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Motivation

• The cutting-edge of high-performance scientific computing currently lies in

the domain of multiphysics computation.

• Operator splitting has traditionally made the solution of multiphysics

systems tenable by enabling each component of the physics to be solved

in an essentially independent manner using standard solution techniques

for each component.

• However traditional operator splitting can sometimes be inefficient and is

only first-order accurate.

• Much research is currently being done to develop efficient second-order

multiphysics time-integration methods.

• We are currently developing second-order splitting methods for

radiation-hydrodynamics with the intent of achieving efficiency, accuracy,

and compatibility with existing code architectures.
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Overview

• The thermal radiation transport equation in static media

• Angular, energy, and spatial discretization

• Solution of the transport equation
• Source Iteration
• Linear Multifrequency Grey Acceleration (LMFGA)
• Preconditioned Krylov adaptation of LMFGA

• The equations of nonrelativistic radiation-hydrodynamics

• A simplified model for nonrelativistic radiation-material coupling

• The concept of operator splitting

• A first-order splitting scheme using standard solution techniques

• A candidate second-order splitting scheme
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Basic Equations

• The equations of thermal radiation transport consist of a transport

equation for the angular intensity I(
−→

r ,
−→

Ω , E, t):

1

c

∂I

∂t
+

−→

Ω ·
−→

∇ I + σtI =
σs

4π
φ+ σaB(T ) ,

and an equation for the material temperature T (
−→

r , t):

Cv
∂T

∂t
=

∫

∞

0

σa[ φ− 4πB(T ) ] dE .

• There are two other basic equations associated with the transport

equation: the radiation energy and momentum equations.
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Basic Equations

• The radiation energy equation is obtained by integrating the transport

equation over all directions and energies:

∂E

∂t
+

−→

∇ ·
−→

F =

∫

∞

0

σa[ 4πB(T ) − Φ ] dE .

where the radiation energy density (energy/volume) is given by

E ≡
1

c

∫

∞

0

∫

4π

I
(

−→

Ω , E
)

dΩ dE ,

and the radiation flux (energy − area− time) is given by

−→

F ≡

∫

∞

0

∫

4π

−→

Ω I
(

−→

Ω , E
)

dΩ dE .
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Basic Equations

• Note from the definition of E that the radiation intensity integrated over

angle and energy (energy − area− time), which we denote by Φ, is

equal to cE.

• The radiation energy is an energy balance equation stating that the time

rate of change of the radiation energy in a differential volume is equal to

the energy sources minus the sinks.

• The radiation momentum equation is obtained by first multiplying the

transport equation by
−→

Ω /c and then integrating over all directions and

energies:

1

c2
∂
−→

F

∂t
+

−→

∇ ·
=⇒

P +

∫

∞

0

σa

c

−→

F dE = 0 ,
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Basic Equations

• where the radiation pressure (energy/volume) is given by

Pi,j ≡
1

c

∫

∞

0

∫

4π

ΩiΩjI
(

−→

Ω , E
)

dΩ dE ,

• The radiation momentum equation is a balance equation stating that the

time rate of change of the radiation momentum in a differential volume is

equal to the momentum sources minus the sinks.

• When we include material motion, the transport and hydrodynamics

equations will be coupled.

• The radiation energy and momentum equations will be part of total

(radiation plus material) energy and momentum conservation equations.

Presentation at Oak Ridge National Laboratory, Oak Ridge, TN, January, 8, 2007 Slide 7/58



Nonlinearities

• Note that the radiative transfer equations have nonlinearities arising only

from the temperature dependence of the material property coefficients and

the Planck function.

• The heat capacity and scattering cross sections are generally a weak

function of temperature, while the absorption cross sections are strong

functions of temperature.

• The radiative transfer equations are generally solved using an approximate

form of Newton’s method.

• The method is approximate in that the non-linearities are usually not

iterated to full consistency, and contributions to the Jacobian from the

material property functions are neglected.

• Stability considerations require linearization of the Planck function but not

the material property functions.
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Discretization of the Transport Equation

• We use the Sn or discrete-ordinates angular discretization, which is

basically a collocation technique.

• The collocation points correspond to quadrature points on the unit sphere

and the integration over angle is carried out using the quadrature formula.

• There is only one energy discretization technique in use called the

multigroup method, and it can be viewed as a Petrov-Galerkin method with

an arbitrary piecewise discontinuous trial space and a piecewise-constant

weighting space.

• The demands on transport spatial discretization schemes are extreme. For

the most part, we use discontinuous-Galerkin methods, but both the

gradient and interaction terms must be lumped to achieve adequate

robustness.
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Solution of the Radiative Transfer Equations

• Traditional accelerated iterative solution techniques for the transport

equation are closely related to multilevel or multigrid methods.

• In most instances, some type of diffusion operator is used to approximate

a transport operator.

• For many years, it appeared that such methods were unconditionally

effective as long as the diffusion equations were differenced in a manner

consistent with the spatial discretization of the transport operator.

• Unfortunately, when discontinuous Galerkin methods are used for the

transport equation, the consistent diffusion discretizations are of a mixed

form and can be very expensive to solve.
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Solution of the Radiative Transfer Equations

• A great deal of research effort has been spent over the last 20 years or so

to find ways to either use simpler diffusion discretizations or solve the full

discretizations in an approximate manner without significant loss of

effectiveness.

• These efforts have met with limited success.

• Furthermore, over the last five years or so, it has been recognized that

traditional acceleration techniques are not uniformly effective in

multidimensional calculations even when consistent diffusion

discretizations are used.

• In particular, it has been found that strong material inhomogeneities can

degrade effectiveness and occasionally generate instabilities.
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Solution of the Radiative Transfer Equations

• It has now become clear that by recasting traditional accelerated iteration

schemes as preconditioned Krylov methods, far greater lattitude in the

choice of diffusion discretization is possible, the degrading effects of

strong material inhomogeneities can be significantly reduced, and any

associated instabilities eliminated.

• Consequently, there is currently a great deal of research within the

computational transport community devoted to preconditioned Krylov

methods.
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Solution of the Radiative Transfer Equations

• As previously noted, the radiative transfer equations are generally solved

via an approximate form of Newton’s method.

• After linearization, temporal discretization (backward-Euler), and energy

discretization (multigroup), one can eliminate the temperature from the

transport equation:

−→

Ω ·
−→

∇ Ig +σ∗τ,gI =
1

4π
σ∗s,gφg +

1

4π
νχg

G
∑

k=1

σ∗a,kφk +ξg , g = 1, G,

• and obtain an intensity-dependent temperature equation:

T = T ∗+
∑G

g=1 σ
∗

a,g

[

φg − 4πB∗

g

]

+ C∗

v

∆tk (Tn − T ∗)

C∗

v

∆tn+ 1
2

+
∑G

g=1 σ
∗

a,g4π
∂B∗

g

∂T

,
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Solution of the Radiative Transfer Equations

• where

στ = σt + τ ,

τ =
1

c∆tn+ 1

2

,

ν =

∑G
g=1 σ

∗

a,g4π
∂B∗

g

∂T

C∗

v

∆tn+ 1
2

+
∑G

g=1 σ
∗

a,g4π
∂B∗

g

∂T

χg =
σ∗a,g

∂B∗

g

∂T
∑G

k=1 σ
∗

a,k
∂B∗

k

∂T

,

ξg = σ∗a,gB
∗

g + τψn
g−

1

4π
νχg

[

G
∑

k=1

σ∗a,k4πB
∗

k +
C∗

v

∆tn+ 1

2

(Tn − T ∗)

]

.
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Source Iteration

• The traditional method for solving the transport equation is a nested

source iteration.

• Denoting the iteration index by ℓ, the inner iteration can be represented as

follows:

−→

Ω ·
−→

∇ Iℓ+1
g + σ∗τ,gI

ℓ+1
g =

1

4π
σ∗s,gφ

ℓ
g +

1

4π
νχg

G
∑

k=1

σ∗a,kφk + ξg ,

• and the outer iteration can be represented as follows:

−→

Ω ·
−→

∇ Iℓ+1
g + σ∗τ,gI

ℓ+1
g −

1

4π
σ∗s,gφ

ℓ+1
g =

1

4π
νχg

G
∑

k=1

σ∗a,kφ
ℓ
k + ξg .
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Source Iteration

• The operator
−→

Ω ·
−→

∇ + σ∗τ,g involves no angular or energy coupling.

• When spatially discretized it takes on a block lower-triangular form with a

block corresponding to the intensities within a single spatial cell for a

single direction and energy.

• This operator is easily inverted using a “wavefront” or “sweep” algorithm.

• The attenuation of errors in φg determines the convergence rate of the

inner iteration process.

• The attenuation of errors in the absorption rate f =
∑G

g=1 σ
∗

a,gφg

determines the convergence rate of the outer iteration process.
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Source Iteration

• The inner iteration process can become arbitrarily slow to converge as

σ∗s,g → σ∗τ,g . This corresponds to scattering dominating absorption.

However, this is rarely the case for laboratory high-energy density physics

(HEDP) calculations, so we will not discuss inner iteration convergence

acceleration techniques.

• The outer iteration can become arbitrarily slow to converge as ν → 1 and

τ → 0. This physically corresponds to strong material-radiation coupling

(small heat capacity and large absorption cross section), which is quite

common in calculations for laboratory HEDP calculations.

• In general, outer source iteration without convergence acceleration is

impractical in laboratory HEDP calculations.

• The linear multifrequency-grey technique is generally used to accelerate

the convergence of the outer iterations.
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Linear Multifrequency-Grey Acceleration

• Outer source iteration with LMFGA takes the following form:

−→

Ω ·
−→

∇ I
ℓ+ 1

2
g + σ∗τ,gI

ℓ+ 1

2
g −

1

4π
σ∗s,gφ

ℓ+ 1

2
g =

1

4π
νχgf

ℓ + ξg ,

−
−→

∇ ·〈D〉
−→

∇ δΦ + [〈σa〉 (1 − ν) + τ ] δΦ = f ℓ+ 1

2 − f ℓ ,

f ℓ+1 = f ℓ+ 1

2 + 〈σa〉δΦ ,
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Linear Multifrequency-Grey Acceleration

• where

〈D〉 =
G
∑

g=1

ςg
3σ∗τ,g

,

〈σa〉 =
G
∑

g=1

σ∗a,gςg ,

ςg =

χg

σ∗

τ,g

∑G
k=1

χk

σ∗

τ,k

.
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Linear Multifrequency-Grey Acceleration

• The scheme appears to be unconditionally effective in 1-D but can

apparently become unstable in strongly heterogeneous multidimensional

problems.

• This has motivated us to develop a preconditioned Krylov method based

upon the multifrequency-grey acceleration technique.
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Krylov Methods

• The details of Krylov methods are not of importance for this discussion,

but some knowledge is required.

• Suppose one wants to solve a linear system of the following basic form:

M
−→

x =
−→

y ,

where M is a matrix,
−→

x is the solution vector, and
−→

y is the source

vector.

• To use a Krylov solver, one must be able to evaluate the action of M on

an arbitrary vector,
−→

z , i.e., given
−→

z , one must compute

−→

v = M
−→

z .

• From the viewpoint of the user, the performance of a matrix-vector multiply

is all that is required per Krylov iteration.
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Krylov Methods

• In many instances, the matrix M is dense and the action of A must be

calculated in an indirect manner.

• Characterizing the convergence of Krylov methods for general matrices

remains an open problem.

• However, there is one simple rule that can be followed: convergence will

improve as the domain of the eigenvalues becomes smaller and as the

domain moves away from the origin.

• Preconditioning can be used to improve convergence.

• Left preconditioning consists of multiplying a matrix equation from the left

with a “preconditioning matrix” that yields a new equation with the same

solution but better convergence properties:

GM
−→

x = G
−→

y .
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An LMFG-Preconditioned Krylov Method

• In general, there is a simple way to define a preconditioned Krylov method

based upon a traditional accelerated iteration scheme.

• Express the accelerated iteration process in the form of Richardson

iteration.

• The system solved by Richardson iteration is the preconditioned

system that should be solved with the Krylov method.

• Richardson iteration for the following linear system

M
−→

x =
−→

y ,

takes the following form:

xℓ+1 =
−→

x
ℓ
+

−→

y − M
−→

x
ℓ
.
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An LMFG-Preconditioned Krylov Method

• The preconditioned system corresponding to the LMFGA method is

CBf = C

G
∑

g=1

σ∗a,gPA
−1
g ξg ,

B =



I −

G
∑

g=1

σ∗a,gPA
−1
g

1

4π
νχg



 ,

Ag ≡
−→

Ω ·
−→

∇ + σ∗τ,g −
1

4π
σs,gP ,

P〈·〉 =

∫

4π

〈·〉 dΩ ,

C ≡
(

I + 〈σa〉H
−1ν

)

,

H ≡ −
−→

∇ ·〈D〉
−→

∇ + [〈σa〉(1 − ν) + τ ] .
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An LMFG-Preconditioned Krylov Method

• The main advantage of solving the equation for f as opposed to φg or ψg

is that the rank of the f -equation is far less than that of the equations

corresponding to the other possible unknowns.

• As one would expect, forming the action of the operator is completely

analogous to peforming an LMFGA iteration.

• The one-group equations are solved by a Krylov method preconditioned

with source iteration.

• The diffusion equation itself is solved via a precondioned Krylov method.

• Thus this is a nested Krylov method.

• This scheme has not yet been tested. A multigroup diffusion version has

been tested and found to be very effective.
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A Generic Transport Equation

• An understanding of the radiation-hydrodynamics coupling is facilitated by

expressing the lab-frame transport equation with material motion in

generic form as follows:

1

c

∂I

∂t
+

−→

Ω ·
−→

∇ I = Q ,

where Q can take on different forms depending upon the model equation.

• The corresponding radiation energy equation is

∂E

∂t
+

−→

∇ ·
−→

F = Sre ,

where

Sre =

∫

∞

0

∫

4π

Q dΩ dE .
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A Generic Transport Equation

• The corresponding radiation momentum equation is

1

c2
∂
−→

F

∂t
+

−→

∇ ·
=⇒

Pg =
−→

S rm ,

where

−→

S rm =

∫

∞

0

∫

4π

−→

Ω

c
Q dΩ dE .
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The Nonrelativistic Rad-Hydro Equations

• We are now ready to write down the non-relativistic

radiation-hydrodynamics equations.

• Conservation of Mass:

∂

∂t
ρ+

−→

∇ ·
(

ρ
−→

u
)

= 0 ,

where ρ is the mass density,

• Conservation of Material Momentum:

∂

∂t

(

ρ
−→

u
)

+
−→

∇ ·
(

ρ
−→

u ⊗
−→

u
)

+
−→

∇ p = −
−→

S rm ,

where
−→

u is the material velocity and p is the pressure,
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The Nonrelativistic Rad-Hydro Equations

• Conservation of Total Material Energy:

∂

∂t

(

1

2
ρu2 + ρe

)

+
−→

∇ ·

[(

1

2
ρu2 + ρe+ p

)

−→

u

]

= −Sre ,

where e is the material specific internal energy. The pressure and

temperature are given by the equation of state, p = p(ρ, e), and

T = T (ρ, e).

• The remaining equation is the transport equation, which also yields the

radiation energy and momentum equations.

• It is easily shown that if the material and radiation momentum equations

are summed, a conservation equation for the total momentum is obtained;

and if the total material and radiation energy equations are summed, a

conservation equation for the total energy is obtained.
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The Nonrelativistic Rad-Hydro Equations

• In some hydro methods, an internal material energy equation is used

instead of a total energy equation:

∂

∂t
(ρe) +

−→

∇ ·
(

ρe
−→

u
)

+ p
−→

∇ ·
−→

u = Sre −
−→

S rm ·
−→

u .

• The term on the right is equal to the total energy exchange rate minus the

kinetic energy exchange rate and thus is equal to the internal energy

exchange rate.
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A Simplified Lab-Frame Transport Equation

• Our primary intent is to accurately compute the exchange of energy and

momentum between the radiation and material fields with nonrelativistic

material motion, which implies red and blue shifts that are too small to be

resolved by the group structure.

• We have derived an approximate lab-frame transport equation in

accordance with these constraints that has the following properties when

coupled with the hydrodynamic equations:

• Total (radiation plus material) energy and momentum are conserved.

• The correct equilibrium solutions for radiation energy density, radiation

flux, and radiation pressure are obtained to O(u/c)

• The equilibrium-diffusion limit for radiation-hydrodynamics is preserved

to O(u/c).
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A Simplified Lab-Frame Transport Equation

• The simplified equation takes the form of the transport equation in a static

medium plus a P1-like correction term:

1

c

∂Ig
∂t

+
−→

Ω ·
−→

∇ Ig + σt,gIg =
σs,g

4π
φg + σa,gBg+

1

4π
C0,g +

3

4π

−→

C 1,g ·
−→

Ω ,

where

C0,g = −σt,g

(

−→

F g −
4

3
φg

−→

u

c

)

·

−→

u

c
,

−→

C 1,g = σt,g
4

3
φg

−→

u

c
.

Presentation at Oak Ridge National Laboratory, Oak Ridge, TN, January, 8, 2007 Slide 32/58



A Simplified Lab-Frame Transport Equation

• The corresponding radiation energy and radiation momentum equations

are respectively:

∂E

∂t
+

−→

∇ ·
−→

F =

G
∑

g=1

σa,g[ 4πBg − φg ]−

G
∑

g=1

σa,g

(

−→

F g −
4

3
φg

−→

u

c

)

·

−→

u

c
,

and

1

c2
∂
−→

F g

∂t
+

−→

∇ ·
=⇒

Pg = −
G
∑

g=1

σa,g

c

(

−→

F g −
4

3
φg

−→

u

c

)

,
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Operator Splitting

• To demonstrate the concept of splitting, we first consider the following

system:
∂f

∂t
= (A + B) f ,

where f is the solution and A and B are linear operators.

• Let us further assume that we know how to efficiently invert A and B

individually but not the sum of A and B.

• Then we can efficiently solve this system as follows:

f∗ − fn

∆t
= Af∗ ,

fn+1 − f∗

∆t
= Bfn+1 .
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Operator Splitting

• Note that that each step of the process is fully implicit ensuring stability.

• If we add the two equations, we get a consistent time discretization:

fn+1 − fn

∆t
= Af∗ + Bfn+1 .

• Traditional operator splitting can sometimes require very small time steps

and is only first-order accuate, but the method has been the workhorse of

multiphysics computation for decades.

• A great deal of current research is devoted to the development of splitting

techniques that are both second order accurate and efficient.

• Alternatively, current research includes simultaneous solution of the

equations using Jacobian-free Newton-Krylov methods with operator

splitting for preconditioning.
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Solution of the Rad-Hydro Equations

• We next demonstrate a way to use operator splitting to solve the

radiation-hydrodynamics equations with first-order accuracy in time using

standard solution techniques for the hydro equations together with

standard techniques for the static radiative transfer equations.
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Solution of the Rad-Hydro Equations

• The first step is to explicitly solve the hydrodynamics equations as if there

were no radiation:

1

∆t
(ρ∗ − ρn) +

−→

∇ ·
(

ρ
−→

u
)n

= 0 ,

1

∆t

[(

ρ
−→

u
)

∗

−
(

ρ
−→

u
)n]

+
−→

∇ ·
(

ρ
−→

u ⊗
−→

u
)n

+
−→

∇ pn =
−→

0 ,

1

∆t

[(

1

2
ρu2 + ρe

)

∗

−

(

1

2
ρu2 + ρe

)n]

+

−→

∇ ·

[(

1

2
ρu2 + ρe+ p

)

−→

u

]n

= 0 .
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Solution of the Rad-Hydro Equations

• The second step is to implicitly solve the radiative transfer equations

“almost” as if there were no hydrodynamics:

1

c∆t

(

I∗g − In
g

)

+
−→

Ω ·
−→

∇ I∗g + σn
t,gI

∗

g =
σn

s,g

4π
φ∗g+

σn
a,g

[

Bn
g +

∂Bn
g

∂T

(

T<n+1> − Tn
)

]

, g = 1, G,

Cn
v

∆t

(

T<n+1> − Tn
)

=

G
∑

g=1

σn
a,g

[

φ∗g − 4πBn
g − 4π

∂Bn
g

∂T

(

T<n+1> − Tn
)

]

+

1

∆t
[(ρe)∗ − (ρe)n] .
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Solution of the Rad-Hydro Equations

• Note that the last term on the right side of the temperature equation

effectively adds the effect of the internal energy advection and work from

the pressure gradient that was computed in the first step.

• Since it simply represents an explicit source term, it does not affect the

applicability of the standard transport solution technique.
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Solution of the Rad-Hydro Equations

• The third step is to explicitly solve for the final radiation intensities and

material temperatures adding the effect of the hydrodynamic coupling.

• Note that this step is effectively explicit and involves only local updates in

each cell.
1

c∆t

(

In+1
g − I∗g

)

=

−
1

4π
σn

t,g

(

−→

F
∗

g −
4

3
φ∗g

−→

u
n

c

)

·

−→

u
n

c
+

3

4π
σn

t,g

4

3
φ∗g

−→

u
n

c
·
−→

Ω , g = 1, G,
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Solution of the Rad-Hydro Equations

• The fourth step is to compute the final hydrodynamics variables including

the effect of the radiation coupling.

• Note that this step is effectively explicit and involves only local updates in

each cell.

ρn+1 = ρ∗ ,

1

∆t

[

(

ρ
−→

u
)n+1

−
(

ρ
−→

u
)

∗

]

=
G
∑

g=1

σn
t,g

(

−→

F
∗

g −
4

3
φ∗g

−→

u
n

c

)

,
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Solution of the Rad-Hydro Equations

1

∆t

[

(

1

2
ρu2 + ρe

)n+1

−

(

1

2
ρu2 + ρe

)

∗

]

=

G
∑

g=1

σn
a,g

[

φ∗g − 4πBn
g − 4π

∂Bn
g

∂T

(

T<n+1> − Tn
)

]

+

G
∑

g=1

σn
t,g

(

−→

F
∗

g −
4

3
φ∗g

−→

u
n

c

)

·

−→

u
n

c
.
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Solution of the Rad-Hydro Equations

• The fifth and final step is to use the equation-of-state to obtain the final

pressures and temperatures:

pn+1 = p(ρn+1, en+1) ,

Tn+1 = T (ρn+1, en+1) .
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Solution of the Rad-Hydro Equations

• The equation for the total change in material density is:

1

∆t

(

ρn+1 − ρn
)

+
−→

∇ ·
(

ρ
−→

u
)n

= 0 ,

• The equation for the total change in material momentum is:

1

∆t

[

(

ρ
−→

u
)n+1

−
(

ρ
−→

u
)n
]

+
−→

∇ ·
(

ρ
−→

u ⊗
−→

u
)n

+
−→

∇ pn =

G
∑

g=1

σn
t,g

(

−→

F
∗

g −
4

3
φ∗g

−→

u
n

c

)

,
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Solution of the Rad-Hydro Equations

• The equation for the total change in material energy is:

1

∆t

[

(

1

2
ρu2 + ρe

)n+1

−

(

1

2
ρu2 + ρe

)n
]

+

−→

∇ ·

[(

1

2
ρu2 + ρe+ p

)

−→

u

]n

=

G
∑

g=1

σn
a,g

[

φ∗g − 4πBn
g − 4π

∂Bn
g

∂T

(

T<n+1> − T k
)

]

+

G
∑

g=1

σn
t,g

(

−→

F
∗

g −
4

3
φ∗g

−→

u
n

c

)

·

−→

u
n

c
.
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Solution of the Rad-Hydro Equations

• The equation for the total change in radiation intensity is:

1

c∆t

(

In+1
g − In

g

)

+
−→

Ω ·
−→

∇ I∗g + σn
t,gI

∗

g =

σn
s,g

4π
φ∗g + σn

a,g

[

Bn
g +

∂Bn
g

∂T

(

T<n+1> − Tn
)

]

−

1

4π
σn

t,g

(

−→

F
∗

g −
4

3
φ∗g

−→

u
n

c

)

·

−→

u
n

c
−

3

4π
σn

t,g

4

3
φ∗g

−→

u
n

c
·
−→

Ω , g = 1, G.
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Solution of the Rad-Hydro Equations

• The equations for the total change in radiation energy and momentum are

respectively:
1

c∆t

(

E
n+1 − E

n
)

+
−→

∇ ·
−→

F

n+1

=

−
G
∑

g=1

σn
a,g

[

φ∗g − 4πBn
g − 4π

∂Bn
g

∂T

(

T<n+1> − T k
)

]

−

G
∑

g=1

σn
t,g

(

−→

F
∗

g −
4

3
φ∗g

−→

u
n

c

)

·

−→

u
n

c
,

and

1

c2∆t

(

−→

F

n+1

−
−→

F

n
)

+
−→

∇ ·
=⇒

Pg = −
G
∑

g=1

σn
t,g

(

−→

F
∗

g −
4

3
φ∗g

−→

u
n

c

)

.
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Solution of the Rad-Hydro Equations

• This algorithm conserves mass, total momentum (radiation plus material),

and total energy (radiation plus material).

• It is very nearly equivalent to an unsplit scheme, i.e., to simultaneous

solution of all our semi-linearized equations.

• The only reason this is not so is that the radiation equations are solved in

two separate implicit steps.

• Let us combine steps two and three into a single step as follows.
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Solution of the Rad-Hydro Equations

1

c∆t

(

In+1
g − In

g

)

+
−→

Ω ·
−→

∇ In+1
g + σn

t,gI
n+1
g =

σn
s,g

4π
φn+1

g +

σn
a,g

[

Bn
g +

∂Bn
g

∂T

(

T<n+1> − Tn
)

]

− ,

1

4π
σn

t,g

(

−→

F
n+1

g −
4

3
φn+1

g

−→

u
n

c

)

·

−→

u
n

c
+

3

4π
σn

t,g

4

3
φn+1

g

−→

u
n

c
·
−→

Ω , g = 1, G,

Presentation at Oak Ridge National Laboratory, Oak Ridge, TN, January, 8, 2007 Slide 49/58



Solution of the Rad-Hydro Equations

Cn
v

∆t

(

T<n+1> − Tn
)

=

G
∑

g=1

σn
a,g

[

φn+1
g − 4πBn

g − 4π
∂Bn

g

∂T

(

T<n+1> − Tn
)

]

+

1

∆t
[(ρe)∗ − (ρe)n] .

• With this modification the equations for the total changes are as follows.
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Solution of the Rad-Hydro Equations

1

∆t

(

ρn+1 − ρn
)

+
−→

∇ ·
(

ρ
−→

u
)n

= 0 ,

1

∆t

[

(

ρ
−→

u
)n+1

−
(

ρ
−→

u
)n
]

+
−→

∇ ·
(

ρ
−→

u ⊗
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u
)n

=
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∑

g=1

σn
t,g

(

−→

F
n+1

g −
4

3
φn+1

g

−→

u
n

c

)

,
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Solution of the Rad-Hydro Equations

1

∆t

[

(

1
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(
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2
ρu2 + ρe
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]
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−→

∇ ·

[(

1
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ρu2 + ρe+ p
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u

]n

=

G
∑

g=1

σn
a,g

[

φn+1
g − 4πBn

g − 4π
∂Bn

g

∂T

(
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)

]

+
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∑

g=1

σn
t,g
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−→

F
n+1

g −
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3
φn+1

g
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u
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u
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.
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Solution of the Rad-Hydro Equations

1
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g =
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s,g
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g +

∂Bn
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T<n+1> − Tn
)

]

−

1

4π
σn

t,g

(

−→

F
n+1

g −
4

3
φn+1
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Solution of the Rad-Hydro Equations

1

c∆t

(

E
n+1 − E

n
)

+
−→

∇ ·
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n+1

=

−

G
∑

g=1

σn
a,g

[

φn+1
g − 4πBn

g − 4π
∂Bn

g

∂T

(

T<n+1> − T k
)

]

−
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g −
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φn+1

g

−→
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n

c

)
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−→
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n
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,

and

1
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=⇒

Pg = −
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Solution of the Rad-Hydro Equations

pn+1 = p(ρn+1, en+1) ,

Tn+1 = T (ρn+1, en+1) .
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Solution of the Rad-Hydro Equations

• The difficulty with combining the second and third steps is that the Krylov

solution technique for the radiation equations is no longer directly

applicable.

• There is more than one way to incorporate the material-motion terms in

the solution process.

• The best way is probably to include them in the one-group solves.

• The Krylov vector for each group will have to be expanded to include the

fluxes in addition to the angle-integrated intensities.

• Because the material-motion corrections terms are basically perturbative

in the nonrelativistic limit, one can expect the Krylov method

preconditioned with source iteration to remain highly effective.

• This is the great advantage of using preconditioned Krylov methods.
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Solution of the Rad-Hydro Equations

• Finally, we note that being able to combine the original steps 2 and 3

paves the way for a second-order accurate scheme based upon splitting.

• Our second-order accurate scheme uses the same basic hydrodynamics

and transport solution technology as the first-order scheme but applies it in

the form of a predictor-corrector method.

• The predictor step is identical to the four-step first-order scheme with

averaging of quantities at indexes n+ 1 and n to obtain predicted

quantities at index n+ 1
2

.

• The hydrodynamic solutions in the corrector step remain explicit but with

predicted values at n+ 1
2

replacing certain quantities at n.
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Solution of the Rad-Hydro Equations

• Two independent solutions of the transport and temperature equations are

performed in the corrector step using the trapezoidal/BDF-2 scheme.

• Our second-order scheme remains to be theoreticaly analyzed and

computationally tested.

• It will eventually be implemented in a code to model laser-driven radiative

shocks.

• We hope to report on its effectiveness relative to the first-order method for

the case of grey diffusion rather than multigroup transport within a few

months.
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