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A study was made of radial crack evolution in curved brittle layers on compliant
support substrates. Three-dimensional boundary element analysis was used to compute
the stepwise growth of radial cracks that initiate at the bottom surfaces of glass on
polymeric support layers, from initiation to final failure. The algorithm calculates
reconstituted displacement fields in the near-tip region of the extending cracks,
enabling direct evaluation of stress-intensity factors. Available experimental data on
the same material systems with prescribed surface curvatures were used to validate the
essential features of the predicted crack evolution, particularly the stability conditions
prior to ultimate failure. It was shown that the critical loads to failure diminish with
increasing surface curvature. Generalization of the ensuing fracture mechanics to
include alternative brittle-layer/polymer-substrate systems enabled an explicit
expression for the critical load to failure in terms of material properties and layer
thicknesses. Implications concerning practical layer systems, particularly dental crowns,
are briefly discussed.

I. INTRODUCTION

Brittle layers on compliant substrates are relevant to a
wide range of engineering coating and film applications.
It has been well documented that radial cracks induced at
brittle layer undersurfaces by contact-induced flexure are
highly dangerous.1–11 A photograph of such a radial crack
in a glass plate on a polycarbonate base is shown in Fig. 1.5

Such cracks form directly below the indentation center and
propagate radially outward on median planes containing the
indentation axis. Usually more than one such crack forms,
in a regular star pattern. The crack fronts resemble contours
of tensile hoop stresses in the flexing plate.12

In some layer systems, the surfaces may be curved, as
in biomechanical structures like dental crowns on den-
tin13,14 or polyethylene-backed acetabular ceramic liners
in total hip replacements,15,16 as well as in some coated
tool and engine components. Whereas curvature may
have little effect on the critical load to initiate radial
cracks, it can have a considerable effect on the “failure”
load to propagate these same cracks to the edges of the
specimen.17,18 In crowns, the layers are basically (but not
exclusively) convex, which can substantially exacerbate

unstable propagation. In acetabular cups, the articulating
surface is concave, which tends to restrain crack exten-
sion.17 Other, top-surface, near-contact cracks can occur
in brittle layer systems and may even dominate in some
structures, especially in thicker brittle layers; such alter-
native crack systems have been adequately documented
elsewhere and will not be considered in any detail here.19,20

Indentation experiments conducted on brittle layer
systems, specifically on ceramic slabs bonded to poly-
meric support substrates, show some distinctive features
in radial crack evolution. The cracks initiate abruptly but
then arrest. Initiation conditions have been well docu-
mented in flat-layer specimens, both experimentally and
theoretically.5,7,9,11 To good approximation, initiation
occurs when the tensile stress at the lower brittle surface
exceeds the strength of the material. Once formed, the
radial cracks propagate stably across the specimen with
increasing load.12 In flat and concave layers, this stability
remains in effect until the cracks intersect the extreme
edges of the specimen. In convex layers, the cracks break
through to the upper surface after only limited propaga-
tion and then accelerate unstably to the specimen
edges.17 The critical loads to produce this latter failure
condition can be substantially higher than those for ini-
tiation, so there is a built-in damage tolerance. The me-
chanics of such failure are not so well understood. This is
largely because geometry effects become exceedingly
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complex once the radial crack dimension exceeds the
layer thickness. One study of radial crack propagation in
flat layers has been made using finite element analysis
(FEA), but without any provision for ultimate failure.21

An attempt at an analytical fracture mechanics solution
for the same system has also been conducted, but only
with oversimplifying approximations (e.g., invariant
penny-like geometry with total neglect of surface-
interaction effects), and again without provision for fail-
ure.12 No such attempt at all has been made for the more
complex case of convex layer systems, where cata-
strophic failure is a major concern.

Accordingly, analysis of radial crack evolution in
curved brittle layer systems forms the basis of the present
study. The focus here is not so much on “crack preven-
tion” as on “crack containment.”6 We use boundary el-
ement analysis (BEA) to calculate the stepwise growth of
radial cracks from initiation to final failure.22 The BEA
method calculates the reconstituted displacement field in
the near-tip region of the extending crack, enabling direct
evaluation of stress-intensity factors. Because the crack
system is not axisymmetrical, three-dimensional (3D)
analysis is required, adding to the complexity. The pro-
posed analysis enables derivations of crack growth and
ultimate failure relations. Comparison with experimental
data for a model brittle bilayer material system—glass on
epoxy—is used to validate essential predictions of the
formulation.

II. NUMERICAL ANALYSIS OF CRACK
EXTENSION: CASE STUDY ON CURVED
GLASS/EPOXY BILAYERS

A. BEA computations

A schematic illustration of a curved brittle bilayer sys-
tem containing a radial crack is shown in Fig. 2. A hard,

frictionless indenter of radius ri is loaded with normal
axial force P onto a convex ceramic layer of thickness d
and inner radius rc filled with a compliant inner support-
ing material. The filler material is strongly bonded to the
ceramic outer layer. The composite filled-ceramic struc-
ture is modeled as a hemisphere resting on a rigid plane.
For simplicity, the ceramic layer does not make contact
with this plane at its edges, i.e., unsupported margins, in
approximate accordance with typical experimental con-
ditions.17 One or more radial cracks form on median
planes containing the load axis, with curvilinear dimen-
sion c measured along the inner circumference. These
radial cracks are driven by hoop tensile stresses normal to
the median planes. Although the cracks are not axisym-
metric, they do have symmetry about the median planes,
so extension occurs strictly in mode I. The object is to
determine the evolution of the radial cracks from initial
flaw through propagation to the specimen boundaries.

Boundary element analysis software (BEASY; South-
hampton, UK) is used to evaluate the crack system in
Fig. 2.23 Standard quadratic boundary elements are used
and meshes configured with greatest concentration of
elements around the critical crack tip regions, as shown
in Fig. 3. Refinements in element density are made until
the near-tip crack-wall displacement fields u(x) (x �
distance behind crack front) reach convergence. The fa-
miliar Irwin relation K � u(�/8x)1/2Ec/(1 – �c

2), where
Ec is Young’s modulus and �c Poisson’s ratio of the
ceramic layer, provides the basis for computing the
stress-intensity factor at any point along the crack
front.24

FIG. 1. Radial crack in glass 1 mm thick bonded to polycarbonate
substrate. Indentation with WC sphere at load P � 130 N. Fizeau
fringes from interface on loaded crack. (Top coating surface and coat-
ing/substrate interface artificially highlighted by white lines for clar-
ity.) From Chai et al.5

FIG. 2. Schematic illustration showing essential geometry of indenter
contact on curved layer system containing radial crack (shaded).
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BEA incrementing procedures used to follow the
evolving crack geometries are subtle and will be outlined
only briefly here, leaving fine details to be described
elsewhere. The calculation begins with a small semicir-
cular starting flaw of size c (� d) located directly below
the contact at the bottom of the brittle layer. Contact is
made at a specified load P and the stress-intensity factor
K computed along the crack front. To allow for point-
by-point variations in K, the crack shape is then adjusted
according to �� � �0(�K/K0), all the while holding c
fixed at the bottom surface (� � radial distance to front
from crack center, �0 and K0 values at � � c, and �K �
K – K0). This process is repeated until the profile repre-
sents a front of equal K. Trial and error adjustments
indicate that no more than two such iterations are re-
quired to achieve equi-K contours to within 5%. Then
keeping load P fixed, the crack is incremented through
�c, with �� � ��c/c to maintain the previous crack
shape as a first approximation. The BEA mesh is then
adapted to the new crack configuration, and the crack
front adjusted to a constant K profile as before. This
sequence is repeated until the crack extends to the ex-
tremities of the specimen.

Such a procedure enables determination of crack
shapes and corresponding K fields at all stages in the
evolution. We illustrate in the subsections below for a
specific bilayer system, soda-lime glass layer on epoxy
resin substrate, for which comparative experimental data
are available.17 Input parameters for the BEA calcula-
tions are as follows: for glass, layer thickness d � 1 mm,
Young’s modulus Ec � 70 GPa, and Poisson’s ratio
�c � 0.22; for epoxy, Es � 3.4 GPa and �s � 0.33; for
indenter, ri � 4 mm, Ei � 614 GPa, and �i � 0.22
(tungsten carbide). While this choice of parameters is to

represent material systems that have been studied experi-
mentally,17 we will assert a certain generality in the re-
sults.

B. Radial crack contours

Figure 4 shows the radial crack profile in our model
flat layer system, superposed onto the experimentally ob-
served profile in Fig. 1. The computed profile is chosen
to match the measured base dimension of the observed
crack. The basic profile of the observed crack is repro-
duced by the calculation. Note that this computed profile
is far from the assumed penny-shaped profile of the origi-
nating small flaw, indicating that the crack is beginning
to sense the presence of the top surface.

Sequential crack front profiles are plotted in Fig. 5 for
various values of inner brittle plate radius rc (Fig. 1). In
all cases, the profile is relatively constrained in the ver-
tical direction because of compression in the upper half
of the flexing plate. This constraining effect becomes
more evident as the crack expands into a more elongated
geometry. Ultimately, at c � cB, say, the radial crack
intersects the top surface, here termed “breakthrough.”
Note that this breakthrough point occurs at smaller cB for
increasing curvature rc

–1. Beyond the breakthrough point
the crack straightens out into a near-linear front.

As indicated, these contours reproduce the main geo-
metrical features of experimentally observed radial crack
evolution. Examples of such penetrant cracks for flat and
curved soda-lime layers on epoxy substrate are shown in
Figs. 6 and 7, respectively. Straightening of the crack
front beyond the breakthrough point is most apparent in
the flat surface (Fig. 6). For the curved surface (Fig. 7),
the straightened crack fronts persist to the base of the
dome.

C. Crack evolution and critical loads for
through-thickness penetration

The BEA algorithm is used to determine the loads P
required to grow cracks of specific characteristic dimen-
sion c in the glass layers, by invoking the equilibrium
condition that the stress-intensity factor K at the crack

FIG. 3. Schematic illustration of mesh for crack in BEA calculations.
Mesh is reconfigured with high density around the crack front at each
extension increment.

FIG. 4. Comparing shape of radial crack front from experiment from
Fig. 1 (shaded) with BEA computation for a flat system consisting of
glass plate of thickness 1 mm on polymer substrate (solid line). Con-
tour is chosen to have same bottom-surface crack size as in experi-
ment.
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front should exceed the toughness Kc. Here we use a
generic value of toughness Kc � 1 MPa m1/2, represen-
tative of a range of glasses and porcelains.11,25–27 We
achieve the equilibrium configuration by first calculating

K for a predetermined value of load P, as described in
Sec. II. A, and then scaling K linearly with P while
holding c constant until K � Kc. Repeat calculations for
sequential incremental extensions �c then enable deter-
mination of the equilibrium function P(c).

Resulting functions are plotted in Fig. 8 as the
smoothed solid curves for each prescribed inner glass
plate radius rc and thickness d � 1 mm. Corresponding
experimental data from a preceding study for glass with
abraded undersurfaces are included for comparison.17

The predicted P(c) curves reproduce the broader trends
in the data. These trends include the existence of at
least one unstable branch (dP/dc < 0) and stable branch
(dP/dc > 0) for all cases (i.e., all rc). Arrows indicate
instabilities in the crack propagation. Radial crack pop-in
occurs from a small flaw on the first unstable branch
(cf ≈ 10 �m for abraded glass surfaces)5 to the adjacent
stable branch. The popped-in cracks then propagate
along the stable branch until, in the case of curved sur-
faces (finite rc), the P(c) curves pass through a maxi-
mum. As indicated in Sec. II. B (Fig. 5), this maximum
corresponds closely to the breakthrough condition (P �
PB, c � cB), at which point the cracks become unstable
again. For the intermediate cases, rc � 8 and 4 mm, the
newly unstable cracks propagate to the edges of the
specimen, whereas in the case rc � 20 mm the unstable
crack arrests once more in the long-crack region. The
absence of any such maximum for flat surfaces (rc � �)
is consistent with a relatively high stability in the long-
crack region for this limiting case.

Figure 9 plots the critical load PB for radial crack
breakthrough versus inverse plate inner radius rc

–1 for the
glass/epoxy bilayers represented in Fig. 8. Figure 10 is
the analogous plot of critical crack size cB versus rc

–1.
The solid curves in these figures are the BEA predictions
(envelopes of maxima in Fig. 8) and the data points are

FIG. 5. Radial crack geometry evolution through brittle layers of dif-
ferent curvatures: (a) rc/d � � (flat), (b) rc/d � 20, (c) rc/d � 8, and
(d) rc/d � 4.

FIG. 6. Radial cracks in flat soda-lime glass layer of 1 mm thick on
epoxy resin substrate, indented with WC sphere of radius ri � 4 mm
at load P � 1550 N. Sequence showing radial cracks immediately
(a) before and (b) after breakthrough. Glass undersurface abraded.

FIG. 7. Radial cracks in soda-lime glass layer of 1 mm thick and inner
radius of curvature rc � 8 mm on epoxy resin substrate, indented with
WC sphere of radius ri � 4 mm at load P � 1500 N. The glass
undersurface is abraded. Straightened cracks extend to dome base.
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experimental values for glass with abraded and un-
abraded undersurfaces.17 (The lower dashed curves in
Fig. 9 are critical loads PI for crack initiation; see
Sec. IV.) Both PB and cB diminish monotonically with
increasing curvature, and are independent of starting flaw
state. The basic experimental trends are reproduced by
the calculated curves; however, the predictions for PB lie

somewhat below the data, thereby providing only lower
bounds for the failure condition.

Part of the reason for the numerical differences in
Figs. 8–10 may lie in the oversimplistic assumption of a
single radial crack in our first round of calculations. In
reality, several such radial cracks form at regular angles
to each other, with mutual interactions. To investigate
this potential effect, repeat computations were performed
with two mutually orthogonal radial cracks for the case

FIG. 8. Indentation load P versus radial crack size c for equilibrium extension conditions in glass layers d � 1 mm on epoxy support: (a) rc �
�, (b) rc � 20 mm, (c) rc � 8 mm, and (d) rc � 4 mm. Solid curves are BEA predictions. Filled data points are experimental values for abraded
glass (from Qasim et al.17). Arrows indicate unstable crack growth regions. The dashed curve in (d) is the BEA prediction for double radial crack.

FIG. 9. Critical load PB for breakthrough versus plate curvature rc
–1,

for glass/epoxy bilayers, d � 1 mm. The solid curve is BEA predic-
tion. Data points are experimental values (mean and standard devia-
tion) for abraded (A) and unabraded (U) glass, from Qasim et al.17

Dashed curves are corresponding smoothed data fits for initiation load
PI, also from Qasim et al.17

FIG. 10. Crack size cB for radial crack breakthrough as function of
curvature rc

–1, for glass/epoxy, d � 1 mm. Data taken from Fig. 8:
symbols are experimental values (mean and standard deviation); solid
curve is smoothed curve through BEA maxima.
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rc � 4 mm. The results are included as the dashed curve
in Fig. 8d. This curve lies a little closer to the experi-
mental data, suggesting that computations for systems
with multiple cracks might improve numerical agreement
even more.

III. GENERALIZED FRACTURE MECHANICS

The BEA computations in the previous section con-
sidered the mechanics of radial fracture for one particular
bilayer, glass of fixed thickness on an epoxy support
base. Now we seek to extend the analysis to include any
brittle coating of any thickness on any compliant base.
We begin by recalling that the crack profiles in Fig. 5
reflect contours of tensile hoop stress, independent of
coating thickness d.12 It has been demonstrated that the
tensile stress contours are insensitive to coating/substrate
modulus ratio Ec/Es, so that the crack profiles in Fig. 5
should be relatively material independent.12 Thus, there
is a certain universality in the crack geometry that allows
us to generalize the fracture mechanics.

Accordingly, we may expect the stress-intensity factor
for a radial crack of base radius c to assume the general
form

K � 	
0c1/2I(c/d) , (1)

where 	 is a dimensionless constant of value close to
unity, 
0 is the maximum (pre-crack) stress at the lower
surface of the flexing brittle layer, and I(c/d) is a dimen-
sionless function of c/d.12 The stress term has been
shown to have the form


0 � (P/Bd2)log(Ec/Es) , (2)

where B is a dimensionless coefficient.7 It has further
been demonstrated that 
0 is virtually independent of
surface curvature.17 The function I(c/d) has a universal
maximum value I � 1 at c/d � 1; and, because it is
determined by the tensile stress distribution within the
brittle layer, is relatively insensitive to material variation
over the remainder of the c/d range.12 However, I(c/d) is
expected to vary strongly with layer curvature to account
for the different failure conditions at different rc.

17

Combining Eq. (1) and (2) then yields the generalized
stress-intensity factor

K(c/d) � (	P/Bd3/2)F(c/d) log(Ec/Es) , (3)

with F(c/d) � (c/d)1/2I(c/d). Thus the quantity Kd3/2/
Plog(Ec/Es) should be near-universal for any given c/d
and material combination. Figure 11 is a plot of this
quantity as a function of c/d for each rc/d

–1. Stability
conditions correspond to those apparent in Fig. 8:
branches with dK/dc < 0 are stable; those with dK/dc > 0
are unstable. The function for the flat surface has only
one unstable branch at small c/d and one stable branch

at large c/d. For this special case, an earlier function
based on an analytical estimation of I(c/d) for flat sur-
faces with geometrically invariant half-penny cracks,
using B � 1.35 and 	 � 0.65, is included as the light
dashed curve in Fig. 11.12 The functions for curved sur-
faces show an extra unstable branch at large c/d, corre-
sponding to “failure” where the crack runs unimpeded to
the specimen edge. Note how the breakthrough crack size
cB/d corresponding to the minima in these functions di-
minishes with increasing curvature (rc/d)–1. For cracks
subject to equilibrium extension at K � Kc, we may use
Eq. (3) to obtain a general expression for the break-
through load P � PB at c � cB:

PB � (B/	FB)Kcd
3/2/log(Ec/Es) , (4)

where FB � F(cB/d) is a constant for any given curva-
ture. The dependence of the critical conditions on mate-
rial properties and layer thickness is now apparent.

IV. DISCUSSION

In this study, we have used boundary element analysis
to determine the evolution of radial cracks in convex
brittle coating layers on compliant substrates. The calcu-
lations are made on a model test system, 1-mm-thick
glass of prescribed curvature on epoxy, and compared
with corresponding available experimental data. As in-
dicated in Sec. I., such a system has implications con-
cerning the response to contact loading for a variety of
layer systems, most notably dental crowns. The analy-
sis accounts for various observed stages in the crack

FIG. 11. Plot of Kd3/2/Plog(Ec/Es) versus c/d for different curvatures
rc/d. Note different stability branches. Reference curve for infinite rc/d
(flat) has only one unstable and one stable branch. Curve for finite rc/d
(beyond some minimum value) has additional unstable branch in long-
crack region, corresponding to failure. Light dashed curve is compara-
tive estimate from analytical K(c/d) expression for flat surfaces.12
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growth: unstable pop-in from a subsurface flaw at a criti-
cal initiation load, arrest and stable extension with in-
creasing applied load, breakthrough at the top surface,
and unstable propagation to failure at the specimen
edges. While increasing surface curvature of the brittle
layer has little effect on the critical load to initiate the
radial cracks, it strongly diminishes the critical load to
final failure, i.e., the breakthrough load required to
propagate the cracks to the specimen edges.

In the second part of this study, a generalized stress-
intensity factor function K(c/d) has been derived
[Eq. (3)]. This formalism provides a basis for predicting
failure load PB under equilibrium conditions of crack
growth, i.e., at K � Kc [Eq. (4)]. The K(c/d) function has
explicit dependence on material properties (moduli Ec

and Es, toughness Kc) and layer thickness, and is ex-
pected to be near-universal for any convex curved sur-
face. Whereas our BEA calculations are made specifi-
cally for glass of a specific thickness d � 1 mm on
epoxy, Eq. (4) can be used to predict PB for any mono-
lithic ceramic material of any thickness on any substrate.
It can be seen from Eq. (4) that higher resistance to
failure requires brittle layer materials with higher Ec, Kc,
and d, and substrates with lower Es.

It is of interest to compare relations for the equilibrium
critical load PB for breakthrough [Eq. (4)] with the cor-
responding load PI for initiation documented in earlier
studies7,9,11

PI � B
Fd2/log(Ec/Es) (initiation) , (5a)

PB � (B/	FB)Kcd
3/2/log(Ec/Es) (breakthrough) ,

(5b)

where 
F is the strength of the brittle material. The load
PB can be substantially higher than PI, so there is an
inbuilt damage tolerance. The appearance of strength in
Eq. (5a) in place of toughness in Eq. (5b) reflects a basic
difference in the instability condition: initiation occurs at
a critical stress from a pre-existing flaw, the scale of
which is independent of specimen dimension; break-
through occurs when the size of a well-developed crack
reaches some critical value of cB/d, independent of flaw
size. This basic difference in instability condition is ap-
parent in Fig. 9, which includes PI(rc

–1) functions for
abraded and unabraded glass surfaces (dashed curves)
from our preceding study.17 The ratio PB/PI decreases
with increasing rc

–1, highlighting a diminishing crack
containment capacity in structures with greater curva-
ture; indeed, the PI curve for unabraded glass surfaces
crosses the (flaw-independent) PB curve, indicating that
crack initiation in highly curved surfaces will take the
system directly to failure.

An appeal of the K(c/d) formulation of Eq. (3), quite
apart from its universal applicability to different material

systems and different layer thicknesses, is its indepen-
dence of a crack growth condition. Imposing K � Kc, as
in the derivation of Eq. (4), yields a relation for failure
under equilibrium conditions of extension. We could
equally well impose a crack velocity relation, � = �(K), to
determine a relation for failure under kinetic conditions
of extension, including cyclic loading (fatigue). Integra-
tion of the crack velocity function over its path to first
instability has previously been performed to determine
an explicit time-dependent relation for the initiation load
PI(t).

28 Because the function F(c/d) in Eq. (3) is not
available in closed form, an analogous derivation of a
time-dependent relation for failure PB(t) would require
the integration to be performed numerically.

Implicit in the present study is the assumption that the
contact radius at the interface between indenter and top
surface of the brittle layer remains small relative to the
specimen thickness, so that the stresses at the bottom
surface of the brittle layer scale linearly with applied
load. This was the case for the calculations in Sec. II.
Such an assumption can become invalid for large indent-
ers on thin layers, i.e., small d/r, leading to changes in the
underlying mechanics and even in the mode of fracture.29

Finally, as alluded to in Sec. I, top-surface fracture and
deformation modes can occur and even dominate under
different conditions, especially in thicker brittle layers
and smaller indenters, i.e., large d/r.5,7,9,11,30 A full de-
scription of the competition between different damage
modes could be a fruitful area of research in brittle coat-
ing technology.
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