, not 2 gluon and 3 gluon cuts respectively

 $m/\sqrt{g^2T}$ vs T_c/T

Thermodynamics in 2 + 1 dimensions

Lattice integral method:

$$S_0(\beta) = 3 \langle P_0(\beta, U) \rangle_0 ; \ S_T(\beta) = \langle 2P_\tau(\beta, U) + P_\sigma(\beta, U) \rangle_T$$

 $\beta = 3.3N_{\tau} T/T_c + 1.5$; from $T_c(\beta)$ Legeland, B.P.

 $(\epsilon - 2p)/T^3 = N_\tau^3 T \frac{d\beta}{dT} [S_0(\beta) - S_T(\beta)]$

 $P/T^{3} = -f/T^{3} = N_{\tau}^{3} \int_{\tau}^{\beta} [S_{0}(\beta') - S_{T}(\beta')] d\beta' + \text{const}$

Trace anomaly

2 + 13 + 1SU(3) $(e-2p)/T^3$ vs T/T_c 1.5 3 ° 4x16² $(\varepsilon - 3P) / T^4$ • $4x24^2$ ٥ $4x32^2$ $6x24^2$ 2 $x 16^{3}x4$ (e-2p)/T³ \square 32³x6 **◊** 32³x8 0.5 1 8 ¥ ĝ Å 5 T/T_c 10 0 0 2 8 9 1 3 6 7 4 3 T/T_c 2 4 1 5

Bialas, Daniel, Morel, B.P.

Boyd et al.

 $(\epsilon - 2p)/T^3 = 0$ for free massless gluons in 2 + 1 dimensions

Expect

 $(\epsilon - 2p)/T^3 \simeq A \frac{g^2}{T} f(\log T/g^2)$ $(e-2p)/(T^2g^2)$ vs T_c/T 1.5 $4x24^2$ 1.25 $6x24^{2}$ Δ $(e-2p)/(T^2g^2)$ ₹ ^{...} ₹_{₹ ...} ₹œ 0.5 ₹ Ŧ 0.25 $\frac{1}{0.8}$ T_{c}/T 0 0.2 0.4 0.6 1.2 1.4 0 1

Pressure

Free massless gluons in 2 + 1 dimensions: $\frac{2p}{T^3} = 3.06 \left(1 + \frac{1.51}{N_{\tau}^2} \dots\right)$

MC data:

Thermodynamics, continuum extrapolation

$$2 + 1$$
 preliminary $3 + 1$

 $2p/T^3$ vs T/T_c

Bialas, Daniel, Morel, B.P.

Boyd et al.

Conclusions:

I SU(3) gauge theories in 2 + 1 and 3 + 1 dimensions have similar qualitative behaviour also for $T > T_c$

In 2 + 1 dimensions:

II Perturbation theory has two scales: T and $\sqrt{g^2T} \ll T$ for large T

III Screening masses are well described by dimensional reduction for $T \ge 1.5T_c$

IV Description of thermodynamics by dimensional reduction in progress