# DEVELOPMENT OF A BLOWOUT INTERVENTION METHOD AND DYNAMIC KILL SIMULATOR FOR BLOWOUTS OCCURRING IN ULTRA-DEEPWATER

by

Dr. Jerome J. Schubert, Texas A&M University Dr. Peter Valko, Texas A&M University Dr. Serguei Jourine, Texas A&M University Dr. Ray T. Oskarsen, John Wright Company Mr. Sam Noynaert, Texas A&M University Mr. Hector Meyer, Texas A&M University Mr. Steve Walls, Cherokee Offshore Engineering Mr. Curtis Weddle, III, Cherokee Offshore Engineering

Final Project Report – Phase One Prepared for the Minerals Management Service Under the MMS/OTRC Cooperative Research Agreement 1435-01-99-CA-31003 Task Order 18132 Project Number 408

December 2004

"The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Government. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Government".



For more information contact:

#### **Offshore Technology Research Center**

Texas A&M University 1200 Mariner Drive College Station, Texas 77845-3400 (979) 845-6000

or

#### **Offshore Technology Research Center**

The University of Texas at Austin 1 University Station C3700 Austin, Texas 78712-0318 (512) 471-6989

A National Science Foundation Graduated Engineering Research Center

# Development of a Blowout Intervention Method and Dynamic Kill Simulator for Blowouts Occurring in Ultra-Deepwater.

# **Executive Summary**

Project Description: This project originally included five tasks

- Task 1: Bridging tendencies in ultra-deepwater blowouts
- Task 2: Dynamic kill investigation of ultra-deepwater blowouts and simulator development.
- Task 3: Development of ultra-deepwater blowout control methods.
- Task 4: Cost of intervention
- . Task 5: Final report, progress meetings, and workshops.

Tasks 3 and 5 will be completed in Phase II. Task 4 has been cancelled.

#### Task 1 – Bridging of blowouts in the GOM and tools for evaluation

In this part of the project, a study of current wellbore bridging concepts was performed, and an approach for the prediction of blowout self-killing based on the numerical analysis of reservoir performance data, wellbore hydraulics, and wellbore stability was accomplished. The model can describe a wide variety of geological conditions and it can be used to define the parameters for evaluation of bridging, including conditions with openhole drilling and cased hole completions.

Several computer subroutines were built to assist in this analysis. The model elements were partially tested on published data and laboratory experiments. The advantages, important shortcomings, and design problems were identified. The model will be verified on two groups of blowout scenarios to simulate and analyze the control of each.

The bridging model concept assumes that the well is originally filled with drilling mud and the open part of the hole is in stable condition; then, for some reason, fluid starts flowing from the reservoir pushing the mud out of the well. The hole becomes unstable due to the pressure decline and hole starts to produce debris from the weakened rock layers. If the wellbore can collapse or falling particles can be stuck at an arbitrary point, the bridging will occur and wellbore will be self-killed. However, pressure below packed part of the well builds up. The pressure can exceed the shear strength of the rock bridge. In this case the plug can be pushed out of the well and the well will blow periodically. Depending on the pressure at which the fracturing occurs within the weakest zone the flowing formation will continue to flow and losses continue to occur in the fractured zone (underground blowout). This simplification of the real physical system with conservation of all important phenomena and processes represent the basis of developed model.

#### Model Elements

1. Reservoir performance prediction subroutines.

Well known reliable inflow performance relationships (IPR) have been used to model the flow of fluids from the reservoir, through the formation, and into the well

#### 2. Wellbore hydraulic performance subroutines.

The wellbore bridging model will be integrated into a dynamic kill simulator and it will use the output results of its pressure distribution prediction. However, currently we have developed a stand alone subroutine to calculate pressure drop along the wellbore. The components of the overall system pressure drop include the pressure drop associated with conveying the gas, liquid and solids.

#### 3. Wellbore stability analysis and solid production subroutines

To predict formation failure, stability in the packed wellbore, and solid mass rate under blowout conditions, three applicable geomechanics models were selected; shear failure, tensile failure and erosion failure. These models were coupled with the developed fluid flow model though solid mass flow rate.

- <u>Failure model 1: Shear failure</u>. The most conservative linear elastic deformational model was used to predict the stress concentrations and onset of shear failure The laboratory tests were performed to estimate the influence of selected failure criteria on model prediction results.
- <u>Failure model 2: Tensile failure</u>. To predict the tensile failure mode we have developed an extended poroelastic solution for axisymmetrical plane strain problems with time dependent boundary conditions. The solution was developed in Laplace space and it was verified with published results for the special cases of boundary conditions for finite and infinite cylinders using numerical Laplace inversion.

Computational results successfully describe the occurrence of tensile radial stresses due to rapid and intensive decrease in pressure at the inner boundary. The results show that by changing the rate of the pressure descent, a failure can be avoided or triggered when so desired. The general solution can be used to calculate the stress and pore pressure distributions around boreholes under infinite/finite boundary conditions with gradually changing pore pressure. The proposed solution was verified with laboratory tests.

• <u>Failure Model 3: Erosion failure</u>. The solid production was analyzed with a sand erosion model that couples the fluid flow and rock erosion behavior during fluid production. The fluid flow and solid transport are coupled though the fluid flow rate. The model was tested using published data.

The final results of this task will be submitted upon completion in early 2005.

# Task 2- Dynamic kill model for conventional and dual density Deep Water Blowouts (surface and underground) and investigation of pump rates to kill wells

In this section of the project a preliminary dynamic kill simulator is complete and functional. The program is written in Java. Java is chosen because of its versatility, modularity, and reusability. Java is an object-orientated language which is a favored programming approach that has largely replaced the standard procedure-based programming techniques over the last decade.

The program's main features and advantages include user friendliness, a choice between stand alone or web application, surface, sub surface and underground blowout capabilities and simple dualgradient drilling. The program also has the capability to model both Newtonian and non-Newtonian kill fluids, oil and gas reservoirs, rigid temperature models, fluid properties adjusted for pressure and temperature effects, it takes into account sonic flow considerations and has three multiphase models accounting for slip between phases. The interface is clear and simple to work with and is easy to navigate. The inputs and results panel can be viewed at the same time. The layout contains four frames, the menu bar, the results bar, the inputs panel and the results panel

The dynamic kill simulator comprises of four main sections, an input data section, estimation of the initial blowing condition such as temperature, pressure and flowrates, calculation of the minimum kill rate and standpipe pressure needed for successful intervention with a given fluid and well configuration and graphical output of the results.

This early version of the program focuses on simulating dynamic kills for vertical wells in ultra-deep water. The simulator applies to both gas and liquid reservoirs and has the option of using a relief well or a drillstring in the blowing wellbore. The blowing wellbore may include both pipe flow and annular flow, depending on whether a drillstring is present in the wellbore. The computer program is also capable of simulating a dynamic kill using either a Newtonian or a non-Newtonian kill fluid. For pressure, temperature and fluid-property predictions, the simulator incorporates state-of-the-art models that have been extensively used and verified by the industry. No new correlations were developed for this task. The computer program was tested against multiphase-pressure data to identify and prevent potential coding bugs and conceptual errors.

The program calculates the initial conditions, then calculates the required flow rate of kill fluid for a dynamic kill. The initial conditions are based on multiphase calculations and use the concept of system or nodal analysis. Once the IPR curve has been determined for a blowing wellbore, the kill rate can be determined. Successive iterations of a system curve encompassing the blowing wellbore during the kill operation will lead to an answer. The initial inflow performance relationship curve or IPR curve is calculated using a multiphase model.

A full discussion of the Dynamic Kill simulator can be found in Appendix A.

#### Task 3: Development of ultra-deepwater blowout control methods.

The investigation of mechanical intervention techniques has ranged into all envisioned failure points which would require some form of intervention at the mudline. This naturally led to the exploring of extremely detailed and divergent scenarios, many of them requiring unique solutions in order that the goal of recovering primary well control be met. Even with this detail and divergence, the types of interventions rapidly evolved into two different areas: presently workable and not workable using today's methods and techniques.

Discussions with the well control companies which have had personnel aboard the rare blowouts and potential blowouts to date in water depths greater than 1000 feet have enabled the research team to create a list of lessons learned and best practices to add to the normal suite of well-fighting techniques. These techniques range from rather obscure details, such as capping off unused control lines inside the purely hydraulic BOP control systems, to selecting rig and service contractors based upon their ability to provide manpower and resources during an emergency management event.

This project differs from typical industry well control efforts. The entire approach of prevention of well control events, or safely handling any occurrences, is the focus of well control training and certification. This particular project assumes that those efforts have failed, for whatever reason, and explores the various failure scenarios to determine whether or not primary well control can be recovered using presently-available tools and techniques.

In certain failure scenarios which do not involve influx flow outside the blowout preventer stack, control may well be restored with simple mechanical interventions or repairs using ROVs (Remotely Operated Vehicles) or in very limited situations, one-atmosphere diving suits.

In failure scenarios where there has been a catastrophic failure either of the surface equipment, the wellhead system or high casing, or at almost any point where influx is flowing outside of the blowout preventers, options become very rapidly non-existent. Even higher-horsepower ROVs can do little but stay outside an area of turbulence, and visibility could well be reduced anyway. Mudline mechanical intervention becomes an impossibility at this point with present tools and techniques. Specifically, there are no tools available which can hold station in a blowout with influx moving through the desired intervention area. ROVs also do not posses the horsepower required to consider some of the work tasks involved in a given scenario, particularly when affecting repairs on damaged blowout preventers. When viewed individually, the endpoints reached while developing the various scenarios seem widely varied. Closer examination has revealed that the inability to perform a task after a certain point in a failure scenario actually defines the scope of work for developing new tools and equipment.

Dialogues with top industry professionals helped produce several ideas, two of which may seem workable. For instance, to avoid the inherent weakness of trying to perform operations while floating lead to the possibility that the intervention tools may need to be based on the bottom of the seafloor, much like seabed tractors used in offshore pipeline and cable operations. Developing a vehicle such as this would enable the maximum horsepower to be used to perform hydraulic operations instead of diverting power to remaining on station.

An even more intriguing idea has been gleaned from experienced ROV specialists who envision hydraulically coupling today's most powerful ROV units to a slightly-negative-buoyed lower tractor unit which has been designed, built and deployed by a consortium similar to the present clean-up contractors such as Clean Seas Inc. This tractor unit could be designed to take advantage of mobility, maximum flexibility and redundancies, using the ROV's control systems to view, operate or repair equipment during mechanical interventions at the mudline.

This concept, carried to its most efficient utilization, envisions a fleet of similar ROVs conducting normal surveillance or control operations on a unit sub as a multiple template, or group of subsea trees or completions. This type of unit would be in continual use for routine operations with operating spares in place for maintenance, upgrades or for deployment during well control emergencies. The most efficient use of this type of system would most likely require a dedicated tender vessel.

The decision of which concept to pursue for design, development and deployment of the envisioned Deepwater Intervention System (DIS) needs to be made early during Phase II of this project with the input of the project partners, top subsea and well control companies and with the input of respected industry consultants. After this decision has been agreed upon, design of the DIS should proceed with the goal of presenting a complete development plan at the conclusion of Phase II.

A full description of the "Best Practices" for deepwater blowout containment can be found in Appendix B. Upon completion of Phase II, a final report will be provided which describes any new kill techniques developed by the research team via a supplemental report

#### Task 5: Final Report, Progress meetings, and workshops.

Will be completed in Phase II.

#### **Reports and Publications:**

Jourine, S., Karner, S L, Kronenberg, A K, Chester, F M.: Influence of Intermediate Stress on Yielding of Berea Sandstone Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract T41D-0249, 2003.

Jourine, S., Schubert J.J, Valko P.P.: Saturated Poroelastic Hollow Cylinder Subjected To Nonstationary Boundary Pressure – Model and Laboratory Test. Submitted to Gulf Rocks '04, 6th North American Rock Mechanics Symposium (NARMS).

Oskarsen, R.T., and Schubert, J.J., "Development of a Dynamic Kill Simulator for Drilling in Ultradeep Water,", Presented at the AADE National Technical Conference.

Jourine, S., and Schubert, J. J., "Wellbore Bridging as a Possible Alternative to Blowout Control in Ultra-Deepwater Wells," Presented at the 2003 AADE National Technical Conference, Houston, TX. April 1-3, 2003.

Noynaert, S.F., "ULTRADEEP WATER BLOWOUTS: COMASIM Dynamic Kill Simulator Validation and Best Practices Recommendations," Masters Thesis at TAMU, December 2004.

Appendix A

# Final Report for Task 2.

# DEVELOPMENT OF A DYNAMIC-KILL SIMULATOR FOR ULTRADEEP WATER

By

Dr. Ray T. Oskarsen, TAMU (currently John Wright Company)

# DEVELOPMENT OF A DYNAMIC-KILL SIMULATOR FOR

### **ULTRADEEP WATER**

A Dissertation

by

#### RAY TOMMY OSKARSEN

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

#### DOCTOR OF PHILOSOPHY

August 2004

Major Subject: Petroleum Engineering

### DEVELOPMENT OF A DYNAMIC-KILL SIMULATOR FOR

### **ULTRADEEP WATER**

A Dissertation

by

#### RAY TOMMY OSKARSEN

Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of

#### DOCTOR OF PHILOSOPHY

Approved as to style and content by:

Hans C. Juvkam-Wold (Co-Chair of Committee) Jerome J. Schubert (Co-Chair of Committee)

James E. Russell (Member) Ann E. Jochens (Member)

Stephen A. Holditch (Head of Department)

August 2004

Major Subject: Petroleum Engineering

#### ABSTRACT

Development of a Dynamic-Kill Simulator for Ultradeep Water. (August 2004) Ray Tommy Oskarsen, B.S., University of Surrey, England; M.S., Texas A&M University Co-Chairs of Advisory Committee: Dr. Hans C. Juvkam-Wold Dr. Jerome J. Schubert

Over the last decades exploration for hydrocarbons has been rapidly moving into unconventional reservoirs such as ultradeep water. Because no guidelines and procedures for blowout containment in ultradeep water are currently available, a project has been undertaken to develop them. Developing and validating the procedures requires a dynamic-kill simulator, but no available dynamic-kill simulator can perform all the simulations necessary. Therefore, the project chose to develop its own simulator that can model dynamic kills for surface, subsurface, and underground blowouts for modern drilling techniques. This dissertation describes the development of that simulator.

Some of the main features and advantages of this dynamic-kill simulator include:

- A user-friendly interface.
- Choice between stand-alone or Web application.
- Surface, subsurface and underground blowout capability.
- Simple dual-gradient drilling.
- Both Newtonian and non-Newtonian kill fluids.
- Oil and gas reservoirs.
- Rigid temperature models.
- Fluid properties adjusted for pressure and temperature effects.
- Sonic flow considerations.
- Three multiphase models accounting for slip between phases.

The simulator is validated using simple analytical solutions and production data. In all cases the simulator gives reasonable and meaningful results.

The simulator is also used to study the effect on blowout intervention as drilling is moved into deeper and deeper water. Results show that as water depth increases, the intervention requirements become more demanding. Because of the high flowrates and horsepower needed, a blowout in ultradeep water will likely require more than one relief well for successful blowout intervention.

### **DEDICATION**

This work is dedicated to my parents, who let me become a Texan and be a student for way too long, and to my wife Marissa, who rescued me from the cold dark hole I grew up in, cleaned me, fed me, and waited patiently for me to graduate without expecting anything in return.

#### ACKNOWLEDGMENTS

I wish to express "mange tusen hjertelig" thanks to Dr. Hans "I Speak Norwegian, but You Don't" Juvkam-Wold for being my advisor and a good friend throughout my many years at A&M. Good luck with your retirement; only another 15 years to go.

My most sincere thanks to Dr. Jerome "Bury Me 6 Feet Under, Not 2 Meters" Schubert for being my co-chair, mentor, the principal investigator, the guy who signs my paychecks, and a friend.

Great big 'ol thanks to my committee members Dr. James Russell and Dr. Ann Jochens, and to my colleagues Curtis Weddle III, Steve Walls, Serguei Jourine, Sam "I Broke Your Simulator" Noynaert, Bjorn Gjorv, Max Long and all of ADR.

A big bow and heaps of thanks to Kai Capps, Allen Biehle, Kevin Smith and Dori Edens at Capsher. Without your help I'd still be working on a graphics package.

Warm thanks to John "Let the Adventure Begin" Wright, for teaching me some basic blowout skills and giving me something to look forward to beyond graduation.

Many thanks to Dr. Otto Santos for enlightening me in my sonic confusion. There should be a good position available for you at A&M in about 15 years.

Mucho gracias to Dr. Tom "Me Big Chief, You Little Indian" Blasingame for accepting me into A&M and keeping education interesting.

Last but not least, I would like to thank my wife's Longhorn family, the Forbuses of fun, for making me a proud brAggie.

# TABLE OF CONTENTS

| ABSTR  | ACT                                                  | iii           |
|--------|------------------------------------------------------|---------------|
| DEDIC  | ATION                                                | v             |
| ACKN   | OWLEDGMENTS                                          | vi            |
| TABLE  | OF CONTENTS                                          | vii           |
| LIST O | F FIGURES                                            | x             |
| LIST O | F TABLES                                             | xii           |
| СНАРТ  | TER                                                  |               |
| Ι      | INTRODUCTION                                         | 1             |
|        | 1.1 Blowouts                                         | $\frac{2}{2}$ |
|        | 1.3 Blowout Trends and Statistics                    | 2<br>6        |
|        | 1.4 Blowout Intervention Methods                     | 8             |
|        | 1.5 Modeling of a Dynamic Kill                       | 12            |
|        | 1.6 Objective of the Study                           | 14            |
|        | 1.7 Expected Contributions From Study                | 16            |
| II     | THE DYNAMIC-KILL SIMULATOR                           | 17            |
|        | 2.1 Java                                             | 17            |
|        | 2.2 Layout and Features                              | 18            |
|        | 2.2.1 The Menu Bar                                   | 19            |
|        | 2.2.2 The Result Bar                                 | 19            |
|        | 2.2.3 The Results Panel                              | 20            |
|        | 2.2.4 The Inputs Panel                               | 20            |
| III    | MODELING                                             | 28            |
|        | 3.1 Flow Rates and Velocities                        | 28            |
|        | 3.2 Pressure Calculations                            | 29            |
|        | 3.2.1 Moody Friction Factor for Newtonian Flow       | 34            |
|        | 3.2.2 Fanning Friction Factor for Non-Newtonian Flow | 35            |
|        | 3.2.3 Multiphase Flow Calculation                    | 37            |

IV

|    | 3.2.4 Single-Phase Liquid Flow                            | 42 |
|----|-----------------------------------------------------------|----|
|    | 3.2.5 Single-Phase Gas Flow                               | 44 |
|    | 3.2.6 Annular Flow                                        | 44 |
|    | 3.2.7 Sonic Flow                                          | 45 |
|    | 3.3 Temperature Calculations                              | 46 |
|    | 3.3.1 Wellbore-Heat Transfer Below the Mudline            | 50 |
|    | 3.3.2 Wellbore-Heat Transfer Above the Mudline            | 53 |
|    | 3.3.3 Overall Heat-Transfer Coefficient                   | 54 |
|    | 3.4 Inflow Performance Relationship                       | 57 |
|    | 3.4.1 Oil Reservoir IPR                                   | 59 |
|    | 3.4.2 Gas Reservoir IPR                                   | 61 |
|    | 3.5 Properties of Reservoir Fluids                        | 64 |
|    | 3.5.1 <i>z</i> -Factor of Natural Gases                   | 64 |
|    | 3.5.2 Gas Density                                         | 65 |
|    | 3.5.3 Gas Formation Volume Factor                         | 65 |
|    | 3.5.4 Gas Viscosity                                       | 66 |
|    | 3.5.5 Oil Density                                         | 66 |
|    | 3.5.6 Oil Formation Volume Factor and Oil Compressibility | 67 |
|    | 3.5.7 Solution-Gas/Oil Ratio                              | 68 |
|    | 3.5.8 Oil Viscosity                                       | 68 |
|    | 3.5.9 Water Density                                       | 69 |
|    | 3.5.10 Water Formation Volume Factor                      | 69 |
|    | 3.5.11 Solution-Gas/Water Ratio                           | 69 |
|    | 3.5.12 Water Viscosity                                    | 70 |
|    | 3.5.13 Gas/Oil and Gas/Water Interfacial Tension          | 70 |
|    | 3.6 Nodal Analysis                                        | 70 |
|    | 3.7 Dynamic Kill Single-Phase Solution                    | 71 |
|    | 3.8 Dynamic Kill Multiphase Solution                      | 74 |
|    | 5 1                                                       |    |
| IV | ALGORITHMS                                                | 77 |
|    |                                                           | 70 |
|    | 4.1 Pressure Algorithm                                    | /9 |
|    | 4.2 Temperature Algorithm                                 | 81 |
|    | 4.3 Wellbore-Profile Algorithm                            | 82 |
|    | 4.4 Initial-Condition Algorithm                           | 84 |
|    | 4.5 Single-Phase Solution Algorithm                       | 84 |
|    | 4.6 Multiphase Solution Algorithm                         | 86 |
|    | 4.7 Global Iteration Scheme                               | 88 |
| V  | TESTING AND RESULTS                                       | 90 |
|    | 5.1 Initial Condition                                     | 90 |

# Page

| CHAPTER                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 5.2 Minimum Kill Rate                                                                                                                                                                                                                                                                                                                                                                                                          | 95                                                                 |
| VI DISCUSSION AND CONCLUSIONS                                                                                                                                                                                                                                                                                                                                                                                                  | 98                                                                 |
| 6.1 Suggestion for Further Work                                                                                                                                                                                                                                                                                                                                                                                                | 99                                                                 |
| NOMENCLATURE                                                                                                                                                                                                                                                                                                                                                                                                                   | 101                                                                |
| REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                     | 106                                                                |
| APPENDIX A: TWO-PHASE FLOW CORRELATIONS                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |
| <ul><li>A.1 Hagendorn and Brown.</li><li>A.2 Beggs and Brill.</li><li>A.3 Duns and Ros.</li></ul>                                                                                                                                                                                                                                                                                                                              | 111<br>116<br>121                                                  |
| APPENDIX B: EMPIRICAL FLUID PROPERTY CORRELATIONS                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |
| <ul> <li>B.1 z-Factor</li> <li>B.2 Gas Viscosity</li> <li>B.3 Oil Formation-Volume Factor</li> <li>B.4 Oil Compressibility Above the Bubblepoint</li> <li>B.5 Solution-Gas/Oil Ratio</li> <li>B.6 Oil Viscosity</li> <li>B.7 Water Formation-Volume Factor</li> <li>B.8 Solution-Gas/Water Ratio</li> <li>B.9 Water Viscosity</li> <li>B.10 Gas/Oil Interfacial Tension</li> <li>B.11 Gas/Water Interfacial Tension</li> </ul> | 134<br>137<br>138<br>139<br>139<br>140<br>141<br>142<br>143<br>143 |
| VITA                                                                                                                                                                                                                                                                                                                                                                                                                           | 145                                                                |

ix

# LIST OF FIGURES

| FIGU | RE                                                                   | Page |
|------|----------------------------------------------------------------------|------|
| 1.1  | Blowout pyramid for GOM drilling                                     | 8    |
| 2.1  | Simulator interface                                                  | 18   |
| 2.2  | Mixture-velocity graph displayed in separate window                  | 21   |
| 2.3  | Blowout case with returns to the surface using a drillstring         |      |
|      | to circulate the kill fluid                                          | 22   |
| 2.4  | Blowout case with returns to the mudline using a relief well         |      |
|      | to circulate the kill fluid                                          | 23   |
| 2.5  | Drillstring options for wild well                                    | 24   |
| 2.6  | Drillstring hanging from BOP                                         | 25   |
| 2.7  | Drillstring dropped to the bottom                                    | 26   |
| 2.8  | Pop-up message indicating an input error                             | 27   |
| 3.1  | Small element of fluid in a pipe                                     | 31   |
| 3.2  | Rheological models                                                   | 33   |
| 3.3  | Apparent viscosity for a power-law fluid                             | 35   |
| 3.4  | Temperature fluxes for an element of fluid below the mudline         | 51   |
| 3.5  | Temperature fluxes for an element of fluid above the mudline         | 55   |
| 3.6  | Radial flow from a reservoir to a wellbore                           | 58   |
| 3.7  | Determining the initial flowrate and bottomhole flowing pressure     |      |
|      | using nodal-analysis                                                 | 71   |
| 3.8  | System-intake curves for different kill rates                        | 72   |
| 3.9  | Relationship between single-phase, multiphase and                    |      |
|      | zero-derivative solution for the minimum kill rate                   | 76   |
| 4.1  | Blowing well with exit to the mudline separated into finite elements | 78   |
| 4.2  | Two adjacent elements in the wellbore                                | 79   |
| 4.3  | Pressure algorithm                                                   | 80   |
| 4.4  | Temperature algorithm                                                | 82   |

| FIGU | RE                                                                      | Page |
|------|-------------------------------------------------------------------------|------|
| 4.5  | Wellbore-profile algorithm                                              | 83   |
| 4.6  | Initial-condition algorithm                                             | 85   |
| 4.7  | Single-phase solution for the minimum kill rate                         | 86   |
| 4.8  | Multiphase solution for the minimum kill rate                           | 87   |
| 4.9  | Global iteration scheme                                                 | 89   |
| 5.1  | System-intake curves from the simulator with varying gas/liquid ratios  | 91   |
| 5.2  | Comparing the multiphase models with tubing size of 1.995 in.           |      |
|      | and GLR of 100 scf/STBL                                                 | 93   |
| 5.3  | Comparing the multiphase models with tubing size of 8.921 in.           |      |
|      | and GLR of 300 scf/STBL                                                 | 94   |
| 5.4  | Comparing the multiphase models with tubing size of 8.921 in.           |      |
|      | and GLR of 300 scf/STBL in 10,000 ft of water depth                     | 95   |
| 5.5  | Minimum-kill rate and standpipe-pressure requirement with               |      |
|      | increasing water depth                                                  | 97   |
| A.1  | Hagendorn and Brown correlation for N <sub>LC</sub>                     | 113  |
| A.2  | Hagendorn and Brown correlation for $H_L/\psi$                          | 114  |
| A.3  | Hagendorn and Brown correlation for $\psi$                              | 117  |
| A.4  | Duns and Ros bubble/slug transition parameters                          | 123  |
| A.5  | Duns and Ros bubble-flow, slip-velocity parameter <i>F</i> <sub>1</sub> | 124  |
| A.6  | Duns and Ros bubble-flow, slip-velocity parameter F <sub>2</sub>        | 124  |
| A.7  | Duns and Ros bubble-flow, slip-velocity parameter <i>F</i> <sub>3</sub> | 125  |
| A.8  | Duns and Ros bubble-flow, slip-velocity parameter <i>F</i> <sub>4</sub> | 125  |
| A.9  | Duns and Ros slug-flow, slip-velocity parameter F <sub>5</sub>          | 126  |
| A.10 | Duns and Ros slug-flow, slip-velocity parameter $F_6$                   | 127  |
| A.11 | Duns and Ros slug-flow, slip-velocity parameter $F_7$                   | 127  |
| A.12 | Duns and Ros bubble-flow, friction-factor parameter $f_2$               | 129  |

# LIST OF TABLES

| TABL        | E Page                                                                   |
|-------------|--------------------------------------------------------------------------|
| 1.1         | Potential Sources for Uncontrolled Flow Above the Mudline                |
| 1.2         | Potential Sources for Uncontrolled Flow Below the Mudline                |
| 5.1         | Absolute Error Between Beggs Curves and Simulation Results               |
|             | With Tubing Size of 1.995 in. and Liquid Rate of 700 STBL/D 92           |
| 5.2         | Absolute Error Between Beggs Curves and Simulation Results               |
|             | With Tubing Size of 3.958 in. and Liquid Rate of 8,000 STBL/D 92         |
| 5.3         | Blowout Data for Calculation Example                                     |
| A.1         | Horizontal Flow-Pattern Coefficients, Beggs and Brill Method118          |
| A.2         | Deviated Flow-Pattern Coefficients for Beggs and Brill Method119         |
| <b>B</b> .1 | A Constants for the Dranchuk and Abou-Kassem Correlation for z-Factor136 |
| B.2         | Constants for the Vasquez and Beggs Correlation for Oil                  |
|             | Formation Volume Factor                                                  |

#### **CHAPTER I**

#### INTRODUCTION

The trend for the oil industry has been to explore for hydrocarbon reservoirs in deeper and deeper water. This trend is a result of depleting oil reserves on land, an increase in demand for hydrocarbons, and promising potential for deepwater reservoirs.<sup>1</sup> With the current technology available, drilling for reservoirs in ultradeep water—where ultradeep water is defined in this text as water depths greater than 5,000 ft—encounters many problems. Numerous wells in such water depths have been plugged and abandoned, leading to huge financial losses for the company. It is predicted that many reservoirs cannot be reached with current technology, or they can be reached but the production tubing will be of such a small diameter that the well will be uneconomical.

The call for new technology is being heard from the industry, and several new methods for drilling in ultradeep water are being proposed. One such method that is showing great potential is dual-gradient drilling.<sup>2-4</sup> Several variations on how to obtain a dual-pressure gradient in the annulus include using a subsea pump to lift the drilling mud from the seafloor to the rig or injecting hollow glass spheres at the seafloor. Either way, the annular pressure at the seafloor is reduced to approximate the seawater hydrostatic pressure. The result is a virtually smaller hydrostatic column of mud in the annulus, which enables drilling with a higher-density drilling fluid, hence increasing the hydrostatic gradient in the annulus. The wellbore-pressure profile will thus follow the fracture and pore-pressure gradients more closely. Several of the major problems encountered with conventional drilling are thereby overcome, and other positive factors that may enhance well control have been found by using this method.

This dissertation follows the style and format of SPE Drilling and Completion.

#### **1.1 Blowouts**

A kick is defined as an unscheduled influx of formation fluid into the wellbore. Kicks occur when the rig crew fails to control the pressures in the well. A blowout occurs when the rig crew fails to control the kick and regain pressure control, and can be defined as an uncontrolled flow of formation fluids. A blowout will always cause large unplanned expenses to the company, but may also result in loss of lives and damage to the environment.

The most recent deepwater blowout containment study can be found in Drilling Engineering Association (DEA)–63, Joint Industry Project (JIP) for evaluating floating vessel blowout control, which was released in September 1990.<sup>5</sup> Ultradeepwater drilling activity has increased dramatically in the last decade. Operations that were once exceptional and characterized by several man-years of well, operations, and contingency planning are now being done routinely several times each rig year. The report, DEA–63, did not contemplate operations in water as deep as we commonly operate in now. Nor did DEA–63 describe any of the recent deepwater drilling techniques such as dual-gradient drilling and appropriate blowout intervention procedures for them.

#### **1.2 Types of Blowouts**

For offshore operations blowouts can be classified in three groups:

- Surface Blowouts.
- Subsurface Blowouts.
- Underground Blowouts.

Surface blowouts are characterized by fluid flow from a permeable formation to the rig floor, where atmospheric conditions exist. For subsurface blowouts the flow typically exits the well at the mudline, where the exit conditions are controlled by the seawater. Surface blowouts have been given the most attention, as they are usually associated with large-scale fires. The most famous surface blowout is the Piper Alpha incident on the UK sector of the North Sea, 1988.<sup>6,7</sup> The explosion that occurred after the gas was ignited resulted in a fire that completely destroyed the platform and cost 167 lives and approximately \$1.48 billion in lost revenue. For subsurface blowouts, the plume of the reservoir fluid may cause loss of buoyancy to the point where a floating rig would sink. The likelihood of this scenario depends on the water depth, the flowing rate, and the density of the formation fluid. In deepwater the plume could be dispersed before reaching the surface or could be carried with the ocean currents to a location away from the rig.

An underground blowout occurs as fluids flow from one formation zone to another, typically by using the wellbore as a flow path. In the industry an underground blowout is also referred to as a cross flow between formations. Although underground blowouts are not as frequently discussed, they occur approximately 1.5 times<sup>6</sup> as frequently as surface and subsurface blowouts together and can escalate into just as dangerous and costly situations. The total loss of revenue for the Saga 2/4-14 and the West Venture underground blowout exceeded \$500 million.<sup>6</sup> One problem with underground blowouts is that there is no visible sign of danger at the surface. However, if the rig were on fire or sinking, the situation would immediately demand respect and attention. An underground blowout has the potential of broaching to the surface, which results in a subsurface blowout that can be very difficult to kill. This is very likely in depths less than 3,000 ft below mudline,<sup>8</sup> and the chances increase in young sediments unconsolidated sands that was deposited at a relative recent geologic time-such as the ones often encountered in offshore drilling. If the underground blowout broaches to the surface immediately beneath the rig, it may topple jackups and platform rigs in addition to sinking floating rigs by loss of buoyancy.

As earlier described, a blowout can be defined as uncontrolled flow of formation fluid. For surface, subsurface, and underground blowouts, the uncontrolled flow can occur in a wide variety of flow paths and flow rates. Combined with the many geographic locations for hydrocarbons around the world, the different types of geologic settings and so forth, all blowouts are different and require a unique plan of intervention. **Table 1.1** and **Table 1.2** describe some potential sources for uncontrolled flows above and below the mudline respectively. These tables also illustrate during which phase of the wells life—which is drilling, completion, or production—the uncontrolled flow may occur.

 Table 1.1 – Potential Sources for Uncontrolled Flow Above the Mudline



#### Table 1.2 – Potential Sources for Uncontrolled Flow Below the Mudline



When a well-control situation is escalating into a blowout through a conventional riser, appropriate measures are called for to prevent the mud from being unloaded from the riser. Studies have shown that if the mud is ejected from the riser and replaced by a low-density reservoir fluid such as gas, the pressure difference to the hydrostatic pressure of the seawater may be sufficient to collapse the riser.<sup>9</sup> Additionally, if the riser is filled with gas instead of mud, the flowing bottomhole pressure will be lower, creating a better flow-potential for the formation influx. In comparison, the hydrostatic pressure of seawater will create additional backpressure in the blowing well, which may aid in

controlling the formation-influx rate. If the well depth is greater than 3,000 ft below the mudline, the rig crew may choose to close the blowout preventer, which could potentially create an underground blowout. Otherwise, the riser should always be disconnected and the well vented to the seafloor.

#### **1.3 Blowout Trends and Statistics**

A 1993 study by the Minerals Management Service (MMS) on the frequency of blowouts in the Gulf of Mexico (GOM) showed that from 1971 through 1991, 87 blowouts occurred during drilling operations.<sup>10</sup> During the same period, 21,436 wells were drilled. The number of blowouts per year in this period seemed to follow a trend linearly proportional to the number of wells drilled.

Typically, a blowout happens after a series of events that can be traced back to human error and/or equipment failure. The two main causes for blowouts in the MMS study were swabbing and fracturing the formation. Swabbing occurs when the drillpipe is pulled out of the hole too fast and formation fluid is swabbed into the hole. Fracturing occurs when the pressure in the well exceeds the formation integrity and the mud in the annulus disappears into a permeable formation. Because the mud level in the annulus will drop as mud exits the wellbore, the static bottomhole pressure will decrease, which allows formation fluid to enter the wellbore at any other permeable zone in the openhole section.

Small gas pockets at shallow depths were the most common sources of formation fluid for the blowouts. These blowouts are typically short in duration, but the gas pockets may contain sulfur in the form of hydrogen sulfide, which is dangerous for the rig crew. Also, most blowouts occurred during drilling operations. In 1998 Skalle and Podio<sup>11</sup> published a study on the frequency of blowouts for all operations covering both onshore Texas and offshore in the GOM over 36 years. This study found that on average there is a blowout per 285 wells drilled.

As for the MMS study, Skalle and Podio found that the frequency of blowouts offshore GOM follows the number of wells drilled. However, they found that for onshore Texas the frequency of blowouts remained flat and independent of the number of wells being drilled for the 36 years studied.

In 1990 Wylie and Visram<sup>12</sup> found that on average there is a blowout for every 110 kicks. A reliability study of blowout preventers found an average of 52 kicks for every 100 wells drilled,<sup>7</sup> 79 % of the kicks caused significant problems and 21 % resulted in loss of all or part of the well.

Using the data presented above, a blowout pyramid as shown in **Fig. 1.1** can be constructed for blowouts in the GOM. There are many ways to interpret the blowout-frequency data, which would lead to slightly different numbers in the pyramid. The number of at-risk operations is typically not reported and is therefore left blank.

This type of pyramid, which shows 1 blowout for every 285 wells drilled, is often used with a work-from-the-bottom analysis to avoid or moderate the most severe events. Reducing the number of wells drilled would obviously reduce the chances of a blowout. However, a more practical solution would be to limit at-risk operations and the occurrence of kicks to decrease the chances of a blowout.

At the time of writing this dissertation, no ultradeep-water blowout has been recorded. However the trend and history for blowout frequency show that ultradeep drilling is clearly at risk, and an ultradeep water blowout will be very difficult to avoid in the future.



Fig. 1.1—Blowout pyramid for GOM drilling.

#### **1.4 Blowout Intervention Methods**

A number of blowout-intervention methods are available to bring a wild well under control. They can be classified in two groups<sup>8</sup> depending on the intervention location:

- Surface intervention.
- Relief well methods.

Surface intervention aims to control the blowout by direct access to the wellhead or exit point of the wild well. Relief wells are used to gain control of blowouts in situations where direct-surface intervention is impossible or impractical. Instead, the relief-well methods involve killing the uncontrolled well downhole, using a surface location at a safe distance away from the wild well. A major drawback of relief-well killing is that it may take a long time to drill the relief well.

Blowout intervention can also be grouped depending on the intervention method. Some of the most common methods are:

- Capping.
- Momentum kill/bullheading.
- Dynamic kill.
- Gunk plugs.
- Flooding or relieving the pressure in the reservoir

Surface intervention typically focuses on capping and variations of capping the well. Capping refers to stopping the uncontrolled flow by closing in the flowpath exit point at the surface. The simplest capping equipment consists of a pipe fitted with a ball valve or blind rams and a diverter line. With the valve or rams in open position, the capping equipment is stabbed into the wellhead—if the wellhead is intact—or into the remaining pipe components. Once the capping stack is in place and the connection to the wild well has been sealed properly, the valve or rams are closed and the uncontrolled flow is stopped. There are many variations to this method that all require access to the exit point of the wild well.

Capping can be performed relatively quickly under the right circumstances. However, the disadvantages and limitations of this method are many. First, the pipe has to be guided over the exit point of the wild well, which may be on fire. For a gas blowout that did not ignite, the explosive danger may be high. Either way, capping the well may be dangerous for the personnel. For a shallow-water gas blowout, it may be difficult to access the wellhead because of the reduced buoyancy in the area. In deeper water, buoyancy may not be a problem because of currents and the length of the plume of gas. However, the capping equipment would have to be guided over the wild well using a remote operated vehicle (ROV). Currently, no ROV is designed to navigate through the plume of a blowing well. Capping a well in deepwater is thus considered to be difficult or impossible. Some cases have been reported where capping techniques have been successfully applied to subsurface blowouts, but only in relatively shallow water of less than 300 ft depth.<sup>8</sup>

Furthermore, when the uncontrolled flow is abruptly stopped at the surface, the pressure in the well will increase almost instantaneously. This may induce an underground blowout, which may broach to the surface. If the wellhead craters, a surface intervention method is close to impossible.

Momentum kill, which is also sometimes called bullheading, is also done by surface intervention. If a drillstring is not present in the blowing well, it would need to be snubbed down the wellbore using a snubbing unit.<sup>13</sup> An advantage of momentum kill is that the drillstring does not need to be all the way to the bottom of the well. The method involves circulating a kill fluid down the drillstring with greater momentum than the flow of formation fluid coming up the wellbore. A momentum kill is equivalent to a head-to-head collision of two cars. The slower and smaller car will immediately halt and be pushed backwards. This method is also frequently used to prevent sour-gas kicks from reaching the surface as the hydrogen sulfide may cause harm to the personnel. The major disadvantage of the momentum kill method is that it is likely to cause an underground blowout.

Relief wells are used to gain control of blowouts in situations where direct surface intervention is impossible or impractical. Conceptually, in the late 19<sup>th</sup> century, relief wells were drilled parallel to the blowing well and used to relieve pressure by producing from the flowing formation.<sup>14</sup> Operators later discovered that flooding the reservoir with water was a more effective intervention method. The relief well would

connect with the wild well through fractures and vugs in the formation and further flood it with water until it was dead. This method had many limitations, particularly in deep wells, in formations with very low permeability such as tight gas reservoirs, or in cases where a relief well could not be drilled in close proximity to the blowing well. With the introduction of directional drilling, the relief well could intersect the wild well, which is the preferred method today. An electromagnetic tool is used in the relief well to detect the casing of the blowing well. After milling a hole in the casing, or intersecting just below the last casing string, the kill fluid can be injected directly into the wild well from the relief well.

If a kill fluid with density sufficient to hydrostatically stop and control the formation influx is injected directly into the blowing well, it may be difficult to avoid fracturing the formation. The dynamic-kill procedure<sup>8,14</sup> was introduced to give more control throughout the course of the intervention. A dynamic kill involves circulating a kill fluid, such as seawater, with density resulting in a hydrostatic-column pressure less than the static reservoir pressure before the weighted fluid. The lighter fluid is circulated at a rate that will generate sufficient frictional pressure in the blowing well to stop the influx of formation fluid. Once the formation influx is stopped, a weighted mud is circulated to statically control the well. If the formation is fractured, the kill rate may be decreased to reduce the pressure in the well. A thick, viscous, special kill fluid may also be used to reduce the chance of fracturing the formation.

Dynamic kill is one of the oldest and most widely used intervention methods. In the early 1960s, dynamic kills were commonly used in the Arkoma basin where air drilling was popular.<sup>8</sup> Every productive zone that was encountered would result in a blowout, which was later contained by dynamic-kill intervention. Unfortunately, since the physics behind the dynamic kills was not fully understood at the time, a trial-and-error approach was the only method to succeed.

A dynamic kill can also be done in combination with capping intervention. While the dynamic kill is initiated, the capping stack can be used as a choke to give additional backpressure. Another flexibility of the dynamic-kill method is that it can be performed either through a relief well or by surface intervention. The decision of whether to use a relief well or a drillstring in the wild well depends on the kill rate required and the likelihood of successfully snubbing a drillstring into the wild well. Because of the small inner diameter of a drillstring, significant pressure will be lost inside the drillstring during a high kill rate. For a relief well the annulus may be used to circulate down the kill fluid, which would result in less frictional-pressure drop and less pumping power required for the same kill rate.

Typically, if all of the approaches above fail, a gunk plug is attempted. Gunk is a combination of diesel and gel, and this intervention method is equivalent to putting bubble gum down the hole. An alternative to gunk material is using a fast-reacting cement. If the plug is set high, a weak formation below the plug could fracture, creating an underground blowout. After a gunk plug is set, it may be difficult to ever regain control of the well.

#### **1.5 Modeling of a Dynamic Kill**

Proper planning is the key to a successful dynamic kill. Without proper planning, the logistics for the task at hand is almost guaranteed to escalate into complete chaos. Furthermore, an unsuccessful dynamic kill could worsen the situation.

Blount and Soeiinah<sup>15</sup> are credited as the pioneers of dynamic-kill modeling. In 1978 their engineering concepts were applied to a blowout in the Arun field, which at the time was the world's biggest gas field. The well was blowing at a rate of 400 MMscf/D, and was under control after only one hour and fifty minutes of pumping using a relief well. The kill rate required to control the wild well was calculated from a single-phase solution. Kouba *et al.*<sup>16</sup> showed that a single-phase solution may in some cases

underpredict the kill rate required. They presented a simple analytical multiphase solution that can be used to check the validity of the single-phase solution.

Over the last couple of decades, the industry has created several dynamic-kill simulators to assist in the planning process. These dynamic-kill simulators aim to:

- Determine the initial downhole conditions of a blowing well such as pressures, temperature, and flowrates.
- Determine the requirements for a dynamic kill such as pump rate, power requirement, and mud volumes.
- Gain a better understanding of the task at hand and evaluate the best plan of action.

Some of the most recent and most popular dynamic-kill simulators include:

- Olga-Well-Kill.
- Sidekick.
- Dyn-X.
- Santos Simulator.

In 1980 a full-scale flow loop was built in Norway to develop a model—named OLGA 2000—capable of simulating slow transients in two-phase hydrocarbon transport pipelines. In 1989 a blowout occurred in the Norwegian North Sea and OLGA 2000 was used in developing a dynamic-kill simulator named OLGA-WELL-KILL.<sup>17</sup> Since then OLGA-WELL-KILL has evolved to become the industry's leading dynamic-kill simulator and has been used successfully to plan an extensive number of blowout interventions.

Sidekick<sup>18</sup> was originally developed as an advanced kick simulator for all the events that lead up to a blowout. Sidekick can also be used to simulate a dynamic kill for a gas blowout. The dynamic-kill simulator cannot be used to simulate circulation through a relief well and the simulator would require tweaking to simulate a subsurface or underground blowout.

A spreadsheet program, named Dyn-X, that can be used to study dynamic kills was developed at Louisiana State University.<sup>19</sup> The program incorporated a steady-state, system-analysis approach and a model for sonic flow of gas/mud mixtures. The program contains a reservoir fluid-property calculator, which enables the program to be used for complex mixtures of formation fluids. The program also has the features to be used for directional wells, off-bottom kills, and underground blowouts.

Santos<sup>9</sup> presented a FORTRAN computer program developed to study blowouts in ultradeep water. The dynamic-kill simulator was developed from an experimental study on riser and diverter unloading during blowouts. Using piston-like displacement and no slip between the phases as assumptions, the simulator has transient capabilities.

#### **1.6 Objective of the Study**

Schubert and Weddle<sup>20</sup> proposed to expand on the 1990 DEA–63 report.<sup>5</sup> The purpose of their project is to create procedures and guidelines for blowout containment in ultradeep water. Developing and validating the procedures will require a dynamic-kill simulator. None of the current dynamic-kill simulators are either available or designed for this particular purpose and therefore the project decided to develop one. This simulator—which is presented in this dissertation—is different from those already existing in that it can simulate bridging predictions and dual-gradient drilling. It is also the first simulator written in Java code, which enables a Web-based application. New versions of the program will be updated automatically and the program can be run from

any location with Internet access. The program can also be used as a stand-alone application.

The final dynamic-kill simulator will accommodate a fully transient analysis with all possible blowout scenarios. Because of the complexity and extensive quantity of work required, developing the simulator requires several phases. The primary objective of this dissertation was to develop an early version of this dynamic-kill simulator.

The dynamic-kill simulator comprises four main sections:

- Input data.
- Estimate of the initial blowing condition such as temperature, pressure and flowrates.
- Calculation of the minimum kill rate and standpipe pressure needed for successful intervention with a given kill fluid and well configuration.
- Graphical output of the results.

The early version of the program focuses on simulating dynamic kills for vertical wells in ultradeep water. The simulator applies to both gas and liquid reservoirs and has the option of using a relief well or a drillstring in the blowing wellbore. The blowing wellbore may include both pipe flow and annular flow, depending on whether a drillstring is present in the wellbore. The computer program is also capable of simulating a dynamic kill using either a Newtonian or a non-Newtonian kill fluid.

For pressure, temperature and fluid-property predictions, the simulator incorporates state-of-the-art models that have been extensively used and verified by the industry. No new correlations were developed for this study. The computer program was tested against multiphase-pressure data to identify and prevent potential coding bugs and conceptual errors.

#### **1.7 Expected Contributions From Study**

The dynamic-kill simulator is expected to be a valuable tool in developing and validating general blowout procedures and for planning blowout interventions on a caseby-case basis. It can also help give a better understanding of blowouts and improve training of personnel, and it has the ability to model significant components of the well system:

- Conventional and dual-density wells.
- Circulation paths through a drillstring located in the blowout well or relief wells.
- Returns to the surface via the drilling riser, choke and kill line, seafloor pumps and return line, or returns to the ocean at the seafloor.
- Surface, subsurface, and underground blowouts.
# **CHAPTER II**

## THE DYNAMIC-KILL SIMULATOR

The simulator presented here for dynamic kills was written in Java. The layout of the program is designed to make it as user-friendly as possible with few operations necessary to achieve the desired results. This chapter will give an overview of the different features available and the layout of the program.

## 2.1 Java

Java was chosen as the programming language because of its versatility, modularity, and reusability. Java is an object-oriented language, which is a favored programming approach that has largely replaced the standard procedure-based programming techniques over the last decade. A thorough discussion of the benefits of object-oriented programming versus procedure-based programming is beyond the scope of this study.<sup>21</sup>

Platform independence, popularity, and simplicity are just some of the benefits that Java offers. Platform independence enables the user to run a Java application on any operating system and still get the same results. This has earned Java the recognition as *the* Internet programming language. A Java application has the option of being used as an applet, which is an application that can be run over the World Wide Web, or as a stand-alone application. Java's popularity has generated an abundance of source-code information and examples and plenty of programmers who are familiar with reading the code. Compared to other object-oriented languages such as C++, Java is an improvement. Several of the complicated features of C++ such as memory management, pointers, and multiple-inheritance that can easily lead to confusion are greatly simplified in Java.



Fig. 2.1—Simulator interface.

# **2.2 Layout and Features**

The interface was developed to be clear and simple to work with and to enable easy navigation. **Fig. 2.1** shows the main page of the computer program. As shown, both the inputs and results panel can be viewed at the same time. This is particularly useful when working with an applet to minimize the amount of page downloading and information sent over the Internet. The layout of the interface is separated into four frames:

- Menu bar.
- Result bar.
- Inputs panel.
- Results panel.

#### 2.2.1 The Menu Bar

The menu bar is located at the top of the interface and currently stores four buttons:

- Exit.
- Initial Condition.
- Minimum Kill Rate.
- Clear Graph.

The exit button will close the application. The initial-condition button calculates the pressure and flowrates of the wild well before a dynamic kill is attempted. The minimum-kill-rate button will calculate the kill rate and the standpipe pressure required for successful blowout containment.

Multiple curves can be plotted in the result panel as seen in Fig. 2.1, where three curves are shown. This can be useful for comparing different scenarios. However, the clear graph button will clean up the result panel and display only the last curve.

### 2.2.2 The Result Bar

The result bar is located at the bottom of the interface and displays the singleresult values. The surface-gas rate and surface-liquid rate are the rates of the reservoir fluid at standard conditions before a dynamic kill is attempted. During the initial conditions for a gas reservoir, the liquid rate will always be assumed zero. For a liquid reservoir, the gas rate is calculated as the liquid rate times the gas/liquid ratio, which is defined by the user. Also located in the result bar are the minimum kill rate and the corresponding standpipe pressure results.

#### 2.2.3 The Results Panel

The results panel displays a table and a graph of the wellbore pressure at the initial conditions before the dynamic kill is attempted. Additional graphs, such as the temperature profile and mixture velocity, can be found in the graph menu at the top. **Fig. 2.2** shows a separate window with the mixture velocity.

### **2.2.4 The Inputs Panel**

The inputs panel is grouped in tabs and drop-down menus. All of the input cells, except for the flowing-exit pressure, are located in the tabs. As seen in Fig. 2.1, some of the input cells are gray and some are white. A gray input cell indicates that the input is not needed and the cell is un-editable. As an example, in Fig. 2.1 a gas reservoir has been chosen. For this case it is assumed that the reservoir produces dry-gas only and, thus, the gas/liquid ratio and water cut are not necessary as inputs.

Below the tabs, drop-down menus allow the user to choose the multiphase model, the reservoir-fluid type, and the blowout type. The choices of multiphase models are Hagendorn and Brown, Beggs and Brill, and Duns and Ros.

The reservoir-fluid type is grouped as either liquid reservoir or gas. For an oil well in ultradeep water, the reservoir pressure is always assumed above the bubblepoint pressure, so a compositional reservoir is not featured in this simulator.



Fig. 2.2—Mixture-velocity graph displayed in separate window.

With the last drop-down menu, the user may choose the blowout type, which is either exit to the surface or exit to the mudline.

"Exit to the surface" indicates a surface blowout where the exit of the blowout is to atmospheric conditions. This could be the case where the formation flow is using either the drillstring or the riser as a medium, as seen in **Fig. 2.3**. The option of exit to the mudline can be used for either subsurface or underground blowouts. A case where the wild well is blowing to the mudline is shown in **Fig. 2.4**. This option can also be used for dual-gradient drilling, where the pressure at the seafloor remains constant during the intervention.



Fig. 2.3—Blowout case with returns to the surface using a drillstring to circulate the kill fluid.

As seen in Fig. 2.1, an input cell for the flowing-exit pressure is located below the drop-down menus. If Exit to the surface is chosen, the default value for the flowingexit pressure is 15 psia. If Exit to the mudline is chosen, the program will calculate the seawater hydrostatic and display it in this input cell. For an underground blowout, the user would have to enter the fracture pressure of the formation as the exit pressure.



Fig. 2.4—Blowout case with returns to the mudline using a relief well to circulate the kill fluid.

The kill fluid can be circulated into the wild well either by using a relief well as shown in Fig. 2.4, or by using a drillstring inside the wild, well as seen in Fig. 2.3. The default circulation method is using a relief well. If circulation using a drillstring is desired, the user must navigate to the Drillstring in Wild Well tab and choose Kill With Drillstring from the drop-down menu (**Fig. 2.5**).



Fig. 2.5—Drillstring options for wild well.

Fig. 2.5 shows three other options for the drillstring inside the wild well. No Drillstring is the default case shown in Fig. 2.4. Hanging From BOP (blowout preventer) is shown in **Fig. 2.6**. Here, a pipe ram is closed below a tool joint before the drillstring is sheared off above the tool joint. This will suspend the drillstring from the BOP. The third option is a drillstring dropped to the bottom, **Fig. 2.7**.



Fig. 2.6—Drillstring hanging from BOP.



Fig. 2.7—Drillstring dropped to the bottom.

The user may in some cases input values that the program will not compile or can't handle. This could happen for example if the kill-fluid weight entered would result in a hydrostatic column larger than the average reservoir pressure, which would not be considered a dynamic kill. In this case, a pop-up window will display a message explaining the error, as seen in **Fig. 2.8**. Several obvious input checks like this are included in the program. Thorough testing of an extensive variety of cases will be necessary to identify all possible input errors. Testing is scheduled as part of a future study in this project.



Fig. 2.8—Pop-up message indicating an input error.

# **CHAPTER III**

## MODELING

The two main objectives of the dynamic-kill simulator are to determine the initial blowing condition of the wild well and the minimum kill rate required to stop the influx of formation fluid into the wellbore. During both evaluations, the pressure and temperature must be calculated throughout the wellbore. The pressure and temperature calculations also require that the fluid properties be determined. One of the main assumptions used for the modeling here is that data available during a blowout are very limited. The correlations used to determine the pressure, temperature, and fluid properties must therefore require a minimum of inputs, yet they must yield accurate results, which were the two deciding factors used to choose the correlations. The following sections in this chapter will describe the modeling and assumptions for each of these components.

#### **3.1 Flow Rates and Velocities**

The fluids in the wellbore may be highly compressed. Because the pressure and temperature change with depth, the fluids will expand as they approach the surface. This will change the rates at which the gas and liquid phases are flowing. The flow rate for each phase can be calculated throughout the wellbore if the surface rates, formation volume factor,  $B_o$  and  $B_w$ , and solution ratios,  $R_s$  and  $R_{sw}$ , are all known. The rates can then be calculated as

$$q_o = q_{osc} B_o, \qquad (3.1)$$

 $q_w = q_{wsc} B_w, \qquad (3.2)$ 

and

$$q_{g} = (q_{gsc} - q_{osc}R_{s} - q_{wsc}R_{sw})B_{g} \dots (3.3)$$

The area inside the pipe is

$$A_{p} = \frac{\pi}{4}d^{2}.$$
 (3.4)

The superficial velocity is defined as the velocity for a given phase if it occupied the entire pipe area alone. The superficial velocities of the oil, water, and gas phases are then

$$v_{so} = \frac{q_o}{A_p}, \qquad (3.5)$$

$$v_{sw} = \frac{q_w}{A_p}, \qquad (3.6)$$

and

$$v_{sg} = \frac{q_g}{A_p}.$$
(3.7)

## **3.2 Pressure Calculations**

Conservation of mass for a small element of fluid implies that mass in minus mass out must equal to the mass accumulation.<sup>22</sup> For flow in a pipe with constant area, the mass balance equation is

$$\frac{\partial p}{\partial t} + \frac{\partial (\rho v)}{\partial L} = 0.$$
(3.8)

For steady-state flow with no mass accumulation, Eq. 3.8 becomes

$$\frac{\partial(\rho v)}{\partial L} = 0. \tag{3.9}$$

Conservation of momentum implies that the momentum out minus the momentum in, plus the rate of momentum accumulation must equal to the sum of all the forces. By applying Newton's first law to **Fig 3.1** we get

$$\frac{\partial(\rho v)}{\partial t} + \frac{\partial(\rho v^2)}{\partial L} = -\frac{\partial p}{\partial L} - \tau \frac{\pi d}{A} - \rho g \sin \theta . \qquad (3.10)$$

For steady state the rate of momentum accumulation is eliminated. Combining the mass balance Eq. 3.9 and the momentum balance Eq. 3.10 and solving for the pressure gradient, we get

$$\frac{dp}{dL} = -\tau \frac{\pi d}{A} - \rho g \sin \theta - \rho v \frac{dv}{dL}.$$
(3.11)

Thus, we see that the pressure gradient can be calculated for a single element in the wellbore according to

$$\left(\frac{dp}{dL}\right)_{t} = \left(\frac{dp}{dL}\right)_{f} + \left(\frac{dp}{dL}\right)_{el} + \left(\frac{dp}{dL}\right)_{acc}, \qquad (3.12)$$

where f denotes the friction term, el denotes the elevation term or hydrostatic head, acc denotes the acceleration term, and t denotes the total pressure gradient at a given well

depth. The sign convention depends on which direction the elements in the wellbore are added and the direction of the flow. The friction and acceleration term will be positive in the opposite direction of the flow. The hydrostatic term will be positive if the elements in the wellbore are added with increasing wellbore depth. The acceleration term is often ignored. However, if compressed gas is present in the wellbore, the acceleration term can become significant as the gas expands close to the surface.



Fig. 3.1—Small element of fluid in a pipe.

The shear stress is a function of shear rate. The relationship between shear stress and shear rate depends on the rheologic properties of the fluid as seen in **Fig 3.2**.<sup>23,24</sup> The flow of oil and water is assumed to follow the Newtonian model, where

 $\tau = \mu \gamma \,, \,..... (3.13)$ 

while the flow of a drilling mud is assumed to follow the power-law model,

 $\tau = K\gamma^n . \tag{3.14}$ 

Thus, if the flow behavioral index, n, is unity and the fluid consistency index, K, is equal to the viscosity,  $\mu$ ,—which is normally the assumption for seawater—then the power-law model will reduce to the Newtonian model.

To determine the friction term, a dimensionless friction factor is used. Evaluating ratio of shear stress at the wall to the kinetic energy defines the Fanning friction factor,

$$f' = \frac{\tau}{\rho v^2 / 2g_c}.$$
 (3.15)

The Fanning friction factor is used in this study when drilling mud is present in the wellbore and the flow is assumed to follow the power-law model. However, for Newtonian flow the Moody friction factor,<sup>25</sup> which is four times larger than the Fanning friction factor, is used to preserve the original equations.

The shear stress as a function of the Moody friction factor is thus

$$\tau = f \frac{\rho v^2}{8g_c}.$$
(3.16)

Substituting Eq. 3.16 into the pressure gradient Eq. 3.11 the friction term becomes

$$\left(\frac{dp}{dL}\right)_f = \frac{f\rho v^2}{2g_c d}.$$
(3.17)



Fig. 3.2—Rheological models.

### 3.2.1 Moody Friction Factor for Newtonian Flow

The friction factor is a function of whether the flow is in a laminar or a turbulent flow regime. Laminar flow is assumed when Reynolds number,  $N_{\text{Re}}$ , is less than 2,100. Reynolds number is defined as

$$N_{\rm Re} = \frac{\rho v d}{\mu}.$$
 (3.18)

For laminar flow the Moody friction factor can be derived analytically as:

$$f = \frac{64}{N_{\rm Re}}.$$
 (3.19)

For turbulent flow an analytical expression is not available. Colebrook<sup>26</sup> proposed the empirical-implicit expression in Eq. 3.20, which requires an iterative solution.

$$f_{c} = \left[1.74 - 2\log\left(\frac{2\varepsilon}{d} + \frac{18.7}{N_{\text{Re}}\sqrt{f_{est}}}\right)\right]^{-2}.$$
 (3.20)

A guess is made for the estimated friction factor,  $f_{est}$ , and the friction factor,  $f_{c}$ , is calculated. The calculated friction factor is then used as the next estimated value until the two values agree within a certain tolerance. The initial guess is estimated using the Drew *et al.*<sup>27</sup> correlation for smooth pipe.

$$f_{est} = 0.0056 + 0.5N_{\rm Re}^{-0.32}.$$
 (3.21)

For fully established turbulent flow with Reynolds number larger than 5,000, the Jain<sup>28</sup> friction factor correlation is used to avoid iterations.

$$f_{c} = \left[1.14 - 2\log\left(\frac{\varepsilon}{d} + \frac{21.25}{N_{Re}^{0.9}}\right)\right]^{-2}.$$
 (3.22)

# 3.2.2 Fanning Friction Factor for Non-Newtonian Flow

For non-Newtonian flow the viscosity is not the derivative of shear stress as a function of shear rate. Thus for a given condition an apparent or effective viscosity, as seen from **Fig 3.3**, has to be determined before calculating the Reynolds number.



Shear Rate,  $\gamma$ 

Fig. 3.3—Apparent viscosity for a power-law fluid.

The effective viscosity in centipoises is calculated according to the API  $\text{RP13D}^{29}$  as

$$\mu_e = 100K \left(\frac{96v}{d}\right)^{n-1} \left(\frac{3n+1}{4n}\right)^n.$$
 (3.23)

The Reynolds number can be calculated with  $\mu_e$  as for Newtonian flow using Eq. 3.18. Similarly to the Moody friction factor, but four times smaller, the Fanning friction factor for laminar flow is:

$$f' = \frac{16}{N_{\text{Re}}}$$
. (3.24)

For turbulent flow, Dodge and Metzner<sup>30</sup> propose the implicit Fanning-friction factor in Eq. 3.25 for smooth pipes:

$$f_{c}' = \left[\frac{4.0}{n^{0.75}}\log\left(N_{\text{Re}}f_{est}^{(1-n/2)}\right) - \frac{0.4}{n^{1.2}}\right]^{-2}.$$
(3.25)

Govier and Aziz<sup>31</sup> suggest Eq. 3.26 for non-Newtonian friction factor in rough pipes:

$$f' = f_{M-R}\left(\frac{f'_{r}}{f'_{s}}\right),$$
 (3.26)

where  $f_{M-R}$  is the Fanning friction factor calculated according to Dodge and Metzner (Eq. 3.25),  $f_r$ ' is the Fanning friction factor for Newtonian flow in rough pipe, and  $f_s$ ' is the Fanning friction factor for Newtonian flow in smooth pipe. Because  $f_r'/f_s$ ' is a ratio, the Moody-friction factor from Eq. 3.20 and Eq. 3.21 can be used.

Once the Fanning friction factor is calculated the friction component of the pressure gradient can be calculated. However, because the Fanning friction factor is being used Eq. 3.17 now becomes

$$\left(\frac{dp}{dL}\right)_{f} = \frac{2f'\rho v^2}{g_c d}.$$
(3.27)

#### **3.2.3 Multiphase Flow Calculation**

The multiphase flow calculations in this study assume steady-state behavior, which has been found to give good agreement with actual field cases.<sup>15,16</sup> Over the last decades, significant development in modeling of transient multiphase-flow has resulted in commercial simulators such as the OLGA-WELL-KILL.<sup>17</sup> Currently, however, all the multiphase models that describe the transient phenomena are proprietary.

The multiphase flow models can be classified as either mechanistic or empirical models. The mechanistic models seek to apply basic physical laws to describe the multiphase flow behavior. Because of the complexity of multiphase flow, the mechanistic models still require some empiricism to predict certain flow mechanisms. They are also typically much more complex and time consuming than empirical models, yet they have not been reported to yield any significant increase in accuracy. This study focuses on empirical multiphase models.

Currently little research has reported the relationship between oil, gas, and brine flowing simultaneous with a non-Newtonian drilling mud. In the empirical multiphase models used in this study, the entire liquid phase is treated as a homogeneous fluid where the liquid density  $\rho_L$ , viscosity  $\mu_L$ , and surface tension  $\sigma_L$  is calculated as

$$\rho_L = f_o \rho_o + f_w \rho_w, \qquad (3.28)$$

$$\mu_L = f_o \mu_o + f_w \mu_w,$$
 (3.29)

and

$$\sigma_L = f_o \sigma_o + f_w \sigma_w. \tag{3.30}$$

The water fraction may consist of both produced brine and the kill fluid, which is assumed to be either seawater or a water-based mud with low density. The fraction of oil is calculated as

$$f_{o} = \frac{q_{o}}{q_{L}} = \frac{v_{so}}{v_{sL}},$$
(3.31)

where the liquid flow rate is

 $q_L = q_o + q_w, \qquad (3.32)$ 

and the superficial liquid velocity is

 $v_{sL} = v_{so} + v_{sw}.$  (3.33)

The fraction of water is

 $f_w = 1 - f_o$ . (3.34)

If the gas and the liquid phase travel at equal phase velocities and no slip exist between the phases—which is the assumption during sonic flow in this study—the volume fraction of liquid in the pipe can be calculated as

$$\lambda_L = \frac{q_L}{q_t} = \frac{v_{sL}}{v_m}, \qquad (3.35)$$

where the total flow rate is

 $q_t = q_L + q_g , \qquad (3.36)$ 

and the mixture velocity is

 $v_m = v_{sL} + v_{sg}$ . (3.37)

The no-slip gas holdup is defined by

 $\lambda_g = 1 - \lambda_L \,. \tag{3.38}$ 

 $\lambda_L$  is the no-slip liquid holdup, sometimes called the input liquid content. If slip between the phases occurs—which is the assumption for all except sonic velocities—the actual liquid holdup,  $H_{L_1}$  or void fraction is defined as the fraction of an element of pipe that is occupied by a liquid.

$$H_L = \frac{V_L}{V_p} \,. \tag{3.39}$$

The gas holdup is then expressed as

$$H_g = 1 - H_L.$$
 (3.40)

The slip velocity and liquid holdup are calculated differently depending on the investigators. The different models proposed by these investigators will be discussed in more detail later. The multiphase mixture density and viscosity are calculated, depending on which multiphase model used, as

$$\rho_s = H_L \rho_L + H_g \rho_g, \qquad (3.41)$$

$$\rho_n = \lambda_L \rho_L + \lambda_g \rho_g \,, \,\, (3.42)$$

 $\mu_{s} = H_{L}\mu_{L} + H_{g}\mu_{g}, \qquad (3.43)$ 

$$\mu_{s} = \mu_{L}^{H_{L}} \mu_{g}^{H_{g}}, \qquad (3.44)$$

and

$$\mu_n = \lambda_L \mu_L + \lambda_g \mu_g . \tag{3.45}$$

The pressure gradient equation is given in Eq. 3.12. For two-phase flow the elevation or hydrostatic component can be calculated as

$$\left(\frac{dp}{dZ}\right)_{el} = \frac{g}{g_c} \rho_s \cos\theta \,. \tag{3.46}$$

For vertical flow the  $\cos\theta$ -term is unity. The friction component is calculated as

$$\left(\frac{dp}{dZ}\right)_f = \frac{f\rho v_2}{2g_c d}, \qquad (3.47)$$

where f,  $\rho$  and v are also defined differently by the various investigators. Finally the acceleration component is often ignored for bubble and slug flow. However, the acceleration component may be significant for mist flow. The acceleration component<sup>32</sup> is calculated as

$$\left(\frac{dp}{dZ}\right)_{acc} = \frac{v_m v_{sg} \rho_s}{p} \left(\frac{dp}{dZ}\right)_t.$$
(3.48)

Three multiphase models—Hagendorn and Brown, Duns and Ros, and Beggs and Brill—were used to determine the liquid holdup and the pressure gradient in this study.

Hagendorn and Brown<sup>33</sup> presented a method based on extensive testing using a vertical well, instrumented 1,500 ft deep. The nominal diameter of the tubing was 1.0, 1.25, and 1.5 in. Air was used as the gas phase, and both water and crude oil were used as the liquid phase. The Hagendown and Brown method accounts for slip, but makes no consideration for which flow pattern exists. The procedure to calculate pressure gradients using Hagendorn and Brown is listed in Appendix A.

Duns and Ros<sup>34</sup> published a method after conducting about 4,000 tests in an experimental study of vertical two-phase flow. They used a 185-ft-high vertical flow loop with pipe diameters ranging from 1.26 to 5.6 in. They used air as the gas phase and liquid hydrocarbon or water as the liquid phase, performing the tests at near-atmospheric pressure. Duns and Ros identified four separate flow patterns for computational purposes: bubble, slug, transition, and mist flow. The procedure to calculate pressure gradients using Duns and Ros is listed in Appendix A.

The Beggs and Brill<sup>32</sup> method was the first attempt to predict multiphase flow behavior for all wellbore inclinations. They used 90 ft of acrylic pipe with 1- and 1.5-in. diameters. The fluid mixture consisted of water and air. The flow patterns were determined from horizontal flow and grouped as segregated, intermittent, and distributed flow. The procedure to calculate pressure gradients using Beggs and Brill is listed in Appendix A.

Many comparisons have been made by different investigators to determine which of the multiphase models is the most accurate. From the literature<sup>24, 35, 36</sup> the Hagendorn and Brown method appears to be the most accurate for vertical flow. However, for inclined flow the Beggs and Brill method seems to perform better. The literature suggests that engineers should gather as much data as possible from similar wells and do a comparison study to determine which method to use. If data from nearby wells are not available, the most conservative results should be used.

Given the pressure at a boundary condition, one of the three models described above can be used to calculate the pressure gradient. The pressure gradient can then be used to calculate the pressure in the adjacent element. The full algorithm used to calculate the pressure profile will be described in Chapter IV.

#### **3.2.4 Single-Phase Liquid Flow**

The three multiphase-flow correlations described above will reduce to a Newtonian flow model when no gas is present, which is used in this study for the case when all the gas is dispersed into the solution of the liquid phase.

For a non-Newtonian model the flow behavioral index, n, and fluid consistency index, K, for the mud have to be determined. The n and K value can be determined from a six-speed Fann viscometer according to

$$n = 3.32 \log \left(\frac{R600}{R300}\right).$$
 (3.49)

and

$$K = \frac{5.11R300}{511^n}, \qquad (3.50)$$

where *R*600 and *R*300 are the viscometer readings at 300 and 600-rev/min respectively. Alternatively, if the yield point,  $\tau_y$ , and plastic viscosity,  $\mu_p$ , are given, *n* and *K* can be calculated as follows:

$$n = 3.32 \log \left( \frac{2\mu_p + \tau_y}{\mu_p + \tau_y} \right) \dots \tag{3.51}$$

and

$$K = \frac{5.11(\mu_p + \tau_y)}{511^n}.$$
 (3.52)

Once n and K values are determined, the effective viscosity is calculated according to Eq. 3.23 and the Fanning friction is calculated according to Eq. 3.25. Finally, the friction gradient can be calculated using Eq. 3.26.

The acceleration term is in this study considered negligible for single-phase liquid flow.

### 3.2.5 Single-Phase Gas Flow

If only gas is present in the wellbore, all of the multiphase models above reduce to the same single-phase gas-flow correlation that was used in this study.

#### **3.2.6 Annular Flow**

The hydraulic diameter concept was used to model annular flow in this study. According to this concept the hydraulic diameter is four times the area for flow divided by the wetted perimeter. For pipe flow we have

$$r_h = \frac{\pi d^2 / 4}{\pi d} = \frac{d}{4}.$$
 (3.53)

For annular flow, Eq. 3.54 is modified to

$$r_{h} = \frac{\pi \left(d_{i}^{2} - d_{o}^{2}\right)/4}{\pi \left(d_{i} - d_{o}\right)} = \frac{\left(d_{i} - d_{o}\right)}{4}.$$
(3.54)

Substituting for  $r_h$  in Eq. 3.54 and Eq. 3.55 implies that the hydraulic diameter,  $d_h$  must be:

$$d_h = d_i - d_o$$
. (3.55)

Using this concept, any of the previously described multiphase and single-phase flow models can be used for annular flow.

The hydraulic diameter has been found to yield good results for large annular flow areas. For single-phase flow, the concept is assumed valid if  $d_0/d_i \le 0.3$ .<sup>35</sup> This limitation has not been confirmed for two-phase flow. Langlinais *et al.*<sup>36</sup> reported an experimental study comparing different equivalent-diameter concepts and annular

multiphase flow. They found that Hagendorn and Brown together with the hydraulic diameter concept gave the overall best performance. However, the hydraulic concept has been found to yield poor representation of deviated annular wellbores with high eccentricity.<sup>24</sup>

Kouba et al.<sup>16</sup> suggested using the area-equivalent diameter,

The area-equivalent diameter,  $d_A$ , in Eq. 3.56 will always be larger than the hydraulic diameter concept in Eq. 3.55. Using  $d_A$  will therefore always yield a more conservative result for the minimum-kill requirement.

### 3.2.7 Sonic Flow

For compressible flow the velocity of the fluid may reach the speed of sound, which is also called sonic flow in the fluids. When sonic flow is reached, it is impossible for the multiphase mixture to flow any faster. The sonic flow velocity is therefore called the critical velocity. At the critical velocity it is assumed that there is no slip between the phases. Wallis<sup>37</sup> presented an equation for the critical velocity,  $v_m^*$ , for a multiphase mixture as

$$v_m^* = \frac{1}{\sqrt{\left(\rho_g \lambda_g + \rho_L \lambda_L \left(\frac{\lambda_g}{\rho_g v_g^{*2}} + \frac{\lambda_L}{\rho_L v_L^{*2}}\right)\right)}}, \qquad (3.57)$$

where the critical velocity for the liquid,  $v_L^*$ , in English field units is

$$v_L^* = \frac{68.73}{\sqrt{\rho_L \cdot c_L}}, \qquad (3.58)$$

where  $c_L$  is the compressibility of the liquid mixture. The critical velocity for the gas,  $v_g^*$ , in English field units is

$$v_g^* = 41.4 \cdot \sqrt{\frac{k \cdot z \cdot T}{\gamma_g}} , \qquad (3.59)$$

where z is the compressibility factor and k is the ratio of specific heats, calculated as

$$k = \frac{C_p}{C_v}, \qquad (3.60)$$

where  $C_p$  is the specific heat at constant pressure and  $C_v$  is the specific heat at constant volume. *k* is typically 1.3 for hydrocarbon gases.

Eq. 3.58 implies that the smallest critical velocity occurs for the no-slip liquid holdup,  $\lambda_L$ , of 0.5.

For certain conditions such as a small pipe diameter and atmospheric conditions, a surface blowout may reach critical velocity at the exit point. Under these conditions a nozzle effect will appear at the exit point as the fluid is ejected from the pipe to the atmosphere. The pressure at the exit point will therefore be higher than atmospheric pressure. This increase in pressure is not considered in the simulator, although an estimate can be made for this pressure differential and entered as the input value for the exit pressure.

### **3.3 Temperature Calculations**

In a multiphase composition, the fluid properties will change as a function of pressure and temperature. Conservation of energy for an element of fluid implies that the

energy in minus the energy out, plus the heat energy transferred to or from the surroundings, must equal the rate of energy accumulation.<sup>38</sup> For a small element of fluid this can be expressed as

$$\frac{\partial}{\partial t}(\rho e) = \frac{\partial}{\partial L} \left[ \rho v \left( e + \frac{p}{\rho g_c J} \right) \right] + \frac{U \pi d \left( T_f - T_e \right)}{A}, \qquad (3.61)$$

where U is the overall heat-transfer coefficient,  $T_f$  is the temperature of the fluid and  $T_e$  is the formation temperature. For steady-state flow this equation reduces to

$$\frac{\partial}{\partial L} \left[ \rho v \left( e + \frac{p}{\rho g_c J} \right) \right] = \frac{-U \pi d \left( T_f - T_e \right)}{A}, \quad (3.62)$$

where J is a constant to convert units and e is the intrinsic specific energy, which is defined as

$$e = \frac{gL\sin\theta}{g_c J} + \frac{v^2}{2g_c J} + u .$$
(3.63)

Combining Eq. 3.62 and Eq. 3.63 with the mass conservation Eq. 3.9 we get

$$\rho v \frac{d}{dL} \left[ \frac{gL\sin\theta}{g_c J} + \frac{v^2}{2g_c J} + u + \frac{p}{\rho g_c J} \right] = \frac{-U\pi d \left(T_f - T_e\right)}{A}.$$
(3.64)

The specific enthalpy, h, is defined as

$$h = u + \frac{p}{\rho g_c J}.$$
(3.65)

By substituting Eq. 3.65 into Eq. 3.64 and rearranging for the enthalpy gradient, we get

$$\frac{dh}{dL} = \frac{-U\pi d\left(T_f - T_e\right)}{w} - \frac{v}{g_c J} \frac{dv}{dL} - \frac{g\sin\theta}{g_c J}.$$
(3.66)

Clearly just as for the pressure gradient in Eq. 3.11 the enthalpy gradient is made up of three components:

$$\left(\frac{dh}{dL}\right)_{t} = \left(\frac{dh}{dL}\right)_{HT} + \left(\frac{dh}{dL}\right)_{acc} + \left(\frac{dh}{dL}\right)_{el}, \qquad (3.67)$$

where *HT* denotes the heat transfer to the surroundings.

A change in enthalpy can be calculated by evaluating the change in temperature and pressure separately such that

$$dh = \left(\frac{\partial h}{\partial T}\right)_{p} dT + \left(\frac{\partial h}{\partial p}\right)_{T} dp = c_{p} dT + \left(\frac{\partial h}{\partial p}\right)_{T} dp .$$
(3.68)

For an isenthalpic process where dh = 0, we have

$$\left(\frac{\partial h}{\partial p}\right)_{T} = -c_{p} \left(\frac{dT}{dp}\right)_{h} = -c_{p} \eta , \qquad (3.69)$$

where  $\eta$  is the Joule-Thompson coefficient for cooling by expansion. By combing Eq. 3.68 and Eq. 3.69 we get

$$dh = c_p dT + c_p \eta dp . aga{3.70}$$

Combining Eq. 3.70 and 3.66 and simplifying for the temperature gradient, we get

$$\frac{dT_{f}}{dL} = \frac{\left(T_{e} - T_{f}\right)}{C_{1}} + C_{2}, \qquad (3.71)$$

where

$$C_1 = \frac{c_p w}{U\pi d}, \qquad (3.72)$$

and

$$C_2 = \eta \frac{dp}{dL} - \frac{v}{Jg_c c_p} \frac{dv}{dL}.$$
(3.73)

 $C_1$  is called the relaxation distance and is in units of length.  $C_2$  accounts for acceleration and Joule-Thompson effects, which is necessary for accurate modeling of multiphase and single-phase gas flow. In English field units  $C_1$  in Eq. 3.72 and  $C_2$  in Eq. 3.73 become

$$C_1 = \frac{229.183wc_p}{Ud} \qquad (3.74)$$

and

$$C_2 = \eta \frac{dp}{dL} - \frac{v}{25036 \cdot c_p} \frac{dv}{dL}.$$
(3.75)

The mass rate, w, in Eq. 3.74 can be calculated as

$$w = q_o \rho_o + q_g \rho_g + q_w \rho_w + q_m \rho_m.$$
(3.76)

Eq. 3.71 is a generalized differential equation with no limiting assumptions that can be used to calculate the temperature gradient both below and above the mudline. A boundary condition, such as the reservoir temperature, must be given. The temperature gradient can then be calculated and used to predict the temperature for an adjacent element. The full procedure will be described as an algorithm in the algorithm Chapter IV.

The most difficult parameter to determine when calculating the temperature gradient in Eq. 3.71 is the overall heat-transfer coefficient, U. This is particularly difficult below the mudline, where U will vary depending on the type of completion and the flowing time. The following sections will describe a method to calculate U for completions above and below the mudline.

### **3.3.1** Wellbore-Heat Transfer Below the Mudline

**Fig 3.4** shows a typical wellbore cross-section below the mudline. The heat transfer within the flowing fluid in the tubing and the fluid-filled annulus is primarily a result of convection, while heat transfer in the cement-filled annulus and the tubing and casing walls is primarily a result from conduction.<sup>24</sup>

Heat transfer in the production tubing resulting from convection can be described by

$$T_{f} - T_{ii} = \frac{q}{2\pi\Delta L} \frac{1}{r_{ii}h_{f}},$$
(3.77)

where q is the radial heat transfer and h is the local convective-film coefficient.



Fig. 3.4—Temperature fluxes for an element of fluid below the mudline.

Heat transfer through the production tubing resulting from conduction can be described according to Fourier's equation

$$T_{ti} - T_{to} = \frac{q}{2\pi\Delta L} \frac{\ln\left(\frac{r_{to}}{r_{ti}}\right)}{k_t}, \qquad (3.78)$$

where k is the thermal conductivity of the tubing. Convection through the annulus is

$$T_{to} - T_{ci} = \frac{q}{2\pi\Delta L} \frac{1}{r_{ci}h_{an}}.$$
 (3.79)

Conduction through the casing is

$$T_{ci} - T_{co} = \frac{q}{2\pi\Delta L} \frac{\ln\left(\frac{r_{co}}{r_{ci}}\right)}{k_c}.$$
(3.80)

Conduction through the cement is

$$T_{co} - T_{w} = \frac{q}{2\pi\Delta L} \frac{\ln\left(\frac{r_{cw}}{r_{co}}\right)}{k_{cem}}.$$
(3.81)

Heat transfer into the surrounding rock is described by the infinite-reservoir line-source solution,

$$T_w - T_e = \frac{q}{2\pi\Delta L} \frac{f(t)}{k_e}.$$
(3.82)
where f(t) is calculated as proposed by Hasan and Kabir.<sup>39</sup> A dimensionless time is defined as

$$t_{Dw} = \frac{\alpha t}{r_w^2}, \qquad (3.83)$$

where  $\alpha$  is the thermal diffusivity of the formation. f(t) is then calculated for  $t_{Dw} \leq 1.5$  as

$$f(t) = 1.1281\sqrt{t_{Dw}} \left(1 - 0.3\sqrt{t_{Dw}}\right)$$
(3.84)

and for  $t_{Dw} > 1.5$  as

$$f(t) = \left[0.4603 + 0.5\ln(t_{Dw})\right] \left(1 + \frac{0.6}{t_{Dw}}\right).$$
(3.85)

Combining the temperature from the fluid inside production tubing to the formation temperature, Eq. 3.77 to 3.82, gives

$$T_{f} - T_{e} = \frac{q}{2\pi\Delta L} \left( \frac{1}{r_{ti}h_{f}} + \frac{\ln\left(\frac{r_{to}}{r_{ti}}\right)}{k_{t}} + \frac{1}{r_{ci}h_{an}} + \frac{\ln\left(\frac{r_{co}}{r_{ci}}\right)}{k_{c}} + \frac{\ln\left(\frac{r_{w}}{r_{co}}\right)}{k_{cem}} + \frac{f(t)}{k_{e}} \right).$$
(3.86)

# 3.3.2 Wellbore-Heat Transfer Above the Mudline

A similar analysis as for the wellbore-heat transfer below the mudline can be made for transfer above the mudline (**Fig. 3.5**). The heat transfer in the flowing fluid is again described by Eq. 3.77, the heat transfer through the tubing is described by Eq. 3.78, and the heat transfer through the fluid filled annulus is described by Eq. 3.79. The conduction through the riser is

$$T_{Ri} - T_{sw} = \frac{q_f}{2\pi\Delta z} \frac{\ln\left(\frac{r_{Ro}}{r_{Ri}}\right)}{k_R}.$$
(3.87)

If buoyancy material is put on the riser, which is typical for deep and ultradeep water drilling, the outer radius,  $r_{Ro}$ , of the riser will increase and the thermal conductivity,  $k_R$ , will decrease.

Again, combining the temperature from inside the production tubing to the temperature of the seawater, Eq. 3.78 to 3.79 with Eq. 3.87, we get

$$T_{f} - T_{sw} = \frac{q}{2\pi\Delta L} \left( \frac{1}{r_{ii}h_{f}} + \frac{\ln\left(\frac{r_{io}}{r_{ii}}\right)}{k_{t}} + \frac{1}{r_{Ri}h_{an}} + \frac{\ln\left(\frac{r_{Ro}}{r_{Ri}}\right)}{k_{R}} \right).$$
(3.88)

In Eq. 3.86 and 3.88 *k* is thermal conductivity and *h* is the convective film coefficient.

## 3.3.3 Overall Heat-Transfer Coefficient

Both Eq. 3.86 and Eq. 3.88 are equivalent to Newton's law of cooling<sup>33</sup> given by

$$T_f - T_e = \frac{q}{2\pi\Delta Lr_{to}U}.$$
(3.89)



Fig. 3.5—Temperature fluxes for an element of fluid above the mudline.

By inspection, the bracket component in Eq. 3.86 and Eq. 3.88 is equal to the  $(r_{to}U)^{-1}$  term in Eq. 3.89. Thus, for below the mudline

$$(r_{to}U)^{-1} = \frac{1}{r_{ti}h_{f}} + \frac{\ln\left(\frac{r_{to}}{r_{ti}}\right)}{k_{t}} + \frac{1}{r_{ci}h_{an}} + \frac{\ln\left(\frac{r_{co}}{r_{ci}}\right)}{k_{c}} + \frac{\ln\left(\frac{r_{w}}{r_{co}}\right)}{k_{cem}} + \frac{f(t)}{k_{e}}, \quad \dots$$
(3.90)

and above the mudline

$$(r_{to}U)^{-1} = \frac{1}{r_{ti}h_f} + \frac{\ln\left(\frac{r_{to}}{r_{ti}}\right)}{k_t} + \frac{1}{r_{ci}h_{an}} + \frac{\ln\left(\frac{r_{Ro}}{r_{Ri}}\right)}{k_R}.$$
(3.91)

Eq. 3.90 and Eq.3.91 can be used to calculate the overall heat transfer coefficient, U, which is necessary when using Eq. 3.71 to calculate the thermal gradient in wellbores. In many cases it will be nearly impossible to make a sound estimate of some of the variables in U, such as the local convective-film coefficient of the annulus and the thermal conductivity of the cement. Ramey's<sup>40</sup> derivation of the wellbore heat-transmission for incompressible fluids also arrived at Eq. 3.71. However,  $C_1$  became

$$C_1 = \frac{c_p w [k + r U f(t)]}{2U \pi r k} \qquad (3.92)$$

and

$$C_2 = 0.$$
 (3.93)

Ramey assumed that U included heat transfer from outer casing wall to inside the tubing, excluding the heat transfer in the formation. The heat transfer in the formation is included separately in the relaxation distance,  $C_1$ . For a case such as injecting liquid down the casing or fluid flow in an openhole section, the thermal resistance of the wellbore can be assumed negligible. Thus, U would in this case be infinite and Eq. 3.92 would reduce to

$$C_1 = \frac{c_p w f(t)}{2\pi k}.$$
(3.94)

Shiu and Beggs<sup>41</sup> proposed an empirical correlation (Eq. 3.95) for  $C_1$  developed from a broad range of temperature surveys:

$$C_1 = 0.0149 (w)^{0.5253} (d_{ii})^{-0.2904} (\gamma_{API})^{0.2608} (\gamma_g)^{4.4146} (\rho_L)^{2.9303}, \qquad (3.95)$$

where *w* is the total mass flow rate in lbm/sec,  $\rho_L$  is liquid density at standard condition in lbm/ft<sup>3</sup>, *d* is the inner diameter of the pipe in inches,  $\gamma_{API}$  is the API gravity of the oil in °API, and  $\gamma_g$  is the gas-specific gravity. Eq. 3.95 was developed for oil wells but has been found to give good results for dry-gas wells by using liquid density of 62.4 and oil API gravity of 50.<sup>35</sup>

Above the mulline  $C_1$  still has to be calculated using Eq. 3.74, either by estimating the overall heat-transfer coefficient or by calculation using Eq. 3.91.

## **3.4 Inflow Performance Relationship**

The study at hand focuses on drilling in deep- and ultradeep water. It is assumed that under these conditions the pressures in an oil reservoir will exceed the bubblepoint pressure, and only a single-phase, liquid reservoir exists. Thus, the reservoir fluid in this study is grouped as either a pure-liquid or a dry-gas reservoir. If a mixture of phases existed then a compositional reservoir model would have to be developed, which would complicate the study.

The relationship between production rate and the bottomhole flowing pressure is called the inflow performance relationship (IPR). The most famous IPR is Darcy's Law.<sup>42</sup> In 1856, Darcy performed experiments for purifying water in sand-filter beds. His findings for linear flow can be expressed as



where k is the permeability of the sand,  $\mu$  is the fluid viscosity, and dp/dx is the pressure gradient in the direction of the flow.

Darcy's law can be used for a radial system such as flow from a reservoir to a well as seen in **Fig. 3.6**. As the flow is radial, dp/dx becomes dp/dr and the cross-sectional area open to flow at any radius is  $A = 2\pi rh$ . Since the volumetric flow rate is q = vA, Darcy's law in Eq. 3.96 becomes



Fig. 3.6—Radial flow from a reservoir to a wellbore.

# 3.4.1 Oil Reservoir IPR

For an oil flow it is assumed that the reservoir fluid is only slightly compressible. This small compressibility is handled by the oil formation volume factor,  $B_o$ . Eq. 3.97 then becomes

$$q_o B_o = \frac{2\pi r h k_o}{\mu_o} \frac{dp}{dr} \qquad (3.98)$$

or

$$q_{o} \int_{r_{w}}^{r_{e}} \frac{dr}{r} = 2\pi h \int_{p_{wf}}^{p_{e}} \frac{k_{o}}{\mu_{o} B_{o}} dp .$$
(3.99)

By assuming that the permeability, k, the viscosity,  $\mu$ , and the oil formation volume factor are not functions of pressure, by integration we get

$$q_o = \frac{2\pi k_o h \left( p_e - p_{wf} \right)}{\mu_o B_o \ln \left( \frac{r_e}{r_w} \right)}.$$
(3.100)

Eq. 3.100 applies to steady state where  $p_e$  is constant. During pseudosteady state,  $\overline{p}_R - p_{wf} = \text{constant. Thus, Eq. 3.100 can be rewritten as}$ 

$$q_{o} = \frac{2\pi k_{o} h(\overline{p}_{R} - p_{wf})}{\mu_{o} B_{o} \ln\left(\frac{0.472r_{e}}{r_{w}}\right)}.$$
 (3.101)

During a blowout the rates may be very high and turbulence effects may become significant. A turbulence factor can be added as

$$q_{o} = \frac{2\pi k_{o} h \left( \overline{p}_{R} - p_{wf} \right)}{\mu_{o} B_{o} \ln \left( \frac{0.472 r_{e}}{r_{w}} + D q_{o} \right)},$$
(3.102)

where D is the turbulence factor. Forchheimer<sup>43</sup> presented a derivation for the turbulence factor. Eq. 3.102 was written in the following form:

$$\overline{p}_{R} - p_{wf} = Aq_{o} + Bq_{o}^{2} \dots (3.103)$$

The  $Aq_o$  term in Eq. 3.103 accounts for the laminar flow while  $Bq_o^2$  is the turbulence contribution to IPR. In field units

$$A = \frac{141.2\mu_o B_o}{k_o h} \ln\left(\frac{0.472r_e}{r_w}\right),$$
(3.104)

and *B*, assuming  $r_e$  is much greater than  $r_w$ , is

$$B = \frac{141.2\mu_o B_o}{k_o h} D = \frac{2.3 \times 10^{-14} \,\beta B_o^2 \rho_o}{h^2 r_w} \,. \tag{3.105}$$

The field units of the variables in Eq. 3.104 and 3.105 are:

 $q_o$  = inflow rate, STBO/D,

- $k_o$  = effective oil permeability, md,
- h = reservoir thickness, ft,
- $\overline{p}_R$  = average reservoir pressure, psia,
- $p_{wf}$  = wellbore flowing pressure, psia,

 $r_e$  = wells drainage radius, ft,

 $r_w$  = wellbore radius, ft,

 $\mu_o$  = oil viscosity, cp,

 $B_o$  = oil formation volume factor, res. bbl/STB, and

 $\beta$  = velocity coefficient, ft<sup>-1</sup>.

All the fluid properties should be evaluated at the reservoir temperature and at the average pressure of  $0.5(\overline{p}_R + p_{wf})$ . The velocity coefficient can be calculated as a function of permeability and the formation type.<sup>35</sup> For an unconsolidated formation

$$\beta = \frac{1.47 \times 10^7}{k_o^{0.55}}, \qquad (3.106)$$

and for consolidated formations

$$\beta = \frac{2.329 \times 10^{10}}{k_o^{1.2}} \,. \tag{3.107}$$

The user has the option to specify if the formation rock is consolidated or unconsolidated.

## 3.4.2 Gas Reservoir IPR

For a gas reservoir the reservoir fluid is going to be highly compressible and the assumption that density is independent of pressure is no longer valid. According to the equation of state, the density is

$$\rho = \frac{pM}{zRT}.$$
(3.108)

For a gas reservoir it is also assumed that  $\rho q$  is constant. Applying this assumption and substituting Eq. 3.108 into Eq. 3.97 we get

$$q_{sc} = \frac{pT_{sc}}{p_{sc}Tz} \frac{2\pi rhk_g}{\mu_g} \frac{dp}{dr}, \qquad (3.109)$$

or

$$\int_{pwf}^{pe} pdp = \frac{q_{sc} \mu_g T p_{sc} z}{2\pi h k_g T_{sc}} \int_{r_w}^{r_e} \frac{dr}{r}.$$
(3.110)

By integration eq 3.109 becomes

$$p_{e}^{2} - p_{wf}^{2} = \frac{q_{sc}\mu_{g}Tp_{sc}z}{\pi hk_{g}T_{sc}}\ln\left[\frac{r_{e}}{r_{w}}\right].$$
 (3.111)

 $p_{sc}$  and  $T_{sc}$  is the pressure and temperature at standard condition, which is assumed to be 14.7 psia and 65 °F respectively. For pseudo-steady state using the average reservoir pressure, Eq. 3.111 can be written in field units as

$$q_{sc} = \frac{703 \times 10^{-6} h k_g \left( \overline{p}_R^2 - p_{wf}^2 \right)}{\mu_g z T \ln \left[ \frac{0.472 r_e}{r_w} \right]}.$$
 (3.112)

As for the oil reservoir analysis a turbulence factor can be added. Thus, Eq. 3.111 can be written

$$\frac{-2}{p_R} - p_{wf}^2 = Aq_{sc} + Bq_{sc}^2 , \qquad (3.113)$$

where

$$A = \frac{1422\mu_g zT}{k_g h} \ln\left(\frac{0.472r_e}{r_w}\right),$$
(3.114)

and

$$B = \frac{1422\mu_g zT}{k_g h} D = \frac{3.161 \times 10^{-12} \,\beta \gamma_g zT}{h^2 r_w}, \qquad (3.115)$$

The variables in Eq. 3.113 and their respective field units are:

- $q_{sc}$  = gas flow rate at standard conditions, Mscf/D,
- $k_g$  = effective gas permeability, md,
- h = reservoir thickness, ft,
- $p_R$  = average reservoir pressure, psia,
- $p_{wf}$  = wellbore flowing pressure, psia,
- $r_e$  = well's drainage radius, ft,
- $r_w$  = wellbore radius, ft,
- $\mu_g$  = gas viscosity, cp,
- T = reservoir temperature, °R,
- z = z factor, dimensionless, and
- $\beta$  = velocity coefficient, ft<sup>-1</sup>.

As for an oil reservoir, the fluid properties should be evaluated at the reservoir temperature and at the average pressure of  $0.5(\overline{p}_R + p_{wf})$ .

#### **3.5 Properties of Reservoir Fluids**

The properties of a reservoir fluid such as viscosity and formation-volume factor are best determined from a laboratory analysis using a fluid sample. However, during a blowout a fluid sample may not be available and correlations must be used to estimate the fluid properties. The correlations used in this analysis were chosen because they are easy to implement in a computer program and because of their accuracy and consistency.

## 3.5.1 z-Factor of Natural Gases

To determine the z-factor the pseudoreduced temperature,  $T_{pr}$ , and pressure,  $p_{pr}$ , must first be estimated. Piper *et al.*<sup>44</sup> presented a correlation for the pseudocritical temperature,  $T_{pc}$ , and pseudocritical pressure,  $p_{pc}$ , based on 1,482 data points using natural gases ranging in composition from lean sweet to rich acid gases. The correlation was fitted to their data points with an average error of 1.3 % and a maximum error of 7.3 %. Using  $T_{pc}$  and  $p_{pc}$ , the pseudoreduced temperature and pressure can be calculated as

$$T_{pr} = \frac{T}{T_{pc}} \qquad (3.116)$$

and

$$p_{pr} = \frac{p}{p_{pc}}$$
. (3.117)

Dranchuk and Abou-Kassem<sup>45</sup> presented a *z*-factor correlation primarily designed for a computer routine. The correlation was developed by fitting 1,500 data points with an average error of 0.486 %. The correlation is estimated to be accurate for engineering purposes in the ranges of  $0.2 \le p_{pr} < 30$  for  $1.0 < T_{pr} \le 3.0$  and  $p_{pr} < 1.0$  for  $0.7 < T_{pr} < 1.0$ .

The correlation must be solved numerically using a root solving technique such as Newton's method. The correlations for pseudoreduced pressure and temperature and the Dranchuk and Abou-Kassem *z*-factor correlation are listed in full detail in Appendix B.

## 3.5.2 Gas Density

The gas density can be calculated using the equation of state as

$$\rho_g = \frac{pM_g}{zRT}.$$
(3.118)

The specific gravity of a gas is defined as

$$\gamma_g = \left(\frac{\rho_g}{\rho_a}\right)_{sc} = \frac{M_g}{M_a}, \qquad (3.119)$$

where the subscript a denotes air. Substituting for the molecular weight of gas in Eq. 3.118 and using 28.96 for the molecular weight of air we get in field units

$$\rho_g = 2.7 \frac{p\gamma_g}{zT} \,. \tag{3.120}$$

### **3.5.3 Gas Formation Volume Factor**

The gas formation volume can also be calculated using the equation of state. The definition of gas formation volume factor is the gas volume at reservoir conditions divided by the volume of gas at standard conditions for the same mass (Eq. 3.121).

$$B_g = \frac{V_R}{V_{sc}}.$$
(3.121)

Using the equation of state and substituting for the volumes, we get

$$B_g = \frac{\frac{znRT}{p}}{\frac{z_{sc}nRT_{sc}}{p_{sc}}} = \frac{zTp_{sc}}{z_{sc}T_{sc}p}.$$
(3.122)

In field units Eq. 3.122 becomes

$$B_g = 0.0282 \frac{zT}{p},$$
 (3.123)

where T is in °Rankin, p in psia, and  $B_g$  is in cu.ft/scf.

# 3.5.4 Gas Viscosity

The simulator uses Lee *et al.*'s<sup>46</sup> semi empirical method to calculate gas viscosity. This method is accurate within 9 % for pressure in the range of 100 < p (psia) < 8000, temperature in the range of 100 < T (°F) < 340, and carbon dioxide content of  $0.9 < CO_2$  (mole percent) < 3.2.

Lee et al.'s method is given in Appendix B.

# 3.5.5 Oil Density

The oil gravity is often given in °API, which is the input unit used in the simulator. The oil specific gravity referenced to water gravity can be calculated as

$$\gamma_o = \frac{141.5}{131.5 + \gamma_{API}} \,. \tag{3.124}$$

The oil density below the bubblepoint can be calculated as

$$\rho_o = \frac{62.4\gamma_o + 0.0136R_s\gamma_g}{B_o}, \qquad (3.125)$$

where  $R_s$  is the solution-gas/oil ratio in scf/STB,  $B_o$  is the oil formation volume factor in res. bbl/STB, and the oil density is lbm/ft<sup>3</sup>. For saturated oils above the bubblepoint pressure, the density can be calculated as

$$\rho_{o} = \rho_{ob} \exp[c_{o}(p - p_{b})].$$
(3.126)

A correlation for calculating oil compressibility,  $c_o$ , is discussed below. The oil density at the bubblepoint,  $\rho_{ob}$ , can be calculated using Eq. 3.125 with the values for  $R_s$  and  $B_o$ calculated at the bubblepoint pressure.

### 3.5.6 Oil Formation Volume Factor and Oil Compressibility

Above the bubblepoint the formation volume factor of the oil,  $B_o$ , decreases as the oil becomes more compressed. Below the bubblepoint the  $B_o$  increases with pressure as more gas is dissolved in the oil. Two correlations for the oil formation volume factor are therefore required, one for above and one below the bubblepoint.

The compressibility of oil above the bubble point may be defined as

$$c_o = -\frac{1}{B_o} \left(\frac{\partial B_o}{\partial p}\right)_T.$$
(3.127)

Integration of Eq. 3.127 from the bubblepoint pressure to a higher pressure yields

 $B_{o} = B_{ob} \exp[c_{o}(p_{b} - p)].$ (3.128)

Eq. 3.128 is valid only for pressures above the bubblepoint pressure. An empirical correlation is necessary for pressures below the bubblepoint. Based on more than 6,000 measured values in a pressure, volume, temperature (PVT) analysis Vasquez and Beggs<sup>47</sup> presented correlations for several fluid properties, including a correlation for the oil compressibility,  $c_o$ , to be used with Eq. 3.128. The  $B_o$  correlation had an average error of 0.284 percent, and the  $c_o$  correlation would be expected to yield better or equal accuracy. The ranges of validity for the  $c_o$  and  $B_o$  correlations were 126 < p (psia) < 9,500, 9.3 <  $R_s$  (scf/STB) < 2,199, 15.3 <  $\gamma_{API}$  < 59.5, 0.511 <  $\gamma_g$  < 1.351, and 1.006 <  $B_o$  (bbl/STB) < 2.226.

The Vasquez and Beggs correlation for oil formation volume factor at and below the bubblepoint and the oil compressibility correlation are listed in Appendix B.

#### 3.5.7 Solution-Gas/Oil Ratio

For pressures above the bubblepoint the solution-gas/oil ratio,  $R_s$ , is constant. Standing<sup>48</sup> developed a correlation for  $R_s$  below the bubblepoint. The average error of this correlation was 4.8 % for 105 sample points. The correlation was developed for the ranges of 130 < p (psia) < 7,000, 100 < T (°F) < 258, 20 <  $R_s$ (scf/STB) < 1,425, 16.5 <  $\gamma_{API}$  < 63.8, 0.59 <  $\gamma_g$  < 0.95, and 1.024 <  $B_o$  (bbl/STB) < 2.05.

The Standing correlation for solution-gas/oil ratio is listed in Appendix B.

## 3.5.8 Oil Viscosity

The dead-oil viscosity below the bubblepoint pressure is calculated using a correlation developed by Egbogah,<sup>49</sup> which is an extension of work done by Beggs and Robinson.<sup>50</sup> Egbogah used 394 oil systems to determine his correlation. The average error of this correlation was 6.6 % with the ranges of 0 < p (psia) < 5250, 59 < T (°F) < 176,  $20 < R_s$  (scf/STB) < 1425, and  $16 < \gamma_{API} < 58.0$ .

The oil viscosity for pressures above the bubblepoint is estimated using the Vasquez and Beggs correlation for  $\mu_o$ . The average error for this correlation was 7.54 % for 3143 sample points. The range of data for this correlation is the same as for the oil formation volume factor correlation by Vasquez and Beggs. The Egbogah and the Vasquez and Beggs correlation for  $\mu_o$  are listed in Appendix B.

### **3.5.9** Water Density

If the water is assumed incompressible, the water density can be calculated as

$$\rho_{w} = \frac{62.4\gamma_{w} + 0.0136R_{ws}\gamma_{g}}{B_{w}}.$$
 (3.129)

# **3.5.10 Water Formation Volume Factor**

McCain<sup>51</sup> developed a correlation for water formation volume factor with an average error within 1 %. This correlation is listed in Appendix B.

# 3.5.11 Solution-Gas/Water Ratio

McCain<sup>51</sup> also developed a correlation for the solution-gas/water ratio. This correlation had an average error of less than 5 %. The range of applicability for this correlation is 1,000 < p (psia) < 10,000 and 100 < T (°F) < 340.

McCain pointed out that this correlation should never be used for pressures below 1,000 psia. At these conditions the solution-gas/water ratio is ignored. This correlation is summarized in Appendix B.

#### **3.5.12 Water Viscosity**

A correlaction for water viscosity was also presented by McCain.<sup>51</sup> The correlation has a maximum error of 7 % and was developed for a very limited temperature range of 86 < T (°F) < 167.

The correlation is listed in Appendix B.

# 3.5.13 Gas/Oil and Gas/Water Interfacial Tension

The interfacial tension has a very small effect on the pressure and temperature gradient. However the multiphase flow models require values for the interfacial tensions. A model<sup>35</sup> for gas/oil and gas/water interfacial tension is therefore listed in Appendix B.

## **3.6 Nodal Analysis**

The simulator models the initial condition using a system-analysis method—also called nodal analysis—which has already been discussed extensively in the literature.<sup>35,52</sup> A node is selected at the bottom of the blowing well. The bottomhole flowing pressure,  $p_{wf}$ , at this node can be calculated from two sets of equations upstream and downstream of the flow. The inflow to the node is

$$p_{wf} = \overline{p}_R - \Delta p_{res}, \qquad (3.130)$$

and the outflow of the node is

$$p_{wf} = p_{exit} + \Delta p_f + \Delta p_h + \Delta p_{acc} . \qquad (3.131)$$

These two equations can be graphed as functions of flow rate as seen in Fig 3.7. Since two different pressures cannot exist at the same node at the same time, the pressure and rate at the node will be where the two system-curves intersect. The algorithm used to calculate  $p_{wf}$  and the blowing rate will be described in the next chapter.

The inflow curve is calculated according to the inflow-performance relationship and the outflow curve—also called system-intake curve—is calculated from pressure correlations, both of which are described earlier in this chapter.



Fig. 3.7—Determining the initial flowrate and bottomhole flowing pressure using nodal-analysis.

# 3.7 Dynamic Kill Single-Phase Solution

As kill fluid is injected into the wellbore, the system-intake curve will change while the inflow-performance curve will remain the same. **Fig. 3.8** illustrates the effect

on the system-intake curve as the injection rate of the kill fluid is increased. The minimum kill rate that will successfully stop the influx of formation fluid is the minimum rate that gives a system-intake curve, which is always above the inflow-performance curve. For the case in Fig 3.8, the minimum kill rate would be 80 bbl/min.



Fig. 3.8—System-intake curves for different kill rates.

When the influx of formation fluid is zero, the bottomhole flowing pressure is equal to the average reservoir pressure for the minimum kill rate. At this point the well will be filled with kill fluid only and the complication of multiphase does not need to be considered in the calculations. The single-phase solution is thus the kill rate that will give a flowing bottomhole pressure equal to the average reservoir pressure when the well is filled with kill fluid only.

Blount and Soeiinah<sup>15</sup> presented a simple analytical solution for the single-phase solution. They started with Eq. 3.131. Assuming an incompressible kill fluid and ignoring acceleration, the flowing bottomhole pressure is

$$p_{wf} = p_{wh} + \rho h + \frac{f \rho v^2 L}{2g_c d}, \qquad (3.132)$$

where

$$v = \frac{4q_L}{\pi d^2}.$$
(3.133)

Substituting Eq. 3.133 into Eq. 3.132 and rearranging for the kill rate,  $q_L$ , gives

$$q_{L} = 0.592d^{2.5} \left( \frac{p_{wf} - p_{wh} - \rho h}{f \rho L} \right).$$
(3.134)

The minimum kill is calculated where the flowing bottomhole pressure is equal to the average reservoir pressure; thus,

$$(q_L)_{\min} = 0.592d^{2.5} \left(\frac{p_R - p_{wh} - \rho h}{f\rho L}\right).$$
 (3.135)

The solution to equation 3.135 requires an iterative solution since the Moody friction factor is a function of  $q_L$ .

#### **3.8 Dynamic Kill Multiphase Solution**

As seen for the system-intake curves in Fig. 3.8, with kill rates of 40 and 60 bbl/min the flowing bottomhole pressure increases with decreasing influx rate as the influx rate approaches zero. This dip in the system-intake curves occurs when the flow in the wellbore is unstable and the liquid is loading.

If liquid loading occurs for the case of 80 bbl/min, the system-intake curve would fall below the inflow-performance curve and this kill rate would not successfully kill the well. Thus, the single-phase solution may in some cases underpredict the minimum kill rate. The multiphase solution is the minimum kill rate that gives a system-intake curve that is always above the inflow-performance curve. The procedure to calculate the multiphase solution will be described in detail in the next chapter.

Kouba *et al.*<sup>16</sup> presented an analytical derivation for the zero-derivative curve. The zero-derivative curve is the minimum kill rate that will give stable flow and no liquid loading for any influx rate. They started with Eq. 3.131; however, in this case the density and velocity include both kill fluid and reservoir fluid. Assuming a gas reservoir and no slippage between the phases, the mixture velocity and density can be written

$$v_m = v_{sL} + v_{sg} = \frac{4(q_L + q_g)}{\pi d^2},$$
 (3.136)

and

$$\rho_m = \lambda_L \rho_L + \lambda_g \rho_g = \frac{q_L \rho_L + q_g \rho_g}{q_L + q_g} . \qquad (3.137)$$

Substituting Eq. 3.136 and 3.137 into Eq. 3.131, we get

The conditions for the zero-derivative curve is

$$\left(\frac{\partial p_{wf}}{\partial q_g}\right) \to 0 \quad as \quad q_g \to 0.$$
 (3.139)

Taking the derivative of Eq. 3.137 with respect to  $q_g$ , setting all the  $q_g$  terms to zero, and rearranging for the kill rate yields

$$\left(q_{L}\right)_{\min} = 0.135 \left[\frac{\left(\rho_{L} - \rho_{g}\right)d^{5}h}{\left(\rho_{L} + \rho_{g}\right)fL}\right].$$
(3.140)

Kouba also showed that if the gas density is small compared to the kill-fluid density, then the zero-derivative condition is met for the kill rate that gives frictional pressure equal to the hydrostatic pressure.

If simple hand-calculation is the only method available to estimate the minimum kill rate, the recommended procedure is to calculate the single-phase solution according to Eq. 3.135 and the zero-derivative solution from Eq. 3.140. The larger of the two should be considered as the design requirement.

**Fig. 3.9** illustrates the relationship between the single-phase solution, the zeroderivative curve, and the actual multiphase solution for the minimum kill rate. If the zero-derivative solution is larger than the single-phase solution, then the actual solution will be located as an intermediate value. However, the actual solution for the minimum kill rate can never fall below the single-phase solution.



Fig. 3.9—Relationship between single-phase, multiphase, and zero-derivative solution for the minimum kill rate.

# **CHAPTER IV**

# ALGORITHMS

One of the major accomplishments of this work—which also took most of the time—was developing the algorithms for the simulator.

The simulator considers a case where the average reservoir pressure,  $\overline{p}_R$ , and the exit pressure,  $p_{\text{exit}}$ , are constant. The fluid from the blowing well may in some cases flow to the surface, which would make the exit pressure equal to atmospheric pressure, or in other cases the flow may be exiting at the mudline (**Fig. 4.1**), which would make the exit pressure equal to the seawater hydrostatic,  $p_{sw}$ . The average reservoir pressure and the exit pressure are the boundary conditions for the simulations.

The well is separated into small elements as shown in Fig 4.1. As will be described in this chapter, a value for the bottomhole flowing pressure,  $p_{wf}$ , is estimated. This estimate is used to calculate the surface flow rate of formation fluid from the inflow-performance relationship. The user sets the gas/liquid ratio and the water cut at the surface conditions, and the fluid properties are calculated for each element using fluid-property correlations as described in the previous chapter. From the fluid properties, the pressure and temperature in the well are calculated using a nodal-analysis approach.

This chapter describes in close detail how the initial blowing conditions and the dynamic-kill requirements are calculated in the computer program. These two main objectives are separated into two global algorithms that share similar subalgorithms. The global algorithms are the initial condition and dynamic kill.



Fig. 4.1—Blowing well with exit to the mudline separated into finite elements.

The sub algorithms, which the global algorithm shares, are pressure, temperature, and wellbore profile.

The dynamic-kill algorithm is further separated into a single-phase solution and a multiphase solution algorithm as described in the previous chapter.



Fig. 4.2—Two adjacent elements in the wellbore.

# **4.1 Pressure Algorithm**

As seen in Fig. 4.1, the wellbore is separated into a finite number of elements. In **Fig. 4.2** two neighboring elements are shown with a chart for the pressure plotted with depth. The pressure at the boundary of each element is denoted as  $p_{i-1}$ ,  $p_i$  and  $p_{i+1}$ . The pressure gradients between the boundaries are calculated at the center of each element, which is marked with a filled dot.

The flow chart in **Fig. 4.3** is the algorithm used to calculate the pressure at  $p_{i+1}$ . Given the pressure  $p_i$  and the pressure gradient  $(dp/dZ)_{i-1}$ , an estimate for  $p_{i+1}$  is made (Eq. 4.1).



Fig. 4.3—Pressure algorithm.

$$\left(p_{i+1}\right)_{e} = p_{i} - \Delta Z \left(\frac{dp}{dZ}\right)_{i-1}.$$
(4.1)

The average pressure between  $p_{i+1}$  and  $p_i$  is calculated and used to determine all the fluid properties of the element. One of the three multiphase models described earlier in the modeling chapter and listed in Appendix A is then used to calculate the pressure gradient  $(dp/dZ)_i$ . A new value for  $p_{i+1}$  is then calculated as

$$\left(p_{i+1}\right)_{c} = p_{i} - \Delta Z \left(\frac{dp}{dZ}\right)_{i}.$$
(4.2)

The estimated pressure  $(p_{i+1})_e$  is compared with the new calculated pressure  $(p_{i+1})_c$ . If the difference is within a specified tolerance, the value of the calculated pressure is returned from the algorithm. If the difference is not within the range of the tolerance (*toler*), the calculated pressure is entered as the new initial guess and iterations are performed. If the number of iterations exceed a specific limit (*Limit*) the algorithm returns a message indicating that convergence was not obtained and the simulation is stopped.

The tolerance, *toler*, and the limit, *Limit*, is defined at the start of the main algorithm and can easily be changed throughout the program. The current default value for *toler* and *Limit* is  $10^{-8}$  % and 100 iterations respectively.

## 4.2 Temperature Algorithm

The temperature algorithm is illustrated in **Fig. 4.4**. As shown, the temperature algorithm resembles the pressure algorithm. As for the pressure algorithm, an estimate for  $T_{i+1}$  is made using an equation of the same form as Eq. 4.1. This estimate is used to calculate the pressure and fluid properties as described in the pressure algorithm. The temperature gradient is then calculated as described in the previous chapter and the temperature,  $T_{i+1}$ , is again calculated. The procedure is repeated until either the solution is found or the no-convergence criterion is fulfilled.



Fig. 4.4—Temperature algorithm.

# 4.3 Wellbore-Profile Algorithm

The wellbore-profile algorithm calculates the temperature and pressure with depth for a given flow rate. For boundary conditions given at the bottom of the well,

where Z equals the total-vertical depth, the algorithm steps upward until the pressure and temperature are determined for every element in the wellbore. The wellbore-profile algorithm appears as **Fig. 4.5**. The algorithm then returns an array for the pressure (p[i]) and the temperature (T[i]).



Fig. 4.5—Wellbore-profile algorithm.

#### **4.4 Initial-Condition Algorithm**

The initial-condition algorithm calculates the influx rate of formation fluid at standard conditions with the corresponding pressure and temperature in the wild well before a dynamic kill is attempted. The methodology is a nodal analysis. Following the chart in **Fig 4.6**, the actual exit pressure,  $(p_{exit})_a$ , must be set by the user or calculated as explained in Chapter II. An initial guess is made for the flowing bottomhole pressure, which enables the calculation of influx rate at standard surface conditions using the IPR equation given as Eq. 3.103 for oil wells or Eq. 3.113 for gas wells. The pressure and temperature profile can then be calculated using the wellbore-profile algorithm.

*SIZE* is a variable for the number of elements in the wellbore, and  $p_{SIZE}$  is the pressure of the last element, which is also the calculated exit pressure,  $(p_{exit})_c$ . The calculated exit pressure is compared with actual exit pressure,  $(p_{exit})_a$ , and iteration commences until a desired tolerance is obtained.

## 4.5 Single-Phase Solution Algorithm

The minimum kill rate calculated from the single-phase solution is the kill rate that gives a flowing bottom-hole pressure equal to the average reservoir pressure when only kill fluid is present in the wellbore. The procedure to calculate the single-phase solution is illustrated in **Fig 4.7**. A kill rate is estimated and the flowing bottomhole pressure is calculated until the solution is found. The actual iteration scheme will be explained later.



Fig. 4.6—Initial-condition algorithm.



Fig 4.7—Single-phase solution for the minimum kill rate.

# 4.6 Multiphase Solution Algorithm

The multiphase solution for the minimum kill rate is much more complicated than the single-phase solution. The flow diagram in **Fig. 4.8** illustrates the multiphase solution. First, the single-phase solution is calculated and used as an initial guess. A small influx,  $\Delta q_{isc}$ , is assumed in the wellbore, and the system-intake curve is calculated.



Fig. 4.8—Multiphase solution for minimum kill rate.

If the flowing bottomhole pressure increased compared to the average reservoir pressure, then the assumption is that no liquid loading exists under the current conditions and the single-phase solution is valid.

However, if the flowing bottomhole pressure decreased, a comparison between the system-intake curve and the inflow-performance curve must be made. If the systemintake curve falls below the inflow-performance, the kill rate must be increased and a new single-phase system-intake curve must be calculated. Or, if the system-intake curve remains above the inflow-performance curve, a new system-intake curve is calculated for a slightly larger influx. The procedure is repeated until the flowing bottomhole pressure increases for a larger influx, which will give the final solution.

While calculating the multiphase solution, it is assumed that the kill fluid dominates the friction factor. Thus, in the case of a non-Newtonian kill fluid, the friction factor is calculated as for the single-phase, non-Newtonian case. A further assumption is also made for liquid reservoirs. In the later stage of a dynamic kill, the influx of formation fluid decreases towards zero as the pressures in the wellbore increase. Most likely the gas/liquid ratio (GLR) will decrease under these conditions. However, during the simulation it is assumed that the GLR remains the same to simplify the analysis.

## 4.7 Global Iteration Scheme

Both for the single-phase solution and for the initial-condition algorithm, iteration is performed with estimates of the solution until an error is minimized. Here, the method for choosing the estimate for every iteration will be described. The case considered is that of the initial condition, but the same methodology is used for the single-phase solution algorithm.

Following the flowchart in **Fig. 4.6**, two values for the flowing bottomhole pressure,  $(p_{wf})_1$  and  $(p_{wf})_2$ , are randomly chosen, and the exit pressure,  $(p_{exit})_1$  and  $(p_{exit})_2$ ,
is calculated for both  $p_{wf}$  values. The absolute error,  $\Delta p_{exit}$ , between the calculated surface pressure and actual surface pressure can be plotted for the two values of flowing bottomhole pressures. A linear trend line is fitted through the two points, x-y coordinates, as seen in **Fig. 4.9**. A new estimate for the flowing bottomhole pressure,  $(p_{wf})_3$ , is then extrapolated to where the linear trend line crosses the x-axis and the error is zero, which is given by

$$(p_{wf})_{3} = (p_{wf})_{1} - \left(\frac{(p_{wf})_{2} - (p_{wf})_{1}}{(\Delta p_{exit})_{2} - (\Delta p_{exit})_{1}}\right) (\Delta p_{exit})_{1}.$$
(4.3)

A new value for the error,  $(\Delta p_{exit})_3$ , is calculated as a function of  $(p_{wf})_3$ , and a new linear trend line is fitted through the two last calculated points. This procedure is repeated until a desired tolerance for the absolute error,  $\Delta p_{exit}$ , is achieved.



Fig. 4.9—Global iteration scheme.

## **CHAPTER V**

### **TESTING AND RESULTS**

The most challenging part in testing and verifying a dynamic-kill model is to overcome the sparse quantity of good field data. A separate part of this project—not included in this dissertation—is gathering blowout-field data that can be used for a thorough evaluation of all the models used in this study.

The simulator comprises empirical and analytical models that have been used extensively by the industry. No testing of the actual models should be necessary. However, the range of application for the simulator must be determined, and potential coding bugs must be found. In this section a brief comparison of the simulator is made to calculated data and analytical solutions found in the literature. Some observation and results from the simulator are included.

#### **5.1 Initial Condition**

The initial condition part of the simulator is a system-analysis calculator as described in the modeling chapter. **Fig. 5.1** shows the initial-condition result for a case where the GLR is varied from zero to 300 scf/STBL in increments of 100, while all other variables remain unchanged. Beggs<sup>35</sup> published a large set of prepared system-intake curves just like these. He used the Hagendorn and Brown model with the assumption of smooth pipe and negligible acceleration. A comparison between the results from the simulator presented here and the Beggs curves are shown in **Table 5.1** and **Table 5.2**.



#### Fig. 5.1—System-intake curves from the simulator with varying gas/liquid ratios.

The absolute errors between Begg's results and the simulator are within reasonable agreement. The major source of discrepancy can most likely be attributed to reading the pressure results from Beggs charts. Other sources of error include the pipe roughness, which was set at 0.00065 ft for the simulation runs, and the acceleration term, which was included in the simulation runs.

|     | Tubing Size       | 1.995 in.       |                  |
|-----|-------------------|-----------------|------------------|
|     | Liquid Rate       | 700 STBL/D      |                  |
|     | Depth             | 10,000 ft       |                  |
|     | Gas Gravity       | 0.65            |                  |
|     | API Gravity       | 35              |                  |
|     | Water Gravity     | 1.07            |                  |
|     | Average Temperate | 150 ºF          |                  |
|     |                   |                 |                  |
| GLR | Water Cut = 0%    | Water Cut = 50% | Water Cut = 100% |
| 0   | 4.6               | 2.7             | 0.3              |
| 100 | 6.3               | 1.7             | 0.3              |
| 200 | 0.5               | 1.0             | 3.8              |
| 300 | 2.9               | 4.0             | 5.7              |

Table 5.1—Absolute Error Between Beggs Curves and Simulation Results WithTubing Size of 1.995 in and Liquid Rate of 700 STBL/D

Table 5.2—Absolute Error Between Beggs Curves and Simulation Results WithTubing Size of 3.958 in and Liquid Rate of 8,000 STBL/D

|     | Tubing Size       | 3.958 in.       |                  |
|-----|-------------------|-----------------|------------------|
|     | Liquid Rate       | 8000 STBL/D     |                  |
|     | Depth             | 10,000 ft       |                  |
|     | Gas Gravity       | 0.65            |                  |
|     | API Gravity       | 35              |                  |
|     | Water Gravity     | 1.07            |                  |
|     | Average Temperate | 150 °F          |                  |
|     |                   |                 |                  |
| GLR | Water Cut = 0%    | Water Cut = 50% | Water Cut = 100% |
| 0   | 3.3               | 1.9             | 2.2              |
| 100 | 6.9               | 2.9             | 3.7              |
| 200 | 5.7               | 3.6             | 2.5              |
| 300 | 5.5               | 4.5             | 3.4              |



Fig. 5.2—Comparing the multiphase models with tubing size of 1.995 in. and GLR of 100 scf/STBL.

The multiphase models featured in the simulator can also be compared with each other. **Fig. 5.2** shows the comparison for a case with a small tubing size and low gas/liquid ratio. The Beggs and Brill model predicts the highest pressures, while the Duns and Ros and the Hagendorn and Brown models overlap each other. Another comparison between the multiphase models, with larger tubing size and higher GLR, is shown in **Fig. 5.3**. Clearly the models do not match at all. Again, Beggs and Brill predicted the highest pressure, while Hagendorn and Brown predicted substantially lower pressure.



Fig. 5.3—Comparing the multiphase models with tubing size of 8.921 in. and GLR of 300 scf/STBL.

Both Fig. 5.2 and Fig. 5.3 illustrate the case of a surface blowout with well depth of 10,000 ft. The same case as in Fig. 5.3, but in 10,000 ft of water and a blowout to the mudline, is seen in **Fig. 5.4**. As seen with the 10,000 ft of hydrostatic backpressure at the exit point of the flow, all the multiphase models overlap and give identical results. The obvious reason for this is that the additional backpressure will always retain the gas within the liquid solution throughout the wellbore, and no multiphase flow will occur.



Fig. 5.4—Comparing the multiphase models with tubing size of 8.921 in. and GLR of 300 scf/STBL in 10,000 ft of water depth.

#### **5.2 Minimum Kill Rate**

As described in Chapter IV, simple analytical solutions for the minimum kill rate are available. Considering the case listed in **Table 5.3**, the result from the dynamic-kill simulator can be compared to the analytical models.

The calculated example here follows an example presented by Watson *et al.*<sup>13</sup> The single-phase solution from Eq. 3.135 is

| Table 5.3 – I | Blowout Data | for Ca | lculation | Exampl | e |
|---------------|--------------|--------|-----------|--------|---|
|---------------|--------------|--------|-----------|--------|---|

| Wellbore                                                                          |                                       |
|-----------------------------------------------------------------------------------|---------------------------------------|
| Wellbore Depth                                                                    | 11500 ft                              |
| Casing Nominal Inner Diameter                                                     | 6.184 in.                             |
| Casing Roughness                                                                  | 0.00065 in.                           |
|                                                                                   |                                       |
| Blowout Data                                                                      |                                       |
| Formation Fluid                                                                   | Single-Phase Gas                      |
|                                                                                   | 0.0                                   |
| Specific Gravity                                                                  | 0.6                                   |
| Kill Fluid                                                                        | 0.6<br>Water                          |
| Kill Fluid<br>Kill Fluid Weight                                                   | 0.6<br>Water<br>8.5 ppg               |
| Specific Gravity<br>Kill Fluid<br>Kill Fluid Weight<br>Average Reservoir Pressure | 0.6<br>Water<br>8.5 ppg<br>7,177 psia |

$$(q_L)_{\min} = 0.592(6.184)^{2.5} \left(\frac{7,177 - 15 - 0.052(8.5)(11,500)}{(0.01208)(8.5)(11,500)}\right)^{0.5} = 71.7bbl/\min \dots (5.1)$$

The friction factor is calculated using Jain's correlations in Eq. 3.22. Iterations, not included here, were necessary to find the solution above.

The zero-derivative solution according to Kouba can be calculated from Eq. 3.140 as

$$(q_L)_{\min} = 0.135 \left[ \frac{(8.5 - 1.7)(6.184)^5 (11,500)}{(8.5 + 1.7)(0.01311)(11,500)} \right] = 91.6bbl/\min \dots (5.2)$$

Since the zero-derivative solution is larger than the single-phase solution, the multiphase solutions should lie somewhere in the range between 72 and 92 bbl/min.

The result using the simulator is 3,210 gal/min or 76.4 bbl/min. The relationships between the results are illustrated in Fig. 3.9, where the multiphase solution from the simulator is in the correct range.

One of the immediate questions that arises when studying offshore blowouts is the consequence of moving drilling into ultradeep water. **Fig. 5.5** illustrates the effect of increasing water depth, while all other factors remain the same, on the case listed in Table 5.3. If the total vertical depth and the average reservoir pressure remain the same, while the water depth increases, the intervention requirements will, not surprisingly, become more demanding.



Fig. 5.5—Minimum-kill rate and standpipe-pressure requirement with increasing water depth.

## **CHAPTER VI**

## DISCUSSION AND CONCLUSIONS

A simulator specially designed to study blowouts and dynamic kills has been presented. The simulator will be used to develop new procedures for blowouts in ultradeep water, but can also be used to plan dynamic-kill intervention on a case-by-case basis and as a training tool.

Some of the main features and advantages of this dynamic-kill simulator include

- A user-friendly interface.
- Web application.
- Surface, subsurface and underground blowout capability.
- Simple dual-gradient drilling.
- Both Newtonian and non-Newtonian kill fluids.
- Oil and gas reservoirs.
- Rigid temperature models.
- Fluid properties adjusted for pressure and temperature effects.
- Sonic flow considerations.
- Three multiphase models accounting for slip between phases.

Some of the current limitations and assumptions are

- Steady-state flow behavior with no transient effects.
- Only vertical wells.
- No leak-off to the formation.
- No compositional reservoirs.

- Only pseudosteady-state reservoirs.
- Only one formation flowing.
- No counter flow for off-bottom kills.
- No wellbore restrictions or chokes.

The simulator was modeled using correlations that have been widely used and validated by the industry. The results from the simulator were also compared to simple analytical solutions and published production data. In all cases, reasonable agreement was obtained.

Three empirical multiphase models included in the simulator for calculating the pressure gradient agreed under the conditions for which they were developed. These conditions correspond to typical production conditions, where the tubing-inner diameter is less than 5 in. and the separator pressure and temperature are greater than atmospheric conditions. In the case of a large nominal pipe inner diameter and the exit point set at atmospheric conditions, the multiphase models disagreed substantially. For a blowout in ultradeep water, where the exit conditions are at the mulline, no multiphase occurs, because the pressures in the well are always above the bubblepoint pressures. If the three models give different results, the most conservative result should be used.

Finally, the consequence on blowout intervention as drilling is moved into deeper and deeper water depths showed that the intervention requirements become more demanding as water depth increases. For ultradeep water this means that multiple relief wells may be necessary to bring a wild well under control.

#### **6.1 Suggestion for Further Work**

The most important task for further work will be to test and validate the dynamic-kill simulator with actual field data. Not much field data has been published on

blowouts. A current project, in parallel with this study, aims to collect field data that can be used for this purpose.

One of the major limitations in this study is the assumption of steady-state behavior. During a dynamic-kill, the influx rates will change and transient effects are likely to occur. The few transient multiphase models that are available are all proprietary. A simplified approximate transient model for blowouts is available.<sup>8</sup> Such a model coupled with a full-scale composite reservoir model should be incorporated into the simulator.

Currently, most ultradeepwater wells are drilled vertically. As drilling in these water depths becomes more routine, more complex wellbore geometries will be common. The simulator should therefore be updated to include deviated wellbores.

# NOMENCLATURE

| Α   | = | area, $L^2$                                      |
|-----|---|--------------------------------------------------|
| В   | = | formation volume factor, $L^3/L^3$               |
| С   | = | compressibility, L <sup>2</sup> /m               |
| С   | = | specific heat, $L^2/t^2T$                        |
| d   | = | pipe diameter, L                                 |
| D   | = | turbulence coefficient                           |
| D   | = | depth, L                                         |
| DEA | = | Drilling Engineering Association                 |
| е   | = | intrinsic specific energy, $L^2/t^2$             |
| f   | = | Moody friction factor                            |
| f   | = | Fanning friction factor                          |
| g   | = | acceleration of gravity, $L/t^2$                 |
| GLR | = | gas/liquid ratio, L <sup>3</sup> /L <sup>3</sup> |
| GOM | = | Gulf of Mexico                                   |
| h   | = | convective film coefficient, $m/t^3T$            |
| h   | = | specific enthalpy, $L^2/t^2$                     |
| h   | = | reservoir thickness, L                           |
| Η   | = | slip volume fraction, $L^3/L^3$                  |
| IPR | = | inflow performance relationship                  |
| J   | = | unit conversion constant                         |
| JIP | = | joint industry project                           |
| k   | = | thermal conductivity, mL/t <sup>3</sup> T        |
| k   | = | ratio of specific heats                          |
| k   | = | effective permeability, $L^2$                    |
| K   | = | fluid consistency index, m/Lt                    |
| L   | = | length, L                                        |
|     |   |                                                  |

= mass, m

т

| М          | = | molecular weight, m                                       |
|------------|---|-----------------------------------------------------------|
| MMS        | = | Mineral Management Service                                |
| n          | = | power-law flow behavioral index                           |
| N          | = | dimensionless number                                      |
| Р          | = | pressure, m/Lt <sup>2</sup>                               |
| q          | = | volumetric flow rate, L <sup>3</sup> /t                   |
| q          | = | heat flow rate, $mL^2/t^3$                                |
| r          | = | radius, L                                                 |
| R          | = | gas constant, $mL^2/t^2T$                                 |
| R          | = | solution gas-liquid ratio, L <sup>3</sup> /L <sup>3</sup> |
| S          | = | slip velocity number                                      |
| size       | = | total number of elements                                  |
| SPP        | = | stand pipe pressure                                       |
| t          | = | time, t                                                   |
| toler      | = | tolerance, %                                              |
| Т          | = | temperature, T                                            |
| и          | = | specific internal energy, $L^2/t^2$                       |
| U          | = | overall heat-transfer coefficent, $m/t^3T$                |
| v          | = | velocity, L/t                                             |
| <i>v</i> * | = | sonic velocity, L/t                                       |
| V          | = | volume, L <sup>3</sup>                                    |
| W          | = | mass rate, $L^3/t$                                        |
| Z          | = | z-factor of gas                                           |
| Ζ          | = | vertical distance, L                                      |
| α          | = | formation thermal diffusivity, $L^2/t$                    |
| $\beta$    | = | velocity coefficient, L <sup>-1</sup>                     |
| Δ          | = | difference                                                |
| Е          | = | absolute pipe roughness, L                                |
| $\phi$     | = | angle from vertical                                       |

- $\gamma$  = shear rate, 1/t
- $\gamma$  = specific gravity
- $\eta$  = Joule-Thompson coefficient, TLt<sup>2</sup>/m
- $\lambda$  = no-slip coefficient
- $\mu$  = viscosity, m/Lt
- $\mu_p$  = plastic viscosity, m/Lt
- $\theta$  = inclination from horizontal
- $\rho$  = density, m/L<sup>3</sup>
- $\sigma$  = surface tension, m/t<sup>2</sup>
- $\tau$  = shear stress, m/Lt<sup>2</sup>
- $\tau_y$  = yield point, m/Lt<sup>2</sup>

## Subscripts

- actual а =air а == annulus а acceleration acc = AVG = average = bubblepoint b calculated С = = casing С = conversion constant С cement cem = D dimensionless =
  - *e* = environment
  - *e* = estimated
  - el = elevation
  - *exit* = fluid exit conditions

| f   | = | fluid              |
|-----|---|--------------------|
| g   | = | gas                |
| h   | = | hydrostatic        |
| ΗT  | = | heat transfer      |
| i   | = | element number     |
| i   | = | inner              |
| L   | = | liquid             |
| т   | = | mixture            |
| M-R | = | Metzner and Reed   |
| 0   | = | oil                |
| 0   | = | outer              |
| р   | = | pipe               |
| рс  | = | pseudocritical     |
| pr  | = | pseudoreduced      |
| r   | = | rough              |
| res | = | reservoir          |
| R   | = | average reservoir  |
| R   | = | riser              |
| Re  | = | Reynold            |
| S   | = | smooth             |
| S   | = | superficial        |
| SC  | = | standard condition |
| SW  | = | seawater           |
| t   | = | total              |
| W   | = | wall               |
| W   | = | wellbore           |
|     |   |                    |

- wf = flowing bottom-hole
- wh = well head

W = Weber

$$\mu$$
 = viscosity

### REFERENCES

- Lawrence, D.T and Anderson, R.N.: "Details Confirm Gulf of Mexico Deepwater as Significant Province," *Oil & Gas J.* (1993) **91**, No. 18, 93.
- Choe, J. and Juvkam-Wold, H.C.: "Riserless Drilling: Concepts, Applications, Advantages, Disadvantages and Limitations," paper CADE/CAODC 97-140 presented at the 1997 CADE/CAODC Spring Drilling Conference, Calgary, 8-10 April.
- Choe, J. and Juvkam-Wold, H.C.: "Riserless Drilling and Well Control for Deep Water Applications," *Proc.* 1997 IADC International Deep Water Well Control Conference and Exhibition, Houston, 15-16 September.
- Gault, A.D.: "Riserless Drilling: Circumventing the Size/Cost Cycle in Deepwater," Offshore (1996) 56, No. 5, 49-54.
- 5. Adams, N.: "JIP for Floating Vessel Blowout Control–Final Report," DEA-63, available from Mineral Management Service, Houston (1991).
- Adams, N. and Young, R.: "Underground Blowouts: What You Need To Know," World Oil (January 2004).
- Holand, P.: Offshore Blowout Causes and Control, Gulf Publishing Company, Houston (1997).
- Grace, R.D.: *Blowout and Well Control Handbook*, Gulf Professional Publishing, Burlington, Massachusetts (2003).
- Santos, O.L.A: "A Study on Blowouts in Ultra Deep Waters," paper SPE 69530 presented at the 2001 SPE Latin American and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 25-28 March.
- Daneberger, E.P.: "Outer Continental Shelf Drilling Blowouts, 1971-1991," paper OTC 7248 presented at the 1993 Offshore Technology Conference, Houston, 3-6 May.
- 11. Skalle, P. and Podio, A.L.: "Trends Extracted From 1,200 Gulf Coast Blowouts During 1960-1996," *World Oil* (June 1998) 67-72.

- 12. Wylie, W.W. and Visram, A.S.: "Drilling Kick Statistics", paper SPE 19914 presented at the 1990 IADC/SPE Drilling Conference, Houston, February 27-March 2.
- 13. Watson, D., Brittenham, T., and Moore, P.L.: *Advanced Well Control*, Text Book Series, SPE, Richardson, Texas (2003).
- Flak, L.H. and Wright, J. W.: "Part 11 Blowout Control: Response, Intervention and Management–Relief Wells," *World Oil* (December 1994), 59.
- Blount, E.M. and Soeiinah, E.: "Dynamic Kill: Controlling Wild Wells a New Way," World Oil (October 1981) 109-126.
- 16. Kouba, G.E., MacDougall, G.R., and Schumacher, B.W.: "Advancement in Dynamic Kill Calculations for Blowout Wells," paper SPE 22559 presented at the 1991 SPE Annual Technical Conference and Exhibition, Dallas, 6-9 October.
- Rygg, O.B. and Gilhuus, T.: "Use of a Dynamic Two-Phase Pipe Flow Simulator in Blowout Kill Planning," paper SPE 20433 presented at the 1990 SPE Annual Technical Conference and Exhibition, New Orleans, 23-26 October.
- Frigaard, I.A., Humphries, N.L., Rezmer-Cooper, I.M., and James, J.P.: "High Penetration Rates: Hazards and Well Control – A Case Study," paper SPE 37953 presented at the 1997 SPE/IADC Drilling Conference, Amsterdam, 4-6 March.
- 19. Flores-Avila, F.S., Smith, J.R., and Bourgoyne, A.T. Jr.: "New Dynamic Kill Procedure for Off-Bottom Blowout Wells Considering Counter-Current Flow of Kill Fluid," paper SPE 85292 presented at the 2003 SPE/IADC Middle East Drilling Technology Conference & Exhibition, Abu Dhabi, 20-22 October.
- 20. Schubert, J.J. and Weddle, C.E. III: "Development of a Blowout Intervention Method and Dynamic Kill Simulator for Blowouts Occurring in Ultra-Deepwater," JIP proposal available from Mineral Management Service, Houston (October 2000).
- 21. Liang, Y.D.: *Introduction to Java Programming with JBuilder 4*, second edition, Prentice Hall, Upper Saddle River, New Jersey (2002).
- 22. Knudsen, J.G. and Katz, D.L.: *Fluid Dynamic and Heat Transfer*, McGraw-Hill Book Co. Inc., New York (1958).

- Bourgoyne, A.T. Jr., Cheenevert, M.E., Millheim, K.K., and Young F.S. Jr.: *Applied Drilling Engineering*, second printing, Texbook Series, SPE, Richardson, Texas (1991).
- 24. Brill, J.P. and Mukherjee, H.: *Multiphase Flow in Wells*, Henry L Doherty Series, SPE, Richardson, Texas (1999) 17.
- 25. Moody, L.F.: "Friction Factors for Pipe Flow," Trans., ASME (1944) 66, No. 8, 671.
- Colebrook, C.F.: "Turbulent Flow in Pipes With Particular Reference to Transition Region Between the Smooth and Rough Pipe Laws," J. Inst. Civil Eng. (1939) 11, 133.
- 27. Drew, T.B., Koo, E.C., and McAdams, W.H.: "The Friction Factors for Clean Round Pipes," Trans., *AIChE J.* (1930) **28**, 56.
- Jain, A.K.: "Accurate Explicit Equation for Friction Factor," J. Hydraul. Div. ASCE (May 1976) 102, 674-677.
- 29. "Recommended Practice on the Rheology and Hydraulics of Oil-Well Drilling Fluids," *Recommended Practice 13D*, third edition, API, Washington, D.C. (1 June 1995).
- 30. Dodge, D.W. and Metzner, A.B.: "Turbulent Flow of Non-Newtonian Systems," *AIChE J.* (1959) **5**, 189.
- Govier, G.W. and Aziz, K.: *The Flow of Complex Mixtures in Pipes*, Van Nostrand Reinhold Co., New York (1972).
- Beggs, H.D. and Brill, J.P.: "A Study of Two-Phase Flow in Inclined Pipes," JPT (May 1973) 607; Trans., AIME, 255.
- 33. Hagendorn, A.R. and Brown, K.E.: "Experimental Study of Pressure Gradients Occurring During Continuous Two-Phase Flow in Small Diameter Vertical Conduits," JPT (April 1965) 475; Trans., AIME, 234.
- 34. Duns, H. Jr. and Ros, N.C.J.: "Vertical Flow of Gas and Liquid Mixtures in Wells," *Proc.*, Sixth World Pet. Cong., Tokyo (1963) 451.
- 35. Beggs, H.D.: Production Optimization Using NODAL<sup>tm</sup> Analysis, OGCI Publications, Tulsa, Oklahoma (2000).

- 36. Langlinais, A.T., Bourgoyne, A.T. Jr., and Holden, W.R.: "Frictional Pressure Losses for the Flow of Drilling Mud and Mud/Gas Mixtures," paper SPE 11993 presented at the 1983 SPE Annual Technical Conference and Exhibition, San Francisco, California, 5-8 October.
- 37. Wallis, G.B.: *One-Dimensional Two-Phase Flow*, McGraw Hill Book Co. Inc., New York (1969).
- Bird, R.B., Stewart, W.E., and Lightfoot, E.N.: *Transport Phenomena*, John Wiley & Sons, New York (1960).
- 39. Hasan, A.R. and Kabir, C.S.: "Heat Transfer During Two-Phase Flow in Wellbores:
  Part I Formation Temperatures," paper SPE 22866 presented at the 1991 SPE
  Annual Technical Conference and Exhibition, Dallas, 6-9 October.
- 40. Ramey. H. J. Jr.: "Wellbore Heat Transmission." JPT (April 1962) 14, 427-435.
- Shiu, K.C. and Beggs, H.D.: "Predicting Temperatures in Flowing Wells," J. Energy Res. Tech. (March 1980) 102, 2.
- 42. Darcy, H.: Les Fontaines Publiques de la Ville de Dijon, Victor Dalmont, Paris (1856) 590-594.
- Forchheimer, P.: "Wasserbewegung durch Boden," Zeitschrift der Verein Deutsher Ingenieure (1901) 45, 1731.
- 44. Piper, L.D., McCain, W.D. Jr., and Corredor, J.H.: "Compressibility Factors for Naturally Occurring Petroleum Gases," paper SPE 26668 presented at the 1993 SPE Annual Technical Conference and Exhibition, Houston, 3-6 October
- 45. Dranchuk, P.M. and Abou-Kassem, J.H.: "Calculation of Z Factors for Natural Gases Using Equation of State," *J. Cdn. Pet. Tech.* (July-September 1975) 34-36.
- 46. Lee, A.L., Gonzalez, M.H., and Eakin, B.E.: "The Viscosity of Natural Gasses," *JPT* (Aug 1966) 997-1000, *Trans.*, AIME, **237**.
- Vasquez, M. and Beggs, H.D.: "Correlations for Fluid Physical Property Prediction," *JPT* (June 1980) 968-970.
- 48. Standing, M.B.: "A Pressure-Volume-Temperature Correlation for Mixtures of California Oils and Gasses," *API Drill. & Prod. Prac.* (1947) 275-287.

- 49. Egbogah, E.O.: "An Improved Temperature-Viscosity Correlation for Crude Oil Systems," paper 83-34-32 presented at the 1983 Annual Technical Meeting of the Petroleum Society of CIM, Banff, Alberta, May 10-13, 1983.
- 50. Beggs, H.D. and Robinson, J.R.: "Estimating the Viscosity of Crude Oil Systems," *JPT* (September 1975) 1140-1141.
- McCain, W.D. Jr.: *The Properties of Petroleum Fluids*, Second Edition, PennWell Publishing Co., Tulsa, Oklahoma (1988).
- Gilbert, W.E.: "Flowing and Gas-Lift Well Performance," API Drill. & Prod. Prac. (1954) 143.
- 53. Payne, G.A., Palmer, C.M., Brill, J.P., and Beggs, H.D.: "Evaluation of Inclined-Pipe Two-Phase Liquid Holdup and Pressure-Loss Correlations Using Experimental Data," *JPT* (September 1979) 1198; *Trans.*, AIME, 267.
- 54. Ayres, F. Jr. and Mendelson, E.: *Calculus*, Fourth Edition, McGraw-Hill, New York (1999).

## **APPENDIX** A

## **TWO-PHASE FLOW CORRELATIONS**

To keep the equations consistent with appropriate unit-conversion constants, the following variables and sets of units are used in this appendix.

- d = pipe inner diameter, in.
- $\rho_L$  = liquid density, lbm/ft<sup>3</sup>.
- $\rho_g$  = gas density, lbm/ft<sup>3</sup>.
- $\sigma_L$  = liquid shear rate, dynes/cm.
- $\mu_g$  = gas viscosity, cp.
- $\mu_L$  = liquid viscosity, cp.

 $\varepsilon$  = pipe roughness, ft.

- $v_{SL}$  = superficial liquid velocity, ft/s.
- $v_{Sg}$  = superficial gas velocity, ft/s.
- $v_m$  = mixture velocity, ft/s.

dp/dZ = pressure gradient, psi/ft.

#### A.1 Hagendorn and Brown

The step-by-step procedure to calculate the pressure gradient using Hagendorn and Brown<sup>33</sup> method is:

1. Calculate the dimensionless numbers:

$$N_{Lv} = 1.938 v_{SL} \left(\frac{\rho_L}{\sigma}\right)^{0.25},$$
 (A.1)

$$N_{gv} = 1.938 v_{Sg} \left(\frac{\rho_L}{\sigma}\right)^{0.25},$$
 (A.2)

$$N_d = 120.872 d \left(\frac{\rho_L}{\sigma}\right)^{0.5},$$
 (A.3)

and

$$N_{L} = 0.15726 \mu_{L} \left(\frac{1.0}{\rho_{L} \sigma_{L}^{3}}\right)^{0.25}.$$
 (A.4)

2. Find the viscosity number coefficient,  $N_L C$ , from **Fig A.1**.



Fig. A.1—Hagendorn and Brown correlation for N<sub>LC</sub>.

3. Calculate  $x_1$ :

$$x_{1} = \left(\frac{N_{Lv}}{N_{gv}^{0.575}}\right) \left(\frac{N_{L}C}{N_{d}}\right) \left(\frac{p}{14.7}\right)^{0.1}.$$
 (A.5)

4. Find the holdup factor  $H_L/\psi$  from **Fig. A.2**.



Fig. A.2—Hagendorn and Brown correlation for  $H_L/\psi$ .

5. Calculate  $x_2$ :

$$x_2 = \frac{N_{gv} N_L^{0.380}}{N_d^{2.14}} \tag{A.6}$$

6. Find  $\psi$  from **Fig. A.3**.



Fig. A.3—Hagendorn and Brown correlation for  $\psi$ 

7. Calculate the liquid holdup,  $H_L$ , and check that  $H_L$  is larger than  $\lambda_L$ :

$$H_L = \psi \left(\frac{H_L}{\psi}\right). \tag{A.7}$$

Check the validity of  $H_L$ : If  $H_L < \lambda_L$ , then set  $H_L = \lambda_L$ .

- 8. Calculate  $\rho_s$  from Eq. 1.32,  $\rho_n$  from Eq. 1.33 and  $\mu_s$  from Eq. 1.35.
- 9. Calculate Reynolds number,  $N_{\text{Re}}$ , and the friction factor from Eq. 1.13 if  $N_{\text{Re}} > 2,100$ and 1.12 if  $N_{\text{Re}} \le 2100$ .

$$N_{\rm Re} = \frac{1,488\rho_n v_m d}{\mu_s}.$$
 (A.8)

10. Calculate the pressure gradient:

$$\frac{dp}{dZ} = \frac{f\rho_n^2 v_m^2}{2g_c \rho_s d} + \frac{g}{g_c} \rho_s \cos\theta + \frac{\rho_s \Delta(v_m^2)}{2dZ}.$$
(A.9)

Ignoring acceleration, for a vertical well in field units Eq. A.9 becomes

$$\frac{dp}{dZ} = \frac{f\rho_n^2 v_m^2}{9266\rho_s d} + \frac{\rho_s}{144}.$$
 (A.10)

## A.2 Beggs and Brill

The step-by-step procedure to calculate the pressure gradient using the Beggs and Brill<sup>32</sup> method follows:

1. Calculate the flow regime:

$$N_{FR} = \frac{v_m^2}{32.2d},$$
 (A.11)

$$L_1 = 316\lambda_L^{0.302}$$
, .....(A.12)

$$L_2 = 0.0009252\lambda_L^{-2.4684},$$
 (A.13)

$$L_4 = 0.50\lambda_L^{-6.738}.$$
 (A.15)

The limits for each flow regime are as follows:

Segregated:

 $\lambda_L < 0.01$  and  $N_{FR} < L_1$ . Or  $\lambda_L \ge 0.02$  and  $N_{FR} < L_2$ 

Transition:

 $\lambda_L \ge 0.01$  and  $L_2 < N_{FR} \le L_3$ .

Intermittent:

 $0.01 \leq \lambda_L < 0.4$  and  $L_3 < N_{FR} \leq L_1$ . Or  $\lambda_L \geq 0.4$  and  $L_3 < N_{FR} \leq L_4$ .

Distributed:

 $\lambda_L < 0.4$  and  $N_{FR} \ge L_1$ . Or  $\lambda_L \ge 0.4$  and  $N_{FR} > L_4$ .

Calculate the liquid holdup, *H<sub>L</sub>*:
 For horizontal flow the liquid hold-up is

$$H_{L(0)} = \frac{a\lambda_{L}^{b}}{N_{FR}^{c}},$$
(A.16)

where *a*, *b* and *c* is determined from **Table A.1**.

| Flow Pattern | а     | b      | С      |
|--------------|-------|--------|--------|
| Segregated   | 0.98  | 0.4846 | 0.0868 |
| Intermittent | 0.845 | 0.5351 | 0.0173 |
| Distributed  | 1.065 | 0.5824 | 0.0609 |

Table A.1 – Horizontal Flow-Pattern Coefficients, Beggs and Brill Method

The correction factor,  $\psi$ , for pipe inclination is

$$\psi = 1 + C \left[ \sin(1.8\phi) - 0.333 \sin^3(1.8\phi) \right], \quad (A.17)$$

where  $\phi$  is the pipe inclination from horizontal, and *C* is given by

$$C = (1 - \lambda_L) \ln \left[ (d) (\lambda_L)^e (N_{LV})^f (N_{FR})^g \right], \qquad (A.18)$$

where *d*, *e*, *f*, and *g* are determined from **Table 1.2**.

The liquid holdup for any inclination is then

 $H_{L(\phi)} = \psi H_{L(0)}$ . (A.19)

| Flow Pattern        | d         | е         | f          | g                     |
|---------------------|-----------|-----------|------------|-----------------------|
| Segregated uphill   | 0.011     | -3.768    | 3.539      | -1.614                |
| Intermittent uphill | 2.96      | 0.305     | -0.4473    | 0.0978                |
| Distributed uphill  | No Correc | ction C = | = 0, ψ = 1 | H <sub>L</sub> ≠ f(φ) |
| All flow patterns   |           |           |            |                       |
| downhill            | 4.7       | -0.3692   | 0.1244     | -0.5056               |

Table A.2 – Deviated Flow-Pattern Coefficients for Beggs and Brill Method

If the flow regime is transition, the liquid holdup must be calculated using the liquid holdup estimated from segregated and intermittent flow (Eq. A.20).

$$H_{L(transition)} = AH_{L(segregated)} + BH_{L(int\ ermittent)}, \qquad (A.20)$$

where

$$A = \frac{L_3 - N_{FR}}{L_3 - L_2}$$
 (A.21)

and

B = 1 - A. (A.22)

Payne *et al.*<sup>53</sup> suggested a correction for the liquid holdup:

$$H_{L(\phi)} = 0.924 H_{L(\phi)}; \text{ if } \phi > 0 \quad \dots$$
 (A.23)

$$H_{L(\phi)} = 0.685 H_{L(\phi)}$$
; if  $\phi < 0$ . (A.24)

Similarly to the Hagendorn and Brown method, the validity of the liquid holdup,  $H_L$ , must be checked. If  $H_L < \lambda_L$  then set  $H_L = \lambda_L$ .

- 3. Calculate  $\rho_s$  from Eq. 1.32,  $\rho_n$  from Eq. 1.33 and  $\mu_n$  from Eq. 1.36.
- 4. Calculate Reynolds number,  $N_{\rm Re}$ , and the friction factor:

$$N_{\rm Re} = \frac{1,488\rho_n v_m d}{\mu_n}.$$
 (A.25)

The two-phase friction factor according to Beggs and Brill is calculated as

where  $f_n$  is the Moody friction factor calculated using Eq. 1.13 if  $N_{\text{Re}} > 2,100$  and 1.12 if  $N_{\text{Re}} \le 2100$ . The ratio of friction factors in Eq. A.26 is calculated as

$$\left(\frac{f_{tp}}{f_n}\right) = e^s, \quad \dots \quad (A.27)$$

where

$$s = \frac{\ln(y)}{-0.0523 + 3.182\ln(y) - 0.8725[\ln(y)]^2 + 0.01853[\ln(y)]^4}, \dots (A.28)$$

and

$$y = \frac{\lambda_L}{\left[H_{L(\phi)}\right]^2}.$$
 (A.29)

Because of discontinuities in Eq. A.28, s must be calculated as

$$s = \ln(2.2y - 1.2),$$
 (A.30)

when 1 < y < 1.2. Also, s should be 0 for y = 1.0 to ensure the correlation degenerates to single-phase liquid flow.

5. Calculate the pressure gradient:

$$\frac{dp}{dZ} = \frac{f_{tp}\rho_n v_m^2}{2g_c d} + \frac{g}{g_c}\rho_s \sin\phi + \left(\frac{\rho_s v_m v_{sg}}{g_c p}\right)\frac{dp}{dZ}.$$
(A.31)

For a vertical well in field units, Eq. A.31 becomes

$$\frac{dp}{dZ} = \frac{f_{tp}\rho_n v_m^2}{9266d} + \frac{\rho_s}{144} + \left(\frac{\rho_s v_m v_{sg}}{2318.5(p_{i+1} + p_i)}\right) \left(\frac{p_{i+1} - p_i}{\Delta Z}\right).$$
 (A.32)

The pressure gradient is found between two elements with pressure of  $p_{i+1}$  and  $p_i$  respectively.

#### A.3 Duns and Ros

The step-by-step procedure to calculate the pressure gradient using the Duns and Ros<sup>34</sup> method follows:

and

- As for Hagendorn and Brown method, calculate the dimensionless numbers given in Eq. A.1, A.2, A.3 and A.4
- Calculate the flow regime boundaries and the flow pattern: Bubble/Slug Boundary

 $Ngv_{B/S} = L_1 + L_2 \cdot N_{Lv}$ , .....(A.33)

where  $L_1$  and  $L_2$  is obtained from **Fig. A.4**.

Slug/Transition Boundary

 $Ngv_{S/Tr} = 50 + 36N_{Lv}$ . (A.34)

Transition/Mist Boundary

 $Ngv_{Tr/M} = 75 + 84N_{Lv}^{0.75}.$  (A.35)

Flow pattern is then:

- Bubble Flow:  $N_{gv} \leq Ngv_{B/S}$ .
- $\bullet \quad Slug \ Flow: \ Ngv_{_{B/S}} < N_{_{gv}} \leq Ngv_{_{S/Tr}} \, .$
- Transition Flow:  $Ngv_{S/Tr} < N_{gv} \le Ngv_{Tr/M}$ .
- Mist Flow:  $Ngv_{Tr/M} < N_{gv}$ .
- 3. Calculate liquid holdup:

For bubble flow the dimensionless slip-velocity number is

$$S = F_1 + F_2 \cdot N_{L\nu} + F'_3 \left(\frac{N_{g\nu}}{1 + N_{L\nu}}\right)^2,$$
(A.36)

## where $F'_3$ is calculated as

$$F'_{3} = F_{3} - \frac{F_{4}}{N_{d}}$$
 (A.37)



Fig. A.4—Duns and Ros bubble/slug transition parameters.

 $F_1$  is given in Fig. A.5,  $F_2$  is given in Fig. A.6,  $F_3$  is given in Fig. A.7 and  $F_4$  is given in Fig. A.8.



Fig. A.5—Duns and Ros bubble-flow, slip-velocity parameter *F*<sub>1</sub>.



Fig. A.6—Duns and Ros bubble-flow, slip-velocity parameter F<sub>2</sub>.


Fig. A.7—Duns and Ros bubble-flow, slip-velocity parameter F<sub>3</sub>.



Fig. A.8 – Duns and Ros bubble-flow, slip-velocity parameter F<sub>4</sub>.

For slug flow the dimensionless slip-velocity number is

$$S = (1 + F_5) \frac{(N_{gv}) 0.982 + F'_6}{(1 + F7 \cdot N_{Lv})^2}, \dots (A.38)$$

where

$$F'_{6} = F_{6} + 0.029 \cdot N_{d}$$
. (A.39)

 $F_5$  is given in Fig. A.9,  $F_6$  is given in Fig. A.10 and  $F_7$  is given in Fig A.11.



Fig. A.9—Duns and Ros slug-flow, slip-velocity parameter F<sub>5</sub>.



Fig. A.10—Duns and Ros slug-flow, slip-velocity parameter *F*<sub>6</sub>.



Fig. A.11—Duns and Ros slug-flow, slip-velocity parameter  $F_7$ .

For both slug and bubble flow, the liquid holdup can be calculated as

where the slip velocity is

$$v_s = \frac{S}{1.938 \left(\frac{\rho_L}{\sigma_L}\right)^{0.25}}.$$
 (A.41)

For mist flow

S = 0, .....(A.42)

 $v_s = 0$ , .....(A.43)

and

 $H_L = \lambda_L. \tag{A.44}$ 

 Calculate Reynolds number and the friction factor For bubble flow:

$$N_{\text{Re}L} = \frac{\rho_L v_{sL} d}{\mu_L} \,. \tag{A.45}$$

The friction factor is then calculated as

$$f = f_1 \frac{f_2}{f_3}$$
, .....(A.46)

where  $f_1$  is the Moody friction factor calculated using the Reynolds number from Eq. A.45.  $f_2$  is given in **Fig. A.12** where the x-axis is

$$x = \frac{f_1 v_{sg} N_d^{2/3}}{v_{sL}}.$$
 (A.47)

Finally,  $f_3$  in Eq. 4.46 is calculated as

$$f_3 = 1 + \frac{f_1}{4} \sqrt{\frac{v_{Sg}}{50v_{SL}}} .$$
 (A.48)



Fig. A.12 – Duns and Ros bubble-flow, friction-factor parameter  $f_{2.}$ 

For slug flow the friction factor is calculated the same way as for bubble flow.

For mist flow Reynolds number is

 $N_{\text{Re}g} = \frac{\rho_g v_{sg} d}{\mu_g}.$  (A.49)

Before the friction factor can be calculated the wall roughness must be corrected for the liquid film that covers the pipe. This is accomplished by calculating the Weber number as

 $N_{We} = \frac{453.59\rho_g v_{Sg}^2 \varepsilon}{\sigma_L}, \qquad (A.50)$ 

and a dimensionless number with viscosity as

$$N_{\mu} = \frac{2.04817 \times 10^{-4} \,\mu_L^2}{\rho_L \sigma_L \varepsilon} \,. \tag{A.51}$$

The ratio of pipe roughness to pipe diameter can be calculated as

and

$$\frac{\varepsilon}{d} = \frac{9.3713 \cdot 10^{-3} \sigma_L}{\rho_g \cdot v_{Sg}^2 \cdot d} \left( N_{We} N_\mu \right)^{0.302}; \quad if \quad N_{We} N_\mu > 0.05.$$
(A.53)

The friction factor for mist flow can now be calculated as

$$f = 4 \left( \frac{1}{4 \cdot \log_{10} \left( 0.027 \frac{\varepsilon}{d} \right)} + 0.067 \left( \frac{\varepsilon}{d} \right)^{1.73} \right); \quad if \quad \frac{\varepsilon}{d} > 0.05.$$
 (A.54)

If  $\frac{\varepsilon}{d} \le 0.05$ , then the friction factor can be calculated as the normal Moody friction factor.

5. Calculate the pressure gradient

$$\left(\frac{dp}{dZ}\right)_{t} = \left(\frac{dp}{dZ}\right)_{f} + \left(\frac{dp}{dZ}\right)_{el} + \left(\frac{dp}{dZ}\right)_{acc}.$$
 (A.55)

For bubble and slug flow, Duns and Ros assumed that acceleration could be ignored. The friction and hydrostatic term for bubble and slug flow is

$$\left(\frac{dp}{dz}\right)_f = \frac{f\rho_L v_{sL} v_m}{9266d}, \qquad (A.56)$$

and

$$\left(\frac{dp}{dz}\right)_{el} = \frac{\rho_s}{144} = \frac{\left[\rho_L H_L + \rho_s (1 - H_L)\right]}{144}.$$
 (A.57)

The pressure-gradient terms for mist flow are

$$\left(\frac{dp}{dZ}\right)_f = \frac{f\rho_g v_{sg}^2}{9266d}, \qquad (A.58)$$

and

$$\left(\frac{dp}{dZ}\right)_{acc} = \left(\frac{\rho_s v_m v_{sg}}{2318.5(p_{i+1} + p_i)}\right) \left(\frac{p_{i+1} - p_i}{\Delta Z}\right). \tag{A.60}$$

The pressure gradient for transition flow is calculated by interpolating between the slug and mist flow pattern as

$$\left(\frac{dp}{dZ}\right)_{t} = A \left(\frac{dp}{dZ}\right)_{slug} + \left(1 - A\right) \left(\frac{dp}{dZ}\right)_{mist}, \qquad (A.61)$$

where

$$A = \frac{N_{gvTr/M} - N_{gv}}{N_{gvTr/M} - N_{gvS/Tr}} .$$
(A.62)

An increase in accuracy for the transition region is obtained if the gas density is corrected as

$$\rho'_{g} = \frac{\rho_{g} N_{gv}}{N_{gvTr/M}} \qquad (A.63)$$

throughout the mist-flow calculation.

### **APPENDIX B**

### **EMPIRICAL FLUID PROPERTY CORRELATIONS**

#### **B.1 z-Factor**

The pseudocritical temperature is calculated as<sup>44</sup>

$$T_{pc} = \frac{k^2}{j},$$
 (B.1)

and the pseudo-critical pressure is calculated as

$$p_{pc} = \frac{T_{pc}}{j}.$$
 (B.2)

In Eqs. B.1 and B.2 the *j* and *k* coefficients can be calculated as

$$j = 0.1158157 + (0.7072878 - 0.0993966\gamma_g)\gamma_g - 0.2368944n_{H_2S} - 0.4619311n_{CO_2} - 0.3041646n_{N_2}, \qquad (B.3)$$

and

$$k = 3.821599 + (17.43771 - 3.219084\gamma_g)\gamma_g - 1.218021n_{H_2S} - 7.046435n_{CO_2} - 9.334518n_{N_2}$$
 (B.4)

 $n_{H2S}$ ,  $n_{CO2}$ , and  $n_{N2}$  represent the molar fraction in percent of hydrogen sulfide, carbon dioxide, and nitrogen respectively.

The Dranchuk and Abou-Kassem<sup>45</sup> z-factor correlation is of the form

where

$$\rho_{pr} = 0.27 \frac{p_{pr}}{zT_{pr}}, \qquad (B.6)$$

$$c_1(T_{pr}) = A_1 + \frac{A_2}{T_{pr}} + \frac{A_3}{T_{pr}^2} + \frac{A_4}{T_{pr}^4} + \frac{A_5}{T_{pr}^5}, \qquad (B.7)$$

$$c_2(T_{pr}) = A_6 + \frac{A_7}{T_{pr}} + \frac{A_8}{T_{pr}^2},$$
 (B.8)

$$c_{3}(T_{pr}) = A_{9}\left(\frac{A_{7}}{T_{pr}} + \frac{A_{8}}{T_{pr}^{2}}\right), \qquad (B.9)$$

and

$$c_4(\rho_{pr}, T_{pr}) = A_{10} \left( 1 + A_{11} \rho_{pr}^2 \left( \frac{\rho_{pr}^2}{T_{pr}^3} \right) e^{-A_{11} \rho_{pr}^2} \right) .$$
(B.10)

The A-constants are listed in Table B.1.

Eq. B.5 has to be solved iteratively as z appears on both sides of the equation. The Newton-Raphson<sup>54</sup> method can be used by rearranging Eq. B.5 to the form

$$f(z) = z - \left[1 + c_1(T_{pr})\rho_{pr} + c_1(T_{pr})\rho_{pr}^2 - c_3(T_{pr})\rho_{pr}^5 + c_4(\rho_{pr}, T_{pr})\right] = 0.$$
 (B.11)

Using the Newton's method to find the roots of Eq. B.11 requires the derivative, which is

$$f'(z) = \left[\frac{\partial f(z)}{\partial z}\right]_{T_{pr}} = 1 - \frac{c_1(T_{pr})\rho_{pr} + 2c_1(T_{pr})\rho_{pr}^2 - 5c_3(T_{pr})\rho_{pr}^5}{z} + \frac{2A_{10}\rho_{pr}^2}{T_{pr}^3 z} \left[1 + A_{11}\rho_{pr}^2 - (A_{11}\rho_{pr}^2)^2\right]e^{-A_{11}\rho_{pr}^2} - (A_{11}\rho_{pr}^2)^2 e^{-A_{11}\rho_{pr}^2}$$
(B.12)

The iterative procedure is then to estimate the z-factor,  $z_{est}$ , and calculate it as

$$z_{calc} = z_{est} - \frac{f(z_{est})}{f'(z_{est})}.$$
(B.13)

The calculated value for the *z*-factor is used as the new estimate, and Eq. B.13 is calculated repeatedly until a reasonable agreement between the calculated and estimated value is obtained.

 

 Table B.1—A Constants for the Dranchuk and Abou-Kassem Correlation for z-Factor

| $A_1 = 0.3265$            | A <sub>2</sub> = -1.070 | $A_3 = -0.5339$          | $A_4 = 0.01569$         |
|---------------------------|-------------------------|--------------------------|-------------------------|
| A <sub>5</sub> = -0.05165 | $A_6 = 0.5475$          | A <sub>7</sub> = -0.7361 | A <sub>8</sub> = 0.1844 |
| $A_9 = 0.1056$            | $A_{10} = 0.6134$       | $A_{11} = 0.7210$        |                         |

### **B.2 Gas Viscosity**

The Lee, Gonzalez and Eakin<sup>46</sup> correlation for gas viscosity is

 $\mu_g = 10^{-4} K e^{X \rho_g^Y}, \quad (B.14)$ 

where

$$\rho_g = 1.4935 \times 10^{-3} \frac{pM}{zT}$$
, .....(B.15)

$$K = \frac{(9.4 + 0.02M)T^{1.5}}{(209 + 19M + T)}, \dots (B.16)$$

$$X = 3.5 + \frac{986}{T} + 0.01M , \dots (B.17)$$

and

$$Y = 2.4 - 0.2X$$
. (B.18)

In these equations  $\mu_g$  is in cp, gas density,  $\rho_g$ , is in g/cc, and the temperature is in °R. The molecular weight can be calculated as

 $M = 28.9625\gamma_g$ . (B.19)

### **B.3 Oil Formation-Volume Factor**

The Vasquez and Beggs<sup>47</sup> correlation for oil formation volume factor is of the form

$$B_{o} = 1 + C_{1}R_{s} + (C_{2} + C_{3}R_{s})(T - 60)\left(\frac{\gamma_{API}}{\gamma_{g}}\right), \qquad (B.20)$$

where the constants are determined from **Table B.2**. In Eq. B.20 the temperature is in °F, solution-gas/oil ratio is in scf/STB, and the oil formation volume factor is in bbl/STB.

### **B.4 Oil Compressibility Above the Bubblepoint**

The Vasquez and Beggs<sup>47</sup> correlation for the isothermal compressibility for and oil saturated with gas is of the form

$$c_o = \frac{5R_s + 17.2T - 1180\gamma_g + 12.61\gamma_{API} - 1433}{p \times 10^5}.$$
 (B.21)

In Eq. B.21 the temperature is in °F, the pressure is in psia and the compressibility is in 1/psia.

# Table B.2—Constants for the Vasquez and Beggs Correlation for Oil Formation Volume Factor

| Constant       | API ≤ 30                | API > 30               |
|----------------|-------------------------|------------------------|
| C <sub>1</sub> | 4.677x10 <sup>-4</sup>  | 4.670x10 <sup>-4</sup> |
| C <sub>2</sub> | 1.751x10 <sup>-5</sup>  | 1.100x10 <sup>-5</sup> |
| C <sub>3</sub> | -1.811x10 <sup>-8</sup> | 1.337x10 <sup>-9</sup> |

#### **B.5 Solution-Gas/Oil Ratio**

Standing's correlation<sup>48</sup> for the solution-gas/oil ratio below the bubblepoint is

 $R_{s} = \gamma_{g} \left(\frac{p}{18 \times 10^{y_{g}}}\right)^{1.204},$ (B.22)

where

 $y_g = 0.00091T - 0.0125\gamma_{API}$ . (B.23)

The temperature is measured in °F.

### **B.6 Oil Viscosity**

The Egbogah<sup>49</sup> correlation for oil viscosity below the bubblepoint pressure is

 $\mu_o = A \mu_{od}^{\ B}, \qquad (B.24)$ 

where

 $A = 10.715 (R_s + 100)^{-0.515}, \dots (B.25)$ 

and

 $B = 5.44 (R_s + 150)^{-0.338}.$  (B.26)

The dead-oil viscosity,  $\mu_{od}$ , can be calculated as

$$\log_{10} \left[ \log_{10} \left( \mu_{od} + i \right) \right] = 1.8653 - 0.025086 \gamma_{API} - 0.5644 \log_{10} \left( T \right).$$
(B.27)

Above the bubblepoint, the Beggs and Robinson<sup>47</sup> correlation for oil viscosity is

where

$$m = 2.6 p^{1.187} e^{-11.513 - 8.98 \times 10^{-5} p}.$$
 (B.29)

In Eq. B.28,  $\mu_{ob}$  is the oil viscosity at the bubblepoint, which can be calculated using Eq. B.24 with the bubblepoint pressure,  $p_b$ .

### **B.7 Water Formation-Volume Factor**

The McCain correlation<sup>51</sup> for water formation volume factor is

$$\boldsymbol{B}_{w} = \left(1 + \Delta \boldsymbol{V}_{wt}\right) \left(1 + \Delta \boldsymbol{V}_{wp}\right), \qquad (B.30)$$

where

$$\Delta V_{wt} = -1.00010 \times 10^{-2} + 1.33391 \times 10^{-4} T + 5.50654 \times 10^{-7} T^2, \quad (B.31)$$

and

$$\Delta V_{wp} = -1.95301 \times 10^{-9} \ pT - 1.72834 \times 10^{-13} \ p^2T - 3.58922 \times 10^{-7} \ p - 2.25341 \times 10^{-10} \ p^2$$
(B.32)

The temperature here is in °F and pressure is in psia.

### **B.8 Solution-Gas/Water Ratio**

McCain's correlation<sup>51</sup> for solution-gas/water ratio for pure water is

 $R_{swp} = A + Bp + Cp^2$ , .....(B.33)

where

$$A = 8.15839 - 6.12265 \times 10^{-2}T + 1.91663 \times 10^{-4}T^2 - 2.1654 \times 10^{-7}T^3, \dots (B.34)$$

$$B = 1.01021 \times 10^{-2} - 7.44241 \times 10^{-5}T + 3.05553 \times 10^{-7}T^2 - 2.94883 \times 10^{-10}T^3, \dots (B.35)$$

and

$$C = -10^{-7} (9.02505 - 0.130237T + 8.53425 \times 10^{-4} T^2 - 2.34122 \times 10^{-6} T^3 + 2.37049 \times 10^{-9} T^4)$$
 (B.36)

The solution-gas/water ratio for reservoir brines is

$$R_{sw} = R_{swp} \left( \frac{R_{sw}}{R_{swp}} \right), \qquad (B.37)$$

where

$$\left(\frac{R_{sw}}{R_{swp}}\right) = 10^{\left(-0.0840655S \times T^{-0.285854}\right)}.$$
 (B.38)

where S is the salinity in percent weight solids and the temperature is in  $^{\circ}$ F.

### **B.9** Water Viscosity

McCain's correlation<sup>51</sup> for water viscosity at atmospheric pressure and reservoir temperature is

 $\mu_{w1} = AT^{B}$ , .....(B.39)

where

$$A = 109.574 - 8.40564S + 0.313314S^{2} + 8.72213 \times 10^{-3}S^{3}, \dots (B.40)$$

and

$$B = -1.12166 + 2.63951 \times 10^{-2} S - 6.79461 \times 10^{-4} S^{2} - 5.47119 \times 10^{-5} S^{3} + 1.55586 \times 10^{-6} S^{4}$$
 (B.41)

The viscosity at reservoir pressure can be calculated as

$$\mu_{w} = \mu_{wl} \left( \frac{\mu_{w}}{\mu_{wl}} \right), \qquad (B.42)$$

where

$$\left(\frac{\mu_{w}}{\mu_{w1}}\right) = 0.9994 + 4.0295 \times 10^{-5} \, p + 3.1062 \times 10^{-9} \, p^2.$$
(B.43)

### **B.10 Gas/Oil Interfacial Tension**

The dead-oil interfacial tension<sup>35</sup> at 68°F is

 $\sigma_{68} = 39 - 0.2571 \gamma_{API}, \quad (B.44)$ 

and the dead-oil interfacial tension at 100°F is

$$\sigma_{100} = 37.5 - 0.2571 \gamma_{API} . \tag{B.45}$$

The dead-oil interfacial tension for any temperature between 68° and 100°F can then be interpolated as

$$\sigma_T = \sigma_{68} - \frac{(T - 68)(\sigma_{68} - \sigma_{100})}{32}.$$
 (B.46)

If the temperature is higher than 100°F the  $\sigma_1$  should be used and if the temperature is below 68°F the  $\sigma_{68}$  should be used.

The interfacial tension at any pressure can then be calculated as

$$\sigma_o = (1.0 - 0.024 p^{0.45}) \sigma_T.$$
(B.47)

#### **B.11 Gas/Water Interfacial Tension**

The water interfacial tensions<sup>35</sup> at 74° and 280°F are

 $\sigma_{w(74)} = 75 - 1.108 p^{0.349} \quad \dots \qquad (B.48)$ 

and

$$\sigma_{w(280)} = 53 - 0.1048 \, p^{0.637} \,. \tag{B.49}$$

The dead-oil interfacial tension for any pressure and temperature between 68° and 100°F can then be interpolated as

$$\sigma_{w} = \sigma_{w(74)} - \frac{(T - 74)(\sigma_{w(74)} - \sigma_{w(280)})}{206}.$$
 (B.50)

If the temperature is higher than 280°F the  $\sigma_{w(280)}$  should be used, and if the temperature is below 74°F the  $\sigma_{w(74)}$  should be used.

# VITA

| Name:      | Ray Tommy Oskarsen                                        |
|------------|-----------------------------------------------------------|
| Born:      | November 4, 1972, Stavanger, Norway                       |
| Address:   | Gravarverket 32A                                          |
|            | 4327 Sandnes                                              |
|            | Norway                                                    |
| Education: | College of Soer-Troendelag                                |
|            | Norway, Technical Diploma - Mechanical Engineering (1997) |
|            |                                                           |
|            | University of Surrey                                      |
|            | England, B.S. (Hon) – Mechanical Engineering (1999)       |
|            |                                                           |
|            | Texas A&M University                                      |
|            | USA, M.S. – Petroleum Engineering (2001)                  |
|            |                                                           |

**Appendix B** 

# Final Report for Phase I, Task 3.

# ULTRADEEP WATER BLOWOUTS: COMASIM DYNAMIC KILL SIMULATOR VALIDATION AND BEST PRACTICES RECOMMENDATIONS

By

Mr. Sam Noynaert, TAMU (currently BP)

# ULTRADEEP WATER BLOWOUTS: COMASIM DYNAMIC KILL SIMULATOR VALIDATION AND BEST PRACTICES RECOMMENDATIONS

A Thesis

by

SAMUEL F. NOYNAERT

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

### MASTER OF SCIENCE

December 2004

Major Subject: Petroleum Engineering

# ULTRADEEP WATER BLOWOUTS: COMASIM DYNAMIC KILL SIMULATOR VALIDATION AND BEST PRACTICES RECOMMENDATIONS

A Thesis

by

SAMUEL F. NOYNAERT

Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of

#### MASTER OF SCIENCE

Approved as to style and content by:

Jerome J. Schubert (Chair of Committee)

Hans C. Juvkam-Wold (Member)

Ann Kenimer (Member) Stephen A. Holditch (Head of Department)

December 2004

Major Subject: Petroleum Engineering

### ABSTRACT

Ultradeep Water Blowouts: COMASim Dynamic Kill Simulator Validation and Best Practices Recommendations. (December 2004) Samuel F. Noynaert, B.S., Texas A&M University Chair of Advisory Committee: Dr. Jerome J. Schubert

The petroleum industry is in a constant state of change. Few industries have advanced as far technologically as the petroleum industry has in its relatively brief existence. The produced products in the oil and gas industry are finite. As such, the easier to find and produce hydrocarbons are exploited first. This forces the industry to enter new areas and environments to continue supplying the world's hydrocarbons. Many of these new frontiers are in what is considered ultradeep waters, 5000 feet or more of water.

While all areas of the oil and gas industry have advanced their ultradeep water technology, one area has had to remain at the forefront: drilling. Unfortunately, while drilling as a whole may be advancing to keep up with these environments, some segments lag behind. Blowout control is one of these areas developed as an afterthought. This lax attitude towards blowouts does not mean they are not a major concern. A blowout can mean injury or loss of life for rig personnel, as well as large economic losses, environmental damage and damage to the oil or gas reservoir itself. Obviously, up-to-date technology and techniques for the prevention and control of ultradeep water blowouts would be an invaluable part of any oil and gas company's exploration planning and technology suite.

To further the development of blowout prevention and control, COMASim (Cherokee Offshore, MMS, Texas A&M Simulator) was developed. COMASim

simulates the planning and execution of a dynamic kill delivered to a blowout. Through a series of over 800 simulation runs, we were able to find several key trends in both the initial conditions as well as the kill requirements.

The final phase of this study included a brief review of current industry deepwater well control best practices and how the COMASim results fit in with them. Overall, this study resulted in a better understanding of ultradeep water blowouts and what takes to control them dynamically. In addition to this understanding of blowouts, COMASim's strengths and weaknesses have now been exposed in order to further develop this simulator for industry use.

### DEDICATION

I would like to dedicate this thesis to my family: my wife Courtney who was the best wife, cheerleader and overall best support team I could ask for and who has been waiting for this moment for three long years. Her love and dedication was all that kept me going at times. To my study partners: Daisy, Shiner, Phoebe and Socks who stayed up every night with me making sure the work got done.

I also dedicate this work to my parents for imparting a love of knowledge to me at an early age. Particularly my mother who has demonstrated the fact that education is a lifelong process and doesn't have to limited by number of degrees or time.

### ACKNOWLEDGEMENTS

I would like to acknowledge the following for the priceless help, advice and support I received during this endeavor:

I would first like to acknowledge my committee of Dr. Jerome J. Schubert, Dr. Hans Juvkam-Wold, and Dr. Ann Kenimer for helping this work be accurate and something that I can be proud of.

I would also like to acknowledge Dr. Stephen A. Holditch and Dr. Tom Blasingame for your advice and help concerning my decision on whether or not to even enter this department and industry.

In addition, I would like to acknowledge Curtis Weddle and Steve Walls for providing their time to give us an industry view of this study and tell us where the theory broke down.

I would be remiss if I did not acknowledge RPSEA (Research Partnership to Secure Energy for America) for funding this study.

And last but not least, I would like to acknowledge Dr. Ray T. Oskarsen for his tireless help with this project even after he finished his part and went out into the real world. Without Ray's help, this project would still be floundering towards a finish.

To all: Thank you for your help, Gig'em and God Bless

### **TABLE OF CONTENTS**

| ABSTI  | RACT                                                  | iii  |
|--------|-------------------------------------------------------|------|
| DEDIC  | CATION                                                | v    |
| ACKN   | OWLEDGEMENTS                                          | vi   |
| TABL   | E OF CONTENTS                                         | vii  |
| LIST C | DF FIGURES                                            | х    |
| LIST C | OF TABLES                                             | xiii |
| CHAP   | TER                                                   |      |
| Ι      | INTRODUCTION                                          | 1    |
|        | 1.1 Blowouts                                          | 1    |
|        | 1.2 Blowouts Historically                             | 4    |
|        | 1.3 Blowouts Statistically                            | 7    |
|        | 1.4 Blowout Control Measures                          | 13   |
|        | 1.5 Kill Method Selection                             | 25   |
| II     | RESEARCH BACKGROUND                                   | 30   |
|        | 2.1 Proposal Background and Objectives                | 30   |
|        | 2.2 Thesis Objectives                                 | 31   |
|        | 2.3 COMASim Background                                | 32   |
|        | 2.4 Simulator Calculations                            | 33   |
| III    | COMASIM RESULTS AND ANALYSIS                          | 38   |
|        | 3.1 COMASim Simulation Input Values                   | 38   |
|        | 3.2 COMASim Simulation Procedure                      | 41   |
|        | 3.3 Validation of COMASim                             | 42   |
|        | 3.4 COMASim Initial Condition Analyses                | 45   |
|        | 3.5 Effect of Casing Size and Drillstring Presence on |      |
|        | Initial Conditions                                    | 49   |
|        |                                                       |      |

| CHAPTER P                                                               | age |
|-------------------------------------------------------------------------|-----|
| 3.6 Effect of Drillstring Length                                        | 53  |
| 3.7 Kill with Drillstring Initial Conditions                            | 57  |
| Well Necessary Situations                                               | 61  |
| 3.9 Dynamic Kill Requirement for<br>Kill with the Drillstring Situation | 67  |
|                                                                         |     |
| IV ULTRA-DEEP WATER BLOWOUT PREVENTION AND CONTROL                      | 70  |
| 4.1 Ultra-deepwater Drilling Equipment                                  | 70  |
| 4.2 Ultra-deepwater Blowout Control Equipment                           | 75  |
| 4.3 Ultra-deepwater Kicks and Well Control                              | 78  |
| 4.4 Ultra-deepwater Well Control                                        | 82  |
| 4.5 Dynamic Kill Blowout Control                                        | 88  |
| V CONCLUSIONS AND RECOMMENDED FUTURE RESEARCH                           | 96  |
| 5.1 Ultradeep Water Blowout Control Conclusions                         | 96  |
| 5.2 Simple COMASim User Tasks and Extended                              | 07  |
| 5.2 Multilatoral Capability                                             | 08  |
| 5.5 Multilateral Capability                                             | 90  |
| 5.4 Fluid Fallback.                                                     | 98  |
| 5.5 Underground Blowout Capability                                      | 99  |
| 5.6 Linking to Dr. Jongguen Choe's Simulator                            | 99  |
| 5.7 Simulator Validation                                                | 99  |
| 5.8 Combination Vertical Intervention and Relief                        |     |
| Well Dynamic Kill Operations                                            | 100 |
| NOMENCLATURE                                                            | 101 |
| REFERENCES                                                              | 103 |
| APPENDIX A: SIMULATION RUN MATRIX                                       | 107 |
| APPENDIX B: RELIEF WELL INITIAL CONDITION RUNS 1                        | 124 |
| APPENDIX C: RELIEF WELL KILL REQUIREMENTS                               | 164 |
| APPENDIX D: KILL WITH DRILLSTRING INITIAL CONDITIONS                    | 176 |

| Η                                                   | 'age |
|-----------------------------------------------------|------|
| APPENDIX E: KILL WITH DRILLSTRING KILL REQUIREMENTS | 187  |
| VITA                                                | 189  |

### **LIST OF FIGURES**

| FIGUE | RE I                                                                                                                          | Page |
|-------|-------------------------------------------------------------------------------------------------------------------------------|------|
| 1.1   | Tripping in during bit change                                                                                                 | 3    |
| 1.2   | Well blows out in seconds                                                                                                     | 3    |
| 1.3   | Crew evacuation after blowout                                                                                                 | 3    |
| 1.4   | The well is abandoned and out of control                                                                                      | 3    |
| 1.5   | Derrick collapses                                                                                                             | 4    |
| 1.6   | Spindletop's first well (Lucas well) was a blowout                                                                            | 4    |
| 1.7   | Frequency of blowouts per 100 wells in the Outer Continental<br>Shelf (OCS) did not show improvement from 1960-1996           | 5    |
| 1.8   | Frequency of blowouts per 100 wells in onshore<br>Texas increased from 1960-1996                                              | 6    |
| 1.9   | Frequency of blowouts per 10 <sup>6</sup> feet drilled in onshore Texas is erratic and shows no improvement from 1960 to 1996 | 6    |
| 1.10  | Number of blowouts per phase in progress shows<br>most blowouts occur in unfamiliar drilling situations                       | 8    |
| 1.11  | Percentage of OCS blowouts having a certain fluid composition indicates majority of blowouts were gas                         | 12   |
| 1.12  | Relative majority of OCS blowouts controlled by bridging                                                                      | 12   |
| 1.13  | Typical capping stacks                                                                                                        | . 14 |
| 1.14  | Momentum kill theory                                                                                                          | . 18 |
| 1.15  | Blowout control through flooding is a lengthy process                                                                         | 19   |
| 1.16  | Depletion kill or waterflood relief well<br>bottomhole location                                                               | 20   |
| 1.17  | Relief intersection point allows maximum use<br>of frictional pressure                                                        | 22   |
| 1.18  | Control of large blowout completed using dynamic kill in approximately 12 minutes                                             | 23   |
| 1.19a | Example kill method selection flowchart I                                                                                     | 26   |
| 1.19b | Example kill method selection flowchart II                                                                                    | 27   |

| FIGUI | RE                                                                                                                                                         | Page |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.19c | Example kill method selection flowchart III                                                                                                                | 28   |
| 1.19d | Example kill method selection flowchart IV                                                                                                                 | 29   |
| 2.1   | Screen shot of COMASim interface shows simplicity of operation                                                                                             | 33   |
| 2.2   | Graphical example of general nodal analysis calculation                                                                                                    | 34   |
| 2.3   | Example of use of nodal analysis to find required dynamic kill rate                                                                                        | 34   |
| 2.4   | No drillstring in wild well                                                                                                                                | 35   |
| 2.5   | Drillstring dropped                                                                                                                                        | 35   |
| 2.6   | Drillstring hanging from BOP                                                                                                                               | 35   |
| 2.7   | Drillstring used to kill well                                                                                                                              | 35   |
| 3.1   | Typical 15000 psi fracturing vessel                                                                                                                        | 42   |
| 3.2   | Comparison of solution types shows zero-derivative curve grossly over calculates the dynamic kill solution                                                 | 44   |
| 3.3   | Numerical output of COMASim is limited to<br>10 equally spaced points                                                                                      | 46   |
| 3.4   | Numerical output for a hanging drillstring at 13000 ft TVD, 13000 ft drillstring, 5000 ft of water, 10 <sup>3</sup> / <sub>4</sub> casing                  | 47   |
| 3.5   | Close-up of graph from Fig. 3.3, a hanging drillstring at 13000 ft TVD, 13000 ft drillstring, 5000 ft of water, 10 <sup>3</sup> / <sub>4</sub> inch casing | 48   |
| 3.6   | Hanging drillstring situations shows typical behavior for pressure profile                                                                                 | 49   |
| 3.7   | Dropped drillstring data matches hanging drillstring pressure profile                                                                                      | 50   |
| 3.8   | No drillstring in hole reduces pressure value and variation                                                                                                | 51   |
| 3.9   | Effect of drillstring length on hanging drillstring,<br>13000 ft TVD, 5000 ft water depth, 10 <sup>3</sup> / <sub>4</sub> inch casing                      | 54   |
| 3.10  | Effect of drillstring length on dropped drillstring,<br>13000 ft. TVD, 5000 ft water depth, 10 <sup>3</sup> / <sub>4</sub> inch casing                     | 55   |
| 3.11  | Difference between 3250 ft. of drillstring in 13000 ft TVD in 5000 ft of water with 10 <sup>3</sup> / <sub>4</sub> inch casing                             | 56   |

| FIGU | RE P                                                                                                                                                                              | age  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3.12 | 13000 ft TVD, 5000 ft water depth, 10 <sup>3</sup> / <sub>4</sub> inch casing, drillstring is 75% of TVD                                                                          | . 58 |
| 3.13 | Kill with drillstring, 13000 ft TVD, 5000 ft water depth,<br>10 <sup>3</sup> / <sub>4</sub> inch casing shows decreasing bottom-hole<br>pressures as drillstring length decreases | . 59 |
| 3.14 | Kill with drillstring, 13000 ft TVD, 5000 ft water depth,<br>drillstring length is 75% of TVD                                                                                     | . 61 |
| 3.15 | Relief well flow path                                                                                                                                                             | . 62 |
| 3.16 | Dynamic kill rates differ widely among<br>drillstring statuses as drillstring length decreases                                                                                    | . 64 |
| 3.17 | Increasing casing size in with no drillstring present increases number of relief wells required                                                                                   | . 66 |
| 3.18 | Kill rates increase for larger casing sizes                                                                                                                                       | . 69 |
| 4.1  | Example of drillship                                                                                                                                                              | . 70 |
| 4.2  | Example of semi-submersible                                                                                                                                                       | . 71 |
| 4.3  | ABB Vetco Gray composite material riser<br>increases water depth capability of floaters                                                                                           | . 72 |
| 4.4  | Acoustic control system on lower marine riser package                                                                                                                             | . 75 |
| 4.5  | Example of offshore dynamic kill pumping plant                                                                                                                                    | . 76 |
| 4.6  | Increasing kill fluid weight reduces the kill rate                                                                                                                                | . 77 |
| 4.7a | Onshore gradients                                                                                                                                                                 | . 78 |
| 4.7b | Offshore gradients                                                                                                                                                                | . 79 |
| 4.8  | Comparison of casing shoe pressures between Drillers<br>method and Wait and Weight Method shows<br>Drillers method causes lost circulation                                        | . 86 |
| 4.9  | Decision process for dynamic kill path                                                                                                                                            | . 89 |
| 4.10 | Data from Adams et al. shows minimal loss of buoyancy from blowout plume                                                                                                          | . 91 |
| 4.11 | Data from Adams et al. shows wide plume at surface<br>for blowout in 10000 feet of water                                                                                          | . 91 |

### LIST OF TABLES

| TABLE |                                                                                                                                                                      | age |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1.1   | SINTEF database concurs with Skalle et al. database findings on blowout causes                                                                                       | 8   |
| 1.2   | Distribution of most frequent operation phase<br>failures (Louisiana, Texas, OCS; 1960-96) shows<br>majority of blowout causes are human error                       | 9   |
| 1.3   | Gulf of Mexico (GoM) development wells drilled<br>twice as fast as Norwegian development wells                                                                       | 10  |
| 2.1   | Input options for COMASim                                                                                                                                            | 36  |
| 3.1   | Blowout information for COMASim validation problem                                                                                                                   | 43  |
| 3.2   | Hanging and dropped drillstrings<br>allow almost identical flow rates                                                                                                | 51  |
| 3.3   | Blowing wellbores with no drillstring have higher $Q_{g,surface}$                                                                                                    | 53  |
| 3.4   | Kill with drillstring configuration yields higher $Q_{g,surface}$                                                                                                    | 59  |
| 3.5   | Kill with drillstring, 13000 ft TVD, 5000 ft water depth,<br>10 <sup>3</sup> / <sub>4</sub> inch casing shows flow rate increases<br>as drillstring length decreases | 60  |
| 3.6   | 13000 ft TVD, 5000 ft water depth, kill rate<br>increases with increasing casing size                                                                                | 64  |
| 3.7   | Increasing relief well MD/TVD ratio increases relief well parameters                                                                                                 | 65  |
| 3.8   | Kill with drillstring kill rates similar to dropped drillstring                                                                                                      | 67  |
| 3.9   | Decreasing drillstring length increases kill requirements                                                                                                            | 68  |
| 4.1   | Hang-off, shut-in, and flow-check procedure                                                                                                                          | 83  |
| 4.2   | Drillers method procedure for killing well                                                                                                                           | 84  |
| 4.3   | Wait and Weight method for killing well                                                                                                                              | 85  |

## CHAPTER I INTRODUCTION

#### **1.1 Blowouts**

The petroleum industry constantly undergoes radical changes and progress. Few industries have advanced as far or as fast technologically as the petroleum industry has in the past century. This advancement has been caused by the lucrative nature of the oilfield business as well as the procurement of the product itself. Obviously as more money is put into an industry, technological advancement becomes easier and often a necessary part of competition. However, in the petroleum industry the technological advancement has actually been a forced issue. The products we as an industry are trying to produce, oil and natural gas, are a finite resource. As the easier to find and produce hydrocarbons are used up, the industry must move into new areas to continue supplying the world with hydrocarbons. Many of these areas are in what is considered ultradeep waters, 5000 feet or more of water. This is a unique environment that requires many new techniques and technologies to explore and produce.

As the various areas of the oil and gas industry advance their ultradeep water technology, one area has had to remain at the forefront: drilling. For example, geological exploration can be done with multibillion dollar seismic projects or by using the map as a dartboard. Either way, drilling must be done to confirm and develop the discovery. Without drilling, there simply is no petroleum industry. However, much of the drilling done is on unknown frontiers for hydrocarbon exploration. Often these frontiers are harsh environments either downhole, on the surface or both. Ultradeep water is a great example of a dangerous and unknown drilling environment.

It is on these frontiers however that the advancement of technology is often disjointed. While drilling as whole may be advancing to keep up with these

This thesis follows the style of SPE Drilling and Completion.
environments, some parts lag behind. An example of this is the running of casing offshore. Until very recently, casing was run in the same manner, and often using the same tools, as a casing job done twenty to thirty years ago. It has only been in the past few years that the use of technology like automatic pipe handling equipment has become widespread. This change brought on by pure safety concerns. Another area that is seen the same stagnation and recent call for change has been blowout control in deep and ultradeep waters.

Blowout control is an area often put aside until the last minute for the industry. A blowout means that the drilling contractor and crew have failed in some way, and as is often the case in business, failure is not an option. However, in the case of drilling a well, failure in the form a blowout can mean injury or loss of life for rig personnel, large economic losses, environmental damage and damage to the oil or gas reservoir itself. Obviously, a contingency plan for the prevention <u>and</u> control of ultradeep water blowouts would be a valuable part of any oil and gas company's planning for the drilling of a well.

The following sequence of photographs (**Fig. 1.1-1.5**) show the rapidity and unexpectedness of blowouts as well as some of the dangers. In **Fig. 1.1**, the derrick is shown prior to the blowout. In this picture, the drill collars are racked back in the derrick and the derrick man is on the monkeyboard. **Fig. 1.2** occurs during a film change by the photographer immediately after taking **Fig. 1.1**. This shows how quickly the situation gets out of control. Once the blowout occurred, the crew began evacuation as shown in **Fig. 1.3**. In **Fig. 1.3**, the derrick man is seen just getting off of the geronimo line. In the same figure, a worker is shown narrowly avoiding falling drillpipe. As the crew left the location, the drill collars were ejected in **Fig. 1.4** and the blowout continues. Finally, **Fig. 1.5** shows the rig collapsing due to the weight of the racked-back drill collars. This is a dramatic series of pictures showing the potential dangers of a blowout. Fortunately no one was injured in this particular instance.



Fig. 1.1-Tripping in during bit change.<sup>1</sup>



**Fig. 1.2 – Well blows out in seconds**.<sup>1</sup>



**Fig. 1.3 – Crew evacuation after blowout**.<sup>1</sup>



**Fig. 1.4** – The well is abandoned and out of control.<sup>1</sup>



**Fig. 1.5 – Derrick collapses.**<sup>1</sup>

### **1.2 Blowouts Historically**

Blowouts have been a problem for this industry since its inception. A famous picture (**Fig. 1.6**) in the oil and gas industry is of the first Spindletop gusher. The drillers of the original



Fig. 1.6 - Spindletop's first well (Lucas well) was a blowout.<sup>2</sup>

Spindletop well, along with others in that era knew they had a good find when a blowout occurred. This was a dangerous situation which was eventually remedied with the invention of the BOP (Blowout preventer) in 1922 by the founders of Cooper Cameron.<sup>3</sup>

However, in spite of the development of many safety measures such as the aforementioned BOPs, as well as numerous types of equipment and drilling procedures, blowouts still occur. In fact, since 1960 blowouts have occurred at a fairly stable rate<sup>4</sup>. This rate has not changed even though blowout prevention equipment and procedures have drastically changed (**Fig. 1.7-1.8**).



Fig. 1.7-Frequency of blowouts per 100 wells in the Outer Continental Shelf (OCS) did not show improvement from 1960-1996.<sup>4</sup>



Fig. 1.8 – Frequency of blowouts per 100 wells in onshore Texas increased from 1960-1996.<sup>4</sup>



Fig. 1.9-Frequency of blowouts per 10<sup>6</sup> feet drilled in onshore Texas is erratic and shows no improvement from 1960 to 1996.<sup>4</sup>

As evidenced by **Figs. 1.7 – 1.8** the number of blowouts per feet drilled stayed relatively constant from 1960 to 1996. This was true for both the Outer Continental Shelf of the Gulf of Mexico (OCS) (**Fig. 1.7**) as well as for onshore Texas (**Fig. 1.8**). Further investigation shows that onshore Texas actually had several years in the mid-1980's in which drilled footage went up and blowout frequency went down (**Fig. 1.9**). This is a strange phenomenon, considering that in boom times the industry tends to hire inexperienced personnel and rush to explore or produce hydrocarbons. However, the data shows a contrarian trend that shows blowouts being reduced in the mid-1980's in spite of the boom occurring at the time. This is unexplainable based on the published data from the Skalle, et. al database.<sup>4</sup> Unfortunately, according to **Fig. 1.9**, this unique trend did not last. The drilled footage went down dramatically and the blowout frequency continued its steady climb. All of these numbers point to an irrefutable conclusion: blowouts will always happen no matter how far technology and training advance.

### **1.3 Blowouts Statistically**

Since we can reasonably expect blowouts to always occur in spite of technical advances, we must complete two tasks. First, we must conduct a quick study of why blowouts occur. Next, we must find ways to first prevent blowouts and in a worst case scenario, kill them. In the case of deepwater drilling, no studies have been undertaken. This is mostly due to lack of data. Therefore, this report uses data from onshore Texas and OCS wells to briefly discuss the causes of blowouts.



Fig. 1.10 – Number of blowouts per phase in progress shows most blowouts occur in unfamiliar drilling situations.<sup>4</sup>

Table 1.1 – SINTEF database concurs with Skalle et al. database findings on blowout causes<sup>5,6</sup>.

| AREA                             | Develop.<br>Drilling | Expl.<br>Drilling  | unknown<br>Drilling | Completion | Workover | Production      | ı                 | Wireline | Unknown | Total  |
|----------------------------------|----------------------|--------------------|---------------------|------------|----------|-----------------|-------------------|----------|---------|--------|
|                                  |                      |                    |                     |            |          | External cause* | No ext.<br>cause* |          |         |        |
| North<br>Sea (UK<br>&<br>Norway) | 7                    | 22                 | 3                   | 3          | 5        | 1               | 1                 | 1        | 1       | 44     |
|                                  | 15.9%                | <mark>50.0%</mark> | 6.8%                | 6.8%       | 11.4%    | 2.3%            | 2.3%              | 2.3%     | 2.3%    | 100.0% |
| US GoM<br>OCS                    | 41                   | 42                 | 0                   | 11         | 25       | 5               | 7                 | 3        | 2       | 136    |
|                                  | <mark>30.1%</mark>   | <mark>30.9%</mark> | 0.0%                | 8.1%       | 18.4%    | 3.7%            | 5.1%              | 2.2%     | 1.5%    | 100.0% |
| Total                            | 48                   | 64                 | 3                   | 14         | 30       | 6               | 8                 | 4        | 3       | 180    |
|                                  | 26.7%                | 35.6%              | 1.7%                | 7.8%       | 16.7%    | 3.3%            | 4.4%              | 2.2%     | 1.7%    | 100.0% |

\* External causes are typical; storm, military activity, ship collision, fire and earthquake.

**Fig. 1.10** clearly shows the most blowouts occur during the initial drilling of the wells, the exploration and development phase with the single most incidents during the

exploration phase. **Table 1.1** is derived from the Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology (SINTEF) blowout database. The SINTEF Group is a Norwegian R&D foundation which was hired by an industry group to study offshore blowouts. The resulting database is a proprietary database with limited results published. This database seems to be kept relatively up-to-date with the total number of offshore blowouts recorded at 487.<sup>5</sup> **Table 1.1** confirms the Skalle, et al. database findings. OCS blowouts had the highest rate of occurrence for development and exploration drilling followed by workover operations.

Table 1.2 - Distribution of most frequent operation phase failures (Louisiana, Texas, OCS; 1960-96) shows majority of blowout causes are human error.<sup>4</sup>

|                             | Blowe | outs    | Distribution of specific failed barrier |                   |            |            |          |          |
|-----------------------------|-------|---------|-----------------------------------------|-------------------|------------|------------|----------|----------|
| Primary Cause               | TX    | OC<br>S | Expl. drilling                          | Develop. drilling | Completion | Production | Workover | Wireline |
| Swabbing                    | 217   | 31      | 77                                      | 96                | 9          | -          | 75       | 5        |
| Drilling break              | 73    | 14      | 52                                      | 32                | -          | -          | 2        | -        |
| Formation break down        | 58    | 6       | 38                                      | 16                | 3          | 3          | 4        | -        |
| Trapped/expanding gas       | 55    | 6       | 9                                       | 18                | 7          | -          | 28       | 1        |
| Gas cut mud                 | 55    | 7       | 26                                      | 15                | 5          | -          | 13       | 1        |
| Too low mud weight          | 43    | 12      | 17                                      | 20                | 12         | -          | 16       | 3        |
| Wellhead failure            | 28    | 6       | 5                                       | 3                 | 1          | 20         | 11       | -        |
| x-mas tree failure          | 23    | 5       | -                                       | -                 | 1          | 25         | 6        | -        |
| While cement sets           | 21    | 10      | 5                                       | 5                 | 23         | -          | 2        | -        |
| Secondary Cause             |       |         |                                         |                   |            |            |          |          |
| Failure to close BOP        | 152   | 7       | 66                                      | 56                | 6          | 2          | 38       | 3        |
| BOP failed after closure    | 76    | 13      | 36                                      | 24                | 13         | 2          | 14       | 2        |
| BOP not in place            | 60    | 10      | 9                                       | 11                | 20         | -          | 39       | 1        |
| Fracture at casing shoe     | 34    | 3       | 21                                      | 17                | 3          | 1          | 2        | 1        |
| Failed to stab string valve | 18    | 9       | 2                                       | 2                 | 6          | 1          | 13       | -        |
| Casing leakage              | 30    | 6       | 10                                      | 6                 | 2          | 17         | 6        | 1        |

**Table 1.2** breaks down **Fig. 1.10** into the causes of the blowouts within each operation phase. Concentrating on primary causes, several conclusions can be drawn. Overall, the majority of blowouts resulted from swabbed-in kicks. However, analyzing the results based on the type of operation in progress yields several interesting insights on causes other than swabbing. First, exploration drilling blowouts were more likely to be caused by unexpected obstacles and incomplete geological data than poor or sloppy

drilling practices. Drilling breaks, formation breakdown and gas cut mud problems were significantly higher in the exploration phase than in any other phase. All of these problems are ones that, when unexpected, can cause confusion on the drilling floor and lead to well control problems. Gas cut mud is a good example. When a drilling crew is expecting gas, they can increase mud logging frequency as well as put more emphasis on indicators such as slight pit gains which might otherwise be ignored.

In development drilling, **Table 1.2** shows that swabbing in kicks and having insufficient of mud weight were problems which occurred at rates higher than in other operation phases. Both problems are indicative of operators trying to speed up the drilling process. The operators are more likely to attempt to save time on development wells were they assume they know more about the potential challenges, than attempt to speed up the drilling of an exploration well through unknown challenges. Lowering mud weights increases the rate of penetration. Time taken to trip pipe out of the hole comprises a large amount of the time taken to drill a well. Therefore, operators try to reduce this time by pulling the pipe more quickly. Unfortunately, this causes a reduction in the pressure at the bottom of the wellbore and invites a kick. The most interesting finding in the available SINTEF data, the disparity between the North Sea and OCS in development well blowouts, touches on this problem. The North Sea had a much lower incidence rate of development well blowouts as highlighted in **Table 1.1**.

|                         | ι                      | IS GoM OCS                                    | Norway                 |                                               |  |  |
|-------------------------|------------------------|-----------------------------------------------|------------------------|-----------------------------------------------|--|--|
|                         | All<br>Wells<br>(days) | Wells With<br>Duration <200<br>days<br>(days) | All<br>Wells<br>(days) | Wells With<br>Duration <200<br>days<br>(days) |  |  |
| Development<br>Drilling | 36.6                   | 32.6                                          | 102.4                  | 66.9                                          |  |  |
| Exploration<br>Drilling | 20.1                   | 14.1                                          | 84.5                   | 78.7                                          |  |  |

# Table 1.3 – Gulf of Mexico (GoM) development wells drilled twice as fast as Norwegian development wells.<sup>6</sup>

It is evident why the North Sea development well blowout rate was much less when taking into account **Table 1.3**. Development wells in the Norwegian sector of the North Sea took twice as long as development well in the Gulf of Mexico. The reasons behind this would easily supply the fodder for years of future research. However, suffice it to say that the rapid drilling of development wells obviously adversely affects the blowout rates in said wells.

Workover operations had the third highest number of blowouts. The cause which stands out in workover blowouts is trapped/expanding gas. This is most likely due to poor circulation techniques stemming from not enough complete circulations to rid the wellbore of gas after influxes, as well as poor handling of kicks, which allows unplanned expansion of gas.

It is important to remember that the data in **Fig. 1.7-1.10** the data is from onshore US and relatively shallow OCS wells. Ultradeep water wells will have similar well control issues but in an exaggerated manner. The increased pressures will cause influxes and blowouts to behave in different ways. Indicators and measurements of influxes such as pit gain and pressure values will be often deceptively benign until the situation has escalated to the point that control of problem will become a very complicated and dangerous task. The chief causes of blowouts shown in **Table 1.2** will probably not change statistically. Therefore a reasonable assumption would be that by concentrating on these principal causes and taking into account the exaggerated effects caused by the ultradeep water environment, a suitable suite of best practices may be compiled for ultradeep water drilling.

The compositions of the blowouts are not uniform. In fact, in the most comprehensive public database to date which was developed by Skalle, et al.<sup>4, 7</sup> there are eleven categories for blowing fluid composition: gas, gas & oil, gas & water, gas & condensate, gas & oil & water, condensate, oil, oil & water, water, mud, and no data.



Fig. 1.11 – Percentage of OCS blowouts having a certain fluid composition indicates majority of blowouts were gas.<sup>7</sup>

Of the eleven possible fluid compositions, eight were observed in OCS blowouts from 1960 to 1996. **Fig. 1.11** shows the 74 percent of blowouts had gas as the blowing fluid.

In the Skalle, et al. database, kill methods were also studied. Eight primary kill methods were identified: collapse of open hole wellbore (bridging), closing BOP (BOP), pumping cement slurry (cement), capping, depletion of reservoir (depletion), installing equipment, pumping mud (mud), and drilling relief wells.



Fig. 1.12 – Relative majority of OCS blowouts controlled by bridging.<sup>7</sup>

Of these, seven were found to have been used to control OCS blowouts. Conspicuous in its absence was the technique of capping to actually stop the flow of hydrocarbons. Of course, the majority of blowing wells will be capped once they are brought under control and decisions concerning the well's future are made. However, using capping as an initial control technique was not used in the OCS. This was most likely due to limited location size and the difficulty of maneuvering capping equipment around on the open water or on the seafloor.

**Fig. 1.12** reveals 48 percent of OCS blowouts were controlled by simply letting the blowout go. Thus bridging (39%) or depletion of the reservoir (9%) occurred. The remaining kill methods employed were evenly distributed with pumping mud or bullheading being the next highest at 19 percent.

### **1.4 Blowout Control Measures**

There are many different ways to control a blowout. Since each blowing well is a unique situation, new techniques are often made up on the spot. An example of this on-the-fly engineering was seen in Kuwait with the Hungarian MIG jet-engines or "Big Wind" machine which controlled the blowout's fire with a blast of jet-wash. However, there are several more conventional and accepted forms of blowout control which are divided into surface intervention methods and subsurface intervention or relief well methods.<sup>8</sup> The most common methods in these two classifications are:

Wellhead equipment installation/operation

- Capping
- Wellhead equipment installation/operation
- Cement/Gunk plug
- Bridging
- Depletion/flooding of reservoir
- Momentum kill/bullheading
- Dynamic kill

Capping operations occur when the blowout is controlled at the surface. Capping operations can be divided into three separate phases<sup>9</sup>:

- Extinguishing the fire
- Capping the well
- Killing the well

If the well is on fire, then the first phase of capping will be to extinguish it. Exceptions to this case occur if there is any chance of danger to the personnel on location from the blowing fluids. The best example of this is the presence of  $H_2S$  or hydrogen sulfide.  $H_2S$  is extremely toxic and is therefore flared to avoid problems. Extinguishing the fire may be done with any number of methods ranging from large amounts of water to dynamite.



Fig. 1.13 – Typical capping stacks.<sup>8</sup>

Once the flare has been extinguished, the actual capping of the well is started. A capping stack is attached to the wellbore. The typical capping stack will consist of a bell nipple, several rams, a diverter spool and possibly a ball valve (Fig. 1.13).<sup>8</sup> Normally a flange of some type will still be on the wellbore. If there is no available flange for attachment, a flow cross-over prepared from an inverted pipe ram and a slip ram will be used to attach to bare pipe.<sup>8,9</sup> The capping stack is then maneuvered onto this flange or bare pipe. Once the capping stack is secured, flow will be diverted in a safe manner, either in a single vertical plume or through a diverter line. In situations where flow rates are high enough, the diverter line may be an emergency sale line.<sup>8</sup> This would reduce the economic loss caused by the blowout.

After the capping stack is successfully installed, the flow is diverted to a location some distance away from the wellhead using the rams and diverter spool in the capping stack.<sup>10</sup> The diversion of flow allows the well control operations to take place safely around the wellhead. The well control operations typically consist of pumping a heavy mud down the wellbore in an attempt to regain hydrostatic control of the well.<sup>9</sup> Capping is not applicable for use in ultra-deepwater situations because the blowing fluid must be coming to the surface. As will be discussed later in this report, the marine riser in ultra-deepwater situations has a good chance of failure in this event thus rendering capping useless.

Wellhead equipment installation and operation is a simple method that is usually employed in response to a very poorly handled blowout. To control a blowout through this method, blowout specialists will reenter the location or platform and operate or install the equipment necessary to shut-in the well safely. There are several instances in OCS files where rig personnel abandoned the rig before being able to operate the BOP. In these cases, the blowout was controlled by simply closing the BOP.<sup>11</sup> In cases of equipment failure, the blowout specialists need to remove the malfunctioning equipment and install new equipment. Once this is accomplished, the new equipment will be used to kill the blowout.

Fast-acting cement and gunk plugs are the least desirable of the blowout control alternatives. They are used in the event of an underground blowout to stem the flow of blowing fluids into the formation. Either compound is introduced into the wild wellbore from the wellhead, capping stack or, if necessary, from a relief well. Fast-acting cement is a cement compound mixed with an accelerant.<sup>12</sup> The hoped-for result is that the cement will set in the wild wellbore before exiting the said wellbore into the formation. This will stop the flow to the thief zone and allow the well to be effectively killed from the surface. Gunk and invert-Gunk are used with the same goal in mind. Gunk is mixture of cement, bentonite and diesel fuel. The mixture is stable until mixed with any type of water-based mud. Upon mixing with water, Gunk forms a thick gelatin plug.<sup>12</sup> Salt Gunk has guar and lost circulation material and reacts in the same way with saltwater.<sup>12</sup> Invert-Gunk is made with amine clay and water and reacts with oil-based muds. All of the Gunk products have a "bread-like" texture that is very drillable. However, long Gunk plugs are capable of handling large differential pressures.<sup>12</sup> The problem with Gunk and cement is an obvious one: they are permanent. If the plug is placed wrong, whether in the drillstring or above the thief zone, the damage is considered irreparable. A poorly spotted plug usually results in loss of the blowing wellbore and necessitates a relief well. Even a properly spotted plug can cause disastrous results. If the pressure behind the plug builds up high enough, a new thief zone may be created. However, because the plug is fairly permanent, wellbore or vertical intervention is not an option after a plug has been pumped. Thus, the more expensive and time-consuming option of a relief well must be used.

Bridging and depletion of the blowout are not active methods for blowout control. However, since they do account for the majority of kills, a mention is needed. Some studies have shown that blowouts likely to bridge will do so in 24 hours.<sup>13</sup> Once the 24 hours mark is reached, bridging will not occur unless triggered by another intervention method through active bridging.<sup>13</sup> The bridging will occur due to factors including nearwellbore pressure draw down, erosion of wellhead equipment, and formation failure due to high flow rates. The first simulator to be developed in the study this report is part of deals exclusively with bridging and will cover this in much greater detail. Passive bridging is an always hoped-for solution because it does not require any work, and the only resulting economic losses are from the blowout itself. This being said, most blowout contingency plans require a planning and observation period after evacuation of the rig. During this period, the well is monitored for bridging. This negates a need to allow more time in a contingency plan for the wellbore to bridge.

Bullheading and momentum kills are very similar in process. Bullheading attempts to pump into the wellbore, push the blowing fluids back into the reservoir and finish with a wellbore full of kill-weight fluid.<sup>8</sup> Bullheading is the most common method of containing onshore blowouts, and ranks third in OCS blowouts.<sup>7</sup> The reason behind this statistic is the simplicity of the method and the ready availability of the necessary equipment on any drilling rig. The only problem with bullheading is the formation typically fractures during the process. If the mud thief zone is too shallow, not enough hydrostatic pressure will exist to control the blowout. Therefore, this method is best suited to deeper cased holes or blowouts with short open-hole intervals.<sup>8</sup> In ultra-deepwater situations, some leniency concerning the thief zone depth is given due to the hydrostatic pressures exerted by the seawater. This hydrostatic pressure may also save a bullheading operation that fractures a shallow formation.



Kill Fluid Momentum > Blowout Fluid Momentum

Fig. 1.14 – Momentum kill theory.<sup>8</sup>

Momentum kills are a compromise between dynamic kills and bullheading. In fact, many dynamic kill attempts mentioned in literature are actually momentum kills. Momentum kills are reserved for blowouts where the weight of a fluid alone can not force the fluid down the blowing wellbore. The purpose of the momentum kill is to force the kill fluid down the wellbore by creating a momentum overbalance. Using higher pumping rates in conjunction with high mud weights, the momentum of the blowing fluid can be overcome.<sup>8</sup> Of course, once the blowing fluid has been forced back into the reservoir, adequate hydrostatic head must be maintained to keep the blowing formation in check. Momentum kills can be difficult to model, as some simulators do not recognize that, even though the theoretical hydrostatic pressure of a column of kill mud may kill a well, the mud is unable to make it down the blowing wellbore based on weight alone. This report will not cover momentum kills for ultra-deepwater due the simulator's inability to model them and because the setup and planning for a momentum kill is essentially the same as a dynamic kill.

Relief wells can be drilled with several objectives in mind. The first objective is that they never be used. This is simply due to the time and cost involved in a relief well. Usually relief wells are spudded early on in a blowout when the possibility they might be

needed arises. While relief wells are being drilled, surface intervention techniques are still being attempted. If the surface intervention succeeds before the relief well total depth (TD) is reached, the relief well will often be drilled and completed as a producing well.<sup>14</sup> If the relief well is used to control the blowout, waterflooding, depletion, momentum kills, and dynamic kills are the methods used to kill the blowout.

If the relief well reaches TD it may be used for several purposes. All relief wells drilled before the late 1970's and some of the relief wells drilled after deal with the reservoir in two ways: flooding and depletion.



Fig. 1.15 – Blowout control through flooding is a lengthy process.<sup>8</sup>

Killing a blowout through flooding is a lengthy process. This was first accomplished in 1933 and was the standard use of relief wells until the 1970's.<sup>15</sup> The basic concept is to pump a volume of water into the reservoir that is significant enough to severely reduce the relative permeability of hydrocarbons to water.<sup>8</sup> **Fig. 1.15** shows the waterflood does not take as long as a normal waterflood to reach the blowing well. This phenomenon is due the high flow rate of the blowing well causing the waterflood to favor a flow path towards the blowing well.<sup>8</sup> This reduces the time needed to achieve

breakthrough. The waterflood needs to achieve breakthrough before the blowout can be killed. The bottomhole locations of the blowing wellbore and relief well are shown in **Fig. 1.16**. Three problems exist with implementing a waterflood kill. The first is obtaining an accurate reservoir model, which may not be possible with blowouts on exploration wells. The second concern is that the reservoir permeability must be high enough that the waterflood occurs in a reasonable amount of time and with a reasonable volume of water reaching breakthrough. Finally, the third problem is with pressures. If the fracture pressure is exceeded and a fracture begins to propagate, the waterflood will not be drawn towards the blowing well, but away from it along the fracture. On the other hand, the waterflood pressure must be high enough to overcome the static reservoir pressure in order to drive the waterflood.<sup>8</sup>



Fig. 1.16 – Depletion kill or waterflood relief well bottomhole location.

A depletion kill is a simple process entailing exactly what the name implies. For a depletion kill relief well, the relief well bottomhole locations are placed as close to possible to the blowing well open-hole section as seen in **Fig. 1.16**. The relief well is then turned into a producing well, with production rates as high as flaring or emergency sale lines can handle. The idea behind these actions is that the relief well production will deplete the reservoir around the blowing well and cause the blowout flow to subside or stop.<sup>8</sup> Surface intervention methods would then be applied to permanently kill the blowing well.

In 1978, Mobil Oil had a 400 MMscfd gas blowout of a well in Indonesia's Arun field. Instead of taking the expected one year or more to kill, the blowout was controlled in 89 days.<sup>16</sup> A new technique invented by Mobil Oil engineers was the reason for the quick kill: dynamic kill. The dynamic kill method is applied through a relief well which has intersected and entered the blowing wellbore as close as possible to the flowing zone as seen in **Fig. 1.17**. The dynamic kill method uses a kill fluid, typically salt water if offshore, which by itself does not have sufficient hydrostatic head to control the influx. However, when the kill fluid is pumped through the relief well and up the annulus of the blowing well, high pump rates create additional frictional pressure. This frictional pressure supplements the hydrostatic pressure of the kill fluid creating a pressure overbalance which stops the influx.<sup>8</sup>



Fig. 1.17 – Relief intersection point allows maximum use of frictional pressure.<sup>17</sup>



**Fig. 1.18 – Control of large blowout completed using dynamic kill in approximately 12 minutes.**<sup>18</sup>

**Fig. 1.18** illustrates the dramatic kill sequence of blowout in Syria killed dynamically. The series of pictures in **Fig. 1.18** occurred over the span of twelve to fifteen minutes and shows graphically how several months of drilling a relief well culminates in a brief period of pumping kill fluid at high rates. Once control of a blowout has been gained with the light kill-fluid, a heavier mud is then pumped into the relief well. This mud should be capable of statically controlling the well with its hydrostatic pressure.

Dynamic kills are ideal for several situations. The first type of situation is one like the 1978 Arun field blowout. The key indicator for the suitability of a dynamic kill

was the high flowing rate. Some blowouts have even required multiple relief wells pumping simultaneously due to extreme blowout flow rates.<sup>19, 18</sup> In these wells, it is not possible to get the equipment in position for other kill methods such as bullheading, much less attempt to enact these other techniques. The dynamic kill method theoretically allows for multiple wells to control an infinitely large blowout. While in reality this is not practical due to pumping and other equipment requirements, the fact remains that the dynamic kill technique is often the best choice in high-flow rate or hard to access blowouts.

For other cases, the fracture gradient may be relatively low. Methods such as bullheading and momentum kills as well as surface intervention methods may raise wellbore pressures above the fracture pressure. This could lead to an underground blowout and complicate the blowout kill process. The dynamic kill method uses pump rates as the final push to overcome the wild well bottomhole pressure. Thus, the pump rates can be manipulated to stay within narrow pore pressure and fracture pressure differentials.<sup>8</sup> In fact, the dynamic kill itself typically causes minimal downhole damage. The subsequent static control method can be tailored to keep the wild well in production condition. In this manner, the operator can restart production either through the relief well or the wild well in a relatively short period of time.

The path for the flow of the kill fluid is down through the annulus of the relief well and out and up the wellbore of the wild well. Another possible path, particularly in deepwater is down a drillstring in the wild well, and back up the wild well annulus. This is because the dispersal of the blowing fluids is sufficient to allow well control vessel operation directly above the blowing well.<sup>20</sup> These paths are theoretical paths, as there is evidence fluid fallback occurs.<sup>21,22</sup> This is discussed further in the "Future Research" section of this thesis. However, the assumption that no fluid fallback occurs is a proven, valid assumption that merely overestimates the kill-rates required.<sup>21,22</sup>

### 1.5 - Kill Method Selection

Fighting blowouts is best left to specialists with years of experience. These specialists make decisions based not only on the parameters of the situation, but also on their personal experience. That being said, although there is an art to choosing a blowout method, there is a definite decision making process in selecting a blowout control method. **Figs. 1.19 (a-d)** show a kill method selection flowchart from Adams and Kuhlman<sup>9</sup> which shows the decision making process. Certainly the process is an exhaustive one which requires a lot of experience and knowledge.



Fig. 1.19 (a) – Example kill method selection flowchart I.<sup>9</sup>



Fig. 1.19 (b) – Example kill method selection flowchart II.<sup>9</sup>



Fig. 1.19 (c) – Example kill method selection flowchart III.<sup>9</sup>



Fig. 1.19 (d) – Example kill method selection flowchart  $IV.^9$ 

## CHAPTER II RESEARCH BACKGROUND

### 2.1 Proposal Background and Objectives

This study is part of a larger overall study originally submitted to the United States Minerals Management Service (MMS)<sup>23</sup> and later to the Research Partnership to Secure Energy for America<sup>24</sup> (RPSEA). The intent of the study was to develop up-todate blowout prevention and control procedures for ultra-deepwater through modeling. The last major works in this area were publications such as DEA-63: Floating Vessel Blowout Control published by Neal Adams Firefighters in 1991.<sup>13</sup> These studies concentrated on water depths from 300 to 1500 feet with some slight consideration given to water depths greater than 1500 feet. At the time they were written, wells in water depths over 5000 feet were considered "one-off" wells that required years of planning and design. Publications covering this topic put forth the idea that a relief well for one of these "one-off" wells might not be realistic due to planning required and technology at the time of publishing.<sup>13</sup> However, in the past 13 years many advances in the deepwater drilling industry have been made and the limiting assumptions used in these studies are no longer valid. Since 1992, 1583 wells have been drilled in water depths exceeding 1500 feet and 328 wells were drilled in water depths greater than 5000 feet.<sup>25</sup> On January 7<sup>th</sup>, 2004, Chevron U.S.A., Inc. reached total depth on a Gulf of Mexico Well in 10,011 feet of water, a new world record.<sup>25</sup> Studies done in the early 1990's also were not in a position to account for the many new drilling technology developments which have taken place over the last 13 years such as dual gradient drilling.<sup>26-28</sup> In short, studies to date are comprehensive concerning floating vessel blowout control and are still valid for the majority of offshore drilling and blowout situations. However, they do not cover all of the drilling and potential blowout scenarios possible today. Therefore, the purpose of this study was not to supplant these studies, but to supplement them and other industry blowout prevention and control best practices to cover the new drilling environments and technologies which exist today.

The proposed overall study was to begin the development of two simulators. The first simulator is concerned with the bridging tendencies of ultra-deepwater blowing wells. Deepwater Gulf of Mexico sediments are widely known to be unconsolidated. The prevailing theory is that the majority of blowouts in ultra-deepwater would therefore bridge and surface or subsurface intervention methods would not be necessary.<sup>24</sup>

The next simulator, COMASim, models the initial blowout conditions and the subsequent dynamic kill necessary to kill the wild well. The simulator is capable of modeling either a drillstring kill or relief wells to kill the blowout. A key feature of the simulator is that it is written in Java code which allows it to be easily accessed from the internet. The initial version of the simulator and a report were described by Oskarsen in 2004.<sup>29</sup>

The final portion of the study is to develop a series of best practices for ultradeepwater drilling and blowouts. The initial intent was to develop the simulator first, then develop the best practices. However, due to longer than expected simulator development times as well as other time constraints, this part of the study began despite the simulators not being fully completed and debugged. The new intent of this project was to assist in the final development and debugging process of COMASim by running case histories and theoretical base cases as best practices were developed.

#### 2.2 Thesis Objectives

The objectives of this study were as follows:

- Validate the dynamic kill simulator through test cases and case histories
- Run test cases through dynamic kill simulator (COMASim)
- Using simulator results develop best practices recommendations for ultradeepwater blowout prevention and control.

The validation of the simulator took place using two methods. The first involved running several case histories through the simulator. Attempts were made to match the simulator output with the real-life data. In the likely event the simulator output did not match the case history, differences were pinpointed. Then, the reasons for these differences were identified. When using case histories, there always exists the distinct possibility that real-life data was recorded erroneously. When controlling a blowout, minimization of risk and loss is of utmost importance, while gathering data for future research is secondary. Therefore, if no case histories' results were able to be matched using the dynamic kill simulator, the study moved on to the next option for validation. This step involved using largely theoretical cases' results as comparison material. Although invented, these theoretical cases were realistic in wellbore and drillstring sizing and reservoir properties. However, some type of validation needed to occur, whether theoretical or case-history based in order for us to have any confidence in the later results.

The next steps in this portion of the study, running base cases, were a simple yet time consuming process. Base cases were chosen using a range of total vertical depth (TVD), water depth, wellbore size and drillstring size values. These base cases were then input into the dynamic kill simulator first to establish pressure profiles for the initial blowing conditions. Once the initial conditions had been established, the next step was to find a dynamic kill rate in COMASim based on several relief well or drillstring values. The last step in this phase of the study was to develop a set of ultra-deepwater best practices. These were conceptual best practices. This was because COMASim is a simple simulator with a relatively quick run time. The best practices dealt with new technologies such as dual-gradient drilling as well as new environments, specifically water depths from 5000 feet to 10000 feet deep. Wherever possible, the best practices were developed in such a way that the end-user could seamlessly integrate the new best practices with those already in place throughout the industry.

### 2.3 COMASim Background

COMASim is a Java code based program simulating blowout initial conditions and dynamic kill requirements. The Java programming language was selected due to its versatility. Java is a language with platform independence. This gives potential COMASim users the capability to run COMASim from various platforms and operating systems. Of particular interest to potential users is the fact that COMASim is capable of being run from a web-based application.<sup>29</sup>



Fig. 2.1 – Screen shot of COMASim interface shows simplicity of operation.

COMASim's interface is designed for simple operation that would require a minimum of page refreshes during web operation.<sup>29</sup> **Fig. 2.1** illustrates the single page interface with both the input and output on the same page.

### 2.4 Simulator Calculations

COMASim calculates the initial conditions, then calculates the required flow rate of kill fluid for a dynamic kill. The initial conditions are based on multiphase calculations and use the concept of system or nodal analysis which is illustrated in **Fig. 2.2**. Once the IPR curve has been determined for a blowing wellbore, the kill rate can be determined. Successive iterations of a system curve encompassing the blowing wellbore during the kill operation will converge to a final solution. This is shown graphically in **Fig. 2.3.** The initial inflow performance relationship curve or IPR curve is calculated using a multiphase model.



Fig. 2.2 – Graphical example of general nodal analysis calculation.<sup>29</sup>



Fig. 2.3 – Example of use of nodal analysis to find required dynamic kill rate.<sup>29</sup>

There are three possibilities for multiphase models, one of which is selected by the user:

**RELIEF WEL** 

- Hagendorn and Brown
- Beggs and Brill
- Duns and Ros



Fig. 2.4 – No drillstring in wild well.<sup>29</sup>

**Fig. 2.5 – Drillstring dropped.**<sup>29</sup>

INFLUX ZONE

SEAFLOOR

BOP



Fig. 2.6 – Drillstring hanging from BOP.<sup>29</sup> Fig. 2.7 Drillstring used to kill well.<sup>29</sup>

In addition to the multiphase model selection, the user also chooses between liquid or gas reservoir and the exit point, either to the mudline or to the surface. Drillstring options for the wild well cover all possibilities:

- No drillstring (**Fig. 2.4**)
- Drillstring fallen to bottom (any length possible) (Fig. 2.5)
- Drillstring hanging from BOP (any length possible) (Fig. 2.6)
- Drillstring snubbed in to attempt dynamic kill (any length possible) (Fig. 2.7)

| Marine<br>Riser                     | Riser OD                         | Riser ID                           | Heat transfer coefficient                            | Surface<br>roughness                 |                                            |                                 |                                   |                                            |
|-------------------------------------|----------------------------------|------------------------------------|------------------------------------------------------|--------------------------------------|--------------------------------------------|---------------------------------|-----------------------------------|--------------------------------------------|
| Riser<br>Buoyancy<br>Material       | Material<br>OD                   | Depth of<br>Material               | Heat transfer coefficient                            |                                      |                                            |                                 |                                   |                                            |
| Wild Well<br>Drillstring            | Drillpipe<br>OD                  | Drillpipe<br>ID                    | Drillpipe<br>length                                  | Drillpipe<br>roughness               | Drill collar<br>ID                         | Drill<br>collar OD              | Drill<br>collar<br>length         |                                            |
| Wild Well<br>Drillstring<br>Options | No<br>drillstring                | Drillstring<br>hanging<br>from BOP | Drillstring<br>dropped to<br>bottom                  | Kill with<br>drillstring             |                                            |                                 |                                   |                                            |
| Wild<br>Wellbore<br>Geometry        | Total<br>vertical<br>depth       | Casing<br>depth from<br>MSL        | Water depth<br>from MSL                              | Open hole<br>ID                      | Open hole<br>roughness                     | Casing ID                       | Casing roughness                  |                                            |
| Formation<br>Fluid<br>Options       | Gas and<br>oil<br>gravities      | Bubble<br>point<br>pressure        | H2S, C02, N2 concentrations                          | Water<br>gravity and<br>salinity     | Specific<br>heat of<br>formation<br>liquid |                                 |                                   |                                            |
| Reservoir<br>Properties             | Average<br>reservoir<br>pressure | Exit<br>pressure                   | Permeability                                         | Drainage<br>area                     | Height of reservoir                        | Gas Oil<br>ratio                | Water cut                         | Flowing<br>time of<br>blowout              |
| Thermal<br>Properties               | Thermal gradient                 | Exit<br>temperature<br>of fluid    | Constant<br>volume and<br>pressure<br>specific heats | Formation<br>thermal<br>conductivity | Formation<br>thermal<br>diffusivity        | Heat<br>transfer<br>coefficient | Joule-<br>Thompson<br>coefficient | Straight-<br>line or<br>Newtonian<br>fluid |
| Kill Fluid                          | Mud<br>weight                    | Yield point                        | Plastic<br>viscosity                                 | Salinity                             | Surface<br>temperature<br>of kill fluid    |                                 |                                   |                                            |

Table 2.1 – Input options for COMASim.

The term simple has been applied to COMASim in this section several times. It can certainly be seen from **Table 2.1** that this is a relative term. COMASim's available inputs are more than adequate to handle the large majority of case histories and test cases available. In fact, as with most simulators, using COMASim will require users to assume values for many parameters. A further investigation into the programming and theory behind COMASim are available in Oskarsen's 2004 report.<sup>29</sup>
### CHAPTER III COMASIM RESULTS AND ANALYSIS

#### **3.1 COMASim Simulation Input Values**

The input values for COMASim were chosen after careful consideration. First, I chose a gas blowout as the default. As will be shown later on, COMASim was calibrated with a pseudo case history from Watson, et al.<sup>8</sup> Since I was unable to obtain a verification of COMASim from any other sources, I based the simulation run inputs on the Watson case that verified the simulator. This case was a gas blowout which allowed me to use the gas reservoir option. Since the ultimate goal of this study is to consider deepwater blowouts, I chose the "exit to mudline" rather than the "exit to atmosphere" exit point. In a deepwater blowout situation, the drillship will disconnect the riser and evacuate the area to avoid danger to equipment and personnel. The ratings and locations of BOPs and risers are the main reasons that drillships will move off the location in the event of a blowout.

BOPE (blowout preventer equipment) is normally located on the seafloor for floating drilling. This reduces the weight of drillstring requiring support as well as reducing the drillship's weight. Risers are also not rated for high pressures. This allows the riser assembly to be lightweight, increasing the capacity of the drillship to store longer lengths of riser material.

I chose the formation fluid to be a pure gas with no  $H_2S$ ,  $CO_2$ , or  $N_2$  content and having a specific gas gravity of 0.6. These values were again chosen to coincide with the matching case history. In the Watson, et. al.<sup>8</sup> example, the pore pressure gradient is 0.624 psi/ft. I decided to round this gradient off to 0.6 psi/ft and use it for all of my cases. Thus, I have a constant pore pressure gradient regardless of the TVD or water depth. To match the initial blowing conditions of the Watson case history, I manipulated the permeability, drainage area and pay zone thickness and arrived at values of 10 md, 10,000 acres and 100 ft respectively. These are not typical values for Gulf of Mexico ultra-deep water reservoirs. A typical reservoir might have values of 100 md and only a thousand acre drainage area. However, this was the only way to get the simulator to match up with the Watson example. Therefore I decided to keep the values the same as the only validating example I currently had. I kept the same values for the COMASim simulation runs with the exception of the reservoir height. The high cost of developing deepwater reservoirs currently means that only the larger reservoirs are being developed. I changed the reservoir height to 100 ft to more accurately depict a typical deepwater situation.

The blowing wellbore was setup to simulate drilling ahead after setting casing. During the drilling process, casing is often set before abnormally pressured zones are entered to protect other normally pressured zones. I assumed that a blowout while drilling ahead would be encountered in one of these abnormally pressured zones. I used a casing shoe depth of 500 feet less than the TVD to simulate this situation. I simulated three different casing sizes to account for different times in the drilling process. The first size I used was 8 5/8 inch OD, 44 lb/ft P-110 grade casing.<sup>30</sup> This size represents the production tubing in deepwater producing well. This casing size is slightly larger than is typically associated with production tubing, however deepwater wells will have multilateral construction and fairly high flow rates necessitating the larger casing sizes. The second size I used was 10 <sup>3</sup>/<sub>4</sub> in OD, 60.7 lb/ft, P-110 grade casing.<sup>30</sup> This size would represent the liner or last string of intermediate casing in a large deepwater well. With an ID of 9.66 inches, bits and completion tools for multilateral construction could pass through leaving a small drift margin. The last casing size I used was 12 ¾ inch OD, 53 lb/ft. casing.<sup>31</sup> This is a non-typical size of casing, however I used it to keep the size difference fairly constant between the three casing sizes. This casing is a lighter weight casing suitable for lower pressured formations and could be used as surface casing in deeper holes due to its light overall weight. This light overall weight would guard against the parting of the casing string as it was lowered into the hole. The hole sizes were calculated from the Schlumberger Field Data Handbook to be 7.375 inches, 9 inches and 11 inches respectively.<sup>31</sup> The drillstring in this wellbore varied in length at 100%, 50%, and 25% of the TVD. I chose a 5 1/2 inch OD, 24.7 lb/ft drillpipe. The

slightly heavier 5 <sup>1</sup>/<sub>2</sub> in. drillpipe was chosen to account for increased downhole pressures as well as being able to support long drillstring lengths without parting.

The surface temperature was assumed to be 70 °F as stated in the Watson example. The geothermal gradient was 1.5 °F/100 ft. with an exit temperature of the flowing fluid of 120 °F. The kill fluid weight was assumed to 8.5 lb/gal. The kill fluid was assumed to be brackish water. Pure Gulf of Mexico seawater hydrostatic can be considered to be slightly higher in the area of 8.6 lb/gal. However, I chose a slightly lower weight to build a safety factor into my results. The higher weight of seawater would result in a lower kill rate. The characteristics of the relief well needed to deliver this fluid depended on the TVD of the blowing well. I assumed that the relief well always intersected at the TVD of the blowing well. From there, I used ratios of 1, 1.5 and 2 for the Measured Depth/TVD of the relief well. For each of these ratios, I calculated kill rates for Annular ID/ drill pipe (DP)<sub>relief well</sub> OD ratios of 2 and 1.5. I assumed a constant drillpipe OD of 5 inches, meaning the annular ID was either 10 inches or 7.5 inches. The 10 inch annular ID scenario is much more likely in a real life situation. The planning of the relief well would include attempting to get the largest possible casing size at the intersection of the relief well and blowing well. This would maximize the flow capability of the relief well and minimize the standpipe pressure on the relief well. However, I included the 7.5 inch annular ID because unforeseen problems in the drilling of the relief well might necessitate the use of an additional casing string, thus lowering the annular clearance in the relief well. After investigation, I decided against the use of a drillpipe flow path in the relief well.<sup>32,33</sup> The drillpipe flow path is typically only used when snubbing into the blowing wellbore and attempting a dynamic kill without the drilling of a relief well. The reduction in available flow caused by using a drillpipe flow path would make many relief wells insufficient to control the blowouts.

After completing several hundred simulations, I realized there was a need to allow multiple relief wells. After working with Oskarsen to improve COMASim, it was made capable of calculating kill parameters for multiple relief wells from 1 to 99. I initially ran each simulation for a single relief well. If the standpipe pressure exceeded 15000 psi, then I continued adding relief wells until the 15000 psi threshold was met. After 10 relief wells, I stopped the simulations due to the high improbability that 10 or more relief wells would ever be drilled.

I used the straight line temperature model and Hagedorn and Brown multiphase flow model because these models gave the most consistent results over a broad range of situations.<sup>34</sup>

#### **3.2 COMASim Simulation Procedure**

The simulation runs were completed using a Dell laptop running Windows XP. The COMASim initial condition simulations were completed according to **Appendix A**. The runs were first split into 190 series. These series were based on drillstring status, wild well TVD, water depth, casing size and casing length. The data gathered in these 190 series included flowing rates and a pressure profile for each set of parameters. The results are shown in **Appendix B** and **Appendix D**. Once the initial condition runs were completed, 777 different blowout and relief well scenarios were run through COMASim. These scenarios were based on the original 190 initial conditions. Each of the series blowouts' were killed with various types of relief wells. The relief well Annular ID to drillpipe OD ratio and measured depth to intersection point ratio were varied. The minimum kill rate, stand pipe pressure and horsepower were recorded in **Appendix C** and **Appendix E**.



Fig. 3.1 – Typical 15000 psi fracturing vessel.<sup>45</sup>

In the event that the stand pipe pressure exceeded 15000 psia, further simulations were run to determine the number of relief wells needed to bring the stand pipe pressure down to 15000 psia or less. If 10 relief wells or more were needed, the simulations were stopped. The 15000 psi threshold was determined after a search for large offshore pumping units. All of the major supplies of offshore fracturing equipment have vessels similar to **Fig. 3.1** which are listed at a maximum of 15000 psi working pressure.<sup>35</sup>

#### **3.3 Validation of COMASim**

An extensive blowout data collection effort was undertaken at the beginning of this study. Sources of data were MMS incident and investigation reports, Matthew Daniels blowout data, Larry Flak of Boots and Coots and the Skalle, et al. database courtesy of Dr. A.L. Podio. Unfortunately, in all the available blowout case histories, either COMASim was unable to match the results or the case histories were so lacking in data that no attempt at matching was possible. While this was a setback, it was not unexpected. For example, the case histories courtesy of Larry Flak were of extremely high blowout rates from unusually productive reservoirs.<sup>36</sup> COMASim was programmed initially based on theory. So, since no simultaneous validation and programming solutions work has been attempted, the unusual case histories that are available are not able to be simulated. Future validation efforts should be focused on blowout case histories instead of theoretical validation.

COMASim has been validated theoretically. The initial condition curves validated by replicating the Beggs and Brill pressure profiles in *Production Optimization Using NODAL<sup>tm</sup> Analysis*.<sup>29</sup> The initial condition flow rates and kill rates were validated using examples from *Advanced Well Control: SPE Textbook Series Vol. 10.*<sup>8</sup> The blowout data given is **Table 3.1**.

| Wellbore Configuration                |                        |
|---------------------------------------|------------------------|
| Vertical depth                        | 1770 ft                |
| Perforation midpoint depth            | 11500 ft               |
|                                       | 7 in., 29.0 lbm/ft, P- |
| Casing description                    | 110                    |
| Casing nominal ID                     | 6.184 in.              |
| Casing capacity                       | 0.037 bbl/ft           |
| Perforation quantity and number       | 50 X 0.45 in           |
| Blowout Data                          |                        |
| Formation fluid                       | Single-Phase Gas       |
| Specific gravity                      | 0.6                    |
| Specific heat ratio                   | 1.27                   |
| Gas temperature at exit point         | 120 °F                 |
| Static pore pressure                  | 12 ppg equivalent      |
| Other Known or Assumed<br>Information |                        |
| Fracture initiation gradient at perfs | 0.82 psi/ft            |
| Fraction propagation gradient         | 0.73 psi/ft            |
| Geothermal wellbore temperature       | 70 °F + 1.5 °F/100 ft  |
| Standard Measurement Conditions       |                        |
| Pressure                              | 14.65 psia             |
| Temperature                           | 60 °F                  |

Table 3.1 – Blowout information for COMASim validation problem.<sup>8</sup>

Example 10.3 in *Advanced Well Control: SPE Textbook Series Vol. 10* calculates the critical flow rate of gas be 23.6 MMscf/D. COMASim gives flow rate of 24.95 MMscf/Day when run with the data in **Table 3.1**. Example 10.6 deals with relief well pumping requirements. *Advanced Well Control: SPE Textbook Series Vol. 10* deals in hand calculations throughout all of its examples and Example 10.6 is no exception. The method used in the text is a simple hand calculation known with the final answer

obtained with a zero-derivative solution.<sup>8</sup> This type of calculation significantly over calculates the dynamic kill rate as shown in **Fig. 3.2**. A detailed discussion of this topic is available in Oskarsen (2004).<sup>29</sup>



Fig. 3.2 – Comparison of solution types shows zero-derivative curve grossly over calculates the dynamic kill solution.<sup>29</sup>

COMASim calculated a dynamic kill rate of 78.5 bbl/min using a multiphase solution. Although Watson, et al. did not provide a multiphase solution to Example 10.6, the answer fits with the relationship between the zero-derivative answer provided and the multiphase solution COMASim calculated. Example 10.7 in *Advanced Well Control: SPE Textbook Series Vol. 10* provides a perfect match in with dynamic kill rates. The problem statement in Example 10.7 uses data in **Table 3.1** with several exceptions concerning the relief well. The measured depth (MD) of the relief well is changed to 11,950 feet and the annular ID and drill pipe OD are 8.535 inches and 3.5 inches respectively. Since Example 10.7 deals with simple hand pressure calculations, a kill rate of 100 bbl/min is given in the problem statement as well. Apparently Watson, et al. used a multiphase model to make the problem more realistic. When COMASim ran the given data, it too came out with a dynamic kill rate of exactly 100 bbl/min. The agreement in values with Examples 10.3, 10.6 and 10.7 from *Advanced Well Control: SPE Textbook Series Vol. 10* indicates COMASim is theoretically sound. Therefore, the COMASim results discussed in this report can be viewed with a high degree of confidence.

#### **3.4 COMASim Initial Condition Analyses**

COMASim was used to simulate 190 separate blowout situations. Each simulation resulted in a flowing rate and a pressure profile which are recorded in **Appendix B**. From these simulations several distinct trends were extracted. These trends can be predicted by anyone with a working knowledge of wellbores. By taking into account the frictional pressure losses and imposed pressures, the effect on a wellbore pressure profile can be predicted. However, while these trends are not groundbreaking, they do indicate COMASim is calculating the initial conditions of the blowout correctly.

COMASim's data output presented a significant problem during data collection. The graphing function for COMASim graphs a curve based on a large number of data points creating a smooth curve.

| Ele       Calculate       Galantista       Initial Condition       Minimum Kili Rate       Clear Graph         Imputs       Results       Initial Condition       Minimum Kili Rate       Clear Graph         Imputs       Results       Results       Results       Clear Graph         Imputs       Results       Results       Results       Clear Graph         Imputs       Results       Results       Results       Clear Graph         Voltom MSL [t]       S000       2277/44       Results       Clear Graph         Voltom MSL [t]       S000       2471/07       Results       Clear Graph         Voltom MSL [t]       S000       2471/07       Results       Results         Voltom Results<                                                                                                                                                                                                                                                                                                                                            | 🅵 ComaSim: A Dynamic K           | ill Simulator  |                 |                |                       |                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------|-----------------|----------------|-----------------------|----------------------------|
| East     Initial Condition     Minium Kill Rate     Clear Grain       Riser/Return Line     Olser/Nation     Minium Kill Rate     Clear Grain       Riser/Return Line     Olser/Nation     Minium Kill Rate     Clear Grain       Nater Berth Toon MSL (T)     Faller Weil     Solo     2,27744     Solo       Weilbore Geometry     Kill Faller     Results     No     Solo     2,471077       Water Depth Toon MSL (T)     5,000     2,471077     Solo     2,471077       Water Depth Toon MSL (T)     1,000     5,800     2,471077     Solo       Voor Home Deimeter (In)     9     9     Solo     2,471077       Voor Home Deimeter (In)     9     9     Solo     2,471077       Open Hole Deimeter (In)     9     9     Solo     3,568.456       Open Hole Deimeter (In)     9     9     9     9       Open Hole Deimeter (In)     9     9     9     9       Open Hole Roughness (In)     0.12     9     9     9       Alsolute Pipe Roughness (In)     0.12     9     9     9       Open Hole Roughness (In)     0.12     9     9     9       Alsolute Pipe Roughness (In)     0.12     9     9     9       Open Hole Roughness (In)     0.12 <th>File Calculate Graphs</th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                          | File Calculate Graphs            |                |                 |                |                       |                            |
| Inputs       Reality                                                                                                                                                                                                                                                      |                                  | Exit           | Initial Condit  | ion Minimum    | Kill Rate Clear Graph |                            |
| Riser Return Line     Display in Word Weil     No       Formation Fluid     Residue line     No       Formation Fluid     Residue line       Wollbore Gometry     Kill Fluid       Wollbore Gometry     Kill Fluid       Wollbore Gometry     Kill Fluid       Worden Dependies     Solo     227744       Wollbore Gometry     Kill Fluid       Reservice     Solo     2471077       Worden Dependies     Solo     2471077       Worden Dependies     Solo     2471077       Worden Dependies     Solo     2471077       Worden Dependie     Solo     2471077       Worden Dependies     Solo     247143       Absolute Plee Roughness (in)     0.00055     9000     3360413       Open Hole Roughness (in)     0.12     9800     3568456       Open Hole Roughness (in)     0.12     9800     37493       Absolute Plee Roughness (in)     0.12     9800     37493       Open Hole Roughness (in)     371361 <t< th=""><th>-Inputs</th><th></th><th>Results</th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                 | -Inputs                          |                | Results         |                |                       |                            |
| Formation Fluid         Relief Weil           Weilbone Geometry         Kill Fluid           Weilbone Geometry         Kill Fluid           Reservoir         Thomas L (t)         13000         2,277,144           Water Depth from MSL (t)         13000         5,800         2,471,077           Water Depth from MSL (t)         13000         5,800         2,471,077           Water Depth from MSL (t)         13000         5,800         2,471,077           Water Depth from MSL (t)         13000         7,400         2,930,32           Open Hole Dismeter (in)         9         9,800         3,668,456         9,000           Open Hole Dismeter (in)         9         9,800         3,733,061         9,000           Massular Pipe Rouginess (in)         0,0005         9,900         3,733,061         9,000         3,733,061           Massular Pipe Rouginess (in)         0,0005         9,900         3,733,061         9,000         3,733,061           Hose Rouginess (in)         0,0005         9,143,03         9,000         3,733,061         9,000         9,000           Hose Rougine Roug                                                                                                                                                                   | Riser/Return Line D Ustring in   | Wild Well      | Depth [ft]      | Pressure [psi] | x10 <sup>3</sup>      |                            |
| Welltone Geometry         Kill Fluid           Reservoir         Thermal Properties           100 from MSL [rt]         [3000           Water Depth from MSL [rt]         [3000           Open Hole Diameter [n]         [9           9.000         3,148.081           Absolute Pipe Roughness [n]         [0.0065           Open Hole Roughness [n]         [0.12           9,000         3,568.456           Open Hole Roughness [n]         [0.12           9,000         3,568.456           Open Hole Roughness [n]         [0.12           9,000         3,773.081           Hogendorn and Brown         [1,400           11,400         3,773.081           Edgendorn and Brown         [1,400           Asservoir         [2,200           Asservoir         [2,200           Asservoir         [2,200           Asservoir         [2,200           Asservoir         [2,200 <td< th=""><th>Formation Fluid</th><th>Relief Well</th><th></th><th></th><th>/</th><th></th></td<>                                                                                                                                                                                                                                                                            | Formation Fluid                  | Relief Well    |                 |                | /                     |                            |
| Reservoir         Thermal Properties         5800         2,471.077         580         2,471.077           VO from MSL [rt]         (5000         2,471.077         5800         2,471.077         5800         2,471.077           Water Depth from MSL [rt]         (5000         2,705.452         5800         2,705.452         5800         2,705.452           Open Hole Diameter [m]         9         9         3,903.31         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9 <t< th=""><th>Wellbore Geometry</th><th>Kill Fluid</th><th>5,000</th><th>2,227.744</th><th></th><th></th></t<>                                                                                                                                                                                                                                                 | Wellbore Geometry                | Kill Fluid     | 5,000           | 2,227.744      |                       |                            |
| TVD from MSL [rt]         13000         5,800         2,471.077           Water Depth from MSL [rt]         5000         2,705.452         5,800         2,705.452           Casing Depth from MSL [rt]         5000         3,7400         2,930.32         6,600         2,705.452           Casing Depth from MSL [rt]         12600         3,148.091         8,00         3,148.091         6,600         3,148.091           Open Hole Diameter [m]         9.66         3,148.091         3,68.456         9,000         3,568.456         9,000         3,568.456         9,000         3,773.081         9,000         3,773.081         9,000         3,773.081         9,000         3,773.081         9,000         3,773.081         9,000         3,743.93         9,000         3,743.93         9,000         3,773.081         9,000         3,743.93         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000         9,000 <th>Reservoir Thermal</th> <th>Properties</th> <th></th> <th></th> <th>-6.0</th> <th></th>                                                                                                                         | Reservoir Thermal                | Properties     |                 |                | -6.0                  |                            |
| Water Depth from MSL [T]         13000         6,600         2,765.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T/D from MCI [#]                 | 0000           | 5,800           | 2,471.077      | _                     |                            |
| Water Depth from MSL [T]         500         2705.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | 3000           |                 |                |                       |                            |
| Casing Denth from MSL [rt]         12500         7,400         2,930.32         680         680         680         680         680         680         680         680         680         7400         2,930.32         680         7400         2,930.32         680         7400         2,930.32         680         7400         2,930.32         680         7400         3,360.413         7400         3,360.413         7400         3,360.413         7400         3,360.413         7400         3,360.413         7400         3,360.413         7400         3,730.81         7400         3,730.81         7400         3,730.81         7400         3,730.81         7400         3,730.81         7400         3,730.81         7400         3,730.81         7400         3,730.81         7400         3,730.81         7400         3,730.81         7400         3,730.81         7400         3,730.81         7400         3,730.81         7400         3,730.81         7400         3,730.81         7400         7400         7400         7400         7400         7400         7400         7400         7400         7400         7400         7400         7400         7400         7400         7400         7400         7400         7400         7400                                                                                                                                                                                                                                   | Water Depth from MSL [ft]        | 5000           | 6,600           | 2,705.452      |                       |                            |
| Open Hole Diameter [in]         9         (400         2,330.32         €           Casing ID [in]         9.66         3,148.091         3,60.413         9,600         3,360.413           Absolute Pipe Roughness [in]         0.00065         9,000         3,568.456         -10.0         3,773.081           Open Hole Roughness [in]         0.12         9,800         3,568.456         -10.0         -10.0           Magendorn and Brown         11,400         3,773.081         -12.0         -12.0         -12.0           Exit to Mucline         11,400         3,773.081         -12.0         -13.0         -12.0           Hagendorn and Brown         11,400         3,773.081         -11.0         -12.0         -12.0           Exit to Mucline         11,400         3,713.081         -13.0         -13.0         -13.0           Hagendorn and Brown         11,400         3,713.081         -13.0         -13.0         -13.0           Hagendorn and Brown         11,400         3,713.081         -13.0         -13.0         -13.0           Hagendorn and Brown         11,4145         -13.0         -13.0         -13.0         -13.0           Fixit to Mucline         13,000         5,131.407         -13.0         -13                                                                                                                                                                                                                                                               | Casing Depth from MSL [ft]       | 12500          | 007 r           | 00000          | -8.0                  |                            |
| Casing ID [m]         9.66         3,148.091         3,148.091           Absolute Pipe Roughness [m]         0.00065         9,000         3,360.413           Open Hole Roughness [m]         0.12         9,800         3,568.456           Open Hole Roughness [m]         0.12         9,800         3,568.456           Hagendorn and Brown         10,600         3,773.081         -10.0           Hagendorn and Brown         11,400         3,974.93         -12.0           Exit to Mudline         12,200         4,174.5         3.0         -12.0           Fowing Exit Pressure [psi]         2246.4         13,000         6,131.407         3.0         Animum Kill Rate [maschin]         Stand Pipe Pressure [psi]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Open Hole Diameter [in]          |                | r,4uu           | 2,930.32       | Q                     |                            |
| Absolute Pipe Roughness [in]         0.00065         9,000         3,360.413         -10.0           Open Hole Roughness [in]         0.12         9,800         3,568.456         -10.0           Open Hole Roughness [in]         0.12         9,800         3,568.456         -10.0           Hagendorn and Brown         10,600         3,773.081         -12.0         -12.0           Hagendorn and Brown         11,400         3,974.93         -12.0         -12.0           Exit to Mucline         12,200         4,174.5         -12.0         -12.0           Flowing Exit Pressure [psi]         2246.4         13,000         6,131.407         3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Casing ID [in]                   | 3.66           | 8,200           | 3,148.091      | ) ytqa                |                            |
| Open Hole Roughness [n]         0.12         0.00         3,568.456         -10.0         -10.0         -10.0           Hagendorn and Brown         10,600         3,773.081         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0         -12.0                                                                                                                                                                                                                                          | Absolute Pipe Roughness [in]     | 0.00065        |                 | 2 360 413      |                       |                            |
| Image: Second condition     Second condition     Second condition       Hagendorn and Brown     10,600     3,773.081       Hagendorn and Brown     11,400     3,974.93       Cas Reservoir        •       •       •       •       •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Open Hale Bauahness [in]         | 0.12           | 000'0           | n +            | -10.0                 |                            |
| Hagendorn and Brown     10,600     3,773.081       Hagendorn and Brown     -12.0       Gas Reservoir     -12.0       Exit to Mudline     -12.0       Flowing Exit Descure [psi]     2246.4       Surface Gas Rate IMMScript 122 614     13,000     5,131.407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |                | 9,800           | 3,568.456      |                       |                            |
| Hagendorn and Brown     -12.0       Gas Reservoir     -12.0       Exit to Mudline     -12.0       Flowing Exit Pressure [psi]     2246.4       Surface Gas Rate IMMScript 122 614     Surface Liquid Rate [STBL.D]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                | 10,600          | 3,773.081      |                       | /                          |
| Cas Reservoir     I 2,200     4,174.5       Exit to Mudline     3.0     4.0       Flowing Exit Pressure [psi]     2246.4     13,000     5,131.407       Surface Gas Rate IMMscrift)     12261.4     213.000     5,131.407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hagendorn and Brown              | •              | 11,400          | 3,974.93       | -12.0                 |                            |
| Exit to Mudline     3.0     4.174.5       Flowing Exit Pressure [psi]     2246.4     13,000     5,131.407       Surface Gas Rate IMMscrift)     12261.4     [Surface Liquid Rate [STBL.D]     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gas Reservoir                    | •              |                 |                |                       | /                          |
| Flowing Exit Pressure [psi]         2246.4         13,000         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407         5,131.407 <th>Exit to Mudline</th> <th>•</th> <th>12,200</th> <th>4,174.5</th> <th>e</th> <th>.0 4.0 5.0 5.0 A.0 5.0 A.0</th> | Exit to Mudline                  | •              | 12,200          | 4,174.5        | e                     | .0 4.0 5.0 5.0 A.0 5.0 A.0 |
| Surface Gas Rate (MMScrfD) 122 614 Surface Liquid Rate (STBL/D) 0 Minimum Kill Rate (dom) Stand Pipe Pressure (bsia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Flowing Exit Pressure [psi]      | 2246.4         | 13,000          | 5,131.407      |                       |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Surface Gas Rate [MMscf/D] 122.6 | 14 Surface Liq | uid Rate [STBLA | D] 0 Mini      | mum Kill Rate [gpm]   | Stand Pipe Pressure [psia] |

Fig. 3.3 – Numerical output of COMASim is limited to 10 equally spaced points

However, the table output to the left of the graph (**Fig. 3.3**) is limited to ten <u>equally spaced</u> data points. COMASim was not programmed to recognize important changes in the pressure profile or any other graphs. Therefore, when a significant change occurs, it most likely will not be recorded in the table unless it happens to occur exactly at one the ten depth values. For this simulation, this error meant that the change in pressure at the casing shoe was not output correctly in the table for the majority of the simulation runs.



Fig. 3.4 – Numerical output for a hanging drillstring at 13000 ft TVD, 13000 ft drillstring, 5000 ft of water, 10 <sup>3</sup>/<sub>4</sub> casing.



Fig. 3.5 – Close-up of graph from Fig. 3.3, a hanging drillstring at 13000 ft TVD, 13000 ft drillstring, 5000 ft of water, 10 <sup>3</sup>/<sub>4</sub> inch casing.

This can be seen by comparing **Fig. 3.5 and Fig. 3.4**. In **Fig. 3.4** the casing shoe/open hole effect on the pressure profile is shown at 12,200 feet as opposed to the actual point at 12,500 feet shown in **Fig. 3.5** which is a close-up of the graph in **Fig. 3.3**. This deficiency in the simulator limits analysis to a trend based analysis as opposed to a numerical analysis or comparison concerning the pressure profile.

#### 3.5 Effect of Casing Size and Drillstring Presence on Initial Conditions

**Fig. 3.6 – 3.8** illustrate typical initial condition or flowing pressure profiles for hanging drillstring, dropped drillstring and no drillstring situations. In **Fig. 3.6 -3.8** the drillstring length is 100% of TVD. This explains the similarity between a dropped drillstring and a hanging drillstring pressure profiles.



Fig. 3.6 – Hanging drillstring situations shows typical behavior for pressure profile.



Fig. 3.7 – Dropped drillstring data matches hanging drillstring pressure profile.



Fig. 3.8 – No drillstring in hole reduces pressure value and variation.

The values do differ slightly as evidenced by **Table 3.2**, however the difference is minute enough to ignore.

| Casing<br>Size | Drillstring<br>Status | Qg      |
|----------------|-----------------------|---------|
| OD, inches     |                       | MMscf/d |
| 8.625          | Hanging               | 31.49   |
| 10.75          | Hanging               | 122.61  |
| 12.75          | Hanging               | 203.96  |
| 8.625          | Dropped               | 31.47   |
| 10.75          | Dropped               | 122.56  |
| 12.75          | Dropped               | 203.92  |

# Table 3.2 – Hanging and dropped drillstrings allow almost identical flow rates.

While **Table 3.2** does illustrate that hanging and dropped full length drillstrings are essentially equal in flow rate values, the dropped drillstring flow rates were lower than the corresponding hanging drillstring flow rates in all three cases. **Fig. 3.6** – **3.7** show a sharp increase in pressure loss in the bottom 500 feet of the wellbore. The pressure loss is highlighted in **Fig. 3.7**. This increase is due to the coefficient of roughness,  $\mu$ , being almost 18,500 times larger for an open wellbore as opposed to a cased wellbore. The open hole  $\mu$  is 0.12 inches and the cased hole  $\mu$  is 0.00065 inches. This high  $\mu$  results in the dramatic increase in pressure loss experienced in the wellbore.

The decreasing absolute value of the slope in the pressure profile as the casing size decreases is related to a casing size's ability to accommodate blowout flow. As seen in **Table 3.2**, increasing sizes of casing causes a large increase in surface flow rate,  $Q_{g,surface}$ . Larger sizes of casing do not impose as much frictional pressure loss as smaller diameters of casing.

$$\left(\frac{dp}{dL}\right)_f = \frac{2f'\rho v^2}{g_c d} \dots \text{Eq. 3.1}$$

**Eq. 3.1** shows why the frictional pressure loss increases as diameter decreases. The decreasing diameter also results in a higher velocity, exacerbating the pressure loss due to friction. For example, the pressure differential from liquid entry to liquid exit in the wellbore for the case shown in **Fig. 3.6** is 4856 psi for 8 5/8 inch casing and 1221 psi for 12 <sup>3</sup>/<sub>4</sub> inch casing. Since the exit pressure is kept constant for both casing sizes, this results in a smaller slope on the pressure profile graph for the 8 5/8 inch casing. This also results in an increase in  $Q_{g,surface}$  for the 12 <sup>3</sup>/<sub>4</sub> inch casing due to a lower bottom hole pressure. The lower bottom hole pressure creates a larger negative pressure differential with respect the reservoir pressure causing an increased  $Q_{g,surface}$ .

The difference between the pressure profile shown in **Fig. 3.8** and **Fig. 3.6 -3.7** is also frictional pressure loss related. As previously discussed, smaller flow areas, i.e. the 8 5/8 inch casing, have larger differential pressures due to increased frictional pressure

loss. Continuing this concept to **Fig. 3.8** shows why its pressure drops are less than that of **Fig. 3.6-3.7**. With no drillstring in the wellbore, the frictional pressure drop is much less than that of wellbores with the added obstruction of a drillstring. The pressure differential for an 8 5/8 inch cased wellbore with no drillstring is 756.5 psi compared to a pressure differential of 4856 psi for an 8 5/8 inch cased wellbore with the drillstring present.

| Casing     | Drillstring    |                |
|------------|----------------|----------------|
| Size       | Status         | Q <sub>g</sub> |
| OD, inches |                | MMscf/d        |
| 8.625      | Hanging        | 31.49          |
| 10.75      | Hanging        | 122.61         |
| 12.75      | Hanging        | 203.96         |
| 8.625      | Dropped        | 31.47          |
| 10.75      | Dropped        | 122.56         |
| 12.75      | Dropped        | 203.92         |
| 8.625      | No Drillstring | 215.70         |
| 10.75      | No Drillstring | 230.61         |
| 12.75      | No Drillstring | 238.90         |

Table 3.3 – Blowing wellbores with no drillstring have higher Q<sub>g,surface</sub>.

This low pressure loss in the drillstring-less wellbore also results in a much higher surface flow rate as shown in **Table 3.3**. Notice however, that as the pressure losses decrease, the increase in flow caused by larger casing sizes is less. This effect is most likely due to flow becoming primarily dependent on the pressure differential between the exit point and the pore pressure as opposed to being regulated by the frictional pressure drop. In the no drillstring case, frictional pressure losses do not affect the surface flow rate in the same manner as cases when a drillstring is present.

#### **3.6 Effect of Drillstring Length**

The previous discussion shows the effect of the presence of a drillstring that is 100 percent of the TVD. However, the majority of kicks, and resulting blowouts occur

during tripping operations.<sup>8</sup> Thus, the drillstring will not be on bottom. To simulate these conditions in COMASim, I varied the drillstring length for the various scenarios.



Fig. 3.9 – Effect of drillstring length on hanging drillstring, 13000 ft TVD, 5000 ft water depth, 10 <sup>3</sup>/<sub>4</sub> inch casing.



Fig. 3.10 – Effect of drillstring length on dropped drillstring, 13000 ft. TVD, 5000 ft water depth, 10 <sup>3</sup>/<sub>4</sub> inch casing.

Fig. 3.9 - 3.10 are typical of the trends that occurred when drillstring length was varied. Again, due to predetermined data points, the curves are not exactly correct. The points where the pressure profiles experience severe breaks may be off by several hundred feet.

The drillstring increases the frictional pressure drop calculated in eq. 3.1 by decreasing the effective diameter and increasing the velocity of the fluid. As previously discussed, the drillstring causes the pressure profile to flatten out due to increased pressure drop. When hanging from a subsea BOP as shown in Fig. 2.6, the typical pressure profile resembles Fig. 3.9. As indicated on Fig. 3.9 the drillstring caused increased pressure losses along its length. An interesting phenomenon was shown in Fig. 3.9 as well. The curves for drillstring lengths of 25 percent and 50 percent of TVD show no increased pressure loss due to the open hole. Since there is no drillstring to increase

velocity in that section, the roughness increase due to an open wellbore does not have a significant effect. Only in situations such **Fig. 3.7** or **Fig. 3.10** where drillstring is located in the open hole section does the increase in roughness make a noticeable difference in the pressure profile.

**Fig. 3.10** displays a typical pressure profile for a dropped drillstring. From the bottom of the wellbore, the first break in the pressure profile is the casing shoe. This is the transition from the large roughness factor of the open hole to the small roughness factor of the casing. The second break is at the top of the dropped drillstring. Once the drillstring top is cleared, frictional pressure losses drop significantly.



Fig. 3.11 – Difference between 3250 ft. of drillstring in 13000 ft TVD in 5000 ft of water with 10 <sup>3</sup>/<sub>4</sub> inch casing.

**Fig. 3.11** is a graphical representation of the difference in pressure profiles for a hanging and dropped drillstring. Of particular interest in well control and blowout control are the ending points of both pressure profiles. According to **Fig. 3.11**, if the deepest formation was considered to be a weak formation, then hanging the drillstring off of the BOPs would be an advisable precaution in order to avoid the large bottomhole pressures exerted by a dropped drillstring. A dropped drillstring in the wrong conditions could cause the formation to fracture resulting in an underground blowout.

The increased pressure loss occurs due to the constriction between the wellbore and drillpipe. **Eq. 3.1** shows that while the diameter becomes smaller due to the drillpipe's presence, the resulting increasing velocity is the main cause of frictional pressure loss. Since both a smaller diameter and a larger velocity both increase the frictional pressure, there is an extreme difference between the frictional pressure loss in an empty wellbore and a wellbore with drillpipe present.

#### 3.7 Kill with Drillstring Initial Conditions

The discussion covering initial conditions for the "Kill With Drillstring" drillstring position options is separated out from the other three options due to two main differences. First, the "Kill With Drillstring" option is the only one which takes into account frictional pressure drop in the marine riser. A comparison of **Fig. 2.6** and **Fig. 2.7** yields a visual picture of the difference. Second, blowouts with the other three drillstring options selected require a separate relief well or wells to kill the blowout.



Fig. 3.12 – 13000 ft TVD, 5000 ft water depth, 10 <sup>3</sup>/<sub>4</sub> inch casing, drillstring is 75% of TVD.

A kill with drillstring pressure profile is similar to a hanging drillstring pressure profile. The main difference is the drillstring effect is felt throughout the entire wellbore. Thus, a drillstring that is 75 percent of the TVD has less of an effect on the formation in a hanging drillstring situation. **Fig. 3.12** illustrates the difference between the two. The data composing **Fig. 3.12** as well as all of the other kill with drillstring initial condition runs can be found in **Appendix D**. The kill with drillstring curve shows a break at 75 percent of the total depth. Meanwhile, the break or bottom of the drillstring is at water depth plus 75 percent of total depth for the hanging drillstring. The "kill with drillstring" option exhibits a much steeper pressure profile but an overall lower pressure loss.

| Drillstring Status | <b>DS<br/>Length</b><br>% of TVD | <b>Q</b> <sub>g, surface</sub><br>MMscf/d |
|--------------------|----------------------------------|-------------------------------------------|
| Hanging            | 100                              | 122.614                                   |
| Hanging            | 75                               | 122.614                                   |
| Hanging            | 50                               | 145.719                                   |
| Kill w/ DS         | 100                              | 122.562                                   |
| Kill w/ DS         | 75                               | 156.021                                   |
| Kill w/ DS         | 50                               | 190.456                                   |

Table 3.4 – Kill with drillstring configuration yields higher Q<sub>g,surface</sub>.

This steeper pressure profile yields a higher surface flow rate as shown in **Table 3.4**. The previous discussion on flow rates covering **Table 3.2** and **Table 3.3** applies in this instance as well. The lower pressure loss exhibited in the kill with the drillstring configuration is the root cause of the higher flow rates.



Fig. 3.13 - Kill with drillstring, 13000 ft TVD, 5000 ft water depth, 10 <sup>3</sup>/<sub>4</sub> inch casing shows decreasing bottom-hole pressures as drillstring length decreases.

Drillstring length also causes differences in pressure profile and bottom-hole pressure. **Fig. 3.13** and **Table 3.5** show the effect of drillstring length on pressure profiles in a kill with drillstring setup. The shorter drillstring lengths result in a steeper pressure profile with less pressure loss in the wellbore. The lower pressure loss in the wellbore results in a higher flow rate. This effect is similar to that of varying the casing size.

| Table 3.5 – Kill with drillstring, 13000 ft TVD, 5000 ft water depth, 10 | ) ¾ |
|--------------------------------------------------------------------------|-----|
| inch casing shows flow rate increases as drillstring length decreases.   |     |

| DS       |                        |
|----------|------------------------|
| Length   | Q <sub>g,surface</sub> |
| % of TVD | MMscf/d                |
| 100      | 122.562                |
| 75       | 156.02                 |
| 50       | 190.465                |



Fig. 3.14- Kill with drillstring, 13000 ft TVD, 5000 ft water depth, drillstring length is 75% of TVD.

**Fig. 3.14** shows the effect of varying the casing size in a kill with the drillstring situation is similar to that of any other drillstring option. The smaller casing decreases the flow area and increases the velocity. This in turn causes the frictional pressures to go up. The 8 5/8 inch casing curve depicted in **Fig. 3.14** shows a much larger pressure drop compared to the 12 <sup>3</sup>/<sub>4</sub> inch casing due to smaller flow area.

#### 3.8 Dynamic Kill Requirements for Relief Well Necessary Situations

Of the four COMASim drillstring options, the hanging drillstring, dropped drillstring and no drillstring all require relief wells to control the blowout. The kill with the drillstring option does not require a relief well as the name indicates. Therefore the latter option will be treated separately.



Fig. 3.15 – Relief well flow path.

For the remaining three drillstring options, the flow path for the kill fluid is shown in **Fig. 3.15**. For the three drillstring options requiring a relief well to quell the blowout, the dynamic kill parameters of standpipe pressure, number of relief wells, hydraulic horsepower and dynamic kill rate follow the same trends.

| Drillstring<br>Status | Casing<br>Size | Kill<br>Rate |
|-----------------------|----------------|--------------|
|                       | OD, inches     | gal/min      |
| Hanging DS            | 8 5/8          | 217.8        |
| Hanging DS            | 10 3/4         | 1266.3       |
| Hanging DS            | 12 3/4         | 4294.8       |
| Dropped DS            | 8 5/8          | 218.6        |
| Dropped DS            | 10 3/4         | 1270.4       |
| Dropped DS            | 12 3/4         | 4307.7       |
| No DS                 | 8 5/8          | 7662.7       |
| No DS                 | 10 3/4         | 14093.4      |
| No DS                 | 12 3/4         | 24879.6      |

Table 3.6 – 13000 ft TVD, 5000 ft water depth, kill rate increases with increasing casing size.

The first parameter taken into consideration is the dynamic kill rate. The dynamic kill rate is the rate at which the kill fluid must be pumped to create sufficient bottomhole pressure to control the blowout. COMASim does not account for fluid fallback, therefore these kill rates are slightly conservative. Fluid fallback is when the kill fluid flows against the blowout flow. For a blowout with a given rate, the kill fluid might overcome the momentum of the blowout fluid and begin to fall back down the wellbore in small quantities with the majority of it continuing up the wellbore. The fluid fallback creates an additional back pressure on the formation and begins to limit the blowout flow. This is a circular process that eventually leads to control of the blowout flow or a zero net liquid flow situation with regards to the kill fluid. Either way, fluid fallback helps reduce the necessary dynamic kill rate. Thus, ignoring fluid fallback simply builds in a safety factor to COMASim's calculations. Table 3.6 shows a typical set of kill rates for a wellbore configuration. The dynamic kill rate increases as casing size increases for all of the drillstring positions. The increase in required kill rate is due to the increased flow rate and reduced wild well bore constriction. When Table 3.6 is compared with **Table 3.3**, this trend is more apparent.



Fig. 3.16 –Dynamic kill rates differ widely among drillstring statuses as drillstring length decreases.

The drillstring length was kept constant at 100% of the TVD in **Table 3.6**. However if the drillstring length is varied as in **Fig. 3.16**, the dynamic kill rate begins to vary widely as shown. The dropped drillstring dynamic kill rate does not change as much. Since the drillstring is always on the bottom, and the relief well/blowing well intersection is also on the bottom, the drillstring always creates a high frictional pressure drop. Due to the high frictional pressure drop with all drillstring lengths, the dynamic kill rate will not vary as widely. For the hanging drillstring, the shortening of the drillstring pulls the bottom of the drillstring away from the relief well/blowing hole intersection thus opening up the wellbore and creating a no drillstring situation in a portion of the wellbore. **Table 3.6** shows that a no drillstring situation increases the dynamic kill rates. For that reason, the hanging drillstring dynamic kill rates begin to increase dramatically as the drillstring length is reduced. **Fig. 3.16** shows a increase of over 1000 gal/min for the hanging drillstring length of 25 % of TVD. The hanging drillstring and dropped drillstring have nearly identical flow rates and therefore nearly identical dynamic kill rates. When there is no drillstring in the hole, the flow rates and therefore the dynamic kill rates increase. The reason for the increase in flow rates was previously discussed and shown to be a result of decreasing frictional pressure losses.

| Casing<br>Size | Relief well     | SPP for single | # of<br>Relief | SPP/well | Pump hp<br>per |
|----------------|-----------------|----------------|----------------|----------|----------------|
|                | MD/TVD<br>ratio | Relief Well    | Wells          |          | Relief Well    |
| OD, inches     |                 | psi            |                | psi      | hp             |
| 8 5/8          | 1.0             | 3124.5         | 1              | 3124.5   | 397.           |
| 8 5/8          | 1.5             | 3159.5         | 1              | 3159.    | 401.4          |
| 8 5/8          | 2.0             | 3185.2         | 1              | 3185.2   | 404.7          |
| 10 3/4         | 1.0             | 5130.3         | 1              | 5130.3   | 3790.1         |
| 10 3/4         | 1.5             | 6255.7         | 1              | 6255.7   | 4621.5         |
| 10 3/4         | 2.0             | 7081.          | 1              | 7081.    | 5231.2         |
| 12 3/4         | 1.0             | 25318.1        | 2              | 8962.2   | 11228.5        |
| 12 3/4         | 1.5             | 36274.9        | 2              | 11741.   | 14710.         |
| 12 3/4         | 2.0             | 47231.7        | 2              | 14519.8  | 18191.5        |

Table 3.7 – Increasing relief well MD/TVD ratio increases relief well parameters.

Relief well parameters besides the dynamic kill rate also increase as the wild well casing size increases. The standpipe pressure for the relief well increases due to the increased kill rates. The number of relief wells was dependent of the 15000 psi standpipe pressure threshold discussed earlier. **Table 3.7**, taken from the hanging drillstring blowout shown in **Table 3.6**, shows the 12 <sup>3</sup>/<sub>4</sub> inch casing needed a much higher dynamic kill rate, therefore two relief wells would be needed to accommodate the higher standpipe pressures. Even when the flow rate is split between two relief wells, the standpipe pressure per well is still higher for the 12 <sup>3</sup>/<sub>4</sub> inch casing than for the 8 <sup>5</sup>/<sub>8</sub> inch or 10 <sup>3</sup>/<sub>4</sub> inch casing. The pump hydraulic horsepower exhibits the same trend as the

standpipe pressure. The values vary over a very wide range of measured depth to total vertical depth ratios or MD/TVD ratios, but the larger relief well MD/TVD ratios will not likely occur in practice. Thus for each casing size, the lower value for relief well parameters are the most realistic. This allows a dynamic kill to be considered in more situations due to increases capability and availability of drilling and pumping equipment. The reasons behind this are laid out in the best practices section of this thesis.

The hanging drillstring and dropped drillstring in the example case used throughout the thesis require two relief wells at most. However, when there is no drillstring in the blowing wellbore, the dynamic kill requirements increase significantly. The end result of the increased dynamic kill requirements is an increased number of relief wells.



Fig. 3.17 – Increasing casing size in with no drillstring present increases number of relief wells required.

Using the 15000 psi standpipe pressure threshold, **Fig. 3.17** shows the sharp increase in the number of relief wells as the casing size increases. This factor is likely to be reduced in as slimhole drilling, casing drilling and dual gradient drilling become more common. These technologies reduce the size and number of casing used during various portions of the drilling program, thus reducing the flow rates of potential blowouts. **Fig. 3.17** also reinforces the need to keep the relief well MD/TVD ratio down, to reduce the number of relief wells required.

#### 3.9 Dynamic Kill Requirement for Kill with the Drillstring Situation

Controlling a blowout with a drillstring in the blowing wellbore is an entirely different proposition from using a relief well. As will be discussed later in the best practices section the two methods may even be attempted concurrently. Therefore, the discussions of the two types of kill paths are separate. The results for the kill with the drillstring simulations are shown in **Appendix E**.

| Drillstring<br>Status | Casing<br>Size | Kill<br>Rate |
|-----------------------|----------------|--------------|
|                       | OD, inches     | gal/min      |
| Kill w/ DS            | 8 5/8          | 216          |
| Kill w/ DS            | 10 3/4         | 1270.4       |
| Kill w/ DS            | 12 3/4         | 4307.7       |
| Hanging DS            | 8 5/8          | 217.8        |
| Hanging DS            | 10 3/4         | 1266.3       |
| Hanging DS            | 12 3/4         | 4294.8       |
| Dropped DS            | 8 5/8          | 218.6        |
| Dropped DS            | 10 3/4         | 1270.4       |
| Dropped DS            | 12 3/4         | 4307.7       |
| No DS                 | 8 5/8          | 7662.7       |
| No DS                 | 10 3/4         | 14093.4      |
| No DS                 | 12 3/4         | 24879.6      |

Table 3.8 – Kill with drillstring kill rates similar to dropped drillstring.

Controlling the blowout with the drillstring requires similar flow rates to the dropped drillstring and hanging drillstring situations as indicated in **Table 3.8**. The reasons for the kill rates being lower than that of a no drillstring situation are the same as previously discussed for the hanging and dropped drillstring.

| Casing<br>Size | DS<br>Length | Kill Rate              | SPP     | Horsepower |
|----------------|--------------|------------------------|---------|------------|
| OD, inches     | % of TVD     | gal/min                | psi     | hp         |
| 8.625          | 100          | 216                    | 3156.2  | 402.5      |
| 8.625          | 75           | 508.6                  | 6488.5  | 1925.4     |
| 8.625          | 50           | 1079.8                 | 9246.8  | 5825.4     |
| 8.625          | 25           | FRICTI                 | ON FACT | OR FAILED  |
| 10.75          | 100          | 1270.4                 | 5037.1  | 3733.4     |
| 10.75          | 75           | 3038.4                 | 13959.8 | 24746.8    |
| 10.75          | 50           | 6606.7                 | 31824.1 | 122667.8   |
| 10.75          | 25           | FRICTION FACTOR FAILED |         |            |
| 12.75          | 100          | 4307.7                 | 22903.8 | 57563.5    |
| 12.75          | 75           | 9908                   | 81039.6 | 468461.8   |
| 12.75          | 50           | 21736.8                | 239274  | 3034446.9  |
| 12.75          | 25           | FRICTI                 | ON FACT | OR FAILED  |

 Table 3.9 – Decreasing drillstring length increases kill requirements.

If the drillstring length is decreased in a kill with the drillstring scenario, the relief well requirements rise significantly as indicated in **Table 3.9**. This increase in requirements is due to reduced wellbore constriction as the drillstring length shortens. The kill rate must increase to impart the same frictional pressure drop over a shorter length of constriction. The other kill requirements obviously follow the kill rate increase. During the simulations, COMASim crashed as drillstring lengths approached 25 percent of TVD. Error message stated that the friction factor failed. This failure was most likely due to the inability of the short wellbore constriction to provide enough frictional pressure loss to control the bottomhole pressure. However, this is only conjecture and I can not be sure of the reason. Whether or not the friction factor failure means it is

physically impossible to dynamically kill the well is unknown. Also, of interest are the large standpipe pressures starting with the 50 percent drillstring length in 10 <sup>3</sup>/<sub>4</sub> inch casing. Because these pressures are above the 15000 psi working pressure threshold, a dynamic kill would not be possible through the drillstring.



Fig. 3.18 – Kill rates increase for larger casing sizes.

The kill rate also increases as the blowing wellbore casing size increases. **Fig. 3.18** indicates a large difference in the required kill rates between 8 5/8 inch casing and 12 <sup>3</sup>/<sub>4</sub> inch casing. This difference is due to the reduced constriction in the wellbore in the larger casing sizes. This reduced constriction requires a higher flow rate to kill the well. The 8 5/8 inch casing dynamic kill requirements do not vary nearly as much as those for the 12 <sup>3</sup>/<sub>4</sub> inch casing. This also is due to the increased constriction imparted by the 8 5/8 inch casing.

## CHAPTER IV ULTRA-DEEP WATER BLOWOUT PREVENTION AND CONTROL

#### 4.1 Ultra-deepwater Drilling Equipment

Ultra-deepwater drilling equipment and methods are selected due to a variety of reasons. The scope of this study does not include delving into a full set of ultradeepwater equipment selection criteria. However, I will briefly explain how to select ultra-deepwater equipment with safety in mind.

The first piece of drilling equipment is the drilling rig itself. For ultra-deep water this will consist of a "floater" drilling rig.



**Fig. 4.1 – Example of drillship.**<sup>37</sup>

Floaters are either drillships (**Fig. 4.1**) or semi-submersibles (**Fig. 4.2**). These ships do not need to be touching the seafloor to drill as their name implies. However, they have a large problem in their storage capability. Since they need to be self-contained and do not have moored support vessels, storage space is limited. Therefore during the selection and outfitting of the floater, particular significance must put on a floater's ability to not only store well control equipment but also its ability to put that equipment into action.



Fig. 4.2 – Example of semi-submersible.<sup>37</sup>

As the deepwater frontier is exploited more and more each year, this problem is decreasing. Many of the leading drilling contractors now have significant numbers of the latest floaters in their fleets. For example, Transocean now has 12 operational fifth generation floaters in their fleet.<sup>37</sup> These fifth generation floaters are designed with water depths of up to 10,000 feet in mind, and thus have sufficient space for the storing and using of deepwater specific safety equipment.

The drillstrings used are typical drillstrings seen on any offshore drilling platform. The only design and safety consideration that changes is the drillstring's ability to support a long length. In ultra-deepwater, the drilled portion of the wellbore below the mudline could be just as deep as any land well. When this depth is coupled with the added length of drillstring to get down to the seafloor, the drillstring becomes heavy. Heavier walled pipe will be necessary toward the top of many ultra-deepwater drillstrings. Of more concern during ultra-deepwater operations is the drilling riser. The drilling or marine riser consists of a large diameter pipe with two smaller lines, the choke and kill lines, attached to it. In ultra-deepwater the riser would have buoyancy material attached to it to reduce the load on the floater. The marine riser is the connection between the floater and the equipment on the seafloor. It is not rated for high pressures as casing and drillpipe are. Risers are normally only designed to handle the difference in pressure between the maximum weight drilling fluid and seawater. The riser will have issues with strength if it is unloaded and filled with gas. In this case, the riser will be subjected to high collapse pressures and would likely fail in ultra-deepwater situations. Problems such as this highlight the necessity of keeping the influx size to a minimum and reacting quickly to keep the influx out of the riser.

Alternative riser technologies are becoming commonplace in the deepwater drilling industry. Alternative materials such as the carbon fibers used in ABB Vetco Gray's Composite Marine Riser allow for increased riser storage and hanging capacity on floaters as shown in **Fig. 4.3**<sup>38</sup>



Fig. 4.3 – ABB Vetco Gray composite material riser increases water depth capability of floaters.<sup>38</sup>

Another new technology is riser fill valves.<sup>39</sup> Ultra-deepwater risers do not have to be completely unloaded to fail. Since they are rated only on the pressure differential between the drilling fluid and seawater, any amount of unloading begins to unduly stress the riser. In a typical emergency disconnect situation, drilling fluid will fall out of the riser and not be replaced with seawater until the riser is first completely evacuated of drilling fluid and filled with air. Consequently, the riser will fail before it can be filled with seawater to balance the internal and external pressures. To battle this, riser fill valves are now standard on newer riser strings. Riser fill valves are activated at the same time the emergency disconnect command is given. They close and prevent the riser from losing drilling fluid and collapsing.<sup>39</sup> Riser fill valves are also capable of preventing influxes into the riser.<sup>39</sup> This makes them another barrier to influxes broaching the deck of a floater.

Other equipment such as the lower marine riser package, wellhead, and BOPE should be rated for the extreme water depths and resulting pressure in ultra-deepwater drilling. The BOPE would ideally have several modifications for ultra-deepwater drilling. The first would be a large number of accumulator bottles. The deeper the accumulator bottles are situated, the lower the usable fluid volume is per accumulator bottle.<sup>8</sup> The only current solutions to reducing number of bottles is to replace them with larger bottles or accumulator bottles rated at higher pressures.<sup>8</sup> In addition to operator or regulatory guidelines on accumulator volume for safe well control an additional amount should be added. As will be shown later, shearing or dropping the drillstring may be necessary after control has been lost. In the event the BOP stack is still operational, enough accumulator volume must be available to complete this operation. In deepwater accumulator bottles could become prohibitory due to increased expense and floater capability to handle such large lower marine riser packages. An alternative method of operating the BOPE is placing the accumulators on the surface and delivering the power fluid down a steel line attached to the riser. This method is viable, but has one chief problem; the riser must be connected to the BOPE in order for the BOPE to operate. If a steel hydraulic fluid line is used, sufficient accumulator bottles must be placed on the
seafloor to close at least a blind ram and a shear ram in the event an emergency disconnect of the riser occurs.

If accumulator bottles are used, communication must be established with the lower marine riser package control pod which controls the accumulator bottles. The standard course is to use a small diameter line filled with hydraulic fluid to actuate the BOPE. The reaction time for a 3/16 control line in water follows a power law relationship. At 400 feet the reaction time is 1 second. In depths of 3000 feet, the reaction time is up to 10 seconds.<sup>8</sup> Thus, in ultra-deepwaters, the reaction time from the command to completion of the task for the BOPE may be disastrously slow. Three commercial alternatives exist to solve this problem. The first is the installation of a biased hydraulic control line. A biased line would be precharged to within several hundred psi of the activation pressure for the BOPE. Then, when a BOPE command is given, effects such as ballooning and compressibility would be reduced and the reaction time decreased.<sup>8</sup> Unfortunately, on long risers this could become expensive and prone to failure. The second method is an electrohydraulic system. As the name implies, an electronic signal activates the BOPE through a single line capable of coded transmissions or a multiplex system. The signal time is nearly instantaneous but the signal itself may be prone to electronic noise generated by the riser.<sup>8</sup> Another type of multiplex system is fiber optics. Fiber optics are not as common as electrohydraulic systems but are less susceptible to interference.<sup>8</sup>

The preceding communication techniques depend on the riser maintaining a connection to the BOPE. In an emergency disconnect or drive-off situation, the connection may be severed prior to the completion of the signal. In this event, two options for initiating BOPE operation exist, a remote operation vehicle (ROV) operated hotline system and an acoustic control system (**Fig. 4.4**).<sup>40</sup> These two systems will greatly assist in blowout control operations if necessary.



Fig. 4.4 – Acoustic control system on lower marine riser package.<sup>41</sup>

#### 4.2 Ultra-deepwater Blowout Control Equipment

Once control of the well has been lost, blowout control equipment should begin to be staged. After the initial plans for control have been finalized among blowout personnel, the blowout control equipment should be deployed to the well site. For a dynamic kill, three areas of equipment are the most important. Bringing together the blowout control equipment should be easy for an operator. The MMS does not currently require relief well contingency plans but should in the face of growing ultra-deepwater exploration. An example is Norway which requires an operator to have a full relief contingency plan including spud locations, location of available kill equipment, and preliminary relief well plans.<sup>42</sup> Forcing operators to have relief well contingency plans in place results not only quicker drilling times, but a higher likelihood of success.

The first of the necessary equipment is the drilling rig or rigs used to kill the blowing well. In an ultra-deepwater situation, the original floating drilling rig would have likely completed an emergency disconnect and still be available for well control procedures. The original rig will most likely be involved in the vertical intervention



portion of blowout control. At least one other rig and possibly more need to be mobilized to the blowout location to begin drilling relief wells.

Fig. 4.5 – Example of offshore dynamic kill pumping plant.<sup>43</sup>

The pumping plant should be the next step for relief well planners. Running simulations on a model such as COMASim will give the planning team pumping requirements for a variety of scenarios in a brief time. The pumping plant then needs to be assembled. For ultra-deepwater this involves either the marshalling of multiple frac boats such as the one shown in **Fig. 3.1** or the building of a pumping plant on a floater

similar to that shown in **Fig. 4.5**. Of course a backup pumping plant should be available to pick up the slack in case the original plant goes down due to mechanical problems.

The third part of the blowout control equipment is the kill fluid. This report used seawater as the kill fluid in the simulations discussed. However, if the kill fluid is able to weighted up this greatly reduces the kill requirements as evidenced by **Fig. 4.6**. The only requirement is that the kill fluid must be available in significant quantities. The dynamic kill planner should account for their kill fluid capabilities during the simulation phases.



Fig. 4.6 – Increasing kill fluid weight reduces the kill rate.

Another important fluid to have on hand is acid. Due to uncertainties in targeting relief wells, the relief wellbore and wild wellbore may not directly intersect. In this case, acid is used to establish communication.<sup>16</sup> If the contingency plan is available and blowout control equipment listing is up-to-date, assembling the necessary equipment

could be done quickly and easily. Having the correct equipment on hand and on time will contribute to the overall smoothness and success of the blowout control operation.

### 4.3 Ultra-deepwater Kicks and Well Control

Several areas in the drilling operation are prone to human error and mishandled kicks. As shown in **Table 1.2**, the three most likely ways a blowout begins is through swabbing in, drilling breaks and formation breakdown.



Fig. 4.7a – Onshore gradients.



Fig. 4.7b – Offshore gradients.

Formation breakdown is avoidable although sometimes difficult to do as seen in **Fig. 4.7b**. **Fig. 4.7a** is what typical shallow water or onshore gradient curves would resemble. **Fig. 4.7b** is representative of deepwater gradients. The deepwater gradients are much closer together in value, particularly as the depth increases. This reduces the range of mud weights capable of avoiding formation fracture while at the same time controlling the pore pressure. This narrower window increases the chances that formation breakdown and subsequent lost circulation will occur. In ultra-deepwater drilling, the parties responsible for drilling fluids should be particularly careful to keep the mud weight within the bounds of the pore pressure and fracture gradients. Newer technologies such as dual gradient drilling may be solutions to this problem.

Drilling breaks indicate a sharp increase in drilling rate.<sup>8</sup> The drilling break could occur for several reasons. The break may be due to a change in formation. The more porous and permeable a formation is, the faster the penetration rate will be through it. Also drilling break may be caused by flowing formation fluids reducing pressure above the bit and cleaning the hole faster.<sup>8</sup> Either way, a drilling break indicates a

possible kick. The Skalle, et al. database<sup>9</sup> most likely had to use this general term because that was the notation on reports or other documents. The probable cause of a kick taken when a drilling break occurs is the unexpected encounter of a highly permeable, possibly overpressured hydrocarbon-bearing formation. This can lead to a large influx and blowout if it is not controlled. Drilling breaks are not avoidable, however they can be managed with no negative results. The first part of managing drilling breaks is through superior geological data. Armed with high-quality data, the operator can anticipate drilling breaks and be prepared. The second part is a constant vigilance by the driller. When a drilling break is noted, extra attention needs to be paid to kick indicators particularly in ultra-deepwater drilling. Since the influx may not stand out, the extra care and attention could prevent a disaster.

The largest cause of blowouts is the swabbing in of kicks that turn into blowouts. The reason so many kicks get swabbed in is because of the large amount of time associated with tripping pipe. Day rates were USD\$163,000 and USD\$149,500 for semi-submersibles and drillships respectively on August 13<sup>th</sup>, 2004.<sup>44</sup> The time spent tripping pipe is an area that drilling personnel see as having potential time savings. The result is increased tripping velocity, minimal wellbore fill-up and possible missed warning signs concerning influxes.

Swab pressure is created when the pipe is pulled from the wellbore. The resulting suction created by the acceleration of the pipe (**Eq. 4.1**) and initial movement of the pipe (**Eq 4.2**) is the swab pressure.

$$\Delta p_{ac} = -\frac{0.00162\rho_m a_s d_o^2 L}{d_h^2 - d_o^2} \dots Eq. 4.1^8$$

$$\Delta p_g = -\frac{\tau_g L}{300(d_h - d_o)} \quad \text{Eq. 4.2}^8$$

**Eq. 4.2** covers the pressure required to break the gel strength of the drilling fluid. This pressure always occurs and should be accounted for, but there is little an operator can to change this value due to the fact that all muds will have some gel strength. One small drilling trick is to reciprocate the drillstring several feet up and down during operations

that require letting the drilling fluid sit still. This reduces the amount of the gel strength the drilling fluid acquires by sitting still and reduces the value of **Eq. 4.2**. The value of **Eq. 4.1** is directly dependent on the acceleration,  $a_s$ , of the tripping pipe. This in turn affects the swab pressure. When drilling personnel rush the tripping process, the swab pressure clearly would go up. However, this is not the main problem, it simply aggravates the influx intensity. During rushed trips, the fill-up procedures and kick detection measures become more casual, resulting in small, typical well control problems developing into near or full blown blowouts. The only way to avoid this problem is to trip pipe at or below recommended velocities. Also since even the recommended velocities may be too much at times, proper kick detection procedures such as a fill up log are instrumental in identifying kicks earlier.

Kick detection is difficult in ultra-deepwater drilling. Several problems will need to be addressed by operators in the area of initial kick detection. The first problem is with gas cut mud. Gas cut mud will be a significant problem in ultra-deep water well control for several reasons. First, gas cut mud in general "hides" the gas influx and does not cause a significant pit gain.<sup>8</sup> As the gas begins to expand and pit gains reach warning levels, the influx has migrated some distance up the wellbore. This reduces the amount of reaction time as well as possibly confounding any well control calculations which are dependent on the timing of the influx entry. This is significant in ultra-deep water because of the bubble point. The bubble point is defined as the point at which a hydrocarbon solution goes from being a liquid solution to a two-phase gas-liquid solution.<sup>45</sup> As the pressure is further reduced past the bubble point, higher fractions of gas are present.<sup>45</sup> There are implications for ultra-deep water drilling concerning bubble point pressure. The first is that the gas will stay in solution longer because the bubble point pressure will not be reached until the gas has migrated far up the wellbore. For example in a well in the Gulf of Mexico in 10,000 ft. of water the hydrostatic pressure at the seafloor would be approximately 4,650 psi. This pressure value could be near or even above the bubble point pressure for a hydrocarbon mixture. In this situation the gas would not come out of a liquid form and create a significant pit gain until it was past the sea floor. This would mean that a kick would be in the riser, the weakest link in ultradeep water drilling, before definite pit gain and pressure changes were noticed. Because an influx would be very difficult to handle in this event, a situation such as this could be catastrophic during ultra-deep water drilling operations.

#### 4.4 Ultra-deepwater Well Control

When a deepwater influx is encountered, the well must first be shut in as in any typical well control operation. The problem with shutting in the well in ultra-deepwater operations is the amount of heave a floating rig experience. This heave reciprocates the drillstring through the BOPE. If the well is shut-in with a pipe ram, there is increased wear on the drill pipe and ram. There is also a risk of parting the string if a particularly large swell pulls the tool joint into the ram.<sup>8</sup> If the well is shut-in through the use of an annular preventer, then the heave experienced by the floater will cause undue wear on the annular preventer seals.<sup>8</sup> **Table 4.1** shows a typical procedure for safely hanging-off a drillstring from a floater. Wear will still occur in this case, but should be kept to minimum with the motion compensators on the floater.<sup>46</sup> Using this procedure will allow the driller to be confident that the drillstring not be parted by a tool joint/ram contact.

| 1.  | Place the Drillstring in a predetermined position above the rotary table and shut off the pump                                                                              |  |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 2.  | Line up the flowline to the trip tank and observe for flow                                                                                                                  |  |  |  |  |  |  |  |
| 3.  | If the well is flowing close the upper annular preventer                                                                                                                    |  |  |  |  |  |  |  |
| 4.  | Open the necessary fail-safe valves on the BOP stack and close<br>the choke. (Closing the choke is only applicable if the manifold<br>has been arranged for a soft shut-in. |  |  |  |  |  |  |  |
| 5.  | Reduce the annular closing pressure to the minimum requirement.                                                                                                             |  |  |  |  |  |  |  |
| 6.  | Determine the tool joint location and position the tool joint in the stack above the upper pipe ram.                                                                        |  |  |  |  |  |  |  |
| 7.  | Close the upper pipe ram, slowly lower the string, and hang it off on the ram.                                                                                              |  |  |  |  |  |  |  |
| 8.  | Lock the upper pipe ram in position.                                                                                                                                        |  |  |  |  |  |  |  |
| 9.  | Reduce the support pressure on the motion compensator and support the pipe weight above the rams with the compensator.                                                      |  |  |  |  |  |  |  |
| 10. | Measure shut-in pressures and pit gain.                                                                                                                                     |  |  |  |  |  |  |  |

Table 4.1 - Hang-off, shut-in, and flow-check procedure.<sup>8</sup>

Once it has been determined that the well is flowing, and subsequently the well is shut-in and the drill pipe properly shut-in. The influx is circulated out of the wellbore. The two standard methods available for use are the Drillers method and the Engineers or Wait and Weight method. The Drillers method is the standard circulation kill technique used in deepwater drilling. This is most likely due to its ease of use.

| 1.  | Take care of the well until the kill procedure can be started by maintaining a constant drillpipe pressure and allowing migrating gas to expand.                                                                 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.  | Open the choke and slowly start the pump. Coordinate the choke setting with the pump speed so that the original SICP is maintained until the pump is brought up to the kill rate.                                |
| 3.  | Read the drillpipe pressure and compare to the computed ICP. Hold ICP constant by choke manipulation until the kick fluids are circulated from the hole and original mud weight is measured at the choke outlet. |
| 4.  | Reduce the pump speed while closing the choke so that a constant casing pressure is maintained. When the pump is barely running, shut off the pump and finish closing the choke.                                 |
| 5.  | Observe pressure gauges and verify that both record the original SIDPP. If not, check for trapped pressure.                                                                                                      |
| 6.  | Recalculate the kill mud weight and increase the density of the mud in the pits.                                                                                                                                 |
| 7.  | Open the choke and slowly start the pump. Increase the pump speed to kill rate while maintaining constant casing pressure.                                                                                       |
| 8.  | Continue to hold casing pressure constant until KWM enters the annulus.                                                                                                                                          |
| 9.  | Read the drillpipe pressure and hold constant until kill mud weight is measured a the choke outlet.                                                                                                              |
| 10. | Shut off the pump and close the well in.                                                                                                                                                                         |
| 11. | Open the choke and check for flow.                                                                                                                                                                               |
| 12. | Resume operations. Incorporate trip margin into the mud weight.                                                                                                                                                  |

Table 4.2 – Driller method procedure for killing well.<sup>8</sup>

The Drillers method does not require complex calculations making it easy for all drilling personnel to understand. The Drillers method is also attractive pressure-wise and in many cases psychologically because it can be begun immediately. **Table 4.2** shows the Drillers method procedure for a surface stack.

| 1. | Take care of the well until the kill procedure can be started by maintaining a constant drillpipe pressure and allowing migrating gas to expand.                                                                                 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Calculate the kill mud weight and increase the weight of the mud in<br>the suction pit. Determine the weight material addition rate<br>needed for the pumping operation and generate the a drillpipe<br>pressure-reduction chart |
| 3. | Open the choke and slowly start the pump. Coordinate choke setting with pump speed so that the original SICP is maintained until the pump is brought up to the kill rate.                                                        |
| 4. | Read the drillpipe pressure and compare to the computed ICP.<br>Manipulate the choke so that the CDDP follows the pressure<br>reduction schedule.                                                                                |
| 5. | Maintain drillpipe pressure constant at the FCP value until the kill mud density is measured at the choke outlet.                                                                                                                |
| 6. | Reduce the pump speed while closing the choke so that a constant casing pressure is maintained. When the pump is barely running, shut off the pump and finish closing the choke.                                                 |
| 7. | Observe pressure gauges and verify that both read zero. If not, check for trapped pressure.                                                                                                                                      |
| 8. | Open the choke and check for flow.                                                                                                                                                                                               |
| 9. | Resume operations incorporating trip margin density into the mud.                                                                                                                                                                |

Table 4.3 – Wait and Weight method for killing well.<sup>8</sup>

The Wait and Weight method shown in **Table 4.3** is more complicated but has advantages. It only requires one circulation to the Drillers method's two circulations. However, during the weighting up of the mud, the influx may migrate too far. This is particularly true for ultra-deepwater wells, where the influx may not be detected until a significant volume has entered the wellbore. **Table 4.3** shows a comparison of casing shoe pressures between the two methods. While the Drillers method does result in higher annular pressures, ultra-deepwater influx detection delays may negate that disadvantage. Since the influx will most likely be below its bubble point and expansion is limited, the influx may have already migrated to or past a deep casing shoe prior to detection. The Wait and Weight method also depends on a large supply of barite being

on hand to immediately mix the kill weight mud. On a floating rig, there may not be enough barite to complete the task immediately. This is another major advantage of the Drillers method in that it does not require any immediate mixing. The circulation is begun, the influx circulated out, and any barite shortfalls can be remedied by the time the second circulation is set to begin.



Fig. 4.8 – Comparison of casing shoe pressures between Drillers method and Wait and Weight method shows Drillers method causes lost circulation.<sup>8</sup>

The procedures shown in **Table 4.2** and **Table 4.3** are applicable for ultradeepwater drilling until step 11 for the Drillers method and step 8 for the Wait and Weight method. Since ultra-deepwater deals with subsea BOP stacks, additional procedures need to be followed. The gas will trapped at the BOP stack. This gas will have either not expanded much, or have expanded a tremendous amount in the last several hundred feet of circulation.<sup>46</sup> This means the influx is still under a tremendous amount of pressure. For either circulation kill method, the following steps need to be followed to flush the gas from the top of the BOP stack.

## Procedure for Flushing BOP stack:<sup>46</sup>

- 1. Close a set of rams below choke and kill line
- To increase hydrostatic pressure on gas, circulate sea water down kill line and back up choke line.
- 3. Then allow gas to expand up choke line and vent appropriately.
- 4. Once gas has fully expanded, flush the choke line with sea water and proceed to killing the riser.

The gas will now have been circulated out of the wellbore. However, the riser still contains original weight mud (OWM). Bringing the riser and wellbore back into communication will result in a loss in hydrostatic head and another influx. Therefore, the following steps need to be followed to replace the OWM in the riser with kill weight mud (KWM).

## Procedure for Killing the Riser:<sup>46</sup>

- 1. Flush BOP stack as shown above
- 2. Open the annular preventer while keeping lower rams closed.
- 3. Allow mud in riser to u-tube the sea water out of the choke and kill lines.
- 4. Put the rig pumps on the kill line and circulate KWM down the kill line and up the riser and choke line.
- 5. Once riser is full of KWM, open the lower rams and reestablish hydraulic communication with the wellbore.

According to some industry sources<sup>47</sup> "sandwiching" the influx is an acceptable method of influx control. Sandwiching a kick consists of concurrently displacing the drill pipe and annulus with heavy mud. This forces the kick into a lost circulation zone

created below the casing shoe. A secondary after effect is that young offshore formations will often bridge around the BHA and complete the kill.<sup>47</sup> While this would obviously be a successful method, the first choice should be a circulation method. These methods keep wellbore and formation damage to minimum as well as being methods drilling personnel are familiar with.

#### 4.5 Dynamic Kill Blowout Control

There are many ways to control a blowout as previously mentioned in section 1. Many of the available publications cover these methods very ably.<sup>13</sup> While they did not account for the water depths drilled in today, with a few changes and considerations their discussion of these methods is sufficient. The first and foremost concern is the effect of increased water depth. The blowout control methods most affected are the surface intervention methods. To save the floater and reduce risk to personnel and equipment, the standard procedure for an influx that is not controllable is to close the BOP, disconnect the riser, and drive off of location. If for some unknown and extraordinary reason, the floater is left connected to the wellbore and the blowout is allowed to broach the surface, surface control techniques might be an option. However, this is not likely to ever occur due to the high cost of the floater and extreme danger associated with this action. Therefore, surface intervention is not considered an option.

Blowout control options are thus reduced to bridging or depletion, relief wells, or "vertical intervention". Vertical intervention is a phrase coined by Adams to describe any kill attempts that involve wild wellbore re-entry.<sup>13</sup> For ultra-deepwater, this involves positioning a floater over the blowing well, and snubbing a drillstring or other equipment to control the well. This allows the operator to bypass the additional time and expense necessary drill a relief well. The extreme water depths may negate this option. 5000 to 10000 feet of drillpipe may be too long of a string to snub into a subsea BOP due to buckling concerns. Research in this area is non-existent, but it may be surmised that factors such as wellbore exit pressure, snubbed pipe strength and water depth would

determine if vertical intervention is possible. A solution to the buckling problem during vertical intervention may involve heavy wall drillpipe or high-grade casing.

Vertical intervention techniques include pumping gunk/cement plugs, bullheading, momentum kills, and dynamic kills down the blowing wellbore. Relief wells can be used to implement the same actions with the exception of bullheading. By the time a relief well is put into use, the other kill options are more attractive to the operator than bullheading because they do not carry the same risk of irreparable damage to the wellbore and formation.

This section of the report covers the use of relief wells and vertical intervention to deliver a dynamic kill to the blowing well. Best practices for the other kill options should be obtained from publications such as *DEA-63: Floating Vessel Blowout Control* or from blowout specialists.

| Process for Decision Making on Dynamic Kill Delivery Method <sup>13</sup> |
|---------------------------------------------------------------------------|
| -Shallow gas with or without crater:                                      |
| -First Choice: Vertical Intervention                                      |
| -Second Choice: Relief Well(s)                                            |
| -Access to competent casing string with fracture gradient                 |
| making well shut-in possible:                                             |
| -First Choice: Vertical Intervention                                      |
| -Second Choice: Relief Well(s)                                            |
|                                                                           |

## Fig. 4.9 – Decision process for dynamic kill path.<sup>8</sup>

The decision process for the dynamic kill delivery method is fairly simple as shown **Fig. 4.9**. This process is based on current environmental conditions as wellbore configuration, wild wellbore conditions and subsea equipment conditions. Vertical intervention is always preferable to a relief well for several reasons. The first is time necessary to complete the kill operation. Since vertical intervention uses the existing

wild wellbore as an access point to controlling the blowout, enormous amounts of time are saved. Relief wells require an entirely new wellbore that could take up to 50 or 60 days to drill depending on the environment and confidence in available geological information. Saving time through vertical intervention results in two main benefits for the operator.

The first is a reduction in the amount of hydrocarbons lost. This loss is not only economically disadvantageous but could cause with respect to environmental laws and public perception. The second benefit is a dramatic reduction in kill operation costs. At the time of this writing, day rates were USD\$163,000 and USD\$149,500 for semi-submersibles and drillships respectively.<sup>44</sup> This cost can be compounded attempting vertical intervention at the same time a relief well is being drilled. The cost of two floaters on location coupled with the cost of the hydrocarbon lost requires that the blowout be controlled as quickly as possible.

To quickly control the blowout, vertical intervention is recommended as long as it is possible. If the subsea equipment is damaged or the wellbore is damaged, vertical intervention may not be an option. If the wellhead or other subsea equipment is damaged or inoperable, repairs or replacement should be attempted. Typical methods to accomplish repairs or replacement involve the use of equipment such as ROVs and well-servicing rigs. However, the cost and time associated with these repairs is minimal in comparison with drilling a relief well. In shallow waters the use of vertical intervention is difficult to due to the loss of buoyancy resulting from the release of gas into the water directly over the wellbore. However, in ultra-deepwaters, the loss of buoyancy is approximately five percent as shown in **Fig. 4.10**.<sup>20</sup>



**Fig. 4.10 – Data from Adams et al. shows minimal loss of buoyancy from blowout plume.**<sup>20</sup>



Fig. 4.11– Data from Adams et al. shows wide plume at surface for blowout in 10000 feet of water.<sup>20</sup>

This minimal loss of buoyancy would not limit any vertical intervention attempts. The data shown is for 10,000 feet of water. At the lower end of the ultra-deepwater range at approximately 5,000 feet of water, the loss of buoyancy is the same five percent. In the unlikely event a drillship was affected by this loss of buoyancy, a semisubmersible could be used if the flotation tanks were not filled with as much water as normal. This could allow vertical intervention in instances where buoyancy loss exceeded the calculations by Adams, et al.<sup>20</sup> Although, a floater would be able to float above the blowout, it would still have to contend with the surface conditions created by the blowout plume.<sup>20</sup> Fig. 4.11 shows the width of the plume would be approximately 650 feet in 10,000 feet of water. The same data shows a plume width of approximately 350 feet in 5,000 feet of water. These values indicate that the floater would be surrounded by the blowout plume. This could cause adverse water surface conditions and air quality conditions. This discussion assumes a worst case scenario of water with no currents. Since any ultra-deepwater location will have some currents present, the plume will be dispersed. The extent to which the plume is dispersed is dependent on the strength, number and direction of the currents.<sup>20</sup> The presence of these conditions would need to be evaluated on a case-by-case basis to account for currents and wind conditions which may or may not take the plume and gas out of the way. The negligible loss of buoyancy also affects relief well MD/TVD ratios. Higher MD/TVD ratios are seen for land blowouts due to the need to distance blowout control personnel from the blowing fluids and related dangers. However, the land relief well MD/TVD ratios are not high for even the worst blowouts. For a 400 MMscfd/60,000 bopd blowout in the El Isba field in Syria, the relief wells were only 750 meters away from the blowing well. In this extreme case the MD/TVD ratio was less than 1.2. The relief well MD/TVD ratio will be even less for ultra-deepwater blowouts. Since buoyancy will be adequate for floaters to operate, the limiting factor in this case will be maintaining a safe separation of the blowout control vessels.

Whether or not it is established that vertical intervention is possible, relief well planning should be undertaken as well. The kill rates and pumping requirements will be discussed in a later section of this report. The drilling and targeting requirements are ably discussed in many of the available blowout control texts.<sup>42,13,1,8,9,10,39</sup> Ultradeepwater does little to change planning during the drilling and target operations. The large water depth induces the same changes in relief well planning as it does in normal ultra-deepwater directional wells. The rig selection, riser selection and seafloor equipment selection are most affected due to longer drillstrings and longer riser requirements. The targeting tools and principals remain the same, however the calculations may be slightly more complicated.

Timing of the relief well or wells is a critical concept that is the same regardless of the water depth. However, because the ultra-deepwater drilling equipment is expensive and not as readily available, timing becomes especially important. The order of operations for blowouts capable of being killed with one relief well is vertical intervention first, followed by spudding of the first relief well. The vertical intervention should be attempted for several days in order to allow for the well to bridge as well as to reduce cost associated with the mobilization of relief well drilling equipment in the event the well is killed quickly. If after several days, the vertical intervention process is not successful, the relief well may be begun. If backup relief wells are deemed necessary, the first relief well should be spudded as before. The operator should then wait several days to a week before beginning the backup relief wells. This lag time gives the blowout specialists time to plan the backup well after more important tasks have been taken care of, as well as saving the operator a significant amount of money.

Whether a blowout is initially considered as capable of being controlled through vertical intervention or relief wells is based on calculations from simulators such as COMASim in conjunction with the personal experience of the (hopefully) very experienced blowout specialists the operator saw fit to retain before the blowing well was even spudded. This report will base its recommendations mainly on COMASim simulation runs discussed earlier as well as blowout specialists advice from literature.

An important decision to be made prior to running simulations or calculations is the drillstring status. As **Table 1.2** indicated, the majority of blowouts stem from improperly controlled influxes that occurred due to swabbing during tripping operations. This fact indicates that in these blowouts, the drillstring would not be at the bottom of the hole. One of the first calculations that should be made is whether or not the drillstring should be sheared or dropped to the bottom. As Table 3.3 shows, the drillstring status has little to do with the blowout flow rate. However, Fig. 3.16 indicates it has a dramatic effect on the kill rate. Although dropping the drillstring may seem to be a necessity in most dynamic kills, there can be a major problem with that action. Fig. 3.11 shows that the bottomhole pressure for a dropped drillstring is almost 500 psi higher than that of a hanging drillstring. If the fracture and pore pressure gradients are similar to the lower portion of Fig. 4.7b, the operator may have already been close to fracturing the formation. The act of dropping the drillstring might cause the formation to fracture through the physical impact, which could bring about an underground blowout. The effect of surge pressure because of a falling drillstring would be minimal. The size of this effect is due to the wellbore having a large upward force in the form of the blowing fluid. Also, this fluid is most likely to be gas, therefore the lower density of the gas will not respond to the falling pipe. If the formation will hold, the pressure profile calculated with COMASim should then be used to check the expected casing shoe pressures. Again, excess pressure could cause an underground blowout. An underground blowout would change the blowout flow and possibly ruin the wellhead and BOPE. Understandably, the operator needs to keep as much of the wellbore and related equipment operational in order to retain some semblance of control over the situation. An underground blowout further complicates the control operation. If the formation will not be fractured by the pressure increase caused by the dropped drillstring, then dropping the drillstring, particularly a shorter one, will lower the kill requirements appreciably as illustrated in Fig. 3.16.

An untested idea is to use the drillstring kill option in conjunction with the relief well option to reduce drilling costs and time. More study needs to be completed on this topic, however it could provide a means to carry out dynamic kills of wells that would be unable to be controlled otherwise due to higher numbers of required relief wells. The following discussion of pumping requirements illustrates the potential for high-rate, large wellbore blowouts to resist being controlled through dynamic means. These wells require multiple relief wells and the operator would benefit from considering this unorthodox approach to controlling the blowing well through less cost and in less time.

Once the wild well drillstring status during the dynamic kill has been determined, the pressure profile is calculated through use of a simulator such as COMASim. This pressure profile shows the pressure within the wellbore prior to pumping the dynamic kill.

The pumping requirements are also obtained through simulation. The basic trends concerning the pumping requirements are simple in nature and are discussed in detail in earlier sections. Higher blowout flow rates require higher kill rates. Larger wild wellbores require higher kill rates as well. Larger relief wellbores lower the pumping equipment requirements. A basic offshore pumping plant is shown in **Fig. 4.5**. This pumping plant requires clearing a large portion of a floater. However, it may be easier to put this style of pumping plant together than to contend with the linking of frac vessels such as the one shown in **Fig. 3.1**. Whatever the design for the pumping plant may be, it will be tailored to each blowout and should be reasonably developed in the contingency plan. This will allow the operator to quickly mobilize, and if necessary build, the pumping plant. Pumping requirements will also change with changing blowout flow rates. As previously discussed, blowouts have a tendency to bridge during the time range from 0 to 24 hours. While a blowout might not bridge in this period, vertical intervention methods can cause partial bridging to occur. This could change the pumping plant requirements and should be accounted for with new simulations.

#### **CHAPTER V**

## **CONCLUSIONS AND RECOMMENDED FUTURE RESEARCH**

#### 5.1 Ultradeep Water Blowout Control Conclusions

- Blowouts are and have been a problem for the oil and gas industry. Even as technology has advanced, the incident rate for blowouts has remained constant.
- Causes for blowouts vary widely, however there is a constant. The majority of blowouts can be attributed to complacent, careless drilling practices.
- The COMASim simulator is an excellent simple simulator for calculating the requirements for a dynamic kill. Its ease of use makes COMASim a likely candidate for a preliminary or rough analysis in ultradeep water blowout situations.
- The pressure loss for the open hole section of the wild wellbore is dramatically higher due to a higher coefficient of friction.
- Without the added constriction of a drillstring in the wellbore, there is much less variation in pressure profiles and bottomhole pressures.
- Since surface gas flow rates depend on bottomhole pressures, two conclusions may be drawn. First, shorter drillstring lengths result in higher surface gas flow rates. Also, dropping the drillstring reduces the surface flow rate when compared to hanging drillstring situations.
- Relief well requirements increase with larger casing sizes due to increased blowout flow rate.
- Dynamic kill rates begin to vary widely between drillstring statuses as the drillstring length begins to decrease.
- Relief well measured depth to total vertical depth ratio should be as close to one as possible to keep the dynamic kill requirements to a minimum.
- Relief well annular ID to drillpipe OD ratio should be as large as possible to reduce the pumping requirements for the dynamic kill.

- Dropping the drillstring in the wild wellbore reduces your dynamic kill requirements.
- Dropping the drillstring in the wild wellbore increases the bottomhole pressure.
- Ultradeep water drilling and blowout control equipment needs to designed specifically with the harsh ultradeep water environment in mind.
- Increasing the kill fluid reduces the required kill rate and pumping requirements.
- The Driller's Method is the industry recommended offshore well control procedure for most situations and will remain as such for ultradeep water drilling. This is due to its simplicity and ability to begin immediately circulating out the influx as opposed to allowing pressure to build up.
- During blowout control operations, there will be minimal loss of buoyancy. This
  means the rig administering the dynamic kill can position itself as close to the
  plume as necessary without worrying about buoyancy loss.
- If the drillstring can handle the buckling forces, attempts to vertically intervene should be made in conjunction with relief well operations. Time and monetary savings mean vertical intervention will pay off if it is successful.

Several areas exist that need to be improved on in order for COMASim to be more complete industry and research tool. These improvements will in turn allow more accurate best practices recommendations to be made in the area of ultra-deepwater blowout prevention and control.

#### 5.2 Simple COMASim User Tasks and Extended Analysis Capability

Perhaps the most important task to accomplish is to create, in COMASim, an effective tool that can be used for industry dynamic kill calculations as well as research into blowouts and dynamic kills. The first step needs to be creating a more detailed simulator capable of basic program functions. The basic functions would include the ability to save the input data as the default data, as well as export the input data in order to save it. The ability to recognize important points of change in the pressure profile is

also important for the end user. This would mean that the data output of the pressure profile to the left of the graphical output would be based on large changes in the pressure profile, not ten evenly spaced data points. The problem can be seen in **Fig. 3.4** and **Fig. 3.3**. Extending the analysis capability would include the ability to export the simulation output as a ".dat" file and/or to Microsoft Excel. This capability would increase the number of runs possible and accuracy of collected data leading to better analysis.

#### 5.3 Multilateral Capability

As previously discussed, the majority of wells in ultra-deepwater will not be the rigid vertical wells currently modeled by COMASim. Ultra-deepwater wells will not only have deviated main wellbores but also have several laterals. COMASim needs to have the capability to model the deviated wellbores as well as multilaterals. The calculations for this wellbore geometry and its effect on the friction factor are fairly simple. The calculations for multilateral situations would also be relatively simple if each lateral was kept identical to the others. I suggest this is the first type of multilateral calculation made available. Once this calculation is working, if the multilaterals need to be unique, then investigator should attempt to implement those calculations. Either way, the addition of multilateral and directional wellbore capability will allow COMASim to simulate more realistic situations.

#### 5.4 Fluid Fallback

Fluid fallback or counterflow has been considered for some time in dynamic kill literature but is not currently a part of COMASim calculations.<sup>21,22</sup> It is often ignored in practice because doing so simply makes the dynamic kill calculations more conservative. The COMASim results that show that ultradeep water, high-flow blowouts may require three or more relief wells necessitate the investigation of the safety factor given to dynamic kill calculations which ignore fluid fallback. An option given to the user of whether or not to include fluid fallback in the calculations could change the number of relief wells and pumping requirements in high flow rate blowouts.

#### **5.5 Underground Blowout Capability**

Many blowouts become underground blowouts due to weak exposed formations, weak casing or cement, or poor well or blowout control practices. Modeling an underground blowout is currently possible in COMASim by manipulating the simulator using the exit pressure to mimic the thief zone pressure. However this is an imperfect solution that is often confusing to the user and likely to yield suspect results. The capability to model underground blowouts would extend the usefulness of COMASim into an entirely new type of blowout thereby giving it added research and industry value.

#### 5.6 Linking to Dr. Jongguen Choe's Simulator

A simulator developed by Dr. Jongguen Choe, with a significant amount of help from several of the committee members for thesis, simulates well control for many aspects of drilling including multilaterals and tripping.<sup>48</sup> Both of these situations will be factors in many blowouts making Choe's simulator an important tool in the analysis of ultra-deepwater blowouts. There is currently no link between COMASim and Choe's simulator. An ideal situation would exist in which Choe's simulator output a data file when a blowout occurred during a simulation due to a poorly handled influx. This data file would compatible with COMASim. After COMASim read the data file, it could calculate the blowout initial conditions as well as the dynamic kill requirements. Adding this capability would increase the usefulness to industry personnel as well as researchers for both simulators.

#### **5.7 Simulator Validation**

An important part of the initial planning of this study included validation of COMASim using field cases. Unfortunately, the only data that resulted in a match was an example from Watson, et al.<sup>8</sup> Other blowout case histories obtained from the MMS and Larry Flak of Boots and Coots caused the simulator to fail. An in-depth study needs to be done to rectify the situation. To complete this, an investigator proficient in Java code needs to be found. The problems relating to the case histories should be identified

and solutions to COMASim's inability to simulate these case histories would be found. The study would need to obtain access to several databases such as the Neal Adams/Matthew Daniels blowout database, the Wellflow Dynamics blowout database and SINTEF's blowout database. Successful access to these databases could yield several more standard case histories that are closer to COMASim's capabilities than the extraordinary cases in literature. This validation process would focus on real-life situations and COMASim's ability to handle these situations. With validation of COMASim would come an increased confidence in it's results.

#### 5.8 Combination Vertical Intervention and Relief Well Dynamic Kill Operations

A brief discussion in the best practices section covered the possibility of using a combination kill operation in which kill fluid flow paths simultaneously included relief well(s) and vertical intervention. This is a complex operation hydraulically, but it is certainly possible. This type of operation could reduce the drilling requirements for blowouts requiring multiple relief wells to a point where a dynamic kill was possible. The addition of this option would create interesting research and discussion opportunities as well as possibly improve the capability of the industry to handle blowouts dynamically.

## NOMENCLATURE

| а      | =                             | acceleration                                                       |  |  |  |  |  |  |  |
|--------|-------------------------------|--------------------------------------------------------------------|--|--|--|--|--|--|--|
| BOP    | =                             | Blowout preventer                                                  |  |  |  |  |  |  |  |
| BOPE   | = Blowout preventer equipment |                                                                    |  |  |  |  |  |  |  |
| COMASi | n =                           | Cherokee Offshore, MMS, Texas A&M Simulator                        |  |  |  |  |  |  |  |
| d      | =                             | pipe diameter, L                                                   |  |  |  |  |  |  |  |
| DP     | =                             | drill pipe                                                         |  |  |  |  |  |  |  |
| f      | =                             | Fanning friction factor                                            |  |  |  |  |  |  |  |
| g      | =                             | acceleration of gravity, $L/t^2$                                   |  |  |  |  |  |  |  |
| GOM    | =                             | Gulf of Mexico                                                     |  |  |  |  |  |  |  |
| IPR    | =                             | inflow performance relationship                                    |  |  |  |  |  |  |  |
| L      | =                             | length, L                                                          |  |  |  |  |  |  |  |
| md     | =                             | millidarcy                                                         |  |  |  |  |  |  |  |
| MMscfd | =                             | million cubic feet per day                                         |  |  |  |  |  |  |  |
| MMS    | =                             | Mineral Management Service                                         |  |  |  |  |  |  |  |
| OCS    | =                             | Outer Continental Shelf                                            |  |  |  |  |  |  |  |
| Р      | =                             | pressure, m/Lt <sup>2</sup>                                        |  |  |  |  |  |  |  |
| psi    | =                             | pounds per square inch                                             |  |  |  |  |  |  |  |
| ROV    | =                             | Remote operated vehicle                                            |  |  |  |  |  |  |  |
| RPSEA  | =                             | Research Partnership to Secure Energy for America                  |  |  |  |  |  |  |  |
| SINTEF | =                             | Foundation for Scientific and Industrial Research at the Norwegian |  |  |  |  |  |  |  |
|        |                               | Institute of Technology                                            |  |  |  |  |  |  |  |
| TD     | =                             | Total Depth                                                        |  |  |  |  |  |  |  |
| TVD    | =                             | Total Vertical Depth                                               |  |  |  |  |  |  |  |
| v      | =                             | velocity, L/t                                                      |  |  |  |  |  |  |  |
| μ      | =                             | viscosity, m/Lt                                                    |  |  |  |  |  |  |  |
| μ      | =                             | coefficient of friction                                            |  |  |  |  |  |  |  |
| ho     | =                             | density, $m/L^3$                                                   |  |  |  |  |  |  |  |
| au     | =                             | shear stress, m/Lt <sup>2</sup>                                    |  |  |  |  |  |  |  |

# Subscripts

- ac = acceleration
- c = conversion constant
- f =fluid
- g = gas
- h = hydrostatic
- m = mixture
- o = outer
- s = superficial

### REFERENCES

- 1. Goins, W.C., Jr. and Sheffield, R.: *Blowout Prevention*, Gulf Publishing Company, Houston, Texas (1983).
- "History of Spindletop Oil Discovery," http://www.priweb.org/ed/pgws/history/spindletop/spindletop.html; Accessed June 2004.
- "Cooper-Cameron Profile," http://www.businessnewsonline.com/%20Web%20Site%20Files/Feature \_Business/Cameron.html; Accessed June 2004.
- 4. Skalle, P. and Podio, A.L.: "Trends Extracted from 1200 Gulf Coast Blowouts During 1960-1996," paper SPE 39354 presented at the 1998 IADC/SPE Drilling Conference, Dallas, TX, 3-6 March.
- 5. "SINTEF Overview," http://www.sintef.no/; Accessed July 2004.
- 6. Holand, P.: *Offshore Blowout: Causes and Control*, Gulf Publishing Company, Houston, TX (1997).
- 7. Skalle, P., Trondheim, J.H. and Podio A.L.: "Killing Methods and Consquences of 1120 Gulf Coast Blowouts During 1960-1996," paper SPE 53974 presented at the 1999 IADC/SPE Drilling Conference, Dallas, TX, 3-6 March.
- 8. Watson, D., Brittenham, T. and Moore, P.L.: *Advanced Well Control: SPE Textbook Series Vol. 10*, Society of Petroleum Engineers, Richardson, TX (2003).
- 9. Adams, N. and Kuhlman, L.: *Kicks and Blowout Control*. 2<sup>nd</sup> Edition, Pennwell Books, Tulsa, OK (1994).
- 10. Grace, R.D.: *Advanced Blowout & Well Control*, Gulf Publishing Companly, Houston, TX (1994).
- 11. Confidential Minerals Management Service (MMS) well control incident reports obtained April 2004 from MMS.
- 12. Tarr, B.A. and Flak, L.: "Part 6 Underground Blowouts," John Wright Company, Houston, TX, www.jwco.com, Accessed July 2004.
- 13. Neal Adams Firefighters, Inc.: "Joint Industry Program for Floating Vessel Blowout Control (DEA-63)," Neal Adams Firefighters, Inc., Houston, TX (1991).

- 15. Wright, J.W. and Flak, L.: "Part 11-Relief wells: Advancements in Technology and Application Engineering Make the Relief Well a more Practical Blowout Control Option," John Wright Company, Houston, TX, www.jwco.com, Accessed July 2004.
- 16. Blount, E.M. and Soeiinah, E.: "Dynamic Kill Controlling Wild Wells a New Way", *World Oil* (Oct. 1981) 109-116.
- 17. "Summary of 1994 Patagonia, Argentina Blowout," http://www.jwco.com/casehistories/patagonia\_argentina\_1994/patagonia\_argentina\_1994.htm, Accessed July 2004.
- 18. "Relief Well Overview," http://www.jwco.com/is\_relief\_well.htm, Accessed July 2004.
- 19. "Summary of 1995 Syrian Blowout," http://www.jwco.com/casehistories/syria\_1995/syria\_1995.htm, Accessed July 2004.
- 20. Adams, N. and Economides, M.J.: "Characterization of Blowout Behavior in Deepwater Environments," paper SPE 79879 presented 2003 SPE/IADC Drilling Conference, Amsterdam, The Netherlands, 19-21 February.
- Flores-Avila, F.S., Smith, J.R., Bourgoyne, A.T. Jr.: "New Dynamic Kill Procedure for Off-Bottom Blowout Wells Considering Counter-Current Flow of Kill Fluid," paper SPE 85292 presented 2003 SPE/IADC Middle East Drilling Technology Conference & Exhibition, Abu Dhabi, UAE, 20-22 October.
- Flores-Avila, F.S., Smith, J. R., Bourgoyne, A.T., Bourgoyne, D.A.:
   "Experimental Evaluation of Control Fluid Fallback During Off-Bottom Well Control: Effect of Deviation Angle," paper IADC/SPE 74568 presented 2002 IADC/SPE Drilling Conference, Dallas, TX, 26-28 February.
- 23. Schubert, J.J. and Weddle, C.E. III: "Development of a Blowout Intervention Method and Dynamic Kill Simulator for Blowouts Occurring in Ultra-Deepwater," JIP Proposal available from Mineral Management Service, Houston, TX (October 2000).

- 24. Schubert, J.J.: "Development of a Blowout Intervention Method and Dynamic Kill Simulator for Blowouts Occurring in Ultra-Deepwater," JIP Proposal available from Research Project to Secure Energy for America, Sugar Land, TX (2003).
- 25. "Gulf of Mexico Borehole History," http://www.gomr.mms.gov/homepg/fastfacts/borehole/borelist.asp, Accessed July 2004.
- 26. Choe, J. and Juvkam-Wold, H.C.: "Riserless Drilling: Concepts, Applications, Advantages, and Limitations," paper CADE/CAODC 97-140 presented 1997 CADE/CAODC Spring Drilling Conference, Calgary, 8-10 April.
- 27. Choe, J. and Juvkam-Wold, H.C.: "Riserless Drilling and Well Control for Deep Water Applications," *Proc.* 1997 IADC International Deep Water Well Control Conference and Exhibition, Houston, 15-16 September.
- 28. Gault. A.D.: "Riserless Drilling: Circumventing the Size/Cost Cycle in Deepwater," *Offshore* (1996) 56, No. 5, 49-54.
- 29. Oskarsen, R.T.: "Development of a Dynamic Kill Simulator for Ultradeep Water," PhD Dissertation, Texas A&M University, College Station, TX (2004).
- 30. Halliburton Cementing Tables, Halliburton Company, Houston, TX (2001).
- 31. Schlumberger Field Data Handbook. Schlumberger, Houston, TX (2001).
- 32. Personal communication with Ray T. Oskarsen, Texas A&M University, College Station, TX, 4/15/04.
- 33. Personal communication with Larry Flak, Boots and Coots, Houston, TX 5/4/04.
- 34. Personal communication with Dr. Ray T. Oskarsen, John Wright Co., Houston, TX 7/25/04.
- 35. "BJ Services Deepwater Stimulation Vessels," http://www.bjservices.com/website/ps.nsf/0/634FE8289F16FB9086256DC 600621609/\$file/Deepwater+Stimulation+Vessels-Gulf+of+Mexico.pdf, Accessed August 2004.
- 36. Flak, L.: "Blowout Case Histories," presentations available upon request from Larry Flak, Boots & Coots, Houston, TX.

- "Offshore Rig Fleet Information," http://www.deepwater.com/FleetInformation.cfm, Accessed August 2004.
- 38. "ABB Vetco Grey Product Flier for Deepwater Riser," http://www.abb.com/global/abbzh/abbzh251.nsf!OpenDatabase&db=/global/ noofs/noofs187.nsf&v=F216&e=us&m=9F2&c=4D91C6E88ACCE11A85256C 67006BF951, Accessed August 2004.
- 39. Vigeant, S.P.: "How Well Control Equipment Is Advancing to Meet Deepwater Needs Part 2," *World Oil* (July 1998) 54-56.
- 40. "Kingdom Drilling Practices Manuel," http://www.kingdomdrilling.co.uk/drillops/equipment/DWSS01.pdf, 3. Accessed August 2004.
- 41. "Sonardyne BOP Product Brochure," http://www.sonardyne.co.uk/Downloads/brochures/bop\_brochure.pdf, Accessed August 2004.
- 42. "Norwegian Drilling Standards," http://www.standard.no/pronorm-3/data/f/0/01/30/1\_10704\_0/D-010.pdf, Accessed August 2004.
- 43. Abel, L.W., Bowden, J.R., and Campbell, P.J.: *Firefighting and Blowout Control*, Wild Well Control, Inc., Spring, TX (1994).
- 44. "Dayrates for Gulf of Mexico for August 13<sup>th</sup>, 2004," http://www.rigzone.com/data/dayrates/, Accessed August 2004.
- 45. Dake, L.P.: *Fundamentals of Reservoir Engineering*, Elsevier Scientific Publishing Company, Amsterdam (1978).
- 46. Schubert, J.J.: "Well Control," M. Eng report, Texas A&M University, College Station, TX (1995).
- 47. Grace, R.D., *Blowout and Well Control Handbook*, Gulf Professional Publishing, New York (2003).
- 48. Choe, J, Schubert, J.J., Juvkam-Wold, H.C.: "Well Control Analyses on Extended Reach and Multilateral Trajectories," paper OTC presented at 2004 Offshore Technology Conference, Houston, TX, 3-6 May.

## **APPENDIX A**

# SIMULATION RUN MATRIX

## **Relief Well Run Matrix**

| RUN # | TVD  | WATER | DS               | PARAMETER | PARAMETER | MD/TVD | ANN ID/         |
|-------|------|-------|------------------|-----------|-----------|--------|-----------------|
|       | BML  | DEPTH | STATUS           | VARIED    | VALUE     | RATIO  | <b>OD RATIO</b> |
| 1     | 3000 | 0     | Hanging from BOP | Casing OD | 7         | 1      | 2               |
| 3     | 3000 | 0     | Hanging from BOP | Casing OD | 7         | 1      | 1.5             |
| 5     | 3000 | 0     | Hanging from BOP | Casing OD | 7         | 1.5    | 2               |
| 7     | 3000 | 0     | Hanging from BOP | Casing OD | 7         | 1.5    | 1.5             |
| 9     | 3000 | 0     | Hanging from BOP | Casing OD | 7         | 2      | 2               |
| 11    | 3000 | 0     | Hanging from BOP | Casing OD | 7         | 2      | 1.5             |
| 13    | 3000 | 0     | Hanging from BOP | Casing OD | 10.75     | 1      | 2               |
| 15    | 3000 | 0     | Hanging from BOP | Casing OD | 10.75     | 1      | 1.5             |
| 17    | 3000 | 0     | Hanging from BOP | Casing OD | 10.75     | 1.5    | 2               |
| 19    | 3000 | 0     | Hanging from BOP | Casing OD | 10.75     | 1.5    | 1.5             |
| 21    | 3000 | 0     | Hanging from BOP | Casing OD | 10.75     | 2      | 2               |
| 23    | 3000 | 0     | Hanging from BOP | Casing OD | 10.75     | 2      | 1.5             |
| 25    | 3000 | 0     | Hanging from BOP | Casing OD | 12.75     | 1      | 2               |
| 27    | 3000 | 0     | Hanging from BOP | Casing OD | 12.75     | 1      | 1.5             |
| 29    | 3000 | 0     | Hanging from BOP | Casing OD | 12.75     | 1.5    | 2               |
| 31    | 3000 | 0     | Hanging from BOP | Casing OD | 12.75     | 1.5    | 1.5             |
| 33    | 3000 | 0     | Hanging from BOP | Casing OD | 12.75     | 2      | 2               |
| 35    | 3000 | 0     | Hanging from BOP | Casing OD | 12.75     | 2      | 1.5             |
| 37    | 3000 | 0     | Hanging from BOP | DS Length | 50%       | 1      | 2               |
| 39    | 3000 | 0     | Hanging from BOP | DS Length | 50%       | 1      | 1.5             |
| 41    | 3000 | 0     | Hanging from BOP | DS Length | 50%       | 1.5    | 2               |
| 43    | 3000 | 0     | Hanging from BOP | DS Length | 50%       | 1.5    | 1.5             |
| 45    | 3000 | 0     | Hanging from BOP | DS Length | 50%       | 2      | 2               |
| 47    | 3000 | 0     | Hanging from BOP | DS Length | 50%       | 2      | 1.5             |
| 49    | 3000 | 0     | Hanging from BOP | DS Length | 25%       | 1      | 2               |
| 51    | 3000 | 0     | Hanging from BOP | DS Length | 25%       | 1      | 1.5             |
| 53    | 3000 | 0     | Hanging from BOP | DS Length | 25%       | 1.5    | 2               |
| 55    | 3000 | 0     | Hanging from BOP | DS Length | 25%       | 1.5    | 1.5             |
| 57    | 3000 | 0     | Hanging from BOP | DS Length | 25%       | 2      | 2               |
| 59    | 3000 | 0     | Hanging from BOP | DS Length | 25%       | 2      | 1.5             |
| 61    | 3000 | 0     | Dropped DS       | Casing OD | 7         | 1      | 2               |
| 63    | 3000 | 0     | Dropped DS       | Casing OD | 7         | 1      | 1.5             |
| 65    | 3000 | 0     | Dropped DS       | Casing OD | 7         | 1.5    | 2               |
| 67    | 3000 | 0     | Dropped DS       | Casing OD | 7         | 1.5    | 1.5             |
| 69    | 3000 | 0     | Dropped DS       | Casing OD | 7         | 2      | 2               |
| 71    | 3000 | 0     | Dropped DS       | Casing OD | 7         | 2      | 1.5             |
| 73    | 3000 | 0     | Dropped DS       | Casing OD | 10.75     | 1      | 2               |
| 75    | 3000 | 0     | Dropped DS       | Casing OD | 10.75     | 1      | 1.5             |

| 77  | 3000 | 0    | Dropped DS       | Casing OD | 10.75 | 1.5 | 2   |
|-----|------|------|------------------|-----------|-------|-----|-----|
| 79  | 3000 | 0    | Dropped DS       | Casing OD | 10.75 | 1.5 | 1.5 |
| 81  | 3000 | 0    | Dropped DS       | Casing OD | 10.75 | 2   | 2   |
| 83  | 3000 | 0    | Dropped DS       | Casing OD | 10.75 | 2   | 1.5 |
| 85  | 3000 | 0    | Dropped DS       | Casing OD | 12.75 | 1   | 2   |
| 87  | 3000 | 0    | Dropped DS       | Casing OD | 12.75 | 1   | 1.5 |
| 89  | 3000 | 0    | Dropped DS       | Casing OD | 12.75 | 1.5 | 2   |
| 91  | 3000 | 0    | Dropped DS       | Casing OD | 12.75 | 1.5 | 1.5 |
| 93  | 3000 | 0    | Dropped DS       | Casing OD | 12.75 | 2   | 2   |
| 95  | 3000 | 0    | Dropped DS       | Casing OD | 12.75 | 2   | 1.5 |
| 97  | 3000 | 0    | Dropped DS       | DS Length | 50%   | 1   | 2   |
| 99  | 3000 | 0    | Dropped DS       | DS Length | 50%   | 1   | 1.5 |
| 101 | 3000 | 0    | Dropped DS       | DS Length | 50%   | 1.5 | 2   |
| 103 | 3000 | 0    | Dropped DS       | DS Length | 50%   | 1.5 | 1.5 |
| 105 | 3000 | 0    | Dropped DS       | DS Length | 50%   | 2   | 2   |
| 107 | 3000 | 0    | Dropped DS       | DS Length | 50%   | 2   | 1.5 |
| 109 | 3000 | 0    | Dropped DS       | DS Length | 25%   | 1   | 2   |
| 111 | 3000 | 0    | Dropped DS       | DS Length | 25%   | 1   | 1.5 |
| 113 | 3000 | 0    | Dropped DS       | DS Length | 25%   | 1.5 | 2   |
| 115 | 3000 | 0    | Dropped DS       | DS Length | 25%   | 1.5 | 1.5 |
| 117 | 3000 | 0    | Dropped DS       | DS Length | 25%   | 2   | 2   |
| 119 | 3000 | 0    | Dropped DS       | DS Length | 25%   | 2   | 1.5 |
| 121 | 3000 | 0    | No DS            | Casing OD | 7     | 1   | 2   |
| 123 | 3000 | 0    | No DS            | Casing OD | 7     | 1   | 1.5 |
| 125 | 3000 | 0    | No DS            | Casing OD | 7     | 1.5 | 2   |
| 127 | 3000 | 0    | No DS            | Casing OD | 7     | 1.5 | 1.5 |
| 129 | 3000 | 0    | No DS            | Casing OD | 7     | 2   | 2   |
| 131 | 3000 | 0    | No DS            | Casing OD | 7     | 2   | 1.5 |
| 133 | 3000 | 0    | No DS            | Casing OD | 10.75 | 1   | 2   |
| 135 | 3000 | 0    | No DS            | Casing OD | 10.75 | 1   | 1.5 |
| 137 | 3000 | 0    | No DS            | Casing OD | 10.75 | 1.5 | 2   |
| 139 | 3000 | 0    | No DS            | Casing OD | 10.75 | 1.5 | 1.5 |
| 141 | 3000 | 0    | No DS            | Casing OD | 10.75 | 2   | 2   |
| 143 | 3000 | 0    | No DS            | Casing OD | 10.75 | 2   | 1.5 |
| 145 | 3000 | 0    | No DS            | Casing OD | 12.75 | 1   | 2   |
| 147 | 3000 | 0    | No DS            | Casing OD | 12.75 | 1   | 1.5 |
| 149 | 3000 | 0    | No DS            | Casing OD | 12.75 | 1.5 | 2   |
| 151 | 3000 | 0    | No DS            | Casing OD | 12.75 | 1.5 | 1.5 |
| 153 | 3000 | 0    | No DS            | Casing OD | 12.75 | 2   | 2   |
| 155 | 3000 | 0    | No DS            | Casing OD | 12.75 | 2   | 1.5 |
| 160 | 3000 | 5000 | Hanging from BOP | Casing OD | 7     | 1   | 2   |
| 162 | 3000 | 5000 | Hanging from BOP | Casing OD | 7     | 1   | 1.5 |
| 164 | 3000 | 5000 | Hanging from BOP | Casing OD | 7     | 1.5 | 2   |
| 166 | 3000 | 5000 | Hanging from BOP | Casing OD | 7     | 1.5 | 1.5 |
| 168 | 3000 | 5000 | Hanging from BOP | Casing OD | 7     | 2   | 2   |
| 170 | 3000 | 5000 | Hanging from BOP | Casing OD | 7     | 2   | 1 5 |
| 172 | 3000 | 5000 | Hanging from BOP | Casing OD | 10.75 | 1   | 2   |
| 174 | 3000 | 5000 | Hanging from BOP | Casing OD | 10.75 | 1   | 1.5 |
|     |      |      |                  |           |       | -   |     |

| 176 | 3000 | 5000 | Hanging from BOP | Casing OD | 10.75 | 1.5 | 2   |
|-----|------|------|------------------|-----------|-------|-----|-----|
| 178 | 3000 | 5000 | Hanging from BOP | Casing OD | 10.75 | 1.5 | 1.5 |
| 180 | 3000 | 5000 | Hanging from BOP | Casing OD | 10.75 | 2   | 2   |
| 182 | 3000 | 5000 | Hanging from BOP | Casing OD | 10.75 | 2   | 1.5 |
| 184 | 3000 | 5000 | Hanging from BOP | Casing OD | 12.75 | 1   | 2   |
| 186 | 3000 | 5000 | Hanging from BOP | Casing OD | 12.75 | 1   | 1.5 |
| 188 | 3000 | 5000 | Hanging from BOP | Casing OD | 12.75 | 1.5 | 2   |
| 190 | 3000 | 5000 | Hanging from BOP | Casing OD | 12.75 | 1.5 | 1.5 |
| 192 | 3000 | 5000 | Hanging from BOP | Casing OD | 12.75 | 2   | 2   |
| 194 | 3000 | 5000 | Hanging from BOP | Casing OD | 12.75 | 2   | 1.5 |
| 196 | 3000 | 5000 | Hanging from BOP | DS Length | 50%   | 1   | 2   |
| 198 | 3000 | 5000 | Hanging from BOP | DS Length | 50%   | 1   | 1.5 |
| 200 | 3000 | 5000 | Hanging from BOP | DS Length | 50%   | 1.5 | 2   |
| 202 | 3000 | 5000 | Hanging from BOP | DS Length | 50%   | 1.5 | 1.5 |
| 204 | 3000 | 5000 | Hanging from BOP | DS Length | 50%   | 2   | 2   |
| 206 | 3000 | 5000 | Hanging from BOP | DS Length | 50%   | 2   | 1.5 |
| 208 | 3000 | 5000 | Hanging from BOP | DS Length | 25%   | 1   | 2   |
| 210 | 3000 | 5000 | Hanging from BOP | DS Length | 25%   | 1   | 1.5 |
| 212 | 3000 | 5000 | Hanging from BOP | DS Length | 25%   | 1.5 | 2   |
| 214 | 3000 | 5000 | Hanging from BOP | DS Length | 25%   | 1.5 | 1.5 |
| 216 | 3000 | 5000 | Hanging from BOP | DS Length | 25%   | 2   | 2   |
| 218 | 3000 | 5000 | Hanging from BOP | DS Length | 25%   | 2   | 1.5 |
| 220 | 3000 | 5000 | Dropped DS       | Casing OD | 7     | 1   | 2   |
| 222 | 3000 | 5000 | Dropped DS       | Casing OD | 7     | 1   | 1.5 |
| 224 | 3000 | 5000 | Dropped DS       | Casing OD | 7     | 1.5 | 2   |
| 226 | 3000 | 5000 | Dropped DS       | Casing OD | 7     | 1.5 | 1.5 |
| 228 | 3000 | 5000 | Dropped DS       | Casing OD | 7     | 2   | 2   |
| 230 | 3000 | 5000 | Dropped DS       | Casing OD | 7     | 2   | 1.5 |
| 232 | 3000 | 5000 | Dropped DS       | Casing OD | 10.75 | 1   | 2   |
| 234 | 3000 | 5000 | Dropped DS       | Casing OD | 10.75 | 1   | 1.5 |
| 236 | 3000 | 5000 | Dropped DS       | Casing OD | 10.75 | 1.5 | 2   |
| 238 | 3000 | 5000 | Dropped DS       | Casing OD | 10.75 | 1.5 | 1.5 |
| 240 | 3000 | 5000 | Dropped DS       | Casing OD | 10.75 | 2   | 2   |
| 242 | 3000 | 5000 | Dropped DS       | Casing OD | 10.75 | 2   | 1.5 |
| 244 | 3000 | 5000 | Dropped DS       | Casing OD | 12.75 | 1   | 2   |
| 246 | 3000 | 5000 | Dropped DS       | Casing OD | 12.75 | 1   | 1.5 |
| 248 | 3000 | 5000 | Dropped DS       | Casing OD | 12.75 | 1.5 | 2   |
| 250 | 3000 | 5000 | Dropped DS       | Casing OD | 12.75 | 1.5 | 1.5 |
| 252 | 3000 | 5000 | Dropped DS       | Casing OD | 12.75 | 2   | 2   |
| 254 | 3000 | 5000 | Dropped DS       | Casing OD | 12.75 | 2   | 1.5 |
| 256 | 3000 | 5000 | Dropped DS       | DS Length | 50%   | 1   | 2   |
| 258 | 3000 | 5000 | Dropped DS       | DS Length | 50%   | 1   | 1.5 |
| 260 | 3000 | 5000 | Dropped DS       | DS Length | 50%   | 1.5 | 2   |
| 262 | 3000 | 5000 | Dropped DS       | DS Length | 50%   | 1.5 | 1.5 |
| 264 | 3000 | 5000 | Dropped DS       | DS Length | 50%   | 2   | 2   |
| 266 | 3000 | 5000 | Dropped DS       | DS Length | 50%   | 2   | 1.5 |
| 268 | 3000 | 5000 | Dropped DS       | DS Length | 25%   | 1   | 2   |
| 270 | 3000 | 5000 | Dropped DS       | DS Length | 25%   | 1   | 1.5 |
|                                               |                                                             |                                                             |                                                                                                                                                              |                                                                                                      | T                                                    |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 272                                           | 3000                                                        | 5000                                                        | Dropped DS                                                                                                                                                   | DS Length                                                                                            | 25%                                                  | 1.5                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 274                                           | 3000                                                        | 5000                                                        | Dropped DS                                                                                                                                                   | DS Length                                                                                            | 25%                                                  | 1.5                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 276                                           | 3000                                                        | 5000                                                        | Dropped DS                                                                                                                                                   | DS Length                                                                                            | 25%                                                  | 2                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 278                                           | 3000                                                        | 5000                                                        | Dropped DS                                                                                                                                                   | DS Length                                                                                            | 25%                                                  | 2                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 280                                           | 3000                                                        | 5000                                                        | No DS                                                                                                                                                        | Casing OD                                                                                            | 7                                                    | 1                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 282                                           | 3000                                                        | 5000                                                        | No DS                                                                                                                                                        | Casing OD                                                                                            | 7                                                    | 1                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 284                                           | 3000                                                        | 5000                                                        | No DS                                                                                                                                                        | Casing OD                                                                                            | 7                                                    | 1.5                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 286                                           | 3000                                                        | 5000                                                        | No DS                                                                                                                                                        | Casing OD                                                                                            | 7                                                    | 1.5                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 288                                           | 3000                                                        | 5000                                                        | No DS                                                                                                                                                        | Casing OD                                                                                            | 7                                                    | 2                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 290                                           | 3000                                                        | 5000                                                        | No DS                                                                                                                                                        | Casing OD                                                                                            | 7                                                    | 2                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 292                                           | 3000                                                        | 5000                                                        | No DS                                                                                                                                                        | Casing OD                                                                                            | 10.75                                                | 1                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 294                                           | 3000                                                        | 5000                                                        | No DS                                                                                                                                                        | Casing OD                                                                                            | 10.75                                                | 1                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 296                                           | 3000                                                        | 5000                                                        | No DS                                                                                                                                                        | Casing OD                                                                                            | 10.75                                                | 1.5                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 298                                           | 3000                                                        | 5000                                                        | No DS                                                                                                                                                        | Casing OD                                                                                            | 10.75                                                | 1.5                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 300                                           | 3000                                                        | 5000                                                        | No DS                                                                                                                                                        | Casing OD                                                                                            | 10.75                                                | 2                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 302                                           | 3000                                                        | 5000                                                        | No DS                                                                                                                                                        | Casing OD                                                                                            | 10.75                                                | 2                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 304                                           | 3000                                                        | 5000                                                        | No DS                                                                                                                                                        | Casing OD                                                                                            | 12.75                                                | 1                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 306                                           | 3000                                                        | 5000                                                        | No DS                                                                                                                                                        | Casing OD                                                                                            | 12.75                                                | 1                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 308                                           | 3000                                                        | 5000                                                        | No DS                                                                                                                                                        | Casing OD                                                                                            | 12.75                                                | 1.5                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 310                                           | 3000                                                        | 5000                                                        | No DS                                                                                                                                                        | Casing OD                                                                                            | 12.75                                                | 1.5                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 312                                           | 3000                                                        | 5000                                                        | No DS                                                                                                                                                        | Casing OD                                                                                            | 12.75                                                | 2                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 314                                           | 3000                                                        | 5000                                                        | No DS                                                                                                                                                        | Casing OD                                                                                            | 12.75                                                | 2                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 322                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | Casing OD                                                                                            | 7                                                    | 1                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 324                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | Casing OD                                                                                            | 7                                                    | 1                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 326                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | Casing OD                                                                                            | 7                                                    | 1.5                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 328                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | Casing OD                                                                                            | 7                                                    | 1.5                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 330                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | Casing OD                                                                                            | 7                                                    | 2                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 332                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | Casing OD                                                                                            | 7                                                    | 2                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 334                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | Casing OD                                                                                            | 10.75                                                | 1                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 336                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | Casing OD                                                                                            | 10.75                                                | 1                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 338                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | Casing OD                                                                                            | 10.75                                                | 1.5                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 340                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | Casing OD                                                                                            | 10.75                                                | 1.5                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 342                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | Casing OD                                                                                            | 10.75                                                | 2                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 344                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | Casing OD                                                                                            | 10.75                                                | 2                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 346                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | Casing OD                                                                                            | 12.75                                                | 1                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 348                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | Casing OD                                                                                            | 12.75                                                | 1                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 350                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | Casing OD                                                                                            | 12.75                                                | 1.5                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 352                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | Casing OD                                                                                            | 12.75                                                | 1.5                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 354                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | Casing OD                                                                                            | 12.75                                                | 2                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 356                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | Casing OD                                                                                            | 12.75                                                | 2                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 358                                           |                                                             |                                                             |                                                                                                                                                              |                                                                                                      |                                                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 260                                           | 3000                                                        | 10000                                                       | Hanging from BOP                                                                                                                                             | DS Length                                                                                            | 50%                                                  | 1                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 200                                           | 3000<br>3000                                                | 10000<br>10000                                              | Hanging from BOP<br>Hanging from BOP                                                                                                                         | DS Length<br>DS Length                                                                               | 50%<br>50%                                           | 1                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 362                                           | 3000<br>3000<br>3000                                        | 10000<br>10000<br>10000                                     | Hanging from BOP<br>Hanging from BOP<br>Hanging from BOP                                                                                                     | DS Length<br>DS Length<br>DS Length                                                                  | 50%<br>50%                                           | 1<br>1<br>1.5                                                                                                 | 2<br>1.5<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 362<br>364                                    | 3000<br>3000<br>3000<br>3000                                | 10000<br>10000<br>10000<br>10000                            | Hanging from BOP<br>Hanging from BOP<br>Hanging from BOP<br>Hanging from BOP                                                                                 | DS Length<br>DS Length<br>DS Length<br>DS Length                                                     | 50%<br>50%<br>50%                                    | 1<br>1.5<br>1.5                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 360<br>362<br>364<br>366                      | 3000<br>3000<br>3000<br>3000<br>3000                        | 10000<br>10000<br>10000<br>10000<br>10000                   | Hanging from BOP<br>Hanging from BOP<br>Hanging from BOP<br>Hanging from BOP<br>Hanging from BOP                                                             | DS Length<br>DS Length<br>DS Length<br>DS Length<br>DS Length                                        | 50%<br>50%<br>50%<br>50%<br>50%                      | 1<br>1.5<br>1.5<br>2                                                                                          | $ \begin{array}{r} 2 \\ 1.5 \\ 2 \\ \hline 1.5 \\ \hline 2 \\ 2 \\ 2 \\ \hline 2 \\ 2 \\ 2 \\ \hline 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 362<br>364<br>366<br>368                      | 3000<br>3000<br>3000<br>3000<br>3000<br>3000                | 10000<br>10000<br>10000<br>10000<br>10000                   | Hanging from BOP<br>Hanging from BOP<br>Hanging from BOP<br>Hanging from BOP<br>Hanging from BOP                                                             | DS Length<br>DS Length<br>DS Length<br>DS Length<br>DS Length<br>DS Length                           | 50%<br>50%<br>50%<br>50%<br>50%<br>50%               |                                                                                                               | 2<br>1.5<br>2<br>1.5<br>2<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 362<br>364<br>366<br>368<br>370               | 3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000        | 10000<br>10000<br>10000<br>10000<br>10000<br>10000          | Hanging from BOP<br>Hanging from BOP<br>Hanging from BOP<br>Hanging from BOP<br>Hanging from BOP<br>Hanging from BOP                                         | DS Length<br>DS Length<br>DS Length<br>DS Length<br>DS Length<br>DS Length<br>DS Length              | 50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>25%        | $     \begin{array}{r} 1 \\             1.5 \\             1.5 \\             2 \\             2 \\         $ | 2<br>1.5<br>2<br>1.5<br>2<br>1.5<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 360<br>362<br>364<br>366<br>368<br>370<br>372 | 3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>300 | 10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000 | Hanging from BOP<br>Hanging from BOP | DS Length<br>DS Length<br>DS Length<br>DS Length<br>DS Length<br>DS Length<br>DS Length<br>DS Length | 50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>25%<br>25% | $     \begin{array}{r} 1 \\             1.5 \\             1.5 \\             2 \\             2 \\         $ | $ \begin{array}{r} 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 1.5 \\ 2 \\ 1.5 \\ 1.5 \\ 2 \\ 1.5 \\ 1.5 \\ 2 \\ 1.5 \\ 1.5 \\ 2 \\ 1.5 \\ 1.5 \\ 2 \\ 1.5 \\ 1.5 \\ 2 \\ 1.5 \\ 1.5 \\ 2 \\ 1.5 \\ 1.5 \\ 2 \\ 1.5 \\ 1.5 \\ 2 \\ 1.5 \\ 1.5 \\ 2 \\ 1.5 \\ 1.5 \\ 2 \\ 1.5 \\ 1.5 \\ 2 \\ 1.5 \\ 1.5 \\ 2 \\ 1.5 \\ 1.5 \\ 2 \\ 1.5 \\ 1.5 \\ 2 \\ 1.5 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 \\ 1.5 \\ 2 $ |

| 374 | 3000 | 10000 | Hanging from BOP | DS Length | 25%   | 1.5        | 2        |
|-----|------|-------|------------------|-----------|-------|------------|----------|
| 376 | 3000 | 10000 | Hanging from BOP | DS Length | 25%   | 1.5        | 1.5      |
| 378 | 3000 | 10000 | Hanging from BOP | DS Length | 25%   | 2          | 2        |
| 380 | 3000 | 10000 | Hanging from BOP | DS Length | 25%   | 2          | 1.5      |
| 382 | 3000 | 10000 | Dropped DS       | Casing OD | 7     | 1          | 2        |
| 384 | 3000 | 10000 | Dropped DS       | Casing OD | 7     | 1          | 1.5      |
| 386 | 3000 | 10000 | Dropped DS       | Casing OD | 7     | 1.5        | 2        |
| 388 | 3000 | 10000 | Dropped DS       | Casing OD | 7     | 1.5        | 1.5      |
| 390 | 3000 | 10000 | Dropped DS       | Casing OD | 7     | 2          | 2        |
| 392 | 3000 | 10000 | Dropped DS       | Casing OD | 7     | 2          | 1.5      |
| 394 | 3000 | 10000 | Dropped DS       | Casing OD | 10.75 | 1          | 2        |
| 396 | 3000 | 10000 | Dropped DS       | Casing OD | 10.75 | 1          | 1.5      |
| 398 | 3000 | 10000 | Dropped DS       | Casing OD | 10.75 | 1.5        | 2        |
| 400 | 3000 | 10000 | Dropped DS       | Casing OD | 10.75 | 1.5        | 1.5      |
| 402 | 3000 | 10000 | Dropped DS       | Casing OD | 10.75 | 2          | 2        |
| 404 | 3000 | 10000 | Dropped DS       | Casing OD | 10.75 | 2          | 1.5      |
| 406 | 3000 | 10000 | Dropped DS       | Casing OD | 12.75 | 1          | 2        |
| 408 | 3000 | 10000 | Dropped DS       | Casing OD | 12.75 | 1          | 1.5      |
| 410 | 3000 | 10000 | Dropped DS       | Casing OD | 12.75 | 1.5        | 2        |
| 412 | 3000 | 10000 | Dropped DS       | Casing OD | 12.75 | 1.5        | 1.5      |
| 414 | 3000 | 10000 | Dropped DS       | Casing OD | 12.75 | 2          | 2        |
| 416 | 3000 | 10000 | Dropped DS       | Casing OD | 12.75 | 2          | 1.5      |
| 418 | 3000 | 10000 | Dropped DS       | DS Length | 50%   | 1          | 2        |
| 420 | 3000 | 10000 | Dropped DS       | DS Length | 50%   | 1          | 1.5      |
| 422 | 3000 | 10000 | Dropped DS       | DS Length | 50%   | 1.5        | 2        |
| 424 | 3000 | 10000 | Dropped DS       | DS Length | 50%   | 1.5        | 1.5      |
| 426 | 3000 | 10000 | Dropped DS       | DS Length | 50%   | 2          | 2        |
| 428 | 3000 | 10000 | Dropped DS       | DS Length | 50%   | 2          | 1.5      |
| 430 | 3000 | 10000 | Dropped DS       | DS Length | 25%   | 1          | 2        |
| 432 | 3000 | 10000 | Dropped DS       | DS Length | 25%   | 1          | 1.5      |
| 434 | 3000 | 10000 | Dropped DS       | DS Length | 25%   | 1.5        | 2        |
| 436 | 3000 | 10000 | Dropped DS       | DS Length | 25%   | 1.5        | 1.5      |
| 438 | 3000 | 10000 | Dropped DS       | DS Length | 25%   | 2          | 2        |
| 440 | 3000 | 10000 | Dropped DS       | DS Length | 25%   | 2          | 1.5      |
| 442 | 3000 | 10000 | No DS            | Casing OD | 7     | l          | 2        |
| 444 | 3000 | 10000 | No DS            | Casing OD | 7     | l          | 1.5      |
| 446 | 3000 | 10000 | No DS            | Casing OD | /     | 1.5        | 2        |
| 448 | 3000 | 10000 | No DS            | Casing OD | /     | 1.5        | 1.5      |
| 450 | 3000 | 10000 | No DS            | Casing OD | /     | 2          | 2        |
| 452 | 3000 | 10000 | No DS            | Casing OD | 10.75 | 2          | 1.5      |
| 434 | 3000 | 10000 | No DS            | Casing OD | 10.75 | l          | <u> </u> |
| 430 | 2000 | 10000 |                  | Casing OD | 10.75 | 1 <u>1</u> | 1.3      |
| 438 | 3000 | 10000 | No DS            | Casing OD | 10.75 | 1.5        | <u> </u> |
| 400 | 2000 | 10000 | No DS            | Casing OD | 10.75 | 1.5        | 1.3      |
| 402 | 3000 | 10000 |                  | Casing OD | 10.75 | 2          | Z        |
| 404 | 3000 | 10000 | No DS            |           | 10.75 | Z<br>1     | 1.3<br>2 |
| 400 | 3000 | 10000 | No DS            |           | 12.73 | 1          | <u> </u> |
| 400 | 5000 | 10000 | 110 D3           | Casing OD | 12.73 | 1          | 1.5      |

| 470 | 3000 | 10000 | No DS            | Casing OD | 12.75 | 1.5 | 2   |
|-----|------|-------|------------------|-----------|-------|-----|-----|
| 472 | 3000 | 10000 | No DS            | Casing OD | 12.75 | 1.5 | 1.5 |
| 474 | 3000 | 10000 | No DS            | Casing OD | 12.75 | 2   | 2   |
| 476 | 3000 | 10000 | No DS            | Casing OD | 12.75 | 2   | 1.5 |
| 484 | 8000 | 0     | Hanging from BOP | Casing OD | 7     | 1   | 2   |
| 486 | 8000 | 0     | Hanging from BOP | Casing OD | 7     | 1   | 1.5 |
| 488 | 8000 | 0     | Hanging from BOP | Casing OD | 7     | 1.5 | 2   |
| 490 | 8000 | 0     | Hanging from BOP | Casing OD | 7     | 1.5 | 1.5 |
| 492 | 8000 | 0     | Hanging from BOP | Casing OD | 7     | 2   | 2   |
| 494 | 8000 | 0     | Hanging from BOP | Casing OD | 7     | 2   | 1.5 |
| 496 | 8000 | 0     | Hanging from BOP | Casing OD | 10.75 | 1   | 2   |
| 498 | 8000 | 0     | Hanging from BOP | Casing OD | 10.75 | 1   | 1.5 |
| 500 | 8000 | 0     | Hanging from BOP | Casing OD | 10.75 | 1.5 | 2   |
| 502 | 8000 | 0     | Hanging from BOP | Casing OD | 10.75 | 1.5 | 1.5 |
| 504 | 8000 | 0     | Hanging from BOP | Casing OD | 10.75 | 2   | 2   |
| 506 | 8000 | 0     | Hanging from BOP | Casing OD | 10.75 | 2   | 1.5 |
| 508 | 8000 | 0     | Hanging from BOP | Casing OD | 12.75 | 1   | 2   |
| 510 | 8000 | 0     | Hanging from BOP | Casing OD | 12.75 | 1   | 1.5 |
| 512 | 8000 | 0     | Hanging from BOP | Casing OD | 12.75 | 1.5 | 2   |
| 514 | 8000 | 0     | Hanging from BOP | Casing OD | 12.75 | 1.5 | 1.5 |
| 516 | 8000 | 0     | Hanging from BOP | Casing OD | 12.75 | 2   | 2   |
| 518 | 8000 | 0     | Hanging from BOP | Casing OD | 12.75 | 2   | 1.5 |
| 520 | 8000 | 0     | Hanging from BOP | DS Length | 50%   | 1   | 2   |
| 522 | 8000 | 0     | Hanging from BOP | DS Length | 50%   | 1   | 1.5 |
| 524 | 8000 | 0     | Hanging from BOP | DS Length | 50%   | 1.5 | 2   |
| 526 | 8000 | 0     | Hanging from BOP | DS Length | 50%   | 1.5 | 1.5 |
| 528 | 8000 | 0     | Hanging from BOP | DS Length | 50%   | 2   | 2   |
| 530 | 8000 | 0     | Hanging from BOP | DS Length | 50%   | 2   | 1.5 |
| 532 | 8000 | 0     | Hanging from BOP | DS Length | 25%   | 1   | 2   |
| 534 | 8000 | 0     | Hanging from BOP | DS Length | 25%   | 1   | 1.5 |
| 536 | 8000 | 0     | Hanging from BOP | DS Length | 25%   | 1.5 | 2   |
| 538 | 8000 | 0     | Hanging from BOP | DS Length | 25%   | 1.5 | 1.5 |
| 540 | 8000 | 0     | Hanging from BOP | DS Length | 25%   | 2   | 2   |
| 542 | 8000 | 0     | Hanging from BOP | DS Length | 25%   | 2   | 1.5 |
| 544 | 8000 | 0     | Dropped DS       | Casing OD | 7     | 1   | 2   |
| 546 | 8000 | 0     | Dropped DS       | Casing OD | 7     | 1   | 1.5 |
| 548 | 8000 | 0     | Dropped DS       | Casing OD | 7     | 1.5 | 2   |
| 550 | 8000 | 0     | Dropped DS       | Casing OD | 7     | 1.5 | 1.5 |
| 552 | 8000 | 0     | Dropped DS       | Casing OD | 7     | 2   | 2   |
| 554 | 8000 | 0     | Dropped DS       | Casing OD | 7     | 2   | 1.5 |
| 556 | 8000 | 0     | Dropped DS       | Casing OD | 10.75 | 1   | 2   |
| 558 | 8000 | 0     | Dropped DS       | Casing OD | 10.75 | 1   | 1.5 |
| 560 | 8000 | 0     | Dropped DS       | Casing OD | 10.75 | 1.5 | 2   |
| 562 | 8000 | 0     | Dropped DS       | Casing OD | 10.75 | 1.5 | 1.5 |
| 564 | 8000 | 0     | Dropped DS       | Casing OD | 10.75 | 2   | 2   |
| 566 | 8000 | 0     | Dropped DS       | Casing OD | 10.75 | 2   | 1.5 |
| 568 | 8000 | 0     | Dropped DS       | Casing OD | 12.75 | 1   | 2   |
| 570 | 8000 | 0     | Dropped DS       | Casing OD | 12.75 | 1   | 1.5 |

| 572                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | Dropped DS                                                                                                                                                                                                                                                                                                                                                                                                            | Casing OD                                                                                                                                                                                                    | 12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 574                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | Dropped DS                                                                                                                                                                                                                                                                                                                                                                                                            | Casing OD                                                                                                                                                                                                    | 12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 576                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | Dropped DS                                                                                                                                                                                                                                                                                                                                                                                                            | Casing OD                                                                                                                                                                                                    | 12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 578                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | Dropped DS                                                                                                                                                                                                                                                                                                                                                                                                            | Casing OD                                                                                                                                                                                                    | 12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 580                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | Dropped DS                                                                                                                                                                                                                                                                                                                                                                                                            | DS Length                                                                                                                                                                                                    | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 582                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | Dropped DS                                                                                                                                                                                                                                                                                                                                                                                                            | DS Length                                                                                                                                                                                                    | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 584                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | Dropped DS                                                                                                                                                                                                                                                                                                                                                                                                            | DS Length                                                                                                                                                                                                    | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 586                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | Dropped DS                                                                                                                                                                                                                                                                                                                                                                                                            | DS Length                                                                                                                                                                                                    | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 588                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | Dropped DS                                                                                                                                                                                                                                                                                                                                                                                                            | DS Length                                                                                                                                                                                                    | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 590                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | Dropped DS                                                                                                                                                                                                                                                                                                                                                                                                            | DS Length                                                                                                                                                                                                    | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 592                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | Dropped DS                                                                                                                                                                                                                                                                                                                                                                                                            | DS Length                                                                                                                                                                                                    | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 594                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | Dropped DS                                                                                                                                                                                                                                                                                                                                                                                                            | DS Length                                                                                                                                                                                                    | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 596                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | Dropped DS                                                                                                                                                                                                                                                                                                                                                                                                            | DS Length                                                                                                                                                                                                    | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 598                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | Dropped DS                                                                                                                                                                                                                                                                                                                                                                                                            | DS Length                                                                                                                                                                                                    | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 600                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | Dropped DS                                                                                                                                                                                                                                                                                                                                                                                                            | DS Length                                                                                                                                                                                                    | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 602                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | Dropped DS                                                                                                                                                                                                                                                                                                                                                                                                            | DS Length                                                                                                                                                                                                    | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 604                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | No DS                                                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 606                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | No DS                                                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 608                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | No DS                                                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 610                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | No DS                                                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 612                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | No DS                                                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 614                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | No DS                                                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 616                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | No DS                                                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD                                                                                                                                                                                                    | 10.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 618                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | No DS                                                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD                                                                                                                                                                                                    | 10.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 620                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | No DS                                                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD                                                                                                                                                                                                    | 10.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 622                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | No DS                                                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD                                                                                                                                                                                                    | 10.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 624                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | No DS                                                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD                                                                                                                                                                                                    | 10.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 626                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | No DS                                                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD                                                                                                                                                                                                    | 10.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 628                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | No DS                                                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD                                                                                                                                                                                                    | 12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 630                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | No DS                                                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD                                                                                                                                                                                                    | 12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 632                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | No DS                                                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD                                                                                                                                                                                                    | 12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 634                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | No DS                                                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD                                                                                                                                                                                                    | 12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 636                                                                                                                                                                         | 8000                                                        | 0                                                                                                         | No DS                                                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD                                                                                                                                                                                                    | 12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 638                                                                                                                                                                         | 0000                                                        |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                             | 8000                                                        | 0                                                                                                         | No DS                                                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD                                                                                                                                                                                                    | 12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 646                                                                                                                                                                         | 8000                                                        | 0<br>5000                                                                                                 | No DS<br>Hanging from BOP                                                                                                                                                                                                                                                                                                                                                                                             | Casing OD<br>Casing OD                                                                                                                                                                                       | 12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 646<br>648                                                                                                                                                                  | 8000<br>8000<br>8000                                        | 0<br>5000<br>5000                                                                                         | No DSHanging from BOPHanging from BOP                                                                                                                                                                                                                                                                                                                                                                                 | Casing OD<br>Casing OD<br>Casing OD                                                                                                                                                                          | 12.75<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>2<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5<br>2<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 646<br>648<br>650                                                                                                                                                           | 8000<br>8000<br>8000<br>8000                                | 0<br>5000<br>5000<br>5000                                                                                 | No DSHanging from BOPHanging from BOPHanging from BOP                                                                                                                                                                                                                                                                                                                                                                 | Casing OD<br>Casing OD<br>Casing OD<br>Casing OD                                                                                                                                                             | 12.75<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2<br>1<br>1<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5<br>2<br>1.5<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 646<br>648<br>650<br>652                                                                                                                                                    | 8000<br>8000<br>8000<br>8000<br>8000                        | 0<br>5000<br>5000<br>5000<br>5000                                                                         | No DSHanging from BOPHanging from BOPHanging from BOPHanging from BOP                                                                                                                                                                                                                                                                                                                                                 | Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD                                                                                                                                                | 12.75<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>1<br>1<br>1.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5<br>2<br>1.5<br>2<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 646<br>648<br>650<br>652<br>654                                                                                                                                             | 8000<br>8000<br>8000<br>8000<br>8000<br>8000                | 0<br>5000<br>5000<br>5000<br>5000<br>5000                                                                 | No DSHanging from BOPHanging from BOPHanging from BOPHanging from BOPHanging from BOP                                                                                                                                                                                                                                                                                                                                 | Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD                                                                                                                                   | 12.75<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2<br>1<br>1<br>1.5<br>1.5<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5<br>2<br>1.5<br>2<br>1.5<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 646<br>648<br>650<br>652<br>654<br>656                                                                                                                                      | 8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000        | 0<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000                                                         | No DSHanging from BOPHanging from BOPHanging from BOPHanging from BOPHanging from BOPHanging from BOPHanging from BOP                                                                                                                                                                                                                                                                                                 | Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD                                                                                                                      | 12.75<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br>1<br>1<br>1.5<br>1.5<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.5<br>2<br>1.5<br>2<br>1.5<br>2<br>1.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 646<br>648<br>650<br>652<br>654<br>656<br>658                                                                                                                               | 8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>800 | 0<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000                                                 | No DSHanging from BOPHanging from BOP                                                                                                                                                                                                                                                                 | Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD                                                                                                         | 12.75<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2<br>1<br>1<br>1.5<br>1.5<br>2<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.5<br>2<br>1.5<br>2<br>1.5<br>2<br>1.5<br>2<br>1.5<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 646           648           650           652           654           656           658           660                                                                       | 8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>800 | 0<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000                                         | No DSHanging from BOPHanging from BOP                                                                                                                                                                                                                 | Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD                                                                                            | 12.75<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10.75<br>10.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>1<br>1<br>1.5<br>1.5<br>2<br>2<br>2<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $     \begin{array}{r}       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       3 \\       1.5 \\       3 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\      1.5 \\       1$        |
| 646           648           650           652           654           656           658           660           662                                                         | 8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>800 | 0<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000                                 | No DSHanging from BOPHanging from BOP                                                                                                                                                                 | Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD<br>Casing OD                                                                               | 12.75<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10.75<br>10.75<br>10.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{r}     2 \\     1 \\     1 \\     1.5 \\     1.5 \\     2 \\     2 \\     2 \\     1 \\     1 \\     1.5 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $     \begin{array}{r}       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       2 \\       1.5 \\       2 \\       2 \\       1.5 \\       2 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       1.5 \\       2 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\      1.5 \\       1.5 \\       1.5 \\       1.5 \\      1.5 \\      1$    |
| 646           648           650           652           654           656           658           660           662           664                                           | 8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>800 | 0<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000                         | No DSHanging from BOPHanging from BOP                                                                                                                 | Casing OD<br>Casing OD                                                     | 12.75<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>10.75<br>10.75<br>10.75<br>10.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c}             2 \\             2 \\         $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $     \begin{array}{r}       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       1.5 \\       2 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 $       |
| 646           648           650           652           654           656           658           660           662           664           666                             | 8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>800 | 0<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000                 | No DSHanging from BOPHanging from BOP                                                                 | Casing OD<br>Casing OD                                        | $ \begin{array}{r} 12.75 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 $      | $ \begin{array}{r}     2 \\     1 \\     1 \\     1.5 \\     1.5 \\     2 \\     2 \\     2 \\     1 \\     1.5 \\     1.5 \\     1.5 \\     1.5 \\     2 \\     2 \\     2 \\     1 \\     1 \\     1.5 \\     1.5 \\     2 \\     2 \\     2 \\     2 \\     1 \\     1 \\     1 \\     1 \\     2 \\     2 \\     2 \\     1 \\     1 \\     1 \\     1 \\     1 \\     2 \\     2 \\     2 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     2 \\     2 \\     2 \\     1 \\     1 \\     1 \\     1 \\     1 \\     2 \\     2 \\     2 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     2 \\     2 \\     2 \\     2 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 $ | $     \begin{array}{r}       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\      1.5 \\      1.$ |
| 646           648           650           652           654           656           658           660           662           664           666           668               | 8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>800 | 0<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000         | No DSHanging from BOPHanging from BOP                                                 | Casing OD<br>Casing OD                           | $ \begin{array}{r} 12.75 \\ \hline 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ $ | 2 $1$ $1$ $1.5$ $2$ $2$ $2$ $1$ $1$ $1.5$ $1.5$ $2$ $2$ $1$ $1$ $1.5$ $1.5$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $     \begin{array}{r}       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\ $      |
| 646           648           650           652           654           656           658           660           662           664           666           668           670 | 8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>8000<br>800 | 0<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000 | No DSHanging from BOPHanging from BOP | Casing OD<br>Casing OD | $ \begin{array}{r} 12.75 \\ \hline 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ 10.75 \\ $ | 2 $1$ $1$ $1.5$ $2$ $2$ $2$ $1$ $1$ $1.5$ $1.5$ $2$ $2$ $2$ $1$ $1$ $1.5$ $1.5$ $2$ $2$ $2$ $1$ $1$ $1.5$ $2$ $2$ $2$ $1$ $1$ $1$ $1.5$ $1.5$ $2$ $2$ $2$ $1$ $1$ $1$ $1$ $1.5$ $1.5$ $2$ $2$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $     \begin{array}{r}       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       2 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.5 \\       1.$    |

| 674 | 8000 | 5000 | Hanging from BOP | Casing OD | 12.75 | 1.5 | 2   |
|-----|------|------|------------------|-----------|-------|-----|-----|
| 676 | 8000 | 5000 | Hanging from BOP | Casing OD | 12.75 | 1.5 | 1.5 |
| 678 | 8000 | 5000 | Hanging from BOP | Casing OD | 12.75 | 2   | 2   |
| 680 | 8000 | 5000 | Hanging from BOP | Casing OD | 12.75 | 2   | 1.5 |
| 682 | 8000 | 5000 | Hanging from BOP | DS Length | 50%   | 1   | 2   |
| 684 | 8000 | 5000 | Hanging from BOP | DS Length | 50%   | 1   | 1.5 |
| 686 | 8000 | 5000 | Hanging from BOP | DS Length | 50%   | 1.5 | 2   |
| 688 | 8000 | 5000 | Hanging from BOP | DS Length | 50%   | 1.5 | 1.5 |
| 690 | 8000 | 5000 | Hanging from BOP | DS Length | 50%   | 2   | 2   |
| 692 | 8000 | 5000 | Hanging from BOP | DS Length | 50%   | 2   | 1.5 |
| 694 | 8000 | 5000 | Hanging from BOP | DS Length | 25%   | 1   | 2   |
| 696 | 8000 | 5000 | Hanging from BOP | DS Length | 25%   | 1   | 1.5 |
| 698 | 8000 | 5000 | Hanging from BOP | DS Length | 25%   | 1.5 | 2   |
| 700 | 8000 | 5000 | Hanging from BOP | DS Length | 25%   | 1.5 | 1.5 |
| 702 | 8000 | 5000 | Hanging from BOP | DS Length | 25%   | 2   | 2   |
| 704 | 8000 | 5000 | Hanging from BOP | DS Length | 25%   | 2   | 1.5 |
| 706 | 8000 | 5000 | Dropped DS       | Casing OD | 7     | 1   | 2   |
| 708 | 8000 | 5000 | Dropped DS       | Casing OD | 7     | 1   | 1.5 |
| 710 | 8000 | 5000 | Dropped DS       | Casing OD | 7     | 1.5 | 2   |
| 712 | 8000 | 5000 | Dropped DS       | Casing OD | 7     | 1.5 | 1.5 |
| 714 | 8000 | 5000 | Dropped DS       | Casing OD | 7     | 2   | 2   |
| 716 | 8000 | 5000 | Dropped DS       | Casing OD | 7     | 2   | 1.5 |
| 718 | 8000 | 5000 | Dropped DS       | Casing OD | 10.75 | 1   | 2   |
| 720 | 8000 | 5000 | Dropped DS       | Casing OD | 10.75 | 1   | 1.5 |
| 722 | 8000 | 5000 | Dropped DS       | Casing OD | 10.75 | 1.5 | 2   |
| 724 | 8000 | 5000 | Dropped DS       | Casing OD | 10.75 | 1.5 | 1.5 |
| 726 | 8000 | 5000 | Dropped DS       | Casing OD | 10.75 | 2   | 2   |
| 728 | 8000 | 5000 | Dropped DS       | Casing OD | 10.75 | 2   | 1.5 |
| 730 | 8000 | 5000 | Dropped DS       | Casing OD | 12.75 | 1   | 2   |
| 732 | 8000 | 5000 | Dropped DS       | Casing OD | 12.75 | 1   | 1.5 |
| 734 | 8000 | 5000 | Dropped DS       | Casing OD | 12.75 | 1.5 | 2   |
| 736 | 8000 | 5000 | Dropped DS       | Casing OD | 12.75 | 1.5 | 1.5 |
| 738 | 8000 | 5000 | Dropped DS       | Casing OD | 12.75 | 2   | 2   |
| 740 | 8000 | 5000 | Dropped DS       | Casing OD | 12.75 | 2   | 1.5 |
| 742 | 8000 | 5000 | Dropped DS       | DS Length | 50%   | 1   | 2   |
| 744 | 8000 | 5000 | Dropped DS       | DS Length | 50%   | 1   | 1.5 |
| 746 | 8000 | 5000 | Dropped DS       | DS Length | 50%   | 1.5 | 2   |
| 748 | 8000 | 5000 | Dropped DS       | DS Length | 50%   | 1.5 | 1.5 |
| 750 | 8000 | 5000 | Dropped DS       | DS Length | 50%   | 2   | 2   |
| 752 | 8000 | 5000 | Dropped DS       | DS Length | 50%   | 2   | 1.5 |
| 754 | 8000 | 5000 | Dropped DS       | DS Length | 25%   | 1   | 2   |
| 756 | 8000 | 5000 | Dropped DS       | DS Length | 25%   | 1   | 1.5 |
| 758 | 8000 | 5000 | Dropped DS       | DS Length | 25%   | 1.5 | 2   |
| 760 | 8000 | 5000 | Dropped DS       | DS Length | 25%   | 1.5 | 1.5 |
| 762 | 8000 | 5000 | Dropped DS       | DS Length | 25%   | 2   | 2   |
| 764 | 8000 | 5000 | Dropped DS       | DS Length | 25%   | 2   | 1.5 |
| 766 | 8000 | 5000 | No DS            | Casing OD | 7     | 1   | 2   |
| 768 | 8000 | 5000 | No DS            | Casing OD | 7     | 1   | 1.5 |

| 770 | 0000 | 5000  | N <sub>2</sub> DC | Casina OD | 7     | 15  | 2        |
|-----|------|-------|-------------------|-----------|-------|-----|----------|
| 770 | 8000 | 5000  | No DS             | Casing OD | 1     | 1.5 | <u> </u> |
| 774 | 8000 | 5000  | No DS             | Casing OD | 7     | 1.5 | 1.5      |
| 774 | 8000 | 5000  | No DS             | Casing OD | 7     | 2   |          |
| //0 | 8000 | 5000  | No DS             | Casing OD | 10.75 |     | 1.5      |
| 780 | 8000 | 5000  | No DS             | Casing OD | 10.75 | 1   |          |
| 780 | 8000 | 5000  | No DS             | Casing OD | 10.75 | 1 5 | 1.5      |
| 784 | 8000 | 5000  | No DS             | Casing OD | 10.73 | 1.5 | <u></u>  |
| 786 | 8000 | 5000  | No DS             | Casing OD | 10.73 | 1.5 | 1.5      |
| 780 | 8000 | 5000  | No DS             | Casing OD | 10.73 | 2   | 1.5      |
| 700 | 8000 | 5000  | No DS             | Casing OD | 10.75 |     | 1.5      |
| 790 | 8000 | 5000  | No DS             | Casing OD | 12.75 | 1   | 1.5      |
| 792 | 8000 | 5000  | No DS             | Casing OD | 12.75 | 15  | 2        |
| 796 | 8000 | 5000  | No DS             | Casing OD | 12.75 | 1.5 | 1 5      |
| 798 | 8000 | 5000  | No DS             | Casing OD | 12.75 | 2   | 2        |
| 800 | 8000 | 5000  | No DS             | Casing OD | 12.75 | 2   | 15       |
| 808 | 8000 | 10000 | Hanging from BOP  | Casing OD | 7     | 1   | 2        |
| 810 | 8000 | 10000 | Hanging from BOP  | Casing OD | 7     | 1   | 1 5      |
| 812 | 8000 | 10000 | Hanging from BOP  | Casing OD | 7     | 15  | 2        |
| 814 | 8000 | 10000 | Hanging from BOP  | Casing OD | 7     | 1.5 | 15       |
| 816 | 8000 | 10000 | Hanging from BOP  | Casing OD | 7     | 2   | 2        |
| 818 | 8000 | 10000 | Hanging from BOP  | Casing OD | 7     | 2   | 1.5      |
| 820 | 8000 | 10000 | Hanging from BOP  | Casing OD | 10.75 | 1   | 2        |
| 822 | 8000 | 10000 | Hanging from BOP  | Casing OD | 10.75 | 1   | 1.5      |
| 824 | 8000 | 10000 | Hanging from BOP  | Casing OD | 10.75 | 1.5 | 2        |
| 826 | 8000 | 10000 | Hanging from BOP  | Casing OD | 10.75 | 1.5 | 1.5      |
| 828 | 8000 | 10000 | Hanging from BOP  | Casing OD | 10.75 | 2   | 2        |
| 830 | 8000 | 10000 | Hanging from BOP  | Casing OD | 10.75 | 2   | 1.5      |
| 832 | 8000 | 10000 | Hanging from BOP  | Casing OD | 12.75 | 1   | 2        |
| 834 | 8000 | 10000 | Hanging from BOP  | Casing OD | 12.75 | 1   | 1.5      |
| 836 | 8000 | 10000 | Hanging from BOP  | Casing OD | 12.75 | 1.5 | 2        |
| 838 | 8000 | 10000 | Hanging from BOP  | Casing OD | 12.75 | 1.5 | 1.5      |
| 840 | 8000 | 10000 | Hanging from BOP  | Casing OD | 12.75 | 2   | 2        |
| 842 | 8000 | 10000 | Hanging from BOP  | Casing OD | 12.75 | 2   | 1.5      |
| 844 | 8000 | 10000 | Hanging from BOP  | DS Length | 50%   | 1   | 2        |
| 846 | 8000 | 10000 | Hanging from BOP  | DS Length | 50%   | 1   | 1.5      |
| 848 | 8000 | 10000 | Hanging from BOP  | DS Length | 50%   | 1.5 | 2        |
| 850 | 8000 | 10000 | Hanging from BOP  | DS Length | 50%   | 1.5 | 1.5      |
| 852 | 8000 | 10000 | Hanging from BOP  | DS Length | 50%   | 2   | 2        |
| 854 | 8000 | 10000 | Hanging from BOP  | DS Length | 50%   | 2   | 1.5      |
| 856 | 8000 | 10000 | Hanging from BOP  | DS Length | 25%   | 1   | 2        |
| 858 | 8000 | 10000 | Hanging from BOP  | DS Length | 25%   | 1   | 1.5      |
| 860 | 8000 | 10000 | Hanging from BOP  | DS Length | 25%   | 1.5 | 2        |
| 862 | 8000 | 10000 | Hanging from BOP  | DS Length | 25%   | 1.5 | 1.5      |
| 864 | 8000 | 10000 | Hanging from BOP  | DS Length | 25%   | 2   | 2        |
| 866 | 8000 | 10000 | Hanging from BOP  | DS Length | 25%   | 2   | 1.5      |
| 868 | 8000 | 10000 | Dropped DS        | Casing OD | 7     | 1   | 2        |
| 870 | 8000 | 10000 | Dropped DS        | Casing OD | 7     | 1   | 1.5      |

| 872 | 8000  | 10000 | Dropped DS       | Casing OD | 7     | 15  | 2   |
|-----|-------|-------|------------------|-----------|-------|-----|-----|
| 874 | 8000  | 10000 | Dropped DS       | Casing OD | 7     | 1.5 | 15  |
| 876 | 8000  | 10000 | Dropped DS       | Casing OD | 7     | 2   | 2   |
| 878 | 8000  | 10000 | Dropped DS       | Casing OD | 7     | 2   | 15  |
| 880 | 8000  | 10000 | Dropped DS       | Casing OD | 10.75 | 1   | 2   |
| 882 | 8000  | 10000 | Dropped DS       | Casing OD | 10.75 | 1   | 1.5 |
| 884 | 8000  | 10000 | Dropped DS       | Casing OD | 10.75 | 1.5 | 2   |
| 886 | 8000  | 10000 | Dropped DS       | Casing OD | 10.75 | 1.5 | 1.5 |
| 888 | 8000  | 10000 | Dropped DS       | Casing OD | 10.75 | 2   | 2   |
| 890 | 8000  | 10000 | Dropped DS       | Casing OD | 10.75 | 2   | 1.5 |
| 892 | 8000  | 10000 | Dropped DS       | Casing OD | 12.75 | 1   | 2   |
| 894 | 8000  | 10000 | Dropped DS       | Casing OD | 12.75 | 1   | 1.5 |
| 896 | 8000  | 10000 | Dropped DS       | Casing OD | 12.75 | 1.5 | 2   |
| 898 | 8000  | 10000 | Dropped DS       | Casing OD | 12.75 | 1.5 | 1.5 |
| 900 | 8000  | 10000 | Dropped DS       | Casing OD | 12.75 | 2   | 2   |
| 902 | 8000  | 10000 | Dropped DS       | Casing OD | 12.75 | 2   | 1.5 |
| 904 | 8000  | 10000 | Dropped DS       | DS Length | 50%   | 1   | 2   |
| 906 | 8000  | 10000 | Dropped DS       | DS Length | 50%   | 1   | 1.5 |
| 908 | 8000  | 10000 | Dropped DS       | DS Length | 50%   | 1.5 | 2   |
| 910 | 8000  | 10000 | Dropped DS       | DS Length | 50%   | 1.5 | 1.5 |
| 912 | 8000  | 10000 | Dropped DS       | DS Length | 50%   | 2   | 2   |
| 914 | 8000  | 10000 | Dropped DS       | DS Length | 50%   | 2   | 1.5 |
| 916 | 8000  | 10000 | Dropped DS       | DS Length | 25%   | 1   | 2   |
| 918 | 8000  | 10000 | Dropped DS       | DS Length | 25%   | 1   | 1.5 |
| 920 | 8000  | 10000 | Dropped DS       | DS Length | 25%   | 1.5 | 2   |
| 922 | 8000  | 10000 | Dropped DS       | DS Length | 25%   | 1.5 | 1.5 |
| 924 | 8000  | 10000 | Dropped DS       | DS Length | 25%   | 2   | 2   |
| 926 | 8000  | 10000 | Dropped DS       | DS Length | 25%   | 2   | 1.5 |
| 928 | 8000  | 10000 | No DS            | Casing OD | 7     | 1   | 2   |
| 930 | 8000  | 10000 | No DS            | Casing OD | 7     | 1   | 1.5 |
| 932 | 8000  | 10000 | No DS            | Casing OD | 7     | 1.5 | 2   |
| 934 | 8000  | 10000 | No DS            | Casing OD | 7     | 1.5 | 1.5 |
| 936 | 8000  | 10000 | No DS            | Casing OD | 7     | 2   | 2   |
| 938 | 8000  | 10000 | No DS            | Casing OD | 7     | 2   | 1.5 |
| 940 | 8000  | 10000 | No DS            | Casing OD | 10.75 | 1   | 2   |
| 942 | 8000  | 10000 | No DS            | Casing OD | 10.75 | 1   | 1.5 |
| 944 | 8000  | 10000 | No DS            | Casing OD | 10.75 | 1.5 | 2   |
| 946 | 8000  | 10000 | No DS            | Casing OD | 10.75 | 1.5 | 1.5 |
| 948 | 8000  | 10000 | No DS            | Casing OD | 10.75 | 2   | 2   |
| 950 | 8000  | 10000 | No DS            | Casing OD | 10.75 | 2   | 1.5 |
| 952 | 8000  | 10000 | No DS            | Casing OD | 12.75 | 1   | 2   |
| 954 | 8000  | 10000 | No DS            | Casing OD | 12.75 | 1   | 1.5 |
| 956 | 8000  | 10000 | No DS            | Casing OD | 12.75 | 1.5 | 2   |
| 958 | 8000  | 10000 | No DS            | Casing OD | 12.75 | 1.5 | 1.5 |
| 960 | 8000  | 10000 | No DS            | Casing OD | 12.75 | 2   | 2   |
| 962 | 8000  | 10000 | No DS            | Casing OD | 12.75 | 2   | 1.5 |
| 970 | 12000 | 0     | Hanging from BOP | Casing OD | 7     | 1   | 2   |
| 972 | 12000 | 0     | Hanging from BOP | Casing OD | 7     | 1   | 1.5 |

|      | -     |   |                  |           |       |     |     |
|------|-------|---|------------------|-----------|-------|-----|-----|
| 974  | 12000 | 0 | Hanging from BOP | Casing OD | 7     | 1.5 | 2   |
| 976  | 12000 | 0 | Hanging from BOP | Casing OD | 7     | 1.5 | 1.5 |
| 978  | 12000 | 0 | Hanging from BOP | Casing OD | 7     | 2   | 2   |
| 980  | 12000 | 0 | Hanging from BOP | Casing OD | 7     | 2   | 1.5 |
| 982  | 12000 | 0 | Hanging from BOP | Casing OD | 10.75 | 1   | 2   |
| 984  | 12000 | 0 | Hanging from BOP | Casing OD | 10.75 | 1   | 1.5 |
| 986  | 12000 | 0 | Hanging from BOP | Casing OD | 10.75 | 1.5 | 2   |
| 988  | 12000 | 0 | Hanging from BOP | Casing OD | 10.75 | 1.5 | 1.5 |
| 990  | 12000 | 0 | Hanging from BOP | Casing OD | 10.75 | 2   | 2   |
| 992  | 12000 | 0 | Hanging from BOP | Casing OD | 10.75 | 2   | 1.5 |
| 994  | 12000 | 0 | Hanging from BOP | Casing OD | 12.75 | 1   | 2   |
| 996  | 12000 | 0 | Hanging from BOP | Casing OD | 12.75 | 1   | 1.5 |
| 998  | 12000 | 0 | Hanging from BOP | Casing OD | 12.75 | 1.5 | 2   |
| 1000 | 12000 | 0 | Hanging from BOP | Casing OD | 12.75 | 1.5 | 1.5 |
| 1002 | 12000 | 0 | Hanging from BOP | Casing OD | 12.75 | 2   | 2   |
| 1004 | 12000 | 0 | Hanging from BOP | Casing OD | 12.75 | 2   | 1.5 |
| 1006 | 12000 | 0 | Hanging from BOP | DS Length | 50%   | 1   | 2   |
| 1008 | 12000 | 0 | Hanging from BOP | DS Length | 50%   | 1   | 1.5 |
| 1010 | 12000 | 0 | Hanging from BOP | DS Length | 50%   | 1.5 | 2   |
| 1012 | 12000 | 0 | Hanging from BOP | DS Length | 50%   | 1.5 | 1.5 |
| 1014 | 12000 | 0 | Hanging from BOP | DS Length | 50%   | 2   | 2   |
| 1016 | 12000 | 0 | Hanging from BOP | DS Length | 50%   | 2   | 1.5 |
| 1018 | 12000 | 0 | Hanging from BOP | DS Length | 25%   | 1   | 2   |
| 1020 | 12000 | 0 | Hanging from BOP | DS Length | 25%   | 1   | 1.5 |
| 1022 | 12000 | 0 | Hanging from BOP | DS Length | 25%   | 1.5 | 2   |
| 1024 | 12000 | 0 | Hanging from BOP | DS Length | 25%   | 1.5 | 1.5 |
| 1026 | 12000 | 0 | Hanging from BOP | DS Length | 25%   | 2   | 2   |
| 1028 | 12000 | 0 | Hanging from BOP | DS Length | 25%   | 2   | 1.5 |
| 1030 | 12000 | 0 | Dropped DS       | Casing OD | 7     | 1   | 2   |
| 1032 | 12000 | 0 | Dropped DS       | Casing OD | 7     | 1   | 1.5 |
| 1034 | 12000 | 0 | Dropped DS       | Casing OD | 7     | 1.5 | 2   |
| 1036 | 12000 | 0 | Dropped DS       | Casing OD | 7     | 1.5 | 1.5 |
| 1038 | 12000 | 0 | Dropped DS       | Casing OD | 7     | 2   | 2   |
| 1040 | 12000 | 0 | Dropped DS       | Casing OD | 7     | 2   | 1.5 |
| 1042 | 12000 | 0 | Dropped DS       | Casing OD | 10.75 | 1   | 2   |
| 1044 | 12000 | 0 | Dropped DS       | Casing OD | 10.75 | 1   | 1.5 |
| 1046 | 12000 | 0 | Dropped DS       | Casing OD | 10.75 | 1.5 | 2   |
| 1048 | 12000 | 0 | Dropped DS       | Casing OD | 10.75 | 1.5 | 1.5 |
| 1050 | 12000 | 0 | Dropped DS       | Casing OD | 10.75 | 2   | 2   |
| 1052 | 12000 | 0 | Dropped DS       | Casing OD | 10.75 | 2   | 1.5 |
| 1054 | 12000 | 0 | Dropped DS       | Casing OD | 12.75 | 1   | 2   |
| 1056 | 12000 | 0 | Dropped DS       | Casing OD | 12.75 | 1   | 1.5 |
| 1058 | 12000 | 0 | Dropped DS       | Casing OD | 12.75 | 1.5 | 2   |
| 1060 | 12000 | 0 | Dropped DS       | Casing OD | 12.75 | 1.5 | 1.5 |
| 1062 | 12000 | 0 | Dropped DS       | Casing OD | 12.75 | 2   | 2   |
| 1064 | 12000 | 0 | Dropped DS       | Casing OD | 12.75 | 2   | 1.5 |
| 1066 | 12000 | 0 | Dropped DS       | DS Length | 50%   | 1   | 2   |
| 1068 | 12000 | 0 | Dropped DS       | DS Length | 50%   | 1   | 1.5 |

| 10 - | 10000 | ~    |                    | <b>D</b>  | <b>5</b> 0 % |     |     |
|------|-------|------|--------------------|-----------|--------------|-----|-----|
| 1070 | 12000 | 0    | Dropped DS         | DS Length | 50%          | 1.5 | 2   |
| 1072 | 12000 | 0    | Dropped DS         | DS Length | 50%          | 1.5 | 1.5 |
| 1074 | 12000 | 0    | Dropped DS         | DS Length | 50%          | 2   | 2   |
| 1076 | 12000 | 0    | Dropped DS         | DS Length | 50%          | 2   | 1.5 |
| 1078 | 12000 | 0    | Dropped DS         | DS Length | 25%          | 1   | 2   |
| 1080 | 12000 | 0    | Dropped DS         | DS Length | 25%          | 1   | 1.5 |
| 1082 | 12000 | 0    | Dropped DS         | DS Length | 25%          | 1.5 | 2   |
| 1084 | 12000 | 0    | Dropped DS         | DS Length | 25%          | 1.5 | 1.5 |
| 1086 | 12000 | 0    | Dropped DS         | DS Length | 25%          | 2   | 2   |
| 1088 | 12000 | 0    | Dropped DS         | DS Length | 25%          | 2   | 1.5 |
| 1090 | 12000 | 0    | No DS              | Casing OD | 7            | 1   | 2   |
| 1092 | 12000 | 0    | No DS              | Casing OD | 7            | 1   | 1.5 |
| 1094 | 12000 | 0    | No DS              | Casing OD | 7            | 1.5 | 2   |
| 1096 | 12000 | 0    | No DS              | Casing OD | 7            | 1.5 | 1.5 |
| 1098 | 12000 | 0    | No DS              | Casing OD | 7            | 2   | 2   |
| 1100 | 12000 | 0    | No DS              | Casing OD | 7            | 2   | 1.5 |
| 1102 | 12000 | 0    | No DS              | Casing OD | 10.75        | 1   | 2   |
| 1104 | 12000 | 0    | No DS              | Casing OD | 10.75        | 1   | 1.5 |
| 1106 | 12000 | 0    | No DS              | Casing OD | 10.75        | 1.5 | 2   |
| 1108 | 12000 | 0    | No DS              | Casing OD | 10.75        | 1.5 | 1.5 |
| 1110 | 12000 | 0    | No DS              | Casing OD | 10.75        | 2   | 2   |
| 1112 | 12000 | 0    | No DS              | Casing OD | 10.75        | 2   | 1.5 |
| 1114 | 12000 | 0    | No DS              | Casing OD | 12.75        | 1   | 2   |
| 1116 | 12000 | 0    | No DS              | Casing OD | 12.75        | 1   | 1.5 |
| 1118 | 12000 | 0    | No DS              | Casing OD | 12.75        | 1.5 | 2   |
| 1120 | 12000 | 0    | No DS              | Casing OD | 12.75        | 1.5 | 1.5 |
| 1122 | 12000 | 0    | No DS              | Casing OD | 12.75        | 2   | 2   |
| 1124 | 12000 | 0    | No DS              | Casing OD | 12.75        | 2   | 1.5 |
| 1132 | 12000 | 5000 | Hanging from BOP   | Casing OD | 7            | 1   | 2   |
| 1134 | 12000 | 5000 | Hanging from BOP   | Casing OD | 7            | 1   | 1.5 |
| 1136 | 12000 | 5000 | Hanging from BOP   | Casing OD | 7            | 1.5 | 2   |
| 1138 | 12000 | 5000 | Hanging from BOP   | Casing OD | 7            | 1.5 | 1.5 |
| 1140 | 12000 | 5000 | Hanging from BOP   | Casing OD | 7            | 2   | 2   |
| 1142 | 12000 | 5000 | Hanging from BOP   | Casing OD | 7            | 2   | 1.5 |
| 1144 | 12000 | 5000 | Hanging from BOP   | Casing OD | 10.75        | 1   | 2   |
| 1146 | 12000 | 5000 | Hanging from BOP   | Casing OD | 10.75        | 1   | 1.5 |
| 1148 | 12000 | 5000 | Hanging from BOP   | Casing OD | 10.75        | 1.5 | 2   |
| 1150 | 12000 | 5000 | Hanging from BOP   | Casing OD | 10.75        | 1.5 | 1.5 |
| 1152 | 12000 | 5000 | Hanging from BOP   | Casing OD | 10.75        | 2   | 2   |
| 1154 | 12000 | 5000 | Hanging from BOP   | Casing OD | 10.75        | 2   | 1.5 |
| 1156 | 12000 | 5000 | Hanging from BOP   | Casing OD | 12.75        | 1   | 2   |
| 1158 | 12000 | 5000 | Hanging from BOP   | Casing OD | 12.75        | 1   | 1.5 |
| 1160 | 12000 | 5000 | Hanging from BOP   | Casing OD | 12.75        | 1.5 | 2   |
| 1162 | 12000 | 5000 | Hanging from BOP   | Casing OD | 12.75        | 1.5 | 1.5 |
| 1164 | 12000 | 5000 | Hanging from BOP   | Casing OD | 12.75        | 2   | 2   |
| 1166 | 12000 | 5000 | Hanging from BOP   | Casing OD | 12.75        | 2   | 15  |
| 1168 | 12000 | 5000 | Hanging from BOP   | DS Length | 50%          | 1   | 2   |
| 1170 | 12000 | 5000 | Hanging from BOP   | DS Length | 50%          | 1   | 15  |
| 11/0 | 12000 | 2000 | i i anging nom bo. |           | 00           |     | 1   |

| 1172 | 12000 | 5000 | Hanging from BOP | DS Length | 50%   | 1.5 | 2   |
|------|-------|------|------------------|-----------|-------|-----|-----|
| 1174 | 12000 | 5000 | Hanging from BOP | DS Length | 50%   | 1.5 | 1.5 |
| 1176 | 12000 | 5000 | Hanging from BOP | DS Length | 50%   | 2   | 2   |
| 1178 | 12000 | 5000 | Hanging from BOP | DS Length | 50%   | 2   | 1.5 |
| 1180 | 12000 | 5000 | Hanging from BOP | DS Length | 25%   | 1   | 2   |
| 1182 | 12000 | 5000 | Hanging from BOP | DS Length | 25%   | 1   | 1.5 |
| 1184 | 12000 | 5000 | Hanging from BOP | DS Length | 25%   | 1.5 | 2   |
| 1186 | 12000 | 5000 | Hanging from BOP | DS Length | 25%   | 1.5 | 1.5 |
| 1188 | 12000 | 5000 | Hanging from BOP | DS Length | 25%   | 2   | 2   |
| 1190 | 12000 | 5000 | Hanging from BOP | DS Length | 25%   | 2   | 1.5 |
| 1192 | 12000 | 5000 | Dropped DS       | Casing OD | 7     | 1   | 2   |
| 1194 | 12000 | 5000 | Dropped DS       | Casing OD | 7     | 1   | 1.5 |
| 1196 | 12000 | 5000 | Dropped DS       | Casing OD | 7     | 1.5 | 2   |
| 1198 | 12000 | 5000 | Dropped DS       | Casing OD | 7     | 1.5 | 1.5 |
| 1200 | 12000 | 5000 | Dropped DS       | Casing OD | 7     | 2   | 2   |
| 1202 | 12000 | 5000 | Dropped DS       | Casing OD | 7     | 2   | 1.5 |
| 1204 | 12000 | 5000 | Dropped DS       | Casing OD | 10.75 | 1   | 2   |
| 1206 | 12000 | 5000 | Dropped DS       | Casing OD | 10.75 | 1   | 1.5 |
| 1208 | 12000 | 5000 | Dropped DS       | Casing OD | 10.75 | 1.5 | 2   |
| 1210 | 12000 | 5000 | Dropped DS       | Casing OD | 10.75 | 1.5 | 1.5 |
| 1212 | 12000 | 5000 | Dropped DS       | Casing OD | 10.75 | 2   | 2   |
| 1214 | 12000 | 5000 | Dropped DS       | Casing OD | 10.75 | 2   | 1.5 |
| 1216 | 12000 | 5000 | Dropped DS       | Casing OD | 12.75 | 1   | 2   |
| 1218 | 12000 | 5000 | Dropped DS       | Casing OD | 12.75 | 1   | 1.5 |
| 1220 | 12000 | 5000 | Dropped DS       | Casing OD | 12.75 | 1.5 | 2   |
| 1222 | 12000 | 5000 | Dropped DS       | Casing OD | 12.75 | 1.5 | 1.5 |
| 1224 | 12000 | 5000 | Dropped DS       | Casing OD | 12.75 | 2   | 2   |
| 1226 | 12000 | 5000 | Dropped DS       | Casing OD | 12.75 | 2   | 1.5 |
| 1228 | 12000 | 5000 | Dropped DS       | DS Length | 50%   | 1   | 2   |
| 1230 | 12000 | 5000 | Dropped DS       | DS Length | 50%   | 1   | 1.5 |
| 1232 | 12000 | 5000 | Dropped DS       | DS Length | 50%   | 1.5 | 2   |
| 1234 | 12000 | 5000 | Dropped DS       | DS Length | 50%   | 1.5 | 1.5 |
| 1236 | 12000 | 5000 | Dropped DS       | DS Length | 50%   | 2   | 2   |
| 1238 | 12000 | 5000 | Dropped DS       | DS Length | 50%   | 2   | 1.5 |
| 1240 | 12000 | 5000 | Dropped DS       | DS Length | 25%   | 1   | 2   |
| 1242 | 12000 | 5000 | Dropped DS       | DS Length | 25%   | 1   | 1.5 |
| 1244 | 12000 | 5000 | Dropped DS       | DS Length | 25%   | 1.5 | 2   |
| 1246 | 12000 | 5000 | Dropped DS       | DS Length | 25%   | 1.5 | 1.5 |
| 1248 | 12000 | 5000 | Dropped DS       | DS Length | 25%   | 2   | 2   |
| 1250 | 12000 | 5000 | Dropped DS       | DS Length | 25%   | 2   | 1.5 |
| 1252 | 12000 | 5000 | No DS            | Casing OD | 7     | 1   | 2   |
| 1254 | 12000 | 5000 | No DS            | Casing OD | 7     | 1   | 1.5 |
| 1256 | 12000 | 5000 | No DS            | Casing OD | 7     | 1.5 | 2   |
| 1258 | 12000 | 5000 | No DS            | Casing OD | 7     | 1.5 | 1.5 |
| 1260 | 12000 | 5000 | No DS            | Casing OD | 7     | 2   | 2   |
| 1262 | 12000 | 5000 | No DS            | Casing OD | 7     | 2   | 1.5 |
| 1264 | 12000 | 5000 | No DS            | Casing OD | 10.75 | 1   | 2   |
| 1266 | 12000 | 5000 | No DS            | Casing OD | 10.75 | 1   | 1.5 |

| 1268 | 12000 | 5000  | No DS            | Casing OD | 10.75 | 1.5 | 2   |
|------|-------|-------|------------------|-----------|-------|-----|-----|
| 1270 | 12000 | 5000  | No DS            | Casing OD | 10.75 | 1.5 | 1.5 |
| 1272 | 12000 | 5000  | No DS            | Casing OD | 10.75 | 2   | 2   |
| 1274 | 12000 | 5000  | No DS            | Casing OD | 10.75 | 2   | 1.5 |
| 1276 | 12000 | 5000  | No DS            | Casing OD | 12.75 | 1   | 2   |
| 1278 | 12000 | 5000  | No DS            | Casing OD | 12.75 | 1   | 1.5 |
| 1280 | 12000 | 5000  | No DS            | Casing OD | 12.75 | 1.5 | 2   |
| 1282 | 12000 | 5000  | No DS            | Casing OD | 12.75 | 1.5 | 1.5 |
| 1284 | 12000 | 5000  | No DS            | Casing OD | 12.75 | 2   | 2   |
| 1286 | 12000 | 5000  | No DS            | Casing OD | 12.75 | 2   | 1.5 |
| 1294 | 12000 | 10000 | Hanging from BOP | Casing OD | 7     | 1   | 2   |
| 1296 | 12000 | 10000 | Hanging from BOP | Casing OD | 7     | 1   | 1.5 |
| 1298 | 12000 | 10000 | Hanging from BOP | Casing OD | 7     | 1.5 | 2   |
| 1300 | 12000 | 10000 | Hanging from BOP | Casing OD | 7     | 1.5 | 1.5 |
| 1302 | 12000 | 10000 | Hanging from BOP | Casing OD | 7     | 2   | 2   |
| 1304 | 12000 | 10000 | Hanging from BOP | Casing OD | 7     | 2   | 1.5 |
| 1306 | 12000 | 10000 | Hanging from BOP | Casing OD | 10.75 | 1   | 2   |
| 1308 | 12000 | 10000 | Hanging from BOP | Casing OD | 10.75 | 1   | 1.5 |
| 1310 | 12000 | 10000 | Hanging from BOP | Casing OD | 10.75 | 1.5 | 2   |
| 1312 | 12000 | 10000 | Hanging from BOP | Casing OD | 10.75 | 1.5 | 1.5 |
| 1314 | 12000 | 10000 | Hanging from BOP | Casing OD | 10.75 | 2   | 2   |
| 1316 | 12000 | 10000 | Hanging from BOP | Casing OD | 10.75 | 2   | 1.5 |
| 1318 | 12000 | 10000 | Hanging from BOP | Casing OD | 12.75 | 1   | 2   |
| 1320 | 12000 | 10000 | Hanging from BOP | Casing OD | 12.75 | 1   | 1.5 |
| 1322 | 12000 | 10000 | Hanging from BOP | Casing OD | 12.75 | 1.5 | 2   |
| 1324 | 12000 | 10000 | Hanging from BOP | Casing OD | 12.75 | 1.5 | 1.5 |
| 1326 | 12000 | 10000 | Hanging from BOP | Casing OD | 12.75 | 2   | 2   |
| 1328 | 12000 | 10000 | Hanging from BOP | Casing OD | 12.75 | 2   | 1.5 |
| 1330 | 12000 | 10000 | Hanging from BOP | DS Length | 50%   | 1   | 2   |
| 1332 | 12000 | 10000 | Hanging from BOP | DS Length | 50%   | 1   | 1.5 |
| 1334 | 12000 | 10000 | Hanging from BOP | DS Length | 50%   | 1.5 | 2   |
| 1336 | 12000 | 10000 | Hanging from BOP | DS Length | 50%   | 1.5 | 1.5 |
| 1338 | 12000 | 10000 | Hanging from BOP | DS Length | 50%   | 2   | 2   |
| 1340 | 12000 | 10000 | Hanging from BOP | DS Length | 50%   | 2   | 1.5 |
| 1342 | 12000 | 10000 | Hanging from BOP | DS Length | 25%   | 1   | 2   |
| 1344 | 12000 | 10000 | Hanging from BOP | DS Length | 25%   | 1   | 1.5 |
| 1346 | 12000 | 10000 | Hanging from BOP | DS Length | 25%   | 1.5 | 2   |
| 1348 | 12000 | 10000 | Hanging from BOP | DS Length | 25%   | 1.5 | 1.5 |
| 1350 | 12000 | 10000 | Hanging from BOP | DS Length | 25%   | 2   | 2   |
| 1352 | 12000 | 10000 | Hanging from BOP | DS Length | 25%   | 2   | 1.5 |
| 1354 | 12000 | 10000 | Dropped DS       | Casing OD | 7     | 1   | 2   |
| 1356 | 12000 | 10000 | Dropped DS       | Casing OD | 7     | 1   | 1.5 |
| 1358 | 12000 | 10000 | Dropped DS       | Casing OD | 7     | 1.5 | 2   |
| 1360 | 12000 | 10000 | Dropped DS       | Casing OD | 7     | 1.5 | 1.5 |
| 1362 | 12000 | 10000 | Dropped DS       | Casing OD | 7     | 2   | 2   |
| 1364 | 12000 | 10000 | Dropped DS       | Casing OD | 7     | 2   | 1.5 |
| 1366 | 12000 | 10000 | Dropped DS       | Casing OD | 10.75 | 1   | 2   |
| 1368 | 12000 | 10000 | Dropped DS       | Casing OD | 10.75 | 1   | 1.5 |

|      | -     |       |            |           |       |     |     |
|------|-------|-------|------------|-----------|-------|-----|-----|
| 1370 | 12000 | 10000 | Dropped DS | Casing OD | 10.75 | 1.5 | 2   |
| 1372 | 12000 | 10000 | Dropped DS | Casing OD | 10.75 | 1.5 | 1.5 |
| 1374 | 12000 | 10000 | Dropped DS | Casing OD | 10.75 | 2   | 2   |
| 1376 | 12000 | 10000 | Dropped DS | Casing OD | 10.75 | 2   | 1.5 |
| 1378 | 12000 | 10000 | Dropped DS | Casing OD | 12.75 | 1   | 2   |
| 1380 | 12000 | 10000 | Dropped DS | Casing OD | 12.75 | 1   | 1.5 |
| 1382 | 12000 | 10000 | Dropped DS | Casing OD | 12.75 | 1.5 | 2   |
| 1384 | 12000 | 10000 | Dropped DS | Casing OD | 12.75 | 1.5 | 1.5 |
| 1386 | 12000 | 10000 | Dropped DS | Casing OD | 12.75 | 2   | 2   |
| 1388 | 12000 | 10000 | Dropped DS | Casing OD | 12.75 | 2   | 1.5 |
| 1390 | 12000 | 10000 | Dropped DS | DS Length | 50%   | 1   | 2   |
| 1392 | 12000 | 10000 | Dropped DS | DS Length | 50%   | 1   | 1.5 |
| 1394 | 12000 | 10000 | Dropped DS | DS Length | 50%   | 1.5 | 2   |
| 1396 | 12000 | 10000 | Dropped DS | DS Length | 50%   | 1.5 | 1.5 |
| 1398 | 12000 | 10000 | Dropped DS | DS Length | 50%   | 2   | 2   |
| 1400 | 12000 | 10000 | Dropped DS | DS Length | 50%   | 2   | 1.5 |
| 1402 | 12000 | 10000 | Dropped DS | DS Length | 25%   | 1   | 2   |
| 1404 | 12000 | 10000 | Dropped DS | DS Length | 25%   | 1   | 1.5 |
| 1406 | 12000 | 10000 | Dropped DS | DS Length | 25%   | 1.5 | 2   |
| 1408 | 12000 | 10000 | Dropped DS | DS Length | 25%   | 1.5 | 1.5 |
| 1410 | 12000 | 10000 | Dropped DS | DS Length | 25%   | 2   | 2   |
| 1412 | 12000 | 10000 | Dropped DS | DS Length | 25%   | 2   | 1.5 |
| 1414 | 12000 | 10000 | No DS      | Casing OD | 7     | 1   | 2   |
| 1416 | 12000 | 10000 | No DS      | Casing OD | 7     | 1   | 1.5 |
| 1418 | 12000 | 10000 | No DS      | Casing OD | 7     | 1.5 | 2   |
| 1420 | 12000 | 10000 | No DS      | Casing OD | 7     | 1.5 | 1.5 |
| 1422 | 12000 | 10000 | No DS      | Casing OD | 7     | 2   | 2   |
| 1424 | 12000 | 10000 | No DS      | Casing OD | 7     | 2   | 1.5 |
| 1426 | 12000 | 10000 | No DS      | Casing OD | 10.75 | 1   | 2   |
| 1428 | 12000 | 10000 | No DS      | Casing OD | 10.75 | 1   | 1.5 |
| 1430 | 12000 | 10000 | No DS      | Casing OD | 10.75 | 1.5 | 2   |
| 1432 | 12000 | 10000 | No DS      | Casing OD | 10.75 | 1.5 | 1.5 |
| 1434 | 12000 | 10000 | No DS      | Casing OD | 10.75 | 2   | 2   |
| 1436 | 12000 | 10000 | No DS      | Casing OD | 10.75 | 2   | 1.5 |
| 1438 | 12000 | 10000 | No DS      | Casing OD | 12.75 | 1   | 2   |
| 1440 | 12000 | 10000 | No DS      | Casing OD | 12.75 | 1   | 1.5 |
| 1442 | 12000 | 10000 | No DS      | Casing OD | 12.75 | 1.5 | 2   |
| 1444 | 12000 | 10000 | No DS      | Casing OD | 12.75 | 1.5 | 1.5 |
| 1446 | 12000 | 10000 | No DS      | Casing OD | 12.75 | 2   | 2   |
| 1448 | 12000 | 10000 | No DS      | Casing OD | 12.75 | 2   | 1.5 |
| 1450 | 12000 | 10000 | No DS      | DS Length | 25%   | 2   | 1.5 |

| <u>)S #</u> | TVD   | WATER | DS         | PARAMETER | PARAMETER | DS     |  |
|-------------|-------|-------|------------|-----------|-----------|--------|--|
|             | BML   | DEPTH | STATUS     | VARIED    | VALUE     | LENGTH |  |
| 1           | 8000  | 0     | Kill w/ DS | Casing OD | 8.63      | 1      |  |
| 2           | 8000  | 0     | Kill w/ DS | Casing OD | 8.63      | 0.75   |  |
| 3           | 8000  | 0     | Kill w/ DS | Casing OD | 8.63      | 0.5    |  |
| 4           | 8000  | 0     | Kill w/ DS | Casing OD | 8.63      | 0.25   |  |
| 5           | 8000  | 0     | Kill w/ DS | Casing OD | 10.75     | 1      |  |
| 6           | 8000  | 0     | Kill w/ DS | Casing OD | 10.75     | 0.75   |  |
| 7           | 8000  | 0     | Kill w/ DS | Casing OD | 10.75     | 0.5    |  |
| 8           | 8000  | 0     | Kill w/ DS | Casing OD | 10.75     | 0.25   |  |
| 9           | 8000  | 0     | Kill w/ DS | Casing OD | 12.75     | 1      |  |
| 10          | 8000  | 0     | Kill w/ DS | Casing OD | 12.75     | 0.75   |  |
| 11          | 8000  | 0     | Kill w/ DS | Casing OD | 12.75     | 0.5    |  |
| 12          | 8000  | 0     | Kill w/ DS | Casing OD | 12.75     | 0.25   |  |
| 13          | 8000  | 5000  | Kill w/ DS | Casing OD | 8.63      | 1      |  |
| 14          | 8000  | 5000  | Kill w/ DS | Casing OD | 8.63      | 0.75   |  |
| 15          | 8000  | 5000  | Kill w/ DS | Casing OD | 8.63      | 0.5    |  |
| 16          | 8000  | 5000  | Kill w/ DS | Casing OD | 8.63      | 0.25   |  |
| 17          | 8000  | 5000  | Kill w/ DS | Casing OD | 10.75     | 1      |  |
| 18          | 8000  | 5000  | Kill w/ DS | Casing OD | 10.75     | 0.75   |  |
| 19          | 8000  | 5000  | Kill w/ DS | Casing OD | 10.75     | 0.5    |  |
| 20          | 8000  | 5000  | Kill w/ DS | Casing OD | 10.75     | 0.25   |  |
| 21          | 8000  | 5000  | Kill w/ DS | Casing OD | 12.75     | 1      |  |
| 22          | 8000  | 5000  | Kill w/ DS | Casing OD | 12.75     | 0.75   |  |
| 23          | 8000  | 5000  | Kill w/ DS | Casing OD | 12.75     | 0.5    |  |
| 24          | 8000  | 5000  | Kill w/ DS | Casing OD | 12.75     | 0.25   |  |
| 25          | 8000  | 10000 | Kill w/ DS | Casing OD | 8.63      | 1      |  |
| 26          | 8000  | 10000 | Kill w/ DS | Casing OD | 8.63      | 0.75   |  |
| 27          | 8000  | 10000 | Kill w/ DS | Casing OD | 8.63      | 0.5    |  |
| 28          | 8000  | 10000 | Kill w/ DS | Casing OD | 8.63      | 0.25   |  |
| 29          | 8000  | 10000 | Kill w/ DS | Casing OD | 10.75     | 1      |  |
| 30          | 8000  | 10000 | Kill w/ DS | Casing OD | 10.75     | 0.75   |  |
| 31          | 8000  | 10000 | Kill w/ DS | Casing OD | 10.75     | 0.5    |  |
| 32          | 8000  | 10000 | Kill w/ DS | Casing OD | 10.75     | 0.25   |  |
| 33          | 8000  | 10000 | Kill w/ DS | Casing OD | 12.75     | 1      |  |
| 34          | 8000  | 10000 | Kill w/ DS | Casing OD | 12.75     | 0.75   |  |
| 35          | 8000  | 10000 | Kill w/ DS | Casing OD | 12.75     | 0.5    |  |
| 36          | 8000  | 10000 | Kill w/ DS | Casing OD | 12.75     | 0.25   |  |
| 37          | 12000 | 0     | Kill w/ DS | Casing OD | 8.63      | 1      |  |
| 38          | 12000 | 0     | Kill w/ DS | Casing OD | 8.63      | 0.75   |  |
| 39          | 12000 | 0     | Kill w/ DS | Casing OD | 8.63      | 0.5    |  |
| 40          | 12000 | 0     | Kill w/ DS | Casing OD | 8.63      | 0.25   |  |
| 41          | 12000 | 0     | Kill w/ DS | Casing OD | 10.75     | 1      |  |
| 42          | 12000 | 0     | Kill w/ DS | Casing OD | 10.75     | 0.75   |  |
| 13          | 12000 | 0     | Kill w/ DS | Casing OD | 10.75     | 0.5    |  |

## Kill With Drillstring Run Matrix

| 44 | 12000 | 0     | Kill w/ DS | Casing OD | 10.75 | 0.25 |  |
|----|-------|-------|------------|-----------|-------|------|--|
| 45 | 12000 | 0     | Kill w/ DS | Casing OD | 12.75 | 1    |  |
| 46 | 12000 | 0     | Kill w/ DS | Casing OD | 12.75 | 0.75 |  |
| 47 | 12000 | 0     | Kill w/ DS | Casing OD | 12.75 | 0.5  |  |
| 48 | 12000 | 0     | Kill w/ DS | Casing OD | 12.75 | 0.25 |  |
| 49 | 12000 | 5000  | Kill w/ DS | Casing OD | 8.63  | 1    |  |
| 50 | 12000 | 5000  | Kill w/ DS | Casing OD | 8.63  | 0.75 |  |
| 51 | 12000 | 5000  | Kill w/ DS | Casing OD | 8.63  | 0.5  |  |
| 52 | 12000 | 5000  | Kill w/ DS | Casing OD | 8.63  | 0.25 |  |
| 53 | 12000 | 5000  | Kill w/ DS | Casing OD | 10.75 | 1    |  |
| 54 | 12000 | 5000  | Kill w/ DS | Casing OD | 10.75 | 0.75 |  |
| 55 | 12000 | 5000  | Kill w/ DS | Casing OD | 10.75 | 0.5  |  |
| 56 | 12000 | 5000  | Kill w/ DS | Casing OD | 10.75 | 0.25 |  |
| 57 | 12000 | 5000  | Kill w/ DS | Casing OD | 12.75 | 1    |  |
| 58 | 12000 | 5000  | Kill w/ DS | Casing OD | 12.75 | 0.75 |  |
| 59 | 12000 | 5000  | Kill w/ DS | Casing OD | 12.75 | 0.5  |  |
| 60 | 12000 | 5000  | Kill w/ DS | Casing OD | 12.75 | 0.25 |  |
| 61 | 12000 | 10000 | Kill w/ DS | Casing OD | 8.63  | 1    |  |
| 62 | 12000 | 10000 | Kill w/ DS | Casing OD | 8.63  | 0.75 |  |
| 63 | 12000 | 10000 | Kill w/ DS | Casing OD | 8.63  | 0.5  |  |
| 64 | 12000 | 10000 | Kill w/ DS | Casing OD | 8.63  | 0.25 |  |
| 65 | 12000 | 10000 | Kill w/ DS | Casing OD | 10.75 | 1    |  |
| 66 | 12000 | 10000 | Kill w/ DS | Casing OD | 10.75 | 0.75 |  |
| 67 | 12000 | 10000 | Kill w/ DS | Casing OD | 10.75 | 0.5  |  |
| 68 | 12000 | 10000 | Kill w/ DS | Casing OD | 10.75 | 0.25 |  |
| 69 | 12000 | 10000 | Kill w/ DS | Casing OD | 12.75 | 1    |  |
| 70 | 12000 | 10000 | Kill w/ DS | Casing OD | 12.75 | 0.75 |  |
| 71 | 12000 | 10000 | Kill w/ DS | Casing OD | 12.75 | 0.5  |  |
| 72 | 12000 | 10000 | Kill w/ DS | Casing OD | 12.75 | 0.25 |  |

## **APPENDIX B**

## **RELIEF WELL INITIAL CONDITION RUNS**

|        | TVD  | WATER | CASING | DS      | DS    | GAS    | TVD   |
|--------|------|-------|--------|---------|-------|--------|-------|
| SERIES | BML  | DEPTH | SIZE   | STATUS  | LEN % | RATE   | MSL   |
| 1      | 3000 | 0     | 8.625  | hanging | 100   | 10.05  | 3000  |
| 2      | 3000 | 0     | 10.75  | hanging | 100   | 27.30  | 3000  |
| 3      | 3000 | 0     | 12.75  | hanging | 100   | 33.47  | 3000  |
| 4      | 3000 | 0     | 10.75  | hanging | 50    | 31.68  | 3000  |
| 5      | 3000 | 0     | 10.75  | hanging | 25    | 151.33 | 3000  |
| 6      | 3000 | 0     | 8.625  | dropped | 100   | 10.05  | 3000  |
| 7      | 3000 | 0     | 10.75  | dropped | 100   | 27.30  | 3000  |
| 8      | 3000 | 0     | 12.75  | dropped | 100   | 33.47  | 3000  |
| 9      | 3000 | 0     | 10.75  | dropped | 50    | 28.18  | 3000  |
| 10     | 3000 | 0     | 10.75  | dropped | 25    | 28.62  | 3000  |
| 11     | 3000 | 0     | 8.625  | no DS   | 0     | 32.86  | 3000  |
| 12     | 3000 | 0     | 10.75  | no DS   | 0     | 33.78  | 3000  |
| 13     | 3000 | 0     | 12.75  | no DS   | 0     | 34.60  | 3000  |
| 14     | 3000 | 5000  | 8.625  | hanging | 100   | 25.27  | 8000  |
| 15     | 3000 | 5000  | 10.75  | hanging | 100   | 80.56  | 8000  |
| 16     | 3000 | 5000  | 12.75  | hanging | 100   | 109.49 | 8000  |
| 17     | 3000 | 5000  | 10.75  | hanging | 50    | 80.56  | 8000  |
| 18     | 3000 | 5000  | 10.75  | hanging | 25    | 98.34  | 8000  |
| 19     | 3000 | 5000  | 8.625  | dropped | 100   | 25.26  | 8000  |
| 20     | 3000 | 5000  | 10.75  | dropped | 100   | 80.55  | 8000  |
| 21     | 3000 | 5000  | 12.75  | dropped | 100   | 109.48 | 8000  |
| 22     | 3000 | 5000  | 10.75  | dropped | 50    | 80.55  | 8000  |
| 23     | 3000 | 5000  | 10.75  | dropped | 25    | 83.13  | 8000  |
| 24     | 3000 | 5000  | 8.625  | no DS   | 0     | 109.82 | 8000  |
| 25     | 3000 | 5000  | 10.75  | no DS   | 0     | 112.41 | 8000  |
| 26     | 3000 | 5000  | 12.75  | no DS   | 0     | 114.92 | 12000 |
| 27     | 3000 | 10000 | 8.023  | hanging | 100   | 102.59 | 12000 |
| 28     | 3000 | 10000 | 10.73  | hanging | 100   | 105.58 | 13000 |
| 29     | 3000 | 10000 | 12.73  | honging | 100   | 102.58 | 13000 |
| 31     | 3000 | 10000 | 10.75  | hanging | 25    | 103.58 | 13000 |
| 31     | 3000 | 10000 | 8 625  | dropped | 100   | 33.72  | 13000 |
| 33     | 3000 | 10000 | 10.75  | dropped | 100   | 103 57 | 13000 |
| 34     | 3000 | 10000 | 12 75  | dropped | 100   | 135.15 | 13000 |
| 35     | 3000 | 10000 | 10.75  | dropped | 50    | 103 57 | 13000 |
| 36     | 3000 | 10000 | 10.75  | dropped | 25    | 103.57 | 13000 |
| 37     | 3000 | 10000 | 8.625  | no DS   | 100   | 133.85 | 13000 |
| 38     | 3000 | 10000 | 10.75  | no DS   | 100   | 137.02 | 13000 |
| 39     | 3000 | 10000 | 12.75  | no DS   | 100   | 140.08 | 13000 |
| 40     | 8000 | 0     | 8.625  | hanging | 100   | 20.95  | 8000  |
| 41     | 8000 | 0     | 10.75  | hanging | 100   | 79.67  | 8000  |
| 42     | 8000 | 0     | 12.75  | hanging | 100   | 131.02 | 8000  |
| 43     | 8000 | 0     | 10.75  | hanging | 50    | 104.15 | 8000  |
| 44     | 8000 | 0     | 10.75  | hanging | 25    | 117.06 | 8000  |
| 45     | 8000 | 0     | 8.625  | dropped | 100   | 20.95  | 8000  |

| 1.6      | 0000  | 0     | 10.55          |         | 100 | =0.6=  | 0000  |
|----------|-------|-------|----------------|---------|-----|--------|-------|
| 46       | 8000  | 0     | 10.75          | dropped | 100 | 79.67  | 8000  |
| 47       | 8000  | 0     | 12.75          | dropped | 100 | 131.02 | 8000  |
| 48       | 8000  | 0     | 10.75          | dropped | 50  | 89.03  | 8000  |
| 49       | 8000  | 0     | 10.75          | dropped | 25  | 95.04  | 8000  |
| 50       | 8000  | 0     | 8.625          | no DS   | 0   | 139.95 | 8000  |
| 51       | 8000  | 0     | 10.75          | no DS   | 0   | 151.25 | 8000  |
| 52       | 8000  | 0     | 12.75          | no DS   | 0   | 158.74 | 8000  |
| 53       | 8000  | 5000  | 8.625          | hanging | 100 | 31.49  | 13000 |
| 54       | 8000  | 5000  | 10.75          | hanging | 100 | 122.61 | 13000 |
| 55       | 8000  | 5000  | 12.75          | hanging | 100 | 203.96 | 13000 |
| 56       | 8000  | 5000  | 10.75          | hanging | 50  | 145.72 | 13000 |
| 57       | 8000  | 5000  | 10.75          | hanging | 25  | 168.82 | 13000 |
| 58       | 8000  | 5000  | 8.625          | dropped | 100 |        | 13000 |
| 59       | 8000  | 5000  | 10.75          | dropped | 100 | 122.56 | 13000 |
| 60       | 8000  | 5000  | 12.75          | dropped | 100 | 203.92 | 13000 |
| 61       | 8000  | 5000  | 10.75          | dropped | 50  | 127.68 | 13000 |
| 62       | 8000  | 5000  | 10.75          | dropped | 25  | 140.99 | 13000 |
| 63       | 8000  | 5000  | 8.625          | no DS   | 0   | 215.70 | 13000 |
| 64       | 8000  | 5000  | 10.75          | no DS   | 0   | 230.61 | 13000 |
| 65       | 8000  | 5000  | 12.75          | no DS   | 0   | 238.90 | 13000 |
| 66       | 8000  | 10000 | 8.625          | hanging | 100 | 23.84  | 18000 |
| 67       | 8000  | 10000 | 10.75          | hanging | 100 | 143.39 | 18000 |
| 68       | 8000  | 10000 | 12.75          | hanging | 100 | 227.66 | 18000 |
| 69       | 8000  | 10000 | 10.75          | hanging | 50  | 143.39 | 18000 |
| 70       | 8000  | 10000 | 10.75          | hanging | 25  | 183.67 | 18000 |
| 71       | 8000  | 10000 | 8.625          | dropped | 100 | 37.65  | 18000 |
| 72       | 8000  | 10000 | 10.75          | dropped | 100 | 143.34 | 18000 |
| 73       | 8000  | 10000 | 12.75          | dropped | 100 | 227.63 | 18000 |
| 74       | 8000  | 10000 | 10.75          | dropped | 50  | 143.34 | 18000 |
| 75       | 8000  | 10000 | 10.75          | dropped | 25  | 157 55 | 18000 |
| 76       | 8000  | 10000 | 8 625          | no DS   | 0   | 235 55 | 18000 |
| 70       | 8000  | 10000 | 10.75          | no DS   | 0   | 245.87 | 18000 |
| 78       | 8000  | 10000 | 12.75          | no DS   | 0   | 255.41 | 18000 |
| 79       | 12000 | 0     | 8 625          | hanging | 100 | 28.05  | 12000 |
| 80       | 12000 | 0     | 10.75          | hanging | 100 | 106.10 | 12000 |
| 81       | 12000 | 0     | 12 75          | hanging | 100 | 191 51 | 12000 |
| 82       | 12000 | 0     | 10.75          | hanging | 50  | 140.46 | 12000 |
| 83       | 12000 | 0     | 10.75          | hanging | 25  | 163.12 | 12000 |
| 8/       | 12000 | 0     | 8 625          | dropped | 75  | 28 4/  | 12000 |
| 85       | 12000 | 0     | 10 75          | dropped | 100 | 106.10 | 12000 |
| 86       | 12000 | 0     | 10.75          | dropped | 100 | 101.10 | 12000 |
| 80<br>87 | 12000 | 0     | 10.75          | dropped | 50  | 123.00 | 12000 |
| 88       | 12000 | 0     | 10.75          | dropped | 25  | 125.05 | 12000 |
| 80       | 12000 | 0     | 8 625          | no DS   | 25  | 212.10 | 12000 |
| 00       | 12000 | 0     | 10.025         | no DS   | 0   | 212.19 | 12000 |
| 90       | 12000 | 0     | 10.75          |         | 0   | 257.41 | 12000 |
| 91       | 12000 | 5000  | 8 6 2 5        | hanging | 05  | 20.05  | 17000 |
| 92       | 12000 | 5000  | 0.023<br>10.75 | hanging | 93  | 112 00 | 17000 |
| 93       | 12000 | 5000  | 10.75          | hanging | 100 | 142.00 | 17000 |
| 94       | 12000 | 5000  | 12.73          | hanging | 100 | 239.48 | 17000 |
| 95       | 12000 | 5000  | 10.75          | honging | 50  | 1/4.1/ | 17000 |
| 90       | 12000 | 5000  | 0 6 7 5        | dropped | 100 | 200.78 | 17000 |
| 9/       | 12000 | 5000  | <u> </u>       | dropped | 100 | 38.42  | 17000 |
| 98       | 12000 | 5000  | 10.75          | uroppea | 100 | 142.81 | 1/000 |

| 99     | 12000              | 5000         | 12.75  | dropped | 100        | 259.42  | 17000 |
|--------|--------------------|--------------|--------|---------|------------|---------|-------|
| 100    | 12000              | 5000         | 10.75  | dropped | 50         | 154.72  | 17000 |
| 101    | 12000              | 5000         | 10.75  | dropped | 25         | 174.58  | 17000 |
| 102    | 12000              | 5000         | 8.625  | no DS   | 100        | 284.44  | 17000 |
| 103    | 12000              | 5000         | 10.75  | no DS   | 100        | 312.87  | 17000 |
| 104    | 12000              | 5000         | 12.75  | no DS   | 100        | 327.85  | 17000 |
| 105    | 12000              | 10000        | 8.625  | hanging | 40         | 49.69   | 22000 |
| 106    | 12000              | 10000        | 10.75  | hanging | 100        | 162.10  | 22000 |
| 107    | 12000              | 10000        | 12.75  | hanging | 100        | 283.96  | 22000 |
| 108    | 12000              | 10000        | 10.75  | hanging | 50         | 183.99  | 22000 |
| 109    | 12000              | 10000        | 10.75  | hanging | 25         | 220.16  | 22000 |
| 110    | 12000              | 10000        | 8.625  | dropped | 30         | 43.99   | 22000 |
| 111    | 12000              | 10000        | 10.75  | dropped | 100        | 162.02  | 22000 |
| 112    | 12000              | 10000        | 12.75  | dropped | 100        | 283.89  | 22000 |
| 113    | 12000              | 10000        | 10.75  | dropped | 50         | 165.37  | 22000 |
| 114    | 12000              | 10000        | 10.75  | dropped | 25         | 188.76  | 22000 |
| 115    | 12000              | 10000        | 8.625  | no DS   | 0          | 304.26  | 22000 |
| 116    | 12000              | 10000        | 10.75  | no DS   | 0          | 325.96  | 22000 |
| 117    | 12000              | 10000        | 12.75  | no DS   | 0          | 340.98  | 22000 |
| Series |                    |              |        |         |            |         |       |
| 1      | Run #              | 1-12         |        |         |            |         |       |
|        | Intitial Condition | is           |        |         |            |         |       |
|        | Surface Gas Rate   |              | 10.046 | MMscf/D | Wellbore   |         | units |
|        |                    |              |        |         | TVD BML    | 3000    | ft    |
|        | Depth, ft          | Pressure, ps | sia    |         | Water TVD  | 0       | ft    |
|        | 0                  | 62.421       |        |         | DS Status  | hanging | n/a   |
|        | 300                | 323.79       |        |         | Parameter  | csg     | n/a   |
|        | 600                | 444.9        |        |         | Par. Value | 8.625   | in    |
|        | 900                | 538.847      |        |         |            |         |       |
|        | 1200               | 618.705      |        |         |            |         |       |
|        | 1500               | 689.593      |        |         |            |         |       |
|        | 1800               | 754.152      |        |         |            |         |       |
|        | 2100               | 813.958      |        |         |            |         |       |
|        | 2400               | 870.04       |        |         |            |         |       |
|        | 2700               | 1160.139     |        |         |            |         |       |
|        | 3000               | 1475.988     |        |         |            |         |       |
|        |                    |              |        |         |            |         |       |
| 2      | Run #              | 13-24        |        |         |            |         |       |
|        | Intitial Condition | ıs           |        |         |            |         |       |
|        | Surface Gas Rate   |              | 27.297 | MMscf/D | Wellbore   |         | units |
|        |                    |              |        |         | TVD BML    | 3000    | ft    |
|        | Depth, ft          | Pressure, ps | sia    |         | Water TVD  | 0       | ft    |
|        | 0                  | 44.834       |        |         | DS Status  | hanging | n/a   |
|        | 300                | 164.204      |        |         | Parameter  | csg     | n/a   |
|        | 600                | 221.02       |        |         | Par. Value | 10.75   |       |
|        | 900                | 265.483      |        |         |            |         |       |
|        | 1200               | 303.484      |        |         |            |         |       |
|        | 1500               | 337.346      |        |         |            |         |       |
|        | 1800               | 368.275      |        |         |            |         |       |
|        | 2100               | 396.99       |        |         |            |         |       |
|        | 2400               | 423.966      |        |         |            |         |       |
|        | 2700               | 575.3        |        |         |            |         |       |
|        | 3000               | 739.253      |        |         |            |         |       |

| 3 | Run #              | 25-36        |         |         |             | -         |            |
|---|--------------------|--------------|---------|---------|-------------|-----------|------------|
|   | Intitial Condition | ns           |         |         |             |           |            |
|   | Surface Gas Rate   |              | 33.473  | MMscf/D | Wellbore    | -         | units      |
|   | Surface Gus Hute   |              | 001110  |         | TVD BML     | 3000      | ft         |
|   | Denth ft           | Pressure no  | ia      |         | Water TVD   | 0         | ft         |
|   | 0                  | 24.46        |         |         | DS Status   | hanging   | n/9        |
|   | 300                | 68 567       |         |         | Do Status   | cea       | n/a<br>n/a |
|   | 600                | 00.507       |         |         | Par Value   | 12 75     | 11/a       |
|   | 000                | 107.013      |         |         | I al. Value | 12.75     |            |
|   | 900                | 107.913      |         |         | _           | -         |            |
|   | 1200               | 122.700      |         |         |             | -         |            |
|   | 1300               | 130.082      |         |         |             |           |            |
|   | 1800               | 148.232      |         |         |             | -         |            |
|   | 2100               | 159.572      |         |         |             | -         |            |
|   | 2400               | 170.222      |         |         |             | -         |            |
|   | 2700               | 222.929      |         |         | -           | -         |            |
|   | 3000               | 281.335      |         |         |             | -         |            |
|   | <b>D</b> #         | 27 10        |         |         | -           | -         |            |
| 4 | Run #              | 37-48        |         |         |             | <u>_</u>  |            |
|   | Intitial Condition | is           |         |         |             |           |            |
|   | Surface Gas Rate   |              | 31.678  | MMscf/D | Wellbore    | 2000      | units      |
|   |                    |              | -       |         | TVD BML     | 3000      | ft         |
|   | Depth, ft          | Pressure, ps | sia     |         | Water TVD   | 0         | ft         |
| - | 0                  | 55.867       |         |         | DS Status   | hanging   | n/a        |
| - | 300                | 190.426      |         |         | Parameter   | ds length | n/a        |
| - | 600                | 256.099      |         |         | Par. Value  | 50        | %          |
|   | 900                | 307.492      |         |         |             |           |            |
|   | 1200               | 351.409      |         |         |             |           |            |
|   | 1500               | 390.536      |         |         |             |           |            |
|   | 1800               | 394.064      |         |         |             |           |            |
|   | 2100               | 396.064      |         |         |             |           |            |
|   | 2400               | 399.793      |         |         |             |           |            |
|   | 2700               | 403.85       |         |         |             |           |            |
|   | 3000               | 408.515      |         |         |             |           |            |
|   |                    |              |         |         |             |           |            |
| 5 | Run #              | 49-60        |         |         |             |           |            |
|   | Intitial Condition | is           |         |         |             |           |            |
|   | Surface Gas Rate   |              | 151.336 | MMscf/D | Wellbore    |           | units      |
|   |                    |              |         |         | TVD BML     | 3000      | ft         |
|   | Depth, ft          | Pressure, ps | sia     |         | Water TVD   | 0         | ft         |
|   | 0                  | 57.048       |         |         | DS Status   | hanging   | n/a        |
|   | 300                | 195.429      |         |         | Parameter   | ds length | n/a        |
|   | 600                | 262.826      |         |         | Par. Value  | 25        |            |
|   | 900                | 292.624      |         |         |             |           |            |
|   | 1200               | 295.035      |         |         |             |           |            |
|   | 1500               | 297.457      |         |         |             |           |            |
|   | 1800               | 299.889      |         |         |             |           |            |
|   | 2100               | 302.333      |         |         |             |           |            |
|   | 2400               | 304.787      |         |         |             |           |            |
|   | 2700               | 308.881      |         |         |             |           |            |
|   | 3000               | 313.797      |         |         |             |           |            |
|   |                    |              |         |         |             |           |            |
| 6 | Run #              | 61-72        |         |         |             | 1         |            |

|   | Intitial Condition | IS           |        |            |            |         |       |
|---|--------------------|--------------|--------|------------|------------|---------|-------|
|   | Surface Gas Rate   |              | 10.046 | MMscf/D    | Wellbore   |         | units |
|   |                    |              |        |            | TVD BML    | 3000    | ft    |
|   | Depth, ft          | Pressure, ps | sia    |            | Water TVD  | 0       | ft    |
|   | 0                  | 62.421       |        |            | DS Status  | dropped | n/a   |
|   | 300                | 323.79       |        |            | Parameter  | csg     | n/a   |
|   | 600                | 444.9        |        |            | Par. Value | 8.625   |       |
|   | 900                | 538.847      |        |            |            |         |       |
|   | 1200               | 618.705      |        |            |            | 1       |       |
|   | 1500               | 689.593      |        |            |            | +       |       |
|   | 1800               | 754 152      |        |            |            |         |       |
|   | 2100               | 813 958      |        |            |            |         |       |
|   | 2400               | 870.04       |        |            |            |         |       |
|   | 2700               | 1160 139     |        |            |            |         |       |
|   | 3000               | 1475 988     |        |            |            |         |       |
|   | 5000               | 1475.700     |        |            |            |         |       |
| 7 | Run #              | 73-84        |        |            |            |         |       |
| 1 | Intitial Condition |              |        |            |            |         |       |
|   | Surface Gas Rate   | 5            | 27 297 | MMscf/D    | Wellbore   |         | units |
|   | Surface Gus Huite  |              | 27.227 | NINISCI D  | TVD BML    | 3000    | ft    |
|   | Denth ft           | Pressure no  | ม่อ    |            | Water TVD  | 0       | ft    |
|   | 0                  | 44 834       | jiu    |            | DS Status  | dropped | n/a   |
|   | 300                | 164 204      |        |            | Parameter  | csg     | n/a   |
|   | 600                | 221.02       |        |            | Par Value  | 10.75   | 11/ u |
|   | 900                | 265 483      |        |            |            | 10.75   |       |
|   | 1200               | 303.484      |        |            |            |         |       |
|   | 1200               | 337 346      |        |            |            |         |       |
|   | 1300               | 368 275      |        |            |            |         |       |
|   | 2100               | 306.00       |        |            |            |         |       |
|   | 2100               | 423.966      |        |            |            |         |       |
|   | 2400               | 575.3        |        |            |            |         |       |
|   | 3000               | 730 253      |        |            |            |         |       |
|   | 5000               | 139.233      |        |            |            |         |       |
| 8 | Run #              | 85-96        |        |            |            |         |       |
| 0 | Intitial Condition |              |        |            |            |         |       |
|   | Surface Gas Rate   | 5            | 33 473 | MMscf/D    | Wellbore   |         | units |
|   | Surface Cus Hute   |              | 001110 | 11111001/2 | TVD BML    | 3000    | ft    |
|   | Depth. ft          | Pressure, ps | sia    |            | Water TVD  | 0       | ft    |
|   | 0                  | 24.46        |        |            | DS Status  | dropped | n/a   |
|   | 300                | 68.567       |        |            | Parameter  | csg     | n/a   |
|   | 600                | 90.578       |        |            | Par. Value | 12.75   |       |
|   | 900                | 107.913      |        |            |            |         |       |
|   | 1200               | 122.788      |        |            |            |         |       |
|   | 1500               | 136.082      |        |            |            |         |       |
|   | 1800               | 148.252      |        |            |            |         |       |
|   | 2100               | 159.572      |        |            |            |         |       |
|   | 2400               | 170.222      |        |            |            |         |       |
|   | 2700               | 222.929      |        |            |            |         |       |
|   | 3000               | 281.335      |        |            |            |         |       |
|   |                    |              |        |            |            |         |       |
| 9 | Run #              | 97-108       |        |            |            |         |       |
|   | Intitial Condition | IS           |        |            |            |         |       |
|   | Surface Gas Rate   |              | 28.175 | MMscf/D    | Wellbore   |         | units |

|    |                    |               |        |             | TVD BML    | 3000      | ft    |
|----|--------------------|---------------|--------|-------------|------------|-----------|-------|
|    | Depth, ft          | Pressure, ps  | sia    |             | Water TVD  | 0         | ft    |
|    | 0                  | 28.635        |        |             | DS Status  | dropped   | n/a   |
|    | 300                | 33.877        |        |             | Parameter  | ds length | n/a   |
|    | 600                | 38.38         |        |             | Par. Value | 50        |       |
|    | 900                | 42.41         |        |             |            |           |       |
|    | 1200               | 46.103        |        |             |            |           |       |
|    | 1500               | 49.541        |        |             |            |           |       |
|    | 1800               | 169.223       |        |             |            |           |       |
|    | 2100               | 227.645       |        |             |            |           |       |
|    | 2400               | 273.377       |        |             |            |           |       |
|    | 2700               | 487.878       |        |             |            |           |       |
|    | 3000               | 684.279       |        |             |            |           |       |
|    |                    |               |        |             |            |           |       |
| 10 | Run #              | 109-120       |        |             |            |           |       |
|    | Intitial Condition | 15            |        |             |            |           |       |
|    | Surface Gas Rate   |               | 28.622 | MMscf/D     | Wellbore   |           | units |
|    |                    |               |        |             | TVD BML    | 3000      | ft    |
|    | Depth, ft          | Pressure, ps  | sia    |             | Water TVD  | 0         | ft    |
|    | 0                  | 17.898        |        |             | DS Status  | dropped   | n/a   |
|    | 300                | 26.09         |        |             | Parameter  | ds length | n/a   |
|    | 600                | 31.955        |        |             | Par. Value | 25        |       |
|    | 900                | 36.835        |        |             |            |           |       |
|    | 1200               | 41.131        |        |             |            |           |       |
|    | 1500               | 45.029        |        |             |            |           |       |
|    | 1800               | 48.634        |        |             |            |           |       |
|    | 2100               | 52.011        |        |             |            |           |       |
|    | 2400               | 131.215       |        |             |            |           |       |
|    | 2700               | 436.448       |        |             |            |           |       |
|    | 3000               | 654.768       |        |             |            |           |       |
|    |                    |               |        |             |            |           |       |
| 11 | Run #              | 121-132       |        |             |            |           |       |
|    | Intitial Condition | ıs            |        |             |            |           |       |
|    | Surface Gas Rate   |               | 32.857 | MMscf/D     | Wellbore   |           | units |
|    |                    |               |        |             | TVD BML    | 3000      | ft    |
|    | Depth, ft          | Pressure, ps  | sia    |             | Water TVD  | 0         | ft    |
|    | 0                  | 18.334        |        |             | DS Status  | no DS     | n/a   |
|    | 300                | 45.804        |        |             | Parameter  | csg       | n/a   |
|    | 600                | 59.79         |        |             | Par. Value | 8.625     |       |
|    | 900                | 70.866        |        |             | _          |           |       |
|    | 1200               | 80.396        |        |             | _          |           |       |
|    | 1500               | 88.929        |        |             | _          |           |       |
|    | 1800               | 96.749        |        |             |            | -         |       |
|    | 2100               | 110.000       |        |             |            |           |       |
|    | 2400               | 110.886       |        |             |            |           |       |
|    | 2700               | 129.42        |        |             |            |           |       |
|    | 3000               | 150.84        |        |             |            |           |       |
| 10 | Dup #              | 122 144       |        |             |            |           |       |
| 12 | Intitial Candidate | 133-144       |        |             |            |           |       |
|    | Surface Cas Data   | 15            | 22 770 | MMsof/D     | Wollborg   |           | unite |
|    | Surface Gas Kale   |               | 33.119 | IVIIVISCI/D | TVD BMI    | 3000      | ff    |
|    | Denth ft           | Pressure no   | ria    |             | Water TVD  | 0000      | ft    |
|    | Depin, It          | r ressure, pa |        | 1           | mater I VD | 0         | 16    |

|    | C                                                                                                                                                           | 15.154                                                                                    |             |             | DS Status                                     | no DS                   | n/a                      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------|-------------|-----------------------------------------------|-------------------------|--------------------------|
|    | 300                                                                                                                                                         | 27.727                                                                                    |             |             | Parameter                                     | csg                     | n/a                      |
|    | 600                                                                                                                                                         | 35.273                                                                                    |             |             | Par. Value                                    | 10.75                   |                          |
|    | 900                                                                                                                                                         | 41.341                                                                                    |             |             |                                               |                         |                          |
|    | 1200                                                                                                                                                        | 46.598                                                                                    |             |             |                                               |                         |                          |
|    | 1500                                                                                                                                                        | 51.325                                                                                    |             |             |                                               |                         |                          |
|    | 1800                                                                                                                                                        | 55.67                                                                                     |             |             |                                               |                         |                          |
|    | 2100                                                                                                                                                        | 59.724                                                                                    |             |             |                                               |                         | -                        |
|    | 2400                                                                                                                                                        | 63.547                                                                                    |             |             |                                               |                         |                          |
|    | 2700                                                                                                                                                        | 75.165                                                                                    |             |             |                                               |                         |                          |
|    | 3000                                                                                                                                                        | 88.6                                                                                      |             |             |                                               |                         |                          |
|    | 2000                                                                                                                                                        |                                                                                           |             |             |                                               |                         | -                        |
| 13 | Run #                                                                                                                                                       | 145-156                                                                                   |             |             |                                               |                         |                          |
|    | Intitial Conditio                                                                                                                                           | ns                                                                                        |             |             |                                               |                         |                          |
|    | Surface Gas Rate                                                                                                                                            |                                                                                           | 34.6        | MMscf/D     | Wellbore                                      |                         | units                    |
|    |                                                                                                                                                             |                                                                                           |             |             | TVD BML                                       | 3000                    | ft                       |
|    | Depth, ft                                                                                                                                                   | Pressure, ps                                                                              | sia         |             | Water TVD                                     | 0                       | ft                       |
|    | C C                                                                                                                                                         | 15.292                                                                                    |             |             | DS Status                                     | no DS                   | n/a                      |
|    | 300                                                                                                                                                         | 20.229                                                                                    |             |             | Parameter                                     | csg                     | n/a                      |
|    | 600                                                                                                                                                         | 24.028                                                                                    |             |             | Par. Value                                    | 12.75                   |                          |
|    | 900                                                                                                                                                         | 27.266                                                                                    |             |             |                                               |                         |                          |
|    | 1200                                                                                                                                                        | 30.152                                                                                    |             |             |                                               |                         |                          |
|    | 1500                                                                                                                                                        | 32.79                                                                                     |             |             |                                               |                         |                          |
|    | 1800                                                                                                                                                        | 35 243                                                                                    |             |             |                                               |                         |                          |
|    | 2100                                                                                                                                                        | 37.55                                                                                     |             |             |                                               |                         |                          |
|    | 2400                                                                                                                                                        | 39 739                                                                                    |             |             |                                               |                         |                          |
|    | 2700                                                                                                                                                        | 46 505                                                                                    |             |             |                                               |                         |                          |
|    | 3000                                                                                                                                                        | 54 403                                                                                    |             |             |                                               |                         |                          |
|    | 5000                                                                                                                                                        | 51.105                                                                                    |             |             |                                               |                         |                          |
| 14 | Run #                                                                                                                                                       | 160-171                                                                                   |             |             |                                               |                         | -                        |
|    | Intitial Conditio                                                                                                                                           | ns                                                                                        |             |             |                                               |                         |                          |
|    | Surface Gas Rate                                                                                                                                            |                                                                                           | 25.273      | MMscf/D     | Wellbore                                      |                         | units                    |
|    |                                                                                                                                                             |                                                                                           |             |             | TVD BML                                       | 3000                    | ft                       |
|    | Depth, ft                                                                                                                                                   | Pressure, ps                                                                              | sia         |             | Water TVD                                     | 5000                    | ft                       |
|    | 5000                                                                                                                                                        | 2233.582                                                                                  |             |             | DS Status                                     | hanging                 | n/a                      |
|    | 5300                                                                                                                                                        | 2356.182                                                                                  |             |             | Parameter                                     | csg                     | n/a                      |
|    | 5600                                                                                                                                                        | 2475.372                                                                                  |             |             | Par. Value                                    | 8.625                   |                          |
|    | 5900                                                                                                                                                        | 2589.797                                                                                  |             |             |                                               |                         |                          |
|    | 6200                                                                                                                                                        | 2700.167                                                                                  |             |             |                                               |                         |                          |
|    | 6500                                                                                                                                                        | 2807.053                                                                                  |             |             |                                               |                         |                          |
|    | 6800                                                                                                                                                        | 2910.923                                                                                  |             |             |                                               |                         |                          |
|    | 7100                                                                                                                                                        | 3012 167                                                                                  |             |             |                                               |                         |                          |
|    | /100                                                                                                                                                        | 5012.107                                                                                  |             |             |                                               |                         |                          |
|    | 7400                                                                                                                                                        | 3111.114                                                                                  |             |             |                                               |                         |                          |
|    | 7400                                                                                                                                                        | <u>3111.114</u><br>3617.699                                                               |             |             |                                               |                         |                          |
|    | 7400<br>7400<br>7700<br>8000                                                                                                                                | <u>3111.114</u><br>3617.699<br>4257.778                                                   |             |             |                                               |                         |                          |
|    | 7400<br>7400<br>7700<br>8000                                                                                                                                | 3012.107<br>3111.114<br>3617.699<br>4257.778                                              |             |             |                                               |                         |                          |
| 15 | 7400<br>7400<br>7700<br>8000<br>Run #                                                                                                                       | 3111.114<br>3617.699<br>4257.778                                                          |             |             |                                               |                         |                          |
| 15 | 7400           7400           7700           8000           Run #           Intitial Conditio                                                               | 3012.107<br>3111.114<br>3617.699<br>4257.778<br>172-183<br>ns                             |             |             |                                               |                         |                          |
| 15 | 7400           7400           7700           8000           Run #           Intitial Condition           Surface Gas Rate                                   | 3012.107<br>3111.114<br>3617.699<br>4257.778<br>172-183<br>ns                             | 80.56       | <br>MMscf/D | Wellbore                                      |                         | units                    |
| 15 | 7400           7400           7700           8000           Run #           Intitial Conditio           Surface Gas Rate                                    | 3012.107<br>3111.114<br>3617.699<br>4257.778<br>172-183<br>ns                             | 80.56       | MMscf/D     | Wellbore<br>TVD BML                           | 3000                    | units                    |
| 15 | 7400           7400           7700           8000           Run #           Intitial Conditio           Surface Gas Rate           Depth, ft                | 3012.107<br>3111.114<br>3617.699<br>4257.778<br>172-183<br>ns<br>Pressure, ps             | 80.56<br>ia | MMscf/D     | Wellbore<br>TVD BML<br>Water TVD              | 3000                    | units<br>ft              |
| 15 | 7400           7400           7700           8000           Run #           Intitial Conditio           Surface Gas Rate           Depth, ft           5000 | 3012.107<br>3111.114<br>3617.699<br>4257.778<br>172-183<br>ns<br>Pressure, ps<br>2238.115 | 80.56<br>ia | MMscf/D     | Wellbore<br>TVD BML<br>Water TVD<br>DS Status | 3000<br>5000<br>hanging | units<br>ft<br>ft<br>n/a |

|    | 5600                                                                                                                                                                                                                                                                                                                                                                             | 2335.866                                                                                                                                                                                                                                                                                                                                                                   |                             |           | Par. Value                                                               | 10.75                                          |                                                                           |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|--------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|
|    | 5900                                                                                                                                                                                                                                                                                                                                                                             | 2384.268                                                                                                                                                                                                                                                                                                                                                                   |                             |           |                                                                          |                                                |                                                                           |
|    | 6200                                                                                                                                                                                                                                                                                                                                                                             | 2432.205                                                                                                                                                                                                                                                                                                                                                                   |                             |           |                                                                          |                                                |                                                                           |
|    | 6500                                                                                                                                                                                                                                                                                                                                                                             | 2479.731                                                                                                                                                                                                                                                                                                                                                                   |                             |           |                                                                          |                                                |                                                                           |
|    | 6800                                                                                                                                                                                                                                                                                                                                                                             | 2526.897                                                                                                                                                                                                                                                                                                                                                                   |                             |           |                                                                          |                                                |                                                                           |
|    | 7100                                                                                                                                                                                                                                                                                                                                                                             | 2573 751                                                                                                                                                                                                                                                                                                                                                                   |                             |           |                                                                          |                                                |                                                                           |
|    | 7400                                                                                                                                                                                                                                                                                                                                                                             | 2620 337                                                                                                                                                                                                                                                                                                                                                                   |                             |           |                                                                          |                                                |                                                                           |
|    | 7700                                                                                                                                                                                                                                                                                                                                                                             | 2834 752                                                                                                                                                                                                                                                                                                                                                                   |                             |           |                                                                          |                                                |                                                                           |
|    | 8000                                                                                                                                                                                                                                                                                                                                                                             | 3114 34                                                                                                                                                                                                                                                                                                                                                                    |                             |           |                                                                          |                                                |                                                                           |
|    | 8000                                                                                                                                                                                                                                                                                                                                                                             | 5114.54                                                                                                                                                                                                                                                                                                                                                                    |                             |           |                                                                          |                                                |                                                                           |
| 16 | Dup #                                                                                                                                                                                                                                                                                                                                                                            | 194 105                                                                                                                                                                                                                                                                                                                                                                    |                             |           |                                                                          |                                                |                                                                           |
| 10 | Kull #                                                                                                                                                                                                                                                                                                                                                                           | 104-195                                                                                                                                                                                                                                                                                                                                                                    |                             |           |                                                                          |                                                |                                                                           |
|    | Surface Cos Date                                                                                                                                                                                                                                                                                                                                                                 | 15                                                                                                                                                                                                                                                                                                                                                                         | 100 499                     | MMaaf/D   | Wallbana                                                                 |                                                | unita                                                                     |
|    | Surface Gas Kate                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                            | 109.488                     | MINISCI/D |                                                                          | 2000                                           | units<br>e                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                  | D                                                                                                                                                                                                                                                                                                                                                                          | •                           |           |                                                                          | 3000                                           | Π<br>C                                                                    |
|    | Deptn, it                                                                                                                                                                                                                                                                                                                                                                        | Pressure, ps                                                                                                                                                                                                                                                                                                                                                               | a                           |           | Water TVD                                                                | 5000                                           | ft (                                                                      |
|    | 5000                                                                                                                                                                                                                                                                                                                                                                             | 2253.064                                                                                                                                                                                                                                                                                                                                                                   |                             |           | DS Status                                                                | hanging                                        | n/a                                                                       |
|    | 5300                                                                                                                                                                                                                                                                                                                                                                             | 2274.704                                                                                                                                                                                                                                                                                                                                                                   |                             |           | Parameter                                                                | csg                                            | n/a                                                                       |
|    | 5600                                                                                                                                                                                                                                                                                                                                                                             | 2296.656                                                                                                                                                                                                                                                                                                                                                                   |                             |           | Par. Value                                                               | 12.75                                          |                                                                           |
|    | 5900                                                                                                                                                                                                                                                                                                                                                                             | 2318.806                                                                                                                                                                                                                                                                                                                                                                   |                             |           |                                                                          |                                                |                                                                           |
|    | 6200                                                                                                                                                                                                                                                                                                                                                                             | 2341.167                                                                                                                                                                                                                                                                                                                                                                   |                             |           |                                                                          |                                                |                                                                           |
|    | 6500                                                                                                                                                                                                                                                                                                                                                                             | 2363.749                                                                                                                                                                                                                                                                                                                                                                   |                             |           |                                                                          |                                                |                                                                           |
|    | 6800                                                                                                                                                                                                                                                                                                                                                                             | 2386.563                                                                                                                                                                                                                                                                                                                                                                   |                             |           |                                                                          |                                                |                                                                           |
|    | 7100                                                                                                                                                                                                                                                                                                                                                                             | 2409.623                                                                                                                                                                                                                                                                                                                                                                   |                             |           |                                                                          |                                                |                                                                           |
|    | 7400                                                                                                                                                                                                                                                                                                                                                                             | 2432.941                                                                                                                                                                                                                                                                                                                                                                   |                             |           |                                                                          |                                                |                                                                           |
|    | 7700                                                                                                                                                                                                                                                                                                                                                                             | 2485.826                                                                                                                                                                                                                                                                                                                                                                   |                             |           |                                                                          |                                                |                                                                           |
|    | 8000                                                                                                                                                                                                                                                                                                                                                                             | 2552.877                                                                                                                                                                                                                                                                                                                                                                   |                             |           |                                                                          |                                                |                                                                           |
|    |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                            |                             |           |                                                                          |                                                |                                                                           |
|    |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                            |                             |           |                                                                          |                                                |                                                                           |
| 17 | Run #                                                                                                                                                                                                                                                                                                                                                                            | 196-207                                                                                                                                                                                                                                                                                                                                                                    |                             |           |                                                                          |                                                |                                                                           |
| 17 | Run #<br>Intitial Condition                                                                                                                                                                                                                                                                                                                                                      | 196-207<br>ns                                                                                                                                                                                                                                                                                                                                                              |                             |           |                                                                          |                                                |                                                                           |
| 17 | Run #Intitial ConditionSurface Gas Rate                                                                                                                                                                                                                                                                                                                                          | 196-207<br>ns                                                                                                                                                                                                                                                                                                                                                              | 80.56                       | MMscf/D   | Wellbore                                                                 |                                                | units                                                                     |
| 17 | Run #         Intitial Condition         Surface Gas Rate                                                                                                                                                                                                                                                                                                                        | 196-207<br>ns                                                                                                                                                                                                                                                                                                                                                              | 80.56                       | MMscf/D   | Wellbore<br>TVD BML                                                      | 3000                                           | units<br>ft                                                               |
| 17 | Run #<br>Intitial Condition<br>Surface Gas Rate<br>Depth. ft                                                                                                                                                                                                                                                                                                                     | 196-207<br>ns<br>Pressure, ps                                                                                                                                                                                                                                                                                                                                              | 80.56<br><b>ja</b>          | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD                                         | 3000<br>5000                                   | units<br>ft<br>ft                                                         |
| 17 | Run #<br>Intitial Condition<br>Surface Gas Rate<br>Depth, ft<br>5000                                                                                                                                                                                                                                                                                                             | 196-207<br>ns<br>Pressure, ps<br>2238,115                                                                                                                                                                                                                                                                                                                                  | 80.56<br>ia                 | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status                            | 3000<br>5000<br>hanging                        | units<br>ft<br>ft<br>n/a                                                  |
| 17 | Run #<br>Intitial Condition<br>Surface Gas Rate<br>Depth, ft<br>5000<br>5300                                                                                                                                                                                                                                                                                                     | 196-207<br>is<br>Pressure, ps<br>2238.115<br>2286.941                                                                                                                                                                                                                                                                                                                      | 80.56<br>ia                 | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter               | 3000<br>5000<br>hanging<br>ds length           | units<br>ft<br>ft<br>n/a<br>n/a                                           |
| 17 | Run #         Intitial Condition         Surface Gas Rate         Depth, ft         5300         5300         5600                                                                                                                                                                                                                                                               | 196-207<br>Is<br>Pressure, ps<br>2238.115<br>2286.941<br>2335.866                                                                                                                                                                                                                                                                                                          | 80.56<br>ia                 | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par. Value | 3000<br>5000<br>hanging<br>ds length<br>50     | units<br>ft<br>ft<br>n/a<br>n/a                                           |
| 17 | Run #         Intitial Condition         Surface Gas Rate         Depth, ft         5300         5600         5900                                                                                                                                                                                                                                                               | 196-207<br>is<br>Pressure, ps<br>2238.115<br>2286.941<br>2335.866<br>2384.268                                                                                                                                                                                                                                                                                              | 80.56<br>ia                 | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par. Value | 3000<br>5000<br>hanging<br>ds length<br>50     | units<br>ft<br>ft<br>n/a<br>n/a                                           |
| 17 | Run #Intitial ConditionSurface Gas RateDepth, ft53005300560059006200                                                                                                                                                                                                                                                                                                             | 196-207<br>Is<br>Pressure, ps<br>2238.115<br>2286.941<br>2335.866<br>2384.268<br>2432.205                                                                                                                                                                                                                                                                                  | 80.56<br>iia                | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par. Value | 3000<br>5000<br>hanging<br>ds length<br>50     | units<br>ft<br>ft<br>n/a<br>n/a                                           |
| 17 | Run #           Intitial Condition           Surface Gas Rate           Depth, ft           5300           5600           5900           6200           6500                                                                                                                                                                                                                     | 196-207<br>ns<br>Pressure, ps<br>2238.115<br>2286.941<br>2335.866<br>2384.268<br>2432.205<br>2479 731                                                                                                                                                                                                                                                                      | 80.56<br>ia                 | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par. Value | 3000<br>5000<br>hanging<br>ds length<br>50     | units<br>ft<br>ft<br>n/a<br>n/a                                           |
| 17 | Run #           Intitial Condition           Surface Gas Rate           Depth, ft           5000           5300           5600           5900           6200           6500           6800                                                                                                                                                                                       | 196-207<br>ns<br>Pressure, ps<br>2238.115<br>2286.941<br>2335.866<br>2384.268<br>2432.205<br>2479.731<br>2526.897                                                                                                                                                                                                                                                          | 80.56<br>iia                | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par. Value | 3000<br>5000<br>hanging<br>ds length<br>50     | units<br>ft<br>n/a<br>n/a                                                 |
|    | Run #           Intitial Condition           Surface Gas Rate           Depth, ft           5000           5300           5600           5900           6200           6500           7100                                                                                                                                                                                       | 196-207<br>ns<br>Pressure, ps<br>2238.115<br>2286.941<br>2335.866<br>2384.268<br>2432.205<br>2479.731<br>2526.897<br>2573.751                                                                                                                                                                                                                                              | 80.56<br>iia                | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par. Value | 3000<br>5000<br>hanging<br>ds length<br>50     | units<br>ft<br>ft<br>n/a<br>n/a                                           |
|    | Run #           Intitial Condition           Surface Gas Rate           Depth, ft           5000           5300           5600           5900           6200           6500           7100           7400                                                                                                                                                                        | 196-207<br>IIS<br>Pressure, ps<br>2238.115<br>2286.941<br>2335.866<br>2384.268<br>2432.205<br>2479.731<br>2526.897<br>2573.751<br>2620.337                                                                                                                                                                                                                                 | 80.56<br>ia                 | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par. Value | 3000<br>5000<br>hanging<br>ds length<br>50     | units<br>ft<br>ft<br>n/a<br>n/a                                           |
|    | Run #           Intitial Condition           Surface Gas Rate           Depth, ft           5000           5300           5600           5900           6200           6500           7100           7400                                                                                                                                                                        | 196-207<br>Is<br>Pressure, ps<br>2238.115<br>2286.941<br>2335.866<br>2384.268<br>2432.205<br>2479.731<br>2526.897<br>2573.751<br>2620.337<br>2834.752                                                                                                                                                                                                                      | 80.56<br>iia                | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par. Value | 3000<br>5000<br>hanging<br>ds length<br>50     | units<br>ft<br>ft<br>n/a<br>n/a                                           |
|    | Run #           Intitial Condition           Surface Gas Rate           Depth, ft           5300           5300           5300           5300           6200           6500           7100           7400           7700                                                                                                                                                         | 196-207<br>Is<br>Pressure, ps<br>2238.115<br>2286.941<br>2335.866<br>2384.268<br>2432.205<br>2479.731<br>2526.897<br>2573.751<br>2620.337<br>2834.752<br>2114.34                                                                                                                                                                                                           | 80.56<br>ia                 | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par. Value | 3000<br>5000<br>hanging<br>ds length<br>50     | units<br>ft<br>ft<br>n/a<br>n/a                                           |
|    | Run #           Intitial Condition           Surface Gas Rate           Depth, ft           5300           55000           55000           6200           65000           6800           7100           7400           7700           8000                                                                                                                                       | 196-207           IIS           Pressure, ps           2238.115           2286.941           2335.866           2384.268           2432.205           2479.731           2526.897           2573.751           2620.337           2834.752           3114.34                                                                                                               | 80.56<br>ia                 | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                | 3000<br>5000<br>hanging<br>ds length<br>50     | units<br>ft<br>ft<br>n/a<br>n/a                                           |
| 17 | Run #           Intitial Condition           Surface Gas Rate           Depth, ft           5300           5600           5900           6200           6500           7100           7400           7700           8000                                                                                                                                                         | 196-207           ns           Pressure, ps           2238.115           2286.941           2335.866           2384.268           2432.205           2479.731           2526.897           2573.751           2620.337           2834.752           3114.34                                                                                                                | 80.56<br>ia                 | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                | 3000<br>5000<br>hanging<br>ds length<br>50     | units<br>ft<br>ft<br>n/a<br>n/a                                           |
| 17 | Run #           Intitial Condition           Surface Gas Rate           Depth, ft           5300           5600           5900           6200           6500           6800           7100           7400           7700           8000           Run #           Intitial Condition                                                                                             | 196-207           ns           Pressure, ps           2238.115           2286.941           2335.866           2384.268           2432.205           2479.731           2526.897           2573.751           2620.337           2834.752           3114.34           208-219                                                                                              | 80.56                       | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                | 3000<br>5000<br>hanging<br>ds length<br>50     | units<br>ft<br>ft<br>n/a<br>n/a                                           |
| 17 | Run #           Intitial Condition           Surface Gas Rate           Depth, ft           5300           5300           5600           5900           6200           6500           6800           7100           7400           7700           8000           Run #           Intitial Condition                                                                              | 196-207           Is           Pressure, ps           2238.115           2286.941           2335.866           2384.268           2432.205           2479.731           2526.897           2573.751           2620.337           2834.752           3114.34           208-219           Is                                                                                 | 80.56<br>iia                | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                | 3000<br>5000<br>hanging<br>ds length<br>50     | units<br>ft<br>ft<br>n/a<br>n/a                                           |
| 17 | Run #           Intitial Condition           Surface Gas Rate           Depth, ft           5000           5300           5600           5900           6200           6500           6800           7100           7400           7700           8000           Run #           Intitial Condition           Surface Gas Rate                                                   | 196-207           ns           Pressure, ps           2238.115           2286.941           2335.866           2384.268           2432.205           2479.731           2526.897           2573.751           2620.337           2834.752           3114.34           208-219           ns                                                                                 | 80.56<br>iia                | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                | 3000<br>5000<br>hanging<br>ds length<br>50     | units<br>ft<br>ft<br>n/a<br>n/a                                           |
| 17 | Run #           Intitial Condition           Surface Gas Rate           Depth, ft           5000           5300           5600           5900           6200           6500           6800           7100           7400           7700           8000           Run #           Intitial Condition           Surface Gas Rate           Death         %                         | 196-207           ns           Pressure, ps           2238.115           2286.941           2335.866           2384.268           2432.205           2479.731           2526.897           2573.751           2620.337           2834.752           3114.34           208-219           ns                                                                                 | 80.56<br>ia<br>98.399       | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                | 3000<br>5000<br>hanging<br>ds length<br>50     | units<br>ft<br>n/a<br>n/a<br>units<br>ft                                  |
| 17 | Run #           Intitial Condition           Surface Gas Rate           Depth, ft           5000           5300           5600           5900           6200           6500           6800           7100           7400           7700           8000           Surface Gas Rate           Depth, ft                                                                            | 196-207         ns         Pressure, ps         2238.115         2286.941         2335.866         2384.268         2432.205         2479.731         2526.897         2573.751         2620.337         2834.752         3114.34         208-219         ns         Pressure, ps                                                                                          | 80.56<br>ia<br>98.399<br>ia | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                | 3000<br>5000<br>hanging<br>ds length<br>50<br> | units<br>ft<br>n/a<br>n/a<br>                                             |
| 17 | Run #           Intitial Condition           Surface Gas Rate           Depth, ft           5000           5300           5600           5900           6200           6500           6800           7100           7400           7700           8000           Surface Gas Rate           Depth, ft           Depth, ft                                                        | 196-207         ns         Pressure, ps         2238.115         2286.941         2335.866         2384.268         2432.205         2479.731         2526.897         2573.751         2620.337         2834.752         3114.34         208-219         ns         Pressure, ps         2249.385         2214.257                                                        | 80.56<br>ia<br>98.399<br>ia | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                | 3000<br>5000<br>hanging<br>ds length<br>50<br> | units<br>ft<br>n/a<br>n/a<br>units<br>ft<br>ft<br>ft<br>n/a               |
| 17 | Run #           Intitial Condition           Surface Gas Rate           Depth, ft           5000           5300           5600           5900           6200           6500           6800           7100           7400           7700           8000           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           5000           5300 | 196-207           ns           Pressure, ps           2238.115           2286.941           2335.866           2384.268           2432.205           2479.731           2526.897           2573.751           2620.337           2834.752           3114.34           208-219           ns           Pressure, ps           2249.385           2314.357                    | 80.56<br>ia<br>98.399<br>ia | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                | 3000<br>5000<br>hanging<br>ds length<br>50<br> | units<br>ft<br>n/a<br>n/a<br>n/a<br>units<br>ft<br>ft<br>ft<br>n/a<br>n/a |
| 17 | Run #           Intitial Condition           Surface Gas Rate           Depth, ft           5000           5300           5600           5900           6200           6500           6800           7100           7400           7700           8000           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           5000           5300 | 196-207           ns           Pressure, ps           2238.115           2286.941           2335.866           2384.268           2432.205           2479.731           2526.897           2573.751           2620.337           2834.752           3114.34           208-219           ns           Pressure, ps           2249.385           2314.357           2379.017 | 80.56<br>ia<br>98.399<br>ia | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                | 3000<br>5000<br>hanging<br>ds length<br>50<br> | units<br>ft<br>n/a<br>n/a<br>units<br>ft<br>ft<br>ft<br>n/a<br>n/a        |

|    | 6200               | 2504.905             |         |           |            |         |              |
|----|--------------------|----------------------|---------|-----------|------------|---------|--------------|
|    | 6500               | 2566.372             |         |           |            |         |              |
|    | 6800               | 2626.996             |         |           |            |         |              |
|    | 7100               | 2674.169             |         |           |            |         |              |
|    | 7400               | 2694.353             |         |           |            |         |              |
|    | 7700               | 2716 288             |         |           |            |         |              |
|    | 8000               | 2739 291             |         |           |            |         |              |
|    | 0000               | 2137.271             |         |           |            |         |              |
| 10 | Pup #              | 220 231              |         |           |            |         |              |
| 19 | Intitial Condition | 220-231              |         |           |            | 1       |              |
|    | Surface Con Date   | 15                   | 25.250  | MMaaf/D   | Wallbana   | 1       | unito        |
|    | Sufface Gas Kale   |                      | 25.259  | WINISCI/D |            | 2000    | units<br>A   |
|    | Donth ft           | Duessing ne          |         |           | I VD DML   | 5000    | n<br>A       |
|    | <i>Deptil</i> , It | rressure, ps         | sia     |           | DC States  | 3000    | 11<br>12 / 2 |
|    | 5000               | 2234.204             |         |           | DS Status  | aropped | n/a          |
|    | 5300               | 2358.83              |         |           | Parameter  | csg     | n/a          |
|    | 5600               | 2477.823             |         |           | Par. Value | 8.625   |              |
|    | 5900               | 2592.075             |         |           | -          | +       |              |
|    | 6200               | 2702.29              |         |           |            |         |              |
|    | 6500               | 2809.038             |         |           |            |         |              |
|    | 6800               | 2912.782             |         |           |            |         |              |
|    | 7100               | 3013.912             |         |           |            |         |              |
|    | 7400               | 3112.752             |         |           |            |         |              |
|    | 7700               | 3618.688             |         |           |            |         |              |
|    | 8000               | 4258.06              |         |           |            |         |              |
|    |                    |                      |         |           |            |         |              |
| 20 | Run #              | 232-243              |         |           |            |         |              |
|    | Intitial Condition | ıs                   |         |           |            |         |              |
|    | Surface Gas Rate   |                      | 80.545  | MMscf/D   | Wellbore   |         | units        |
|    |                    |                      |         |           | TVD BML    | 3000    | ft           |
|    | Depth, ft          | Pressure, ps         | sia     |           | Water TVD  | 5000    | ft           |
|    | 5000               | 2238.087             |         |           | DS Status  | dropped | n/a          |
|    | 5300               | 2287.579             |         |           | Parameter  | csg     | n/a          |
|    | 5600               | 2336.488             |         |           | Par. Value | 10.75   |              |
|    | 5900               | 2384.874             |         |           |            |         |              |
|    | 6200               | 2432.796             |         |           |            |         |              |
|    | 6500               | 2480.308             |         |           |            |         |              |
|    | 6800               | 2527.46              |         |           |            | 1       |              |
|    | 7100               | 2574 301             |         |           |            |         |              |
|    | 7400               | 2620 876             |         |           |            |         |              |
|    | 7700               | 2835 189             |         |           |            |         |              |
|    | 8000               | 3114 654             |         |           |            |         |              |
|    | 0000               | 5111.051             |         |           |            |         |              |
| 21 | Run #              | 244-255              |         |           |            |         |              |
| 21 | Intitial Condition | 18                   |         |           |            | 1       |              |
|    | Surface Gas Rate   |                      | 109 482 | MMscf/D   | Wellbore   |         | units        |
|    | Surface Gas Rate   |                      | 107.402 | WINISCH/D | TVD BMI    | 3000    | ff           |
|    | Donth ft           | Prossure no          | vio     |           | Woter TVD  | 5000    | ft           |
|    | 5000               | 2253.070             | sia     |           | DS Status  | drannad | n<br>n/o     |
|    | 5200               | 2233.019             |         |           | Doromotor  | cog     | n/a          |
|    | 5300               | 2214.043             |         |           | Dor Voluo  | 1075    | 11/a         |
|    | 5000               | 2290.794             |         |           | rai. value | 12.73   |              |
|    | 2000               | 72100/14             |         |           |            |         |              |
|    | 5900               | 2318.945             |         |           |            |         |              |
|    | 6200               | 2318.945<br>2341.305 |         |           |            |         |              |

|    | 6800                         | 2386.702                         |         |           |            |              |             |
|----|------------------------------|----------------------------------|---------|-----------|------------|--------------|-------------|
|    | 7100                         | 2409.762                         |         |           |            |              |             |
|    | 7400                         | 2433.079                         |         |           |            |              |             |
|    | 7700                         | 2485.959                         |         |           |            |              |             |
|    | 8000                         | 2553.003                         |         |           |            |              |             |
|    |                              | 20001000                         |         |           |            |              |             |
| 22 | Run #                        | 256-267                          |         |           |            |              |             |
| 22 | Intitial Condition           | 250-207                          |         |           |            |              |             |
|    | Surface Gas Pate             | 15                               | 80 545  | MMscf/D   | Wallborg   |              | unite       |
|    | Sullace Gas Kate             |                                  | 80.545  | WIWISCI/D |            | 2000         | units<br>fr |
|    | Dowth ft                     | Duessing no                      |         |           | I VD BML   | 5000         | n<br>a      |
|    | <b>Deptn</b> , It            | Pressure, ps                     | sia     |           | DS Status  | 3000         | IL<br>n/a   |
|    | 5200                         | 2238.087                         |         |           | DS Status  | dropped      | n/a         |
|    | 5300                         | 2287.579                         |         |           | Parameter  | ds length    | n/a         |
|    | 5600                         | 2336.488                         |         |           | Par. Value | 50           |             |
|    | 5900                         | 2384.874                         |         |           |            |              |             |
|    | 6200                         | 2432.796                         |         |           |            |              |             |
|    | 6500                         | 2480.308                         |         |           |            |              |             |
|    | 6800                         | 2527.46                          |         |           |            |              |             |
|    | 7100                         | 2574.301                         |         |           |            |              |             |
|    | 7400                         | 2620.876                         |         |           |            |              |             |
|    | 7700                         | 2835.189                         |         |           |            |              |             |
|    | 8000                         | 3114.654                         |         |           |            |              |             |
|    |                              |                                  |         |           |            |              |             |
| 23 | Run #                        | 268-279                          |         |           |            |              |             |
|    | Intitial Condition           | ıs                               |         |           |            |              |             |
|    | Surface Gas Rate             |                                  | 83.126  | MMscf/D   | Wellbore   |              | units       |
|    |                              |                                  |         |           | TVD BML    | 3000         | ft          |
|    | Depth, ft                    | Pressure, ps                     | sia     |           | Water TVD  | 5000         | ft          |
|    | 5000                         | 2241.826                         |         |           | DS Status  | dropped      | n/a         |
|    | 5300                         | 2257.575                         |         |           | Parameter  | ds length    | n/a         |
|    | 5600                         | 2273.59                          |         |           | Par. Value | 25           |             |
|    | 5900                         | 2289.879                         |         |           |            |              |             |
|    | 6200                         | 2328.884                         |         |           |            |              |             |
|    | 6500                         | 2379.018                         |         |           |            |              |             |
|    | 6800                         | 2428.636                         |         |           |            | +            |             |
|    | 7100                         | 2477 799                         |         |           |            | +            |             |
|    | 7400                         | 2526 563                         |         |           |            |              |             |
|    | 7700                         | 2759 283                         |         |           |            | -            |             |
|    | 8000                         | 3060.6                           |         |           |            |              |             |
|    | 0000                         | 5000.0                           |         |           |            |              |             |
| 24 | Run #                        | 280-291                          |         |           |            |              |             |
| 21 | Intitial Condition           | 200 271                          |         |           |            |              |             |
|    | Surface Gas Rate             | 15                               | 100 823 | MMscf/D   | Wellbore   | -            | unite       |
|    | Surface Gas Rate             |                                  | 107.025 | WIWISCI/D | TVD BMI    | 3000         | ft          |
|    | Denth ft                     | Pressure no                      | ria     |           | Water TVD  | 5000         | ft          |
|    | 5000                         | 22/1 81/                         |         |           | DS Statue  | no DS        | n/9         |
|    | 5200                         | 2271.014                         |         |           | Do Status  |              | n/a         |
|    | 5600                         | 2239.009                         |         |           | Par Value  | <u>8 675</u> | 11/a        |
|    | 5000                         | 2276.103                         |         |           |            | 0.023        |             |
|    | 5000                         |                                  |         | 1         | 1          | 1            | 1           |
|    | 5900                         | 2290.704                         |         |           |            |              |             |
|    | 5900<br>6200                 | 2315.504                         |         |           |            |              |             |
|    | 5900<br>6200<br>6500         | 2296.704<br>2315.504<br>2334.571 |         |           |            |              |             |
|    | 5900<br>6200<br>6500<br>6800 | 2315.504<br>2334.571<br>2353.916 |         |           |            |              |             |

|    | 7400               | 2393.485       |         |           |            |         |          |
|----|--------------------|----------------|---------|-----------|------------|---------|----------|
|    | 7700               | 2419.14        |         |           |            | -       |          |
|    | 8000               | 2447.788       |         |           |            |         |          |
|    |                    |                |         |           |            | -       |          |
| 25 | Run #              | 292-303        |         |           |            | -       |          |
| 23 | Intitial Condition | <u>272 202</u> |         |           |            | -       |          |
|    | Surface Gas Rate   | 5              | 112 /1  | MMscf/D   | Wellbore   | -       | unite    |
|    | Surface Gas Rate   |                | 112.71  | WINISCH/D | TVD BMI    | 3000    | ft       |
|    | Donth ft           | Droccuro no    | vio     |           | Weter TVD  | 5000    | ft       |
|    | <b>Deptil</b> , It | 2260.774       | la      |           | DS Status  | 5000    | n<br>n/o |
|    | 5000               | 2260.774       |         |           | DS Status  | no DS   | n/a      |
|    | 5300               | 2277.035       |         |           | Parameter  | csg     | n/a      |
|    | 5600               | 2293.559       |         |           | Par. Value | 10.75   |          |
|    | 5900               | 2310.357       |         |           |            |         |          |
|    | 6200               | 2327.436       |         |           |            |         |          |
|    | 6500               | 2344.806       |         |           |            |         |          |
|    | 6800               | 2362.479       |         |           |            |         |          |
|    | 7100               | 2380.464       |         |           |            |         |          |
|    | 7400               | 2398.772       |         |           |            |         |          |
|    | 7700               | 2419.438       |         |           |            |         |          |
|    | 8000               | 2441.458       |         |           |            |         |          |
|    |                    |                |         |           |            |         |          |
| 26 | Run #              | 304-315        |         |           |            |         |          |
|    | Intitial Condition | IS             |         |           |            | -       |          |
|    | Surface Gas Rate   |                | 114.919 | MMscf/D   | Wellbore   |         | units    |
|    |                    |                |         |           | TVD BML    | 3000    | ft       |
|    | Depth. ft          | Pressure, ps   | sia     |           | Water TVD  | 5000    | ft       |
|    | 5000               | 2266 841       |         |           | DS Status  | no DS   | n/a      |
|    | 5300               | 2282 584       |         |           | Parameter  | CSG     | n/a      |
|    | 5600               | 2202.501       |         |           | Par Value  | 12 75   | 11/ u    |
|    | 5900               | 2270.377       |         |           |            | 12.75   |          |
|    | 6200               | 2314.072       |         |           |            | -       |          |
|    | 6500               | 2331.474       |         |           | -          | -       |          |
|    | 6800               | 2346.342       |         |           | -          | -       |          |
|    | 0800               | 2303.342       |         |           |            |         |          |
|    | 7100               | 2383.049       |         |           |            | -       |          |
|    | 7400               | 2400.885       |         |           |            |         |          |
|    | 7700               | 2419.789       |         |           | -          | _       |          |
|    | 8000               | 2439.409       |         |           |            | -       |          |
|    | -                  |                |         |           |            |         |          |
| 27 | Run #              | 322-333        |         |           |            | -       |          |
|    | Intitial Condition | IS             |         |           |            |         |          |
|    | Surface Gas Rate   |                | 33.737  | MMscf/D   | Wellbore   |         | units    |
|    |                    |                |         |           | TVD BML    | 3000    | ft       |
|    | Depth, ft          | Pressure, ps   | sia     |           | Water TVD  | 10000   | ft       |
|    | 10000              | 4493.958       |         |           | DS Status  | hanging | n/a      |
|    | 10300              | 4627.924       |         |           | Parameter  | csg     | n/a      |
|    | 10600              | 4761.889       |         |           | Par. Value | 8.625   |          |
|    | 10900              | 4893.88        |         |           |            | ļ       |          |
|    | 11200              | 5024.092       |         |           |            |         |          |
|    | 11500              | 5152.691       |         |           |            |         |          |
|    | 11800              | 5279.827       |         |           |            |         |          |
|    | 12100              | 5405.631       |         |           |            |         |          |
|    | 12400              | 5530.221       |         |           |            |         |          |
|    | 12700              | 6167.483       |         |           |            |         |          |

|    | 13000              | 7021.6         |          |             |             |           |               |
|----|--------------------|----------------|----------|-------------|-------------|-----------|---------------|
|    |                    |                |          |             |             |           |               |
| 28 | Run #              | 334-345        |          |             |             |           |               |
|    | Intitial Condition | IS             |          |             |             |           |               |
|    | Surface Gas Rate   |                | 103.584  | MMscf/D     | Wellbore    |           | units         |
|    |                    |                |          |             | TVD BML     | 3000      | ft            |
|    | Depth, ft          | Pressure, ps   | sia      |             | Water TVD   | 10000     | ft            |
|    | 10000              | 4484.997       |          |             | DS Status   | hanging   | n/a           |
|    | 10300              | 4543.363       |          |             | Parameter   | csg       | n/a           |
|    | 10600              | 4602.303       |          |             | Par. Value  | 10.75     |               |
|    | 10900              | 4661.216       |          |             |             |           |               |
|    | 11200              | 4720.12        |          |             |             |           |               |
|    | 11500              | 4779.034       |          |             |             |           |               |
|    | 11800              | 4837.972       |          |             |             |           |               |
|    | 12100              | 4896.952       |          |             |             |           |               |
|    | 12400              | 4955.988       |          |             |             |           |               |
|    | 12700              | 5189.871       |          |             |             | -         |               |
|    | 13000              | 5505.081       |          |             |             |           |               |
|    | 10000              | 00001001       |          |             |             | -         |               |
| 29 | Run #              | 346-357        |          |             |             | -         |               |
|    | Intitial Condition | s              |          |             |             | -         |               |
|    | Surface Gas Rate   | 5              | 135.15   | MMscf/D     | Wellbore    | -         | units         |
|    | Surface Gus Hate   |                | 100110   | 11111001, D | TVD BML     | 3000      | ft            |
|    | Denth. ft          | Pressure, no   | sia      |             | Water TVD   | 10000     | ft            |
|    | 10000              | 4480.23        |          |             | DS Status   | hanging   | n/a           |
|    | 10300              | 4513 294       |          |             | Parameter   | csø       | n/a           |
|    | 10600              | 4546 784       |          |             | Par Value   | 12 75     | 11 <i>7</i> u |
|    | 10000              | 4580 602       |          |             | i ur. vulue | 12.75     |               |
|    | 11200              | 4614 753       |          |             |             | -         |               |
|    | 11200              | 4649 244       |          |             |             |           |               |
|    | 11800              | 4684 079       |          |             |             |           |               |
|    | 12100              | 4719 264       |          |             |             |           |               |
|    | 12100              | 4754 803       |          |             |             |           |               |
|    | 12700              | 4816 928       |          |             |             |           |               |
|    | 12700              | 4802 / 31      |          |             |             |           |               |
|    | 15000              | 4072.431       |          |             |             |           |               |
| 30 | Run #              | 358-369        |          |             |             |           |               |
| 50 | Intitial Condition | <u>550-507</u> |          |             |             |           |               |
|    | Surface Gas Rate   | 5              | 103 584  | MMscf/D     | Wellbore    |           | units         |
|    | Surface Gus Hate   |                | 105.501  | NINISCI, D  | TVD BML     | 3000      | ft            |
|    | Denth, ft          | Pressure, no   | ia.      |             | Water TVD   | 10000     | ft            |
|    | 10000              | 4484 997       |          |             | DS Status   | hanging   | n/a           |
|    | 10300              | 4543 363       |          |             | Parameter   | ds length | n/a           |
|    | 10600              | 4602 303       |          |             | Par Value   | 50        | 11/ u         |
|    | 10900              | 4661 216       |          |             | i un vuide  |           |               |
|    | 11200              | 4720.12        |          |             |             |           |               |
|    | 11200              | 4779 03/       | <u> </u> |             |             | +         |               |
|    | 11300              | 4837 972       |          |             |             | +         |               |
|    | 12100              | 4896 952       |          |             |             | -         |               |
|    | 12100              | 4955 088       |          |             |             | +         |               |
|    | 12400              | 5180 871       |          |             |             | +         |               |
|    | 12700              | 5505.081       |          |             |             | 1         |               |
|    | 15000              | 5505.001       |          |             |             | +         |               |
|    |                    |                | 1        | 1           | 1           | 1         | 1             |

| 31 | Run #              | 370-381      | same as previ | ous     |            |           |       |
|----|--------------------|--------------|---------------|---------|------------|-----------|-------|
|    | Intitial Condition | ıs           |               |         |            |           |       |
|    | Surface Gas Rate   |              | 103.584       | MMscf/D | Wellbore   |           | units |
|    |                    |              |               |         | TVD BML    | 3000      | ft    |
|    | Depth, ft          | Pressure, ps | sia           |         | Water TVD  | 10000     | ft    |
|    | 10000              | 4484.997     |               |         | DS Status  | hanging   | n/a   |
|    | 10300              | 4543.363     |               |         | Parameter  | ds length | n/a   |
|    | 10600              | 4602.303     |               |         | Par. Value | 25        |       |
|    | 10900              | 4661.216     |               |         |            |           |       |
|    | 11200              | 4720.12      |               |         |            |           |       |
|    | 11500              | 4779.034     |               |         |            |           |       |
|    | 11800              | 4837.972     |               |         |            |           |       |
|    | 12100              | 4896.952     |               |         |            |           |       |
|    | 12400              | 4955.988     |               |         |            |           |       |
|    | 12700              | 5189.871     |               |         |            |           |       |
|    | 13000              | 5505.081     |               |         |            |           |       |
|    |                    |              |               |         |            |           |       |
| 32 | Run #              | 382-393      |               |         |            |           |       |
|    | Intitial Condition | ıs           |               |         |            |           |       |
|    | Surface Gas Rate   |              | 33.723        | MMscf/D | Wellbore   |           | units |
|    |                    |              |               |         | TVD BML    | 3000      | ft    |
|    | Depth, ft          | Pressure, ps | sia           |         | Water TVD  | 10000     | ft    |
|    | 10000              | 4494.075     |               |         | DS Status  | dropped   | n/a   |
|    | 10300              | 4630.119     |               |         | Parameter  | csg       | n/a   |
|    | 10600              | 4763.977     |               |         | Par. Value | 8.625     |       |
|    | 10900              | 4895.868     |               |         |            |           |       |
|    | 11200              | 5025.983     |               |         |            |           |       |
|    | 11500              | 5154.491     |               |         |            | 1         |       |
|    | 11800              | 5281.538     |               |         |            |           |       |
|    | 12100              | 5407.258     |               |         |            |           |       |
|    | 12400              | 5531.766     |               |         |            |           |       |
|    | 12700              | 6168.484     |               |         |            | 1         |       |
|    | 13000              | 7021.91      |               |         |            |           |       |
|    |                    |              |               |         |            | 1         |       |
| 33 | Run #              | 394-405      |               |         |            | 1         |       |
|    | Intitial Condition | ıs           |               |         |            |           |       |
|    | Surface Gas Rate   |              | 103.566       | MMscf/D | Wellbore   |           | units |
|    |                    |              |               |         | TVD BML    | 3000      | ft    |
|    | Depth, ft          | Pressure, ps | sia           |         | Water TVD  | 10000     | ft    |
|    | 10000              | 4485.011     |               |         | DS Status  | dropped   | n/a   |
|    | 10300              | 4543.986     |               |         | Parameter  | csg       | n/a   |
|    | 10600              | 4602.916     |               |         | Par. Value | 10.75     |       |
|    | 10900              | 4661.819     |               |         |            |           |       |
|    | 11200              | 4720.713     |               |         |            |           |       |
|    | 11500              | 4779.617     |               |         |            |           |       |
|    | 11800              | 4838.546     |               |         |            |           |       |
|    | 12100              | 4897.517     |               |         |            |           |       |
|    | 12400              | 4956.543     |               |         |            |           |       |
|    | 12700              | 5190.35      |               |         |            |           |       |
|    | 13000              | 5505.454     |               |         |            |           |       |
|    |                    |              |               |         |            |           |       |
| 34 | Run #              | 406-417      |               |         |            |           |       |
|    | Intitial Condition | ns           |               |         |            |           |       |

|    | Surface Gas Rate   |                | 135 145                                    | MMscf/D      | Wellbore   |           | units       |
|----|--------------------|----------------|--------------------------------------------|--------------|------------|-----------|-------------|
|    | Buildee Gus Huite  |                | 1001110                                    | initiating D | TVD BML    | 3000      | ft          |
|    | Denth ft           | Prossure no    | ia                                         |              | Water TVD  | 10000     | ft          |
|    | 10000              | 1 1 essure, ps | ola di |              | DS Status  | dropped   | n<br>n/o    |
|    | 10200              | 4512 402       |                                            |              | Do Status  | aropped   | 11/a<br>n/o |
|    | 10500              | 4515.405       |                                            | -            | Par Value  | 10.75     | 11/a        |
|    | 10000              | 4540.895       |                                            |              | Par. value | 12.75     |             |
|    | 10900              | 4580.711       |                                            |              |            |           |             |
|    | 11200              | 4614.862       |                                            |              |            |           |             |
|    | 11500              | 4649.353       |                                            |              |            |           |             |
|    | 11800              | 4684.188       |                                            |              |            |           |             |
|    | 12100              | 4719.372       |                                            |              |            |           | ļ           |
|    | 12400              | 4754.912       |                                            |              |            |           |             |
|    | 12700              | 4817.034       |                                            |              |            |           |             |
|    | 13000              | 4892.534       |                                            |              |            |           |             |
|    |                    |                |                                            |              | _          |           |             |
| 35 | Run #              | 418-429        |                                            |              |            |           |             |
|    | Intitial Condition | IS             |                                            |              |            |           |             |
|    | Surface Gas Rate   |                | 103.566                                    | MMscf/D      | Wellbore   |           | units       |
|    |                    |                |                                            |              | TVD BML    | 3000      | ft          |
|    | Depth, ft          | Pressure, ps   | sia                                        |              | Water TVD  | 10000     | ft          |
|    | 10000              | 4485.011       |                                            |              | DS Status  | dropped   | n/a         |
|    | 10300              | 4543.986       |                                            |              | Parameter  | ds length | n/a         |
|    | 10600              | 4602.916       |                                            |              | Par. Value | 50        |             |
|    | 10900              | 4661.819       |                                            |              |            |           |             |
|    | 11200              | 4720.713       |                                            |              |            |           |             |
|    | 11500              | 4779.617       |                                            |              |            |           |             |
|    | 11800              | 4838.546       |                                            |              |            |           |             |
|    | 12100              | 4897.517       |                                            |              |            |           |             |
|    | 12400              | 4956.543       |                                            |              |            |           |             |
|    | 12700              | 5190.35        |                                            |              |            |           |             |
|    | 13000              | 5505.454       |                                            |              |            |           |             |
|    |                    |                |                                            |              |            |           |             |
| 36 | Run #              | 430-441        |                                            |              |            |           |             |
|    | Intitial Condition | ıs             |                                            |              |            |           |             |
|    | Surface Gas Rate   |                | 103.566                                    | MMscf/D      | Wellbore   |           | units       |
|    |                    |                |                                            |              | TVD BML    | 3000      | ft          |
|    | Depth, ft          | Pressure, ps   | sia                                        |              | Water TVD  | 10000     | ft          |
|    | 10000              | 4485.011       |                                            |              | DS Status  | dropped   | n/a         |
|    | 10300              | 4543.986       |                                            |              | Parameter  | ds length | n/a         |
|    | 10600              | 4602.916       |                                            |              | Par. Value | 25        |             |
|    | 10900              | 4661.819       |                                            |              |            |           |             |
|    | 11200              | 4720.713       |                                            |              |            |           |             |
|    | 11500              | 4779.617       |                                            |              |            |           |             |
|    | 11800              | 4838.546       |                                            |              |            |           |             |
|    | 12100              | 4897.517       |                                            |              |            |           |             |
|    | 12400              | 4956.543       |                                            |              |            |           |             |
|    | 12700              | 5190.35        |                                            |              |            | 1         |             |
|    | 13000              | 5505.454       |                                            | 1            |            |           |             |
|    |                    |                |                                            | 1            |            |           |             |
| 37 | Run #              | 442-453        |                                            |              |            | 1         |             |
|    | Intitial Condition | IS             |                                            |              |            |           |             |
|    | Surface Gas Rate   |                | 133.849                                    | MMscf/D      | Wellbore   | 1         | units       |
|    |                    |                |                                            |              | TVD BML    | 3000      | ft          |

|    | Depth, ft          | Pressure, ps       | sia     |           | Water TVD  | 10000   | ft    |
|----|--------------------|--------------------|---------|-----------|------------|---------|-------|
|    | 10000              | 4472.865           |         |           | DS Status  | no DS   | n/a   |
|    | 10300              | 4502.871           |         |           | Parameter  | csg     | n/a   |
|    | 10600              | 4533.23            |         |           | Par. Value | 8.625   |       |
|    | 10900              | 4563.949           |         |           |            |         |       |
|    | 11200              | 4595.032           |         |           |            |         |       |
|    | 11500              | 4626.485           |         |           |            |         |       |
|    | 11800              | 4658.312           |         |           |            |         |       |
|    | 12100              | 4690.519           |         |           |            |         |       |
|    | 12400              | 4723.11            |         |           |            |         |       |
|    | 12700              | 4760.728           |         |           |            |         |       |
|    | 13000              | 4801.065           |         |           |            |         |       |
|    |                    |                    |         |           |            |         |       |
| 38 | Run #              | 454-465            |         |           |            |         |       |
|    | Intitial Condition | is                 |         |           |            |         |       |
|    | Surface Gas Rate   |                    | 137.015 | MMscf/D   | Wellbore   |         | units |
|    |                    | _                  | -       |           | TVD BML    | 3000    | ft    |
|    | Depth, ft          | Pressure, ps       | sia     |           | Water TVD  | 10000   | ft    |
|    | 10000              | 4486.709           |         |           | DS Status  | no DS   | n/a   |
|    | 10300              | 4515.198           |         |           | Parameter  | csg     | n/a   |
|    | 10600              | 4544.055           |         |           | Par. Value | 10.75   |       |
|    | 10900              | 4573.286           |         |           |            |         |       |
|    | 11200              | 4602.896           |         |           |            |         |       |
|    | 11500              | 4632.889           |         |           |            |         |       |
|    | 11800              | 4663.271           |         |           | -          |         |       |
|    | 12100              | 4694.047           |         |           | -          |         |       |
|    | 12400              | 4725.22            |         |           |            |         |       |
|    | 12/00              | 4/58.532           |         |           |            |         |       |
|    | 13000              | 4793.124           |         |           |            |         |       |
| 20 | Dup #              | 166 177            |         |           |            |         |       |
| 57 | Intitial Condition | <del>400-477</del> |         |           |            |         |       |
|    | Surface Gas Rate   |                    | 140 076 | MMscf/D   | Wellbore   |         | units |
|    | Surface Gus Rate   |                    | 110.070 | NINISCH D | TVD BML    | 3000    | ft    |
|    | Denth, ft          | Pressure, no       | ม่ล     |           | Water TVD  | 10000   | ft    |
|    | 10000              | 4491 171           |         |           | DS Status  | no DS   | n/a   |
|    | 10300              | 4519.217           |         |           | Parameter  | csg     | n/a   |
|    | 10600              | 4547.635           |         |           | Par. Value | 12.75   |       |
|    | 10900              | 4576.431           |         |           |            |         |       |
|    | 11200              | 4605.61            |         |           |            |         |       |
|    | 11500              | 4635.177           |         |           |            |         |       |
|    | 11800              | 4665.136           |         |           |            |         |       |
|    | 12100              | 4695.492           |         |           |            |         |       |
|    | 12400              | 4726.25            |         |           |            |         |       |
|    | 12700              | 4758.038           |         |           |            |         |       |
|    | 13000              | 4790.549           |         |           |            |         |       |
|    |                    |                    |         |           |            |         |       |
| 40 | Run #              | 484-495            |         |           |            |         |       |
|    | Intitial Condition | IS                 |         |           |            |         |       |
|    | Surface Gas Rate   |                    | 20.951  | MMscf/D   | Wellbore   | ļ       | units |
|    |                    | -                  |         |           | TVD BML    | 8000    | ft    |
|    | Depth, ft          | Pressure, ps       | sia     |           | Water TVD  | 0       | ft    |
|    | 0                  | 137.103            |         |           | DS Status  | hanging | n/a   |

|    | 800                | 1040.893       |          |           | Parameter    | csg       | n/a         |
|----|--------------------|----------------|----------|-----------|--------------|-----------|-------------|
|    | 1600               | 1459.201       |          |           | Par. Value   | 8.625     |             |
|    | 2400               | 1790.575       |          |           |              |           |             |
|    | 3200               | 2079.94        |          |           |              |           |             |
|    | 4000               | 2344.313       |          |           |              |           |             |
|    | 4800               | 2592.166       |          |           |              |           |             |
|    | 5600               | 2828 359       |          |           |              |           |             |
|    | 6400               | 3055 937       |          |           |              |           |             |
|    | 7200               | 3276 931       |          |           |              |           |             |
|    | 8000               | 4312 821       |          |           |              |           |             |
|    | 0000               | 1312.021       |          |           |              |           |             |
| 41 | Run #              | 496-507        |          |           |              |           |             |
|    | Intitial Condition | 150000         |          |           |              |           |             |
|    | Surface Gas Rate   |                | 79 665   | MMscf/D   | Wellbore     |           | units       |
|    |                    |                | ///////  |           | TVD BML      | 8000      | ft          |
|    | Depth. ft          | Pressure, ps   | sia      |           | Water TVD    | 0         | ft          |
|    | 0                  | 125 333        |          |           | DS Status    | hanging   | n/a         |
|    | 800                | 718 351        |          |           | Parameter    | cso       | n/a         |
|    | 1600               | 996.037        |          |           | Par Value    | 10.75     | 11/ u       |
|    | 2400               | 1216 467       |          |           | i ui. v uiue | 10.75     |             |
|    | 3200               | 1/108 56       |          |           |              |           |             |
|    | 4000               | 1583 455       |          |           |              |           |             |
|    | 4000               | 1746 702       |          |           |              |           |             |
|    | 4800               | 1/40.793       |          |           |              |           |             |
|    | 5000               | 1901.871       |          |           |              |           |             |
|    | 7200               | 2030.788       |          |           |              |           |             |
|    | 7200               | 2194.969       |          |           |              |           |             |
|    | 8000               | 2904.993       |          |           |              |           |             |
| 42 | Dun #              | 509 510        |          |           |              |           |             |
| 42 | Intitial Condition | <u> </u>       |          |           |              |           |             |
|    | Surface Cas Pate   | 15             | 131 021  | MMscf/D   | Wellbore     |           | unite       |
|    | Surface Gas Rate   |                | 151.021  | WINISCH/D | TVD BMI      | 8000      | ff          |
|    | Denth ft           | Prossure no    | ria      |           | Water TVD    | 0000      | ft          |
|    | 0                  | 106 350        | na –     |           | DS Status    | banging   | n<br>n/o    |
|    | 800                | 202 702        |          |           | Do Status    | nanging   | 11/a<br>n/o |
|    | 1600               | 520 670        |          |           | Paralletei   | LSg 12.75 | 11/a        |
|    | 2400               | 656 224        |          |           | I al. Value  | 12.75     |             |
|    | 2400               | 757.020        |          |           |              |           |             |
|    | 3200               | 950.49         |          |           |              |           |             |
|    | 4000               | 026 787        |          |           |              |           |             |
|    | 4800               | 930.787        |          |           |              |           |             |
|    | 5600               | 1018.307       |          |           |              |           |             |
|    | 7200               | 1096.927       |          |           |              |           |             |
|    | 7200               | 11/2.62/       |          |           |              |           |             |
|    | 8000               | 1300.847       |          |           |              |           |             |
| 42 | D                  | 520 521        |          |           |              |           |             |
| 43 | Kull #             | <u>520-551</u> |          |           |              |           |             |
|    | Surface Cos Pote   | 15             | 104 145  | MMcof/D   | Wallborg     |           | unito       |
|    | Surface Gas Kale   |                | 104.145  | WIWISCI/D |              | 8000      | unnts<br>ft |
|    | Denth ft           | Proseuro re    | ,<br>via |           | Water TVD    | 0000      | ft          |
|    |                    | 177 747        | na       |           | DS Status    | hanging   | n/a         |
|    | 800                | 033.05         |          |           | Parameter    | ds length | n/a         |
|    | 1600               | 1291 933       |          |           | Par Value    | 50        | 11/ U       |
|    | 1000               | 12/1./33       |          |           | i ui. i uiuc | 50        |             |

|     | 2400               | 1577.177        |         |           |            |              |            |
|-----|--------------------|-----------------|---------|-----------|------------|--------------|------------|
|     | 3200               | 1826.33         |         |           |            | 1            |            |
|     | 4000               | 2053.789        |         |           |            |              |            |
|     | 4800               | 2093 496        |         |           |            |              |            |
|     | 5600               | 2129 557        |         |           |            | +            |            |
|     | 6400               | 2125.537        |         |           |            | +            |            |
|     | 7200               | 2105.054        |         |           |            | -            |            |
|     | 8000               | 2201.729        |         |           |            | +            |            |
|     | 8000               | 2244.020        |         |           |            | +            |            |
| 4.4 | Dup #              | 522 542         |         |           |            | +            |            |
| 44  | Kull #             | <u>332-343</u>  |         |           |            | +            |            |
|     | Surface Cas Pate   | 15              | 117.058 | MMcof/D   | Wallborg   | +            | unito      |
|     | Sullace Gas Kale   |                 | 117.058 | WINISCI/D |            | 8000         | units<br>4 |
|     | Donth ft           | Duccerry no. no |         |           |            | 8000         | n<br>A     |
|     | Deptn, It          | Pressure, ps    | la      |           | DC Status  | U<br>honoine | IL<br>m/o  |
|     | 0                  | 1/0./31         |         |           | DS Status  | nanging      | n/a        |
|     | 800                | 1044.085        |         |           | Parameter  | ds length    | n/a        |
|     | 1600               | 1446.212        |         |           | Par. Value | 25           |            |
|     | 2400               | 1633./88        |         |           |            |              |            |
|     | 3200               | 1664.885        |         |           |            | -            |            |
|     | 4000               | 1696.046        |         |           |            |              |            |
|     | 4800               | 1727.268        |         |           |            |              |            |
|     | 5600               | 1758.55         |         |           |            |              |            |
|     | 6400               | 1789.893        |         |           |            | ļ            |            |
|     | 7200               | 1821.293        |         |           |            |              |            |
|     | 8000               | 1862.221        |         |           |            |              |            |
|     |                    |                 |         |           |            |              |            |
| 45  | Run #              | 544-555         |         |           |            |              |            |
|     | Intitial Condition | ıs              |         |           |            |              |            |
|     | Surface Gas Rate   |                 | 20.951  | MMscf/D   | Wellbore   |              | units      |
|     |                    |                 |         |           | TVD BML    | 8000         | ft         |
|     | Depth, ft          | Pressure, ps    | sia     |           | Water TVD  | 0            | ft         |
|     | 0                  | 137.103         |         |           | DS Status  | dropped      | n/a        |
|     | 800                | 1040.893        |         |           | Parameter  | csg          | n/a        |
|     | 1600               | 1459.201        |         |           | Par. Value | 8.625        |            |
|     | 2400               | 1790.575        |         |           |            |              |            |
|     | 3200               | 2079.94         |         |           |            |              |            |
|     | 4000               | 2344.313        |         |           |            |              |            |
|     | 4800               | 2592.166        |         |           |            |              |            |
|     | 5600               | 2828.359        |         |           |            |              |            |
|     | 6400               | 3055.937        |         |           |            |              |            |
|     | 7200               | 3276.931        |         |           |            |              |            |
|     | 8000               | 4312.821        |         |           |            |              |            |
|     |                    |                 |         |           |            |              |            |
| 46  | Run #              | 556-567         |         |           |            |              |            |
|     | Intitial Condition | ıs              |         |           |            |              |            |
|     | Surface Gas Rate   |                 | 79.665  | MMscf/D   | Wellbore   |              | units      |
|     |                    |                 |         |           | TVD BML    | 8000         | ft         |
|     | Depth, ft          | Pressure, ps    | sia     |           | Water TVD  | 0            | ft         |
|     | 0                  | 125.333         |         |           | DS Status  | dropped      | n/a        |
|     | 800                | 718.351         |         |           | Parameter  | csg          | n/a        |
|     | 1600               | 996.037         |         |           | Par. Value | 10.75        |            |
|     | 2400               | 1216 467        |         |           |            |              |            |
|     | 2400               | 1210.407        |         |           |            |              |            |

| 4000 1583.455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 4800 1746.793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| 5600 1901.871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| 6400 2050.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| 7200 2194 969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| 8000 2904 993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |
| Run # 568-579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| Intitial Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| Surface Gas Rate 131 021 MMscf/D Wellbore uni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nits                       |
| TVD BML 8000 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t                          |
| Denth ft Pressure nsia Water TVD 0 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t                          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ./a                        |
| 800 303 703 Parameter loog n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /a                         |
| 1600 539.705 Par Value 12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ./ a                       |
| 2400 656 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 2200 757 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |
| 5600 1018 567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| 6400 1006 027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| 7200 1172 627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| 2000 1500 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| 8000 1300.847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| Due # 590.501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| Intitial Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| Surface Cos Data 90.025 MMasf/D Wallhows with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nito                       |
| Surface Gas Kate 89.023 MIMISCI/D Weinbore unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iiits                      |
| Denth ft Pressure price Weter TVD 0 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                          |
| Deptii, it ressure, psia water i vD 0 it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |
| 0     43.438     D3 Status     diopped     in/a       200     104.252     Deremeter     de length     n/a                                                                                                                                                                                                                                                                                                                                                                                                                       | la                         |
| 1600 128 860 Der Volue 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ./a                        |
| 1000 138.809 Par. Value 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |
| 22400 107.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 3200 191.807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 4000 214.431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 4800 833.370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 5000 1151.897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| 0400         1405.292           7200         1(2)(2)7                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
| <u>/200</u> 1020.21/<br><u>8000</u> 2650 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 8000 2039.739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| Run # 592.603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| Kui # 592-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| Intitial Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| Initial Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nits                       |
| Intitial Conditions         Wellbore           Surface Gas Rate         95.037         MMscf/D         Wellbore         uni           TVD BMI         8000 ft         TVD BMI         8000 ft                                                                                                                                                                                                                                                                                                                                   | nits                       |
| Intitial Conditions     weilbore       Surface Gas Rate     95.037 MMscf/D       Weilbore     uni       TVD BML     8000 ft       Depth. ft     Pressure, psia                                                                                                                                                                                                                                                                                                                                                                  | nits<br>t                  |
| Intitial Conditions     wellbore       Surface Gas Rate     95.037       MMscf/D     Wellbore       TVD BML     8000 ft       Depth, ft     Pressure, psia       0     33.529       DS Status     dropped                                                                                                                                                                                                                                                                                                                       | t<br>t                     |
| Intitial Conditions       MMscf/D       Wellbore       uni         Surface Gas Rate       95.037       MMscf/D       Wellbore       uni         Depth, ft       Pressure, psia       Water TVD       0 ft         0       33.529       DS Status       dropped       n/a         800       107.819       Parameter       ds length       n/a                                                                                                                                                                                    | t<br>t<br>/a<br>/a         |
| Intitial ConditionsMMscf/DWellboreSurface Gas Rate95.037MMscf/DWellboreDepth, ftPressure, psiaTVD BML8000033.529DS Statusdropped800107.819Parameterds length1600145.579Par Value25                                                                                                                                                                                                                                                                                                                                              | t<br>t<br>/a<br>/a         |
| Intitial ConditionsMMscf/DWellboreuniSurface Gas Rate95.037MMscf/DWellboreuniDepth, ftPressure, psiaTVD BML8000ft033.529DS Statusdroppedn/a800107.819Parameterds lengthn/a1600145.579Par. Value252400175.995000                                                                                                                                                                                                                                                                                                                 | nits<br>t<br>t<br>/a<br>/a |
| Intitial Conditions         MMscf/D         Wellbore         uni           Surface Gas Rate         95.037         MMscf/D         Wellbore         uni           Depth, ft         Pressure, psia         TVD BML         8000         ft           0         33.529         DS Status         dropped         n/a           800         107.819         Parameter         ds length         n/a           1600         145.579         Par. Value         25           2400         175.995                                   | nits<br>t<br>t<br>/a<br>/a |
| Intitial Conditions         MMscf/D         Wellbore         uni           Surface Gas Rate         95.037         MMscf/D         Wellbore         uni           Depth, ft         Pressure, psia         TVD BML         8000         ft           0         33.529         DS Status         dropped         n/a           800         107.819         Parameter         ds length         n/a           1600         145.579         Par. Value         25           2400         175.995              4000         226.944 | t<br>t/a<br>/a             |

|    | 5600               | 271.111      |          |            |                         |       |             |
|----|--------------------|--------------|----------|------------|-------------------------|-------|-------------|
|    | 6400               | 678.937      |          |            |                         |       |             |
|    | 7200               | 1095.767     |          |            |                         |       |             |
|    | 8000               | 2497.731     |          |            |                         |       |             |
|    | 0000               | 2.571701     |          |            |                         |       |             |
| 50 | Run #              | 604-615      |          |            |                         |       |             |
| 50 | Intitial Condition | 16           |          |            |                         |       |             |
|    | Surface Gas Rate   | 15           | 130 0/18 | MMscf/D    | Wellbore                |       | unite       |
|    | Surface Gas Rate   |              | 157.740  | WINISCH D  | TVD BMI                 | 8000  | ff          |
|    | Donth ft           | Duoceuno no  | via      |            | Woter TVD               | 8000  | n<br>fi     |
|    | Deptii, it         | 61 574       |          |            |                         |       | n<br>m/o    |
|    | 800                | 201.374      |          |            | Do Status<br>Doromotor  | 10 DS | 11/a<br>n/o |
|    | 1600               | 201.300      |          |            | Paralleter<br>Dar Value | csg   | 11/a        |
|    | 1600               | 383.392      |          |            | Par. value              | 8.625 |             |
|    | 2400               | 465.003      |          |            |                         |       |             |
|    | 3200               | 536.34       |          |            |                         |       |             |
|    | 4000               | 601.304      |          |            |                         |       |             |
|    | 4800               | 661.899      |          |            |                         |       |             |
|    | 5600               | 719.311      |          |            |                         |       |             |
|    | 6400               | 774.309      |          |            | _                       |       |             |
|    | 7200               | 827.419      |          |            |                         |       |             |
|    | 8000               | 958.436      |          |            |                         |       |             |
|    |                    |              |          |            |                         |       |             |
| 51 | Run #              | 616-627      |          |            |                         |       |             |
|    | Intitial Condition | ns           |          |            |                         |       |             |
|    | Surface Gas Rate   |              | 151.253  | MMscf/D    | Wellbore                |       | units       |
|    |                    |              |          |            | TVD BML                 | 8000  | ft          |
|    | Depth, ft          | Pressure, ps | sia      |            | Water TVD               | 0     | ft          |
|    | 0                  | 52.978       |          |            | DS Status               | no DS | n/a         |
|    | 800                | 170.585      |          |            | Parameter               | csg   | n/a         |
|    | 1600               | 230.174      |          |            | Par. Value              | 10.75 |             |
|    | 2400               | 278.137      |          |            |                         |       |             |
|    | 3200               | 320.152      |          |            |                         |       |             |
|    | 4000               | 358.456      |          |            |                         |       |             |
|    | 4800               | 394.205      |          |            |                         |       |             |
|    | 5600               | 428.085      |          |            |                         |       |             |
|    | 6400               | 460.542      |          |            |                         |       |             |
|    | 7200               | 491.881      |          |            |                         |       |             |
|    | 8000               | 578.959      |          |            |                         | 1     |             |
|    |                    |              |          |            |                         | 1     |             |
| 52 | Run #              | 628-639      |          |            |                         | 1     |             |
|    | Intitial Condition | ns           |          |            |                         |       |             |
|    | Surface Gas Rate   |              | 158.738  | MMscf/D    | Wellbore                | 1     | units       |
|    | Surface Cus Flute  |              | 1001100  | 11111001/2 | TVD BML                 | 8000  | ft          |
|    | Denth, ft          | Pressure, no | sia.     |            | Water TVD               | 0000  | ft          |
|    | 0                  | 31.29        | ,iu      |            | DS Status               | no DS | n/a         |
|    | 800                | 105 687      |          |            | Parameter               | csø   | n/a         |
|    | 1600               | 141 672      |          |            | Par Value               | 12 75 |             |
|    | 2400               | 170.683      |          |            |                         | 12.75 |             |
|    | 3200               | 196 124      |          |            |                         | +     |             |
|    | 4000               | 210 335      |          |            |                         | +     |             |
|    | 4000               | 217.333      |          |            |                         | +     |             |
|    | 5600               | 241.000      |          |            |                         | +     |             |
|    | 5000               | 201.334      |          |            |                         | +     |             |
|    | 6400               | 201.238      |          | 1          |                         | 1     | 1           |

|    | 720                | 0 300.247    |            |         |            |              |       |
|----|--------------------|--------------|------------|---------|------------|--------------|-------|
|    | 800                | 0 354.41     |            |         |            |              |       |
|    |                    |              |            |         |            |              |       |
| 53 | Run #              | 646-657      |            |         |            |              |       |
|    | Intitial Conditi   | ons          |            |         |            |              |       |
|    | Surface Gas Rat    | e            | 31.489     | MMscf/D | Wellbore   |              | units |
|    |                    |              |            |         | TVD BML    | 8000         | ft    |
|    | Depth, ft          | Pressure, ps | sia        |         | Water TVD  | 5000         | ft    |
|    | 500                | 0 2236.96    |            |         | DS Status  | hanging      | n/a   |
|    | 580                | 0 2698.03    |            |         | Parameter  | csg          | n/a   |
|    | 660                | 0 3116.629   |            |         | Par. Value | 8.625        |       |
|    | 740                | 0 3504.173   |            |         |            |              |       |
|    | 820                | 0 3871.145   |            |         |            |              |       |
|    | 900                | 0 4223.528   |            |         |            |              |       |
|    | 980                | 0 4565.061   |            |         |            |              |       |
|    | 1060               | 0 4898.228   |            |         |            |              |       |
|    | 1140               | 0 5224.762   |            |         |            |              |       |
|    | 1220               | 0 5545.917   |            |         |            |              |       |
|    | 1300               | 0 7093.155   |            |         |            |              |       |
|    |                    |              |            |         |            |              |       |
| 54 | Run #              | 658-669      |            |         |            |              |       |
|    | Intitial Condition | ons          |            |         |            |              |       |
|    | Surface Gas Rat    | e            | 122.614    | MMscf/D | Wellbore   |              | units |
|    |                    |              |            |         | TVD BML    | 8000         | ft    |
|    | Depth, ft          | Pressure, p  | sia        |         | Water TVD  | 5000         | ft    |
|    | 500                | 0 2227.744   |            |         | DS Status  | hanging      | n/a   |
|    | 580                | 0 2471.077   |            |         | Parameter  | csg          | n/a   |
|    | 660                | 0 2705.452   |            |         | Par. Value | 10.75        |       |
|    | 740                | 0 2930.32    |            |         |            |              |       |
|    | 820                | 0 3148.091   |            |         |            |              |       |
|    | 900                | 0 3360.413   |            |         |            |              |       |
|    | 980                | 0 3568.456   |            |         |            |              |       |
|    | 1060               | 0 3773.081   |            |         |            |              |       |
|    | 1140               | 0 3974.93    |            |         |            |              |       |
|    | 1220               | 0 4174.5     |            |         |            |              |       |
|    | 1300               | 0 5131.407   |            |         |            |              |       |
|    |                    |              |            |         |            |              |       |
| 55 | Run #              | 670-681      |            |         |            |              |       |
|    | Intitial Condition | ons          |            |         |            | _            |       |
|    | Surface Gas Rat    | e            | 203.959    | MMscf/D | Wellbore   |              | units |
|    |                    |              | l <u>.</u> |         | TVD BML    | 8000         | ft    |
|    | Depth, ft          | Pressure, p  | sia        |         | Water TVD  | 5000         | ft (  |
|    | 500                | 0 2244.637   |            |         | DS Status  | hanging      | n/a   |
|    | 580                | 0 2343.308   |            |         | Parameter  | csg          | n/a   |
|    | 660                | 0 2541.534   |            |         | Par. Value | 12.75        |       |
|    | 740                | 0 2640.176   |            |         |            | +            |       |
|    | 820                | 0 2640.176   |            |         |            |              |       |
|    | 900                | 0 2/38.623   |            |         |            | +            |       |
|    | 980                | 0 2836.945   |            |         |            | +            |       |
|    | 1060               | 0 2935.199   |            |         |            |              |       |
|    | 1140               | 0 2121 607   |            |         |            | <del> </del> |       |
|    | 1220               | 0 3131.08/   |            |         |            | <del> </del> |       |
|    | 1300               | UJ 3400.180  |            | 1       | 1          |              |       |

| 56 | Run #             | 682-693      |         |                      |              |           |       |
|----|-------------------|--------------|---------|----------------------|--------------|-----------|-------|
|    | Intitial Conditio | ns           |         |                      |              |           |       |
|    | Surface Gas Rate  | :            | 145.719 | MMscf/D              | Wellbore     |           | units |
|    |                   |              |         |                      | TVD BML      | 8000      | ft    |
|    | Depth. ft         | Pressure, p  | sia     |                      | Water TVD    | 5000      | ft    |
|    | 5000              | 2255.656     |         |                      | DS Status    | hanging   | n/a   |
|    | 5800              | 2575.694     |         |                      | Parameter    | ds length | n/a   |
|    | 6600              | 2877 34      |         |                      | Par Value    | 50        |       |
|    | 7400              | 3162.629     |         |                      | I ult + ulue |           |       |
|    | 8200              | 3436.26      |         |                      |              |           |       |
|    | 9000              | 3701221      |         |                      |              |           |       |
|    | 9800              | 3959 525     |         |                      |              |           |       |
|    | 10600             | 4212 586     |         |                      |              |           |       |
|    | 11400             | 4461431      |         |                      |              |           |       |
|    | 12200             | 4556 784     |         |                      |              |           |       |
|    | 13000             | 4633 58      |         |                      |              |           |       |
|    | 15000             | 1055.50      |         |                      |              |           |       |
| 57 | Run #             | 694-705      |         |                      |              |           |       |
| 57 | Intitial Conditio | ns           |         |                      |              |           |       |
|    | Surface Gas Rate  |              | 168 821 | MMscf/D              | Wellbore     |           | units |
|    |                   |              | 1001021 | 111110 <b>0</b> 1, D | TVD BML      | 8000      | ft    |
|    | Depth. ft         | Pressure, p  | sia     |                      | Water TVD    | 5000      | ft    |
|    | 5000              | 2233611      |         |                      | DS Status    | hanging   | n/a   |
|    | 5800              | 2233.011     |         |                      | Parameter    | ds length | n/a   |
|    | 6600              | 3024 136     |         |                      | Par Value    | 25        | 11/ 4 |
|    | 7400              | 3376 327     |         |                      | 1 ur + urue  |           |       |
|    | 8200              | 3710.88      |         |                      |              |           |       |
|    | 9000              | 3797.084     |         |                      |              |           |       |
|    | 9800              | 3862.551     |         |                      |              |           |       |
|    | 10600             | 3929.23      |         |                      |              |           |       |
|    | 11400             | 3994.116     |         |                      |              |           |       |
|    | 12200             | 4060.204     |         |                      |              |           |       |
|    | 13000             | 4135.202     |         |                      |              |           |       |
|    |                   |              |         |                      |              |           |       |
| 58 | Run #             | 706-717      |         |                      |              |           |       |
|    | Intitial Conditio | ns           |         |                      |              |           |       |
|    | Surface Gas Rate  | :            | 31.473  | MMscf/D              | Wellbore     |           | units |
|    |                   |              |         |                      | TVD BML      | 8000      | ft    |
|    | Depth, ft         | Pressure, pa | sia     |                      | Water TVD    | 5000      | ft    |
|    | 5000              | 2235.089     |         |                      | DS Status    | dropped   | n/a   |
|    | 5800              | 2704.047     |         |                      | Parameter    | csg       | n/a   |
|    | 6600              | 3121.677     |         |                      | Par. Value   | 8.625     |       |
|    | 7400              | 3508.542     |         |                      |              |           |       |
|    | 8200              | 3874.979     |         |                      |              |           |       |
|    | 9000              | 4226.916     |         |                      |              |           |       |
|    | 9800              | 4568.06      |         |                      |              |           |       |
|    | 10600             | 4900.88      |         |                      |              |           |       |
|    | 11400             | 5227.096     |         |                      |              |           |       |
|    | 12200             | 5547.957     |         |                      |              |           |       |
|    | 13000             | 7093.52      |         |                      |              |           |       |
|    |                   |              |         |                      |              |           |       |
| 59 | Run #             | 718-729      |         |                      |              |           |       |

|    | Intitial Condition | ıs           |         |           |             |           |            |
|----|--------------------|--------------|---------|-----------|-------------|-----------|------------|
|    | Surface Gas Rate   |              | 122.562 | 2 MMscf/D | Wellbore    |           | units      |
|    |                    |              |         |           | TVD BML     | 8000      | ft         |
|    | Depth, ft          | Pressure, ps | sia     |           | Water TVD   | 5000      | ft         |
|    | 5000               | 2227.765     |         |           | DS Status   | dropped   | n/a        |
|    | 5800               | 2474.895     |         |           | Parameter   | csg       | n/a        |
|    | 6600               | 2708.915     |         |           | Par. Value  | 10.75     |            |
|    | 7400               | 2933.494     |         |           |             |           |            |
|    | 8200               | 3151.022     |         |           |             |           |            |
|    | 9000               | 3363.133     |         |           |             |           |            |
|    | 9800               | 3570.99      |         |           |             |           |            |
|    | 10600              | 3775.445     |         |           |             |           |            |
|    | 11400              | 3977.139     |         |           |             |           |            |
|    | 12200              | 4176.565     |         |           |             |           | -          |
|    | 13000              | 5132.52      |         |           |             |           |            |
|    |                    |              |         |           |             |           |            |
| 60 | Run #              | 730-741      |         |           |             |           |            |
|    | Intitial Condition | is           |         |           |             |           | -          |
|    | Surface Gas Rate   |              | 203.92  | 3 MMscf/D | Wellbore    |           | units      |
|    |                    |              |         |           | TVD BML     | 8000      | ft         |
|    | Depth. ft          | Pressure, ps | sia     |           | Water TVD   | 5000      | ft         |
|    | 5000               | 2244.619     | iiu     |           | DS Status   | dropped   | n/a        |
|    | 5800               | 2344 404     |         |           | Parameter   | csø       | n/a<br>n/a |
|    | 6600               | 2443 682     |         |           | Par Value   | 12.75     | ii/u       |
|    | 7400               | 2542 579     |         |           | I di. Value | 12.75     |            |
|    | 8200               | 2641 198     |         |           |             |           |            |
|    | 9000               | 2739 624     |         |           |             |           |            |
|    | 9800               | 2837 926     |         |           |             |           |            |
|    | 10600              | 2936 162     |         |           |             |           |            |
|    | 11400              | 3034 378     |         |           |             |           |            |
|    | 12200              | 3132.615     |         |           |             |           |            |
|    | 13000              | 3466 962     |         |           |             |           |            |
|    | 15000              | 5100.702     |         |           |             |           |            |
| 61 | Run #              | 742-753      |         |           |             |           |            |
|    | Intitial Condition | IS IS        |         |           |             |           | -          |
|    | Surface Gas Rate   |              | 127.67  | 3 MMscf/D | Wellbore    |           | units      |
|    |                    |              |         |           | TVD BML     | 8000      | ft         |
|    | Depth. ft          | Pressure, ps | sia     |           | Water TVD   | 5000      | ft         |
|    | 5000               | 2226.367     |         |           | DS Status   | dropped   | n/a        |
|    | 5800               | 2269.618     |         |           | Parameter   | ds length | n/a        |
|    | 6600               | 2340.299     |         |           | Par. Value  | 50        |            |
|    | 7400               | 2600.158     |         |           |             |           |            |
|    | 8200               | 2846.26      |         |           |             |           |            |
|    | 9000               | 3082.427     |         |           |             |           |            |
|    | 9800               | 3311.15      |         |           |             |           |            |
|    | 10600              | 3534.131     |         |           |             |           |            |
|    | 11400              | 3752.586     |         | 1         |             | 1         |            |
|    | 12200              | 3967.404     |         | 1         |             | 1         |            |
|    | 13000              | 5022.291     |         |           |             | 1         |            |
|    | 10000              |              |         |           |             |           | L          |
| 62 | Run #              | 754-765      |         |           |             |           |            |
|    | Intitial Condition | IS           |         |           |             | 1         |            |
|    | Surface Gas Rate   |              | 140.98  | 6 MMscf/D | Wellbore    | 1         | units      |
|    |                    |              |               |         | TVD BML    | 8000      | ft      |
|----|--------------------|--------------|---------------|---------|------------|-----------|---------|
|    | Depth, ft          | Pressure, ps | sia           |         | Water TVD  | 5000      | ft      |
|    | 5000               | 2228.571     |               |         | DS Status  | dropped   | n/a     |
|    | 5800               | 2272.512     |               |         | Parameter  | ds length | n/a     |
|    | 6600               | 2316.763     |               |         | Par. Value | 25        | %       |
|    | 7400               | 2361.319     |               |         |            |           |         |
|    | 8200               | 2406.178     |               |         |            |           |         |
|    | 9000               | 2451.333     |               |         |            |           |         |
|    | 9800               | 2512.82      |               |         |            |           |         |
|    | 10600              | 2813.668     |               |         |            |           |         |
|    | 11400              | 3096.877     |               |         |            |           |         |
|    | 12200              | 3367.504     |               |         |            |           |         |
|    | 13000              | 4735.571     |               |         |            |           |         |
|    |                    |              |               |         |            |           |         |
| 63 | Run #              | 766-777      |               |         |            |           |         |
|    | Intitial Condition | IS           |               |         |            |           |         |
|    | Surface Gas Rate   |              | 215.701       | MMscf/D | Wellbore   |           | units   |
|    |                    |              |               |         | TVD BML    | 8000      | ft      |
|    | Depth, ft          | Pressure, ps | sia           |         | Water TVD  | 5000      | ft      |
|    | 5000               | 2259.415     |               |         | DS Status  | no DS     | n/a     |
|    | 5800               | 2328.567     |               |         | Parameter  | csg       | n/a     |
|    | 6600               | 2397.975     |               |         | Par. Value | 8.625     |         |
|    | 7400               | 2467.651     |               |         |            |           |         |
|    | 8200               | 2537.601     |               |         |            |           |         |
|    | 9000               | 2607.834     |               |         |            |           |         |
|    | 9800               | 2678.3521    |               |         |            |           |         |
|    | 10600              | 2749.16      |               |         |            |           |         |
|    | 11400              | 2820.26      |               |         |            |           |         |
|    | 12200              | 2891.653     |               |         |            |           |         |
|    | 13000              | 3015.863     |               |         |            |           |         |
|    |                    |              |               |         |            |           |         |
| 64 | Run #              | 778-789      |               |         |            |           |         |
|    | Intitial Condition | ıs           |               |         |            |           |         |
|    | Surface Gas Rate   |              | 230.605       | MMscf/D | Wellbore   |           | units   |
|    |                    |              |               |         | TVD BML    | 8000      | ft      |
|    | Depth, ft          | Pressure, ps | sia           |         | Water TVD  | 5000      | ft      |
|    | 5000               | 2246.037     |               |         | DS Status  | no DS     | n/a     |
|    | 5800               | 2296.268     |               |         | Parameter  | csg       | n/a     |
|    | 6600               | 2346.843     |               |         | Par. Value | 10.75     |         |
|    | 7400               | 2397.756     |               |         |            |           |         |
|    | 8200               | 2449.004     |               |         |            |           |         |
|    | 9000               | 2500.582     |               |         |            |           |         |
|    | 9800               | 2552.485     |               |         |            |           |         |
|    | 10600              | 2604.708     |               |         |            |           |         |
|    | 11400              | 2657.247     |               |         |            |           |         |
|    | 12200              | 2710.097     |               |         |            |           |         |
|    | 13000              | 2786.278     |               |         |            |           |         |
|    |                    |              |               |         |            |           |         |
| 65 | Run #              | 790-801      |               |         | _          |           |         |
|    | Intitial Condition | 15           | <b>22</b> 0.0 |         |            |           |         |
|    | Surface Gas Rate   |              | 238.9         | MMscf/D | Wellbore   | 0000      | units   |
|    |                    |              | •             |         | TVD BML    | 8000      | tt<br>c |
|    | Depth, ft          | Pressure, ps | sia           |         | Water TVD  | 5000      | ft      |

|                   | 5000                                                                                                                                                                                                                                                                                                                                                                                                          | 2250.742                                                                                                                                                                                                                      |                                |           | DS Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | no DS                                    | n/a                                                                |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|
|                   | 5800                                                                                                                                                                                                                                                                                                                                                                                                          | 2294.852                                                                                                                                                                                                                      |                                |           | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | csg                                      | n/a                                                                |
|                   | 6600                                                                                                                                                                                                                                                                                                                                                                                                          | 2339.271                                                                                                                                                                                                                      |                                |           | Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.75                                    |                                                                    |
|                   | 7400                                                                                                                                                                                                                                                                                                                                                                                                          | 2383.995                                                                                                                                                                                                                      |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.70                                    |                                                                    |
|                   | 8200                                                                                                                                                                                                                                                                                                                                                                                                          | 2429.018                                                                                                                                                                                                                      |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
|                   | 9000                                                                                                                                                                                                                                                                                                                                                                                                          | 2474 336                                                                                                                                                                                                                      |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
|                   | 9800                                                                                                                                                                                                                                                                                                                                                                                                          | 2519.945                                                                                                                                                                                                                      |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
|                   | 10600                                                                                                                                                                                                                                                                                                                                                                                                         | 2665 841                                                                                                                                                                                                                      |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
|                   | 11400                                                                                                                                                                                                                                                                                                                                                                                                         | 2612.02                                                                                                                                                                                                                       |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
|                   | 12200                                                                                                                                                                                                                                                                                                                                                                                                         | 2658 476                                                                                                                                                                                                                      |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
|                   | 12200                                                                                                                                                                                                                                                                                                                                                                                                         | 2038.470                                                                                                                                                                                                                      |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
|                   | 13000                                                                                                                                                                                                                                                                                                                                                                                                         | 2/13.907                                                                                                                                                                                                                      |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
| 66                | Run #                                                                                                                                                                                                                                                                                                                                                                                                         | 808-810                                                                                                                                                                                                                       |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
| 00                | Intitial Condition                                                                                                                                                                                                                                                                                                                                                                                            | 000-019                                                                                                                                                                                                                       |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
|                   | Surface Cas Pate                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                            | 37 672                         | MMscf/D   | Wollboro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | unite                                                              |
|                   | Sufface Gas Kate                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                               | 57.072                         | WINISCH/D |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8000                                     | units<br>ff                                                        |
|                   | Donth ft                                                                                                                                                                                                                                                                                                                                                                                                      | Duescume no                                                                                                                                                                                                                   | via                            |           | Woter TVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10000                                    | п<br>4                                                             |
|                   | 10000                                                                                                                                                                                                                                                                                                                                                                                                         | rressure, ps                                                                                                                                                                                                                  |                                |           | DC Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10000                                    | IL<br>m/o                                                          |
|                   | 10000                                                                                                                                                                                                                                                                                                                                                                                                         | 4400.947                                                                                                                                                                                                                      |                                |           | DS Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nanging                                  | n/a                                                                |
|                   | 10800                                                                                                                                                                                                                                                                                                                                                                                                         | 4891.65                                                                                                                                                                                                                       |                                |           | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | csg                                      | n/a                                                                |
|                   | 11600                                                                                                                                                                                                                                                                                                                                                                                                         | 5310.98                                                                                                                                                                                                                       |                                |           | Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.625                                    |                                                                    |
|                   | 12400                                                                                                                                                                                                                                                                                                                                                                                                         | 5720.545                                                                                                                                                                                                                      |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
|                   | 13200                                                                                                                                                                                                                                                                                                                                                                                                         | 6122.354                                                                                                                                                                                                                      |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
|                   | 14000                                                                                                                                                                                                                                                                                                                                                                                                         | 6517.848                                                                                                                                                                                                                      |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
|                   | 14800                                                                                                                                                                                                                                                                                                                                                                                                         | 6908.096                                                                                                                                                                                                                      |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
|                   | 15600                                                                                                                                                                                                                                                                                                                                                                                                         | 7293.915                                                                                                                                                                                                                      |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
|                   | 16400                                                                                                                                                                                                                                                                                                                                                                                                         | 7675.94                                                                                                                                                                                                                       |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
|                   | 17200                                                                                                                                                                                                                                                                                                                                                                                                         | 8054.677                                                                                                                                                                                                                      |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
|                   | 10000                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
|                   | 18000                                                                                                                                                                                                                                                                                                                                                                                                         | 9913.932                                                                                                                                                                                                                      |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
| <i>(</i> <b>-</b> | 18000                                                                                                                                                                                                                                                                                                                                                                                                         | 9913.932                                                                                                                                                                                                                      |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
| 67                | Run #                                                                                                                                                                                                                                                                                                                                                                                                         | 9913.932<br>820-831                                                                                                                                                                                                           |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
| 67                | Run #<br>Intitial Condition                                                                                                                                                                                                                                                                                                                                                                                   | 9913.932<br>820-831                                                                                                                                                                                                           |                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                    |
| 67                | Run #       Intitial Condition       Surface Gas Rate                                                                                                                                                                                                                                                                                                                                                         | 9913.932<br>820-831<br>1s                                                                                                                                                                                                     | 143.39                         | MMscf/D   | Wellbore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | units                                                              |
| 67                | Run #       Intitial Condition       Surface Gas Rate                                                                                                                                                                                                                                                                                                                                                         | 9913.932<br>820-831<br>1s                                                                                                                                                                                                     | 143.39                         | MMscf/D   | Wellbore<br>TVD BML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8000                                     | units<br>ft                                                        |
| 67                | Run #       Intitial Condition       Surface Gas Rate       Depth, ft                                                                                                                                                                                                                                                                                                                                         | 9913.932<br>820-831<br>Is<br>Pressure, ps                                                                                                                                                                                     | 143.39<br>iia                  | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8000<br>10000                            | units<br>ft<br>ft                                                  |
| 67                | Run #       Intitial Condition       Surface Gas Rate       Depth, ft       10000                                                                                                                                                                                                                                                                                                                             | 9913.932<br>820-831<br>Is<br>Pressure, ps<br>4485.524                                                                                                                                                                         | 143.39<br>ia                   | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8000<br>10000<br>hanging                 | units<br>ft<br>ft<br>n/a                                           |
| 67                | 18000           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           10800           10800                                                                                                                                                                                                                                                                             | 9913.932<br>820-831<br>bs<br>Pressure, ps<br>4485.524<br>4715.199                                                                                                                                                             | 143.39<br>sia                  | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8000<br>10000<br>hanging<br>csg          | units<br>ft<br>ft<br>n/a<br>n/a                                    |
| 67                | Isolo           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           10800           11600                                                                                                                                                                                                                                                                             | 9913.932<br>820-831<br>IS<br>Pressure, ps<br>4485.524<br>4715.199<br>4946.139                                                                                                                                                 | 143.39<br>sia                  | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8000<br>10000<br>hanging<br>csg<br>10.75 | units<br>ft<br>ft<br>n/a<br>n/a                                    |
| 67                | 18000           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           10000           10800           11600           12400                                                                                                                                                                                                                                             | 9913.932<br>820-831<br>18<br>Pressure, ps<br>4485.524<br>4715.199<br>4946.139<br>5175.481                                                                                                                                     | 143.39<br>sia                  | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8000<br>10000<br>hanging<br>csg<br>10.75 | units<br>ft<br>ft<br>n/a<br>n/a                                    |
| 67                | Initial Condition           Initial Condition           Surface Gas Rate           Depth, ft           10800           11600           12400           13200                                                                                                                                                                                                                                                  | 9913.932<br>820-831<br>1s<br>Pressure, ps<br>4485.524<br>4715.199<br>4946.139<br>5175.481<br>5403.464                                                                                                                         | 143.39<br>iia                  | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8000<br>10000<br>hanging<br>csg<br>10.75 | units<br>ft<br>ft<br>n/a<br>n/a                                    |
| 67                | Isolo           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           10000           10800           11600           12400           13200           14000                                                                                                                                                                                                             | 9913.932<br>820-831<br>Is<br>Pressure, ps<br>4485.524<br>4715.199<br>4946.139<br>5175.481<br>5403.464<br>5630.283                                                                                                             | 143.39<br>iia                  | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8000<br>10000<br>hanging<br>csg<br>10.75 | units<br>ft<br>ft<br>n/a<br>n/a                                    |
| 67                | Isolo           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           10000           10800           11600           12400           13200           14000           14800                                                                                                                                                                                             | 9913.932<br>820-831<br>Is<br>Pressure, ps<br>4485.524<br>4715.199<br>4946.139<br>5175.481<br>5403.464<br>5630.283<br>5856.097                                                                                                 | 143.39<br>sia                  | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8000<br>10000<br>hanging<br>csg<br>10.75 | units<br>ft<br>n/a<br>n/a                                          |
| 67                | Isolo           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           10000           10800           11600           12400           13200           14800           15600                                                                                                                                                                                             | 9913.932<br>820-831<br>IS<br>Pressure, ps<br>4485.524<br>4715.199<br>4946.139<br>5175.481<br>5403.464<br>5630.283<br>5856.097<br>6081.038                                                                                     | 143.39<br>sia                  | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8000<br>10000<br>hanging<br>csg<br>10.75 | units<br>ft<br>ft<br>n/a<br>n/a                                    |
| 67                | Isolo           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           10000           10800           11600           12400           13200           14000           15600           16400                                                                                                                                                                             | 9913.932<br>820-831<br><b>B</b><br><b>Pressure, ps</b><br>4485.524<br>4715.199<br>4946.139<br>5175.481<br>5403.464<br>5630.283<br>5856.097<br>6081.038<br>6305.217                                                            | 143.39<br>ia                   | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8000<br>10000<br>hanging<br>csg<br>10.75 | units<br>ft<br>n/a<br>n/a                                          |
| 67                | Isolo           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           10000           10800           11600           12400           13200           14000           14000           15600           16400           17200                                                                                                                                             | 9913.932<br>820-831<br>18<br>Pressure, ps<br>4485.524<br>4715.199<br>4946.139<br>5175.481<br>5403.464<br>5630.283<br>5856.097<br>6081.038<br>6305.217<br>6528.725                                                             | 143.39<br>ia                   | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8000<br>10000<br>hanging<br>csg<br>10.75 | units<br>ft<br>n/a<br>n/a                                          |
| 67                | Isolo           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           10800           11600           12400           13200           14000           14800           15600           17200           18000                                                                                                                                                             | 9913.932<br>820-831<br>8<br>Pressure, ps<br>4485.524<br>4715.199<br>4946.139<br>5175.481<br>5403.464<br>5630.283<br>5856.097<br>6081.038<br>6305.217<br>6528.725<br>7559.168                                                  | 143.39<br>iia                  | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8000<br>10000<br>hanging<br>csg<br>10.75 | units<br>ft<br>n/a<br>n/a                                          |
| 67                | Isolo           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           10800           11600           12400           13200           14000           14800           15600           16400           17200           18000                                                                                                                                             | 9913.932<br>820-831<br>8<br>Pressure, ps<br>4485.524<br>4715.199<br>4946.139<br>5175.481<br>5403.464<br>5630.283<br>5856.097<br>6081.038<br>6305.217<br>6528.725<br>7559.168                                                  | 143.39<br>sia                  | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8000<br>10000<br>hanging<br>csg<br>10.75 | units<br>ft<br>ft<br>n/a<br>n/a                                    |
| 67                | Run #         Intitial Condition         Surface Gas Rate         Depth, ft         10000         10800         11600         12400         13200         14000         14800         15600         16400         17200         18000                                                                                                                                                                         | 9913.932<br>820-831<br>8<br>Pressure, ps<br>4485.524<br>4715.199<br>4946.139<br>5175.481<br>5403.464<br>5630.283<br>5856.097<br>6081.038<br>6305.217<br>6528.725<br>7559.168<br>832-843                                       | 143.39<br>sia                  | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8000<br>10000<br>hanging<br>csg<br>10.75 | units<br>ft<br>ft<br>n/a<br>n/a                                    |
| 67                | Isolo           Run #           Initial Condition           Surface Gas Rate           Depth, ft           Isolo           10000           10000           10000           10000           10000           10000           10000           11600           12400           13200           14800           15600           16400           17200           18000           Run #           Intitial Condition | 9913.932<br>820-831<br>8<br>Pressure, ps<br>4485.524<br>4715.199<br>4946.139<br>5175.481<br>5403.464<br>5630.283<br>5856.097<br>6081.038<br>6305.217<br>6528.725<br>7559.168<br>832-843<br>18                                 | 143.39<br>sia                  | MMscf/D   | Wellbore         TVD BML         Water TVD         DS Status         Parameter         Par. Value         Image: Construction of the second seco | 8000<br>10000<br>hanging<br>csg<br>10.75 | units<br>ft<br>ft<br>n/a<br>n/a                                    |
| 67                | Run #         Intitial Condition         Surface Gas Rate         Depth, ft         10000         10800         11600         12400         13200         14000         15600         16400         17200         18000         Unitial Condition         Surface Gas Rate                                                                                                                                    | 9913.932<br>820-831<br>8<br>Pressure, ps<br>4485.524<br>4715.199<br>4946.139<br>5175.481<br>5403.464<br>5630.283<br>5856.097<br>6081.038<br>6305.217<br>6528.725<br>7559.168<br>832-843<br>18                                 | 143.39<br><b>ia</b><br>227.661 | MMscf/D   | Wellbore         TVD BML         Water TVD         DS Status         Parameter         Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8000<br>10000<br>hanging<br>csg<br>10.75 | units<br>ft<br>ft<br>n/a<br>n/a                                    |
| 67                | Run #         Intitial Condition         Surface Gas Rate         Depth, ft         10000         10800         11600         12400         13200         14000         15600         16400         17200         18000         Run #         Intitial Condition         Surface Gas Rate                                                                                                                     | 9913.932<br>820-831<br><b>B</b><br><b>Pressure, ps</b><br>4485.524<br>4715.199<br>4946.139<br>5175.481<br>5403.464<br>5630.283<br>5856.097<br>6081.038<br>6305.217<br>6528.725<br>7559.168<br>832-843<br><b>B</b><br><b>B</b> | 143.39<br>ia<br>227.661        | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8000<br>10000<br>hanging<br>csg<br>10.75 | units<br>ft<br>ft<br>n/a<br>n/a                                    |
| 67                | Run #         Intitial Condition         Surface Gas Rate         Depth, ft         10000         10800         10800         10800         10800         11600         12400         13200         14000         14800         15600         16400         17200         18000         Run #         Intitial Condition         Surface Gas Rate         Depth, ft                                           | 9913.932<br>820-831<br>18<br>Pressure, ps<br>4485.524<br>4715.199<br>4946.139<br>5175.481<br>5403.464<br>5630.283<br>5856.097<br>6081.038<br>6305.217<br>6528.725<br>7559.168<br>832-843<br>18<br>Pressure, ps                | 143.39<br>ia<br>227.661<br>ia  | MMscf/D   | Wellbore         TVD BML         Water TVD         DS Status         Parameter         Par. Value         Image: Control of the state of the st | 8000<br>10000<br>hanging<br>csg<br>10.75 | units<br>ft<br>ft<br>n/a<br>n/a<br>                                |
| 67                | Run #         Intitial Condition         Surface Gas Rate         Depth, ft         10000         10800         10800         10800         11600         12400         13200         14000         14800         15600         16400         17200         18000         Run #         Intitial Condition         Surface Gas Rate         Depth, ft         10000                                           | 9913.932<br>820-831<br>8<br>Pressure, ps<br>4485.524<br>4715.199<br>4946.139<br>5175.481<br>5403.464<br>5630.283<br>5856.097<br>6081.038<br>6305.217<br>6528.725<br>7559.168<br>832-843<br>18<br>Pressure, ps<br>4479.167     | 143.39<br>ia<br>227.661<br>ia  | MMscf/D   | Wellbore         TVD BML         Water TVD         DS Status         Parameter         Par. Value         Image: Construction of the system of the syst | 8000<br>10000<br>hanging<br>csg<br>10.75 | units<br>ft<br>n/a<br>n/a<br>n/a<br>units<br>ft<br>ft<br>ft<br>n/a |

|    | 11600                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4707.769                                                                                                                                                                                                              |         |                 | Par. Value                                        | 12.75                                   |                                            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|---------------------------------------------------|-----------------------------------------|--------------------------------------------|
|    | 12400                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4822.848                                                                                                                                                                                                              |         |                 |                                                   |                                         |                                            |
|    | 13200                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4938.177                                                                                                                                                                                                              |         |                 |                                                   |                                         |                                            |
|    | 14000                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5053.75                                                                                                                                                                                                               |         |                 |                                                   |                                         |                                            |
|    | 14800                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5169.561                                                                                                                                                                                                              |         |                 |                                                   |                                         |                                            |
|    | 15600                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5285.605                                                                                                                                                                                                              |         |                 |                                                   |                                         |                                            |
|    | 16400                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5401 876                                                                                                                                                                                                              |         |                 |                                                   |                                         |                                            |
|    | 17200                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5518 369                                                                                                                                                                                                              |         |                 |                                                   |                                         |                                            |
|    | 18000                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5831 296                                                                                                                                                                                                              |         |                 |                                                   |                                         |                                            |
|    | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5051.270                                                                                                                                                                                                              |         |                 |                                                   |                                         |                                            |
| 60 | Run #                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 844-855                                                                                                                                                                                                               |         |                 |                                                   |                                         |                                            |
| 0) | Intitial Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 <del>11</del> 055                                                                                                                                                                                                   |         |                 |                                                   |                                         |                                            |
|    | Surface Gas Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                     | 143 39  | MMscf/D         | Wellbore                                          |                                         | unite                                      |
|    | Surface Gas Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                       | 145.57  | WINISCH D       | TVD BMI                                           | 8000                                    | ft                                         |
|    | Denth ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Prossure no                                                                                                                                                                                                           | ia      |                 | Water TVD                                         | 10000                                   | ft                                         |
|    | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11 <b>cssure, p</b> s                                                                                                                                                                                                 | la      |                 | DS Status                                         | hanging                                 | n<br>n/o                                   |
|    | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4465.524                                                                                                                                                                                                              |         |                 | Do Status                                         | da lan ath                              | 11/a<br>n/a                                |
|    | 10800                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4/13.199                                                                                                                                                                                                              |         |                 | Par Value                                         | us lengui                               | 11/a                                       |
|    | 12400                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4940.139<br>5175.491                                                                                                                                                                                                  |         |                 | Par. value                                        |                                         |                                            |
|    | 12400                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51/5.481                                                                                                                                                                                                              |         |                 |                                                   |                                         |                                            |
|    | 13200                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5403.464                                                                                                                                                                                                              |         |                 |                                                   |                                         |                                            |
|    | 14000                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5630.283                                                                                                                                                                                                              |         |                 |                                                   |                                         |                                            |
|    | 14800                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5856.097                                                                                                                                                                                                              |         |                 |                                                   |                                         |                                            |
|    | 15600                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6081.038                                                                                                                                                                                                              |         |                 |                                                   |                                         |                                            |
|    | 16400                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6305.217                                                                                                                                                                                                              |         |                 |                                                   |                                         |                                            |
|    | 17200                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6528.725                                                                                                                                                                                                              |         |                 |                                                   |                                         |                                            |
|    | 18000                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7559.168                                                                                                                                                                                                              |         |                 |                                                   |                                         |                                            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                       |         |                 |                                                   |                                         |                                            |
| 70 | Run #                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 856-867                                                                                                                                                                                                               |         |                 |                                                   |                                         |                                            |
|    | Intitial Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IS                                                                                                                                                                                                                    | 100 (17 |                 |                                                   |                                         |                                            |
|    | Surface Gas Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                       | 183.667 | MMscf/D         | Wellbore                                          |                                         | units                                      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                       |         |                 | TVD BML                                           | 8000                                    | ft                                         |
|    | Depth, ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                       |         |                 |                                                   |                                         | -                                          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pressure, ps                                                                                                                                                                                                          | ia      |                 | Water TVD                                         | 10000                                   | ft                                         |
|    | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pressure, ps<br>4474.247                                                                                                                                                                                              | ia      |                 | Water TVD<br>DS Status                            | 10000<br>hanging                        | ft<br>n/a                                  |
|    | 10000<br>10800                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pressure, ps<br>4474.247<br>4802.322                                                                                                                                                                                  |         |                 | Water TVD<br>DS Status<br>Parameter               | 10000<br>hanging<br>ds length           | ft<br>n/a<br>n/a                           |
|    | 10000<br>10800<br>11600                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pressure, ps<br>4474.247<br>4802.322<br>5129.216                                                                                                                                                                      |         |                 | Water TVD<br>DS Status<br>Parameter<br>Par. Value | 10000<br>hanging<br>ds length<br>25     | ft<br>n/a<br>n/a                           |
|    | 10000<br>10800<br>11600<br>12400                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pressure, ps<br>4474.247<br>4802.322<br>5129.216<br>5450.965                                                                                                                                                          |         |                 | Water TVD<br>DS Status<br>Parameter<br>Par. Value | 10000<br>hanging<br>ds length<br>25     | ft<br>n/a<br>n/a                           |
|    | 10000<br>10800<br>11600<br>12400<br>13200                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pressure, ps<br>4474.247<br>4802.322<br>5129.216<br>5450.965<br>5768.483                                                                                                                                              |         |                 | Water TVD<br>DS Status<br>Parameter<br>Par. Value | 10000<br>hanging<br>ds length<br>25     | ft<br>n/a<br>n/a                           |
|    | 10000<br>10800<br>11600<br>12400<br>13200<br>14000                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pressure, ps<br>4474.247<br>4802.322<br>5129.216<br>5450.965<br>5768.483<br>6082.465                                                                                                                                  | ia      |                 | Water TVD<br>DS Status<br>Parameter<br>Par. Value | 10000<br>hanging<br>ds length<br>25     | ft<br>n/a<br>n/a                           |
|    | 10000<br>10800<br>11600<br>12400<br>13200<br>14000<br>14800                                                                                                                                                                                                                                                                                                                                                                                                                        | Pressure, ps<br>4474.247<br>4802.322<br>5129.216<br>5450.965<br>5768.483<br>6082.465<br>6313.879                                                                                                                      | ia      |                 | Water TVD<br>DS Status<br>Parameter<br>Par. Value | 10000<br>hanging<br>ds length<br>25     | ft<br>n/a<br>n/a                           |
|    | 10000<br>10800<br>11600<br>12400<br>13200<br>14000<br>14800<br>15600                                                                                                                                                                                                                                                                                                                                                                                                               | Pressure, ps<br>4474.247<br>4802.322<br>5129.216<br>5450.965<br>5768.483<br>6082.465<br>6313.879<br>6402.992                                                                                                          |         |                 | Water TVD<br>DS Status<br>Parameter<br>Par. Value | 10000<br>hanging<br>ds length<br>25     | ft n/a n/a                                 |
|    | 10000<br>10800<br>11600<br>12400<br>13200<br>14000<br>14800<br>15600<br>16400                                                                                                                                                                                                                                                                                                                                                                                                      | Pressure, ps<br>4474.247<br>4802.322<br>5129.216<br>5450.965<br>5768.483<br>6082.465<br>6313.879<br>6402.992<br>6492.153                                                                                              |         |                 | Water TVD<br>DS Status<br>Parameter<br>Par. Value | 10000<br>hanging<br>ds length<br>25     | ft n/a n/a                                 |
|    | 10000<br>10800<br>11600<br>12400<br>13200<br>14000<br>14800<br>15600<br>16400<br>17200                                                                                                                                                                                                                                                                                                                                                                                             | Pressure, ps<br>4474.247<br>4802.322<br>5129.216<br>5450.965<br>5768.483<br>6082.465<br>6313.879<br>6402.992<br>6492.153<br>6581.363                                                                                  | ia      |                 | Water TVD DS Status Parameter Par. Value          | 10000<br>hanging<br>ds length<br>25     | ft n/a n/a                                 |
|    | 10000<br>10800<br>11600<br>12400<br>13200<br>14000<br>14800<br>15600<br>16400<br>17200<br>18000                                                                                                                                                                                                                                                                                                                                                                                    | Pressure, ps<br>4474.247<br>4802.322<br>5129.216<br>5450.965<br>5768.483<br>6082.465<br>6313.879<br>6402.992<br>6492.153<br>6581.363<br>6678.123                                                                      | ia      |                 | Water TVD DS Status Parameter Par. Value          | 10000<br>hanging<br>ds length<br>25     | ft                                         |
|    | 10000<br>10800<br>11600<br>12400<br>13200<br>14000<br>14800<br>15600<br>16400<br>17200<br>18000                                                                                                                                                                                                                                                                                                                                                                                    | Pressure, ps<br>4474.247<br>4802.322<br>5129.216<br>5450.965<br>5768.483<br>6082.465<br>6313.879<br>6402.992<br>6492.153<br>6581.363<br>6678.123                                                                      | ia      |                 | Water TVD DS Status Parameter Par. Value          | 10000<br>hanging<br>ds length<br>25     | ft                                         |
| 71 | 10000<br>10800<br>11600<br>12400<br>13200<br>14000<br>14800<br>15600<br>16400<br>17200<br>18000                                                                                                                                                                                                                                                                                                                                                                                    | Pressure, ps<br>4474.247<br>4802.322<br>5129.216<br>5450.965<br>5768.483<br>6082.465<br>6313.879<br>6402.992<br>6492.153<br>6581.363<br>6678.123<br>868-879                                                           |         |                 | Water TVD DS Status Parameter Par. Value          | 10000<br>hanging<br>ds length<br>25     | ft n/a n/a                                 |
| 71 | 10000           10800           11600           12400           13200           14000           14000           14000           14000           14000           14000           14800           15600           16400           17200           18000           Run #           Intitial Condition                                                                                                                                                                                 | Pressure, ps<br>4474.247<br>4802.322<br>5129.216<br>5450.965<br>5768.483<br>6082.465<br>6313.879<br>6402.992<br>6492.153<br>6581.363<br>6581.363<br>868-879<br>IS                                                     |         |                 | Water TVD DS Status Parameter Par. Value          | 10000<br>hanging<br>ds length<br>25     | ft                                         |
| 71 | 10000           10800           11600           12400           13200           14000           14000           14000           14800           15600           16400           17200           18000           Run #           Intitial Condition           Surface Gas Rate                                                                                                                                                                                                      | Pressure, ps<br>4474.247<br>4802.322<br>5129.216<br>5450.965<br>5768.483<br>6082.465<br>6313.879<br>6402.992<br>6492.153<br>6581.363<br>6678.123<br>868-879<br>ss                                                     | 37.65   | <br><br>MMscf/D | Water TVD DS Status Parameter Par. Value          | 10000<br>hanging<br>ds length<br>25     | ft n/a |
| 71 | 10000           10800           11600           12400           13200           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           15600           16400           17200           18000           Run #           Intitial Condition           Surface Gas Rate                                                                                      | Pressure, ps<br>4474.247<br>4802.322<br>5129.216<br>5450.965<br>5768.483<br>6082.465<br>6313.879<br>6402.992<br>6492.153<br>6581.363<br>6678.123<br>868-879<br>ss                                                     | 37.65   | MMscf/D         | Water TVD DS Status Parameter Par. Value          | 10000<br>hanging<br>ds length<br>25     | ft n/a<br>n/a                              |
| 71 | 10000           10800           11600           12400           13200           14000           14800           15600           16400           17200           18000           Run #           Intitial Condition           Surface Gas Rate           Depth, ft                                                                                                                                                                                                                  | Pressure, ps<br>4474.247<br>4802.322<br>5129.216<br>5450.965<br>5768.483<br>6082.465<br>6313.879<br>6402.992<br>6492.153<br>6581.363<br>6678.123<br>868-879<br>IS<br>Pressure, ps                                     | ia<br>  | MMscf/D         | Water TVD DS Status Parameter Par. Value          | 10000<br>hanging<br>ds length<br>25<br> | ft n/a |
| 71 | 10000           10800           11600           12400           13200           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           15600           16400           17200           18000           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           10000                                  | Pressure, ps<br>4474.247<br>4802.322<br>5129.216<br>5450.965<br>5768.483<br>6082.465<br>6313.879<br>6402.992<br>6492.153<br>6581.363<br>6678.123<br>868-879<br>IS<br>Pressure, ps<br>4466.368                         | ia<br>  | MMscf/D         | Water TVD DS Status Parameter Par. Value          | 10000<br>hanging<br>ds length<br>25<br> | ft n/a<br>n/a<br>                          |
| 71 | 10000           10800           11600           12400           13200           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           15600           16400           17200           18000           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           100000           10800 | Pressure, ps<br>4474.247<br>4802.322<br>5129.216<br>5450.965<br>5768.483<br>6082.465<br>6313.879<br>6402.992<br>6492.153<br>6581.363<br>6678.123<br>868-879<br>15<br>Pressure, ps<br>4466.368<br>4897.727             | ia<br>  | MMscf/D         | Water TVD DS Status Parameter Par. Value          | 10000<br>hanging<br>ds length<br>25<br> | ft n/a<br>n/a<br>                          |
| 71 | 10000           10800           11600           12400           12400           13200           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           17200           18000           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           100000           108000           11600                                | Pressure, ps<br>4474.247<br>4802.322<br>5129.216<br>5450.965<br>5768.483<br>6082.465<br>6313.879<br>6402.992<br>6492.153<br>6581.363<br>6678.123<br>868-879<br>15<br>Pressure, ps<br>4466.368<br>4897.727<br>5316.491 | ia<br>  | MMscf/D         | Water TVD<br>DS Status<br>Parameter<br>Par. Value | 10000<br>hanging<br>ds length<br>25<br> | ft n/a<br>n/a<br>                          |

|    | 13200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6126.899                                                                                                                                                                                                                                     |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|
|    | 14000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6521.965                                                                                                                                                                                                                                     |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
|    | 14800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6911.812                                                                                                                                                                                                                                     |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
|    | 15600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7297.249                                                                                                                                                                                                                                     |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
|    | 16400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7678.909                                                                                                                                                                                                                                     |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
|    | 17200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8057 296                                                                                                                                                                                                                                     |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
|    | 18000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9914 43                                                                                                                                                                                                                                      |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
|    | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7714.45                                                                                                                                                                                                                                      |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
| 72 | Pup #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 880 801                                                                                                                                                                                                                                      |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
| 12 | Intitial Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 880-871                                                                                                                                                                                                                                      |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
|    | Surface Cos Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                                                                                                                                                                                                                                           | 142 226                         | MMaaf/D   | Wallbana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              | unita                                                              |
|    | Sufface Gas Kale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                              | 145.550                         | WINISCI/D |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8000                                         | units<br>G                                                         |
|    | Denth 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D                                                                                                                                                                                                                                            |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10000                                        | n<br>e                                                             |
|    | Depth, ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pressure, ps                                                                                                                                                                                                                                 | a                               |           | Water TVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10000                                        | π<br>,                                                             |
|    | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4485.53                                                                                                                                                                                                                                      |                                 |           | DS Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dropped                                      | n/a                                                                |
|    | 10800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4718.213                                                                                                                                                                                                                                     |                                 |           | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | csg                                          | n/a                                                                |
|    | 11600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4949.007                                                                                                                                                                                                                                     |                                 |           | Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.75                                        |                                                                    |
|    | 12400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5178.209                                                                                                                                                                                                                                     |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
|    | 13200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5406.059                                                                                                                                                                                                                                     |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
|    | 14000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5632.751                                                                                                                                                                                                                                     |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
|    | 14800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5858.443                                                                                                                                                                                                                                     |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
|    | 15600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6083.265                                                                                                                                                                                                                                     |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
|    | 16400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6307.328                                                                                                                                                                                                                                     |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
|    | 17200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6530.723                                                                                                                                                                                                                                     |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
|    | 18000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7560.357                                                                                                                                                                                                                                     |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                              |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
| 73 | Run #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 892-903                                                                                                                                                                                                                                      |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
|    | Intitial Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IS                                                                                                                                                                                                                                           |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                    |
|    | Surface Cos Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                              |                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                            |                                                                    |
|    | Surface Gas Kale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                              | 227.63                          | MMscf/D   | Wellbore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              | units                                                              |
|    | Surface Gas Kale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                              | 227.63                          | MMscf/D   | Wellbore<br>TVD BML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8000                                         | units<br>ft                                                        |
|    | Depth. ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pressure, ps                                                                                                                                                                                                                                 | 227.63                          | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8000                                         | units<br>ft<br>ft                                                  |
|    | Depth, ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Pressure, ps</b><br>4479.174                                                                                                                                                                                                              | 227.63<br>sia                   | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8000<br>10000<br>dropped                     | units<br>ft<br>ft<br>n/a                                           |
|    | Depth, ft<br>10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Pressure, ps</b><br>4479.174<br>4593 728                                                                                                                                                                                                  | 227.63<br>iia                   | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8000<br>10000<br>dropped                     | units<br>ft<br>ft<br>n/a<br>n/a                                    |
|    | Depth, ft           10000           10800           11600                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Pressure, ps</b><br>4479.174<br>4593.728<br>4708 545                                                                                                                                                                                      | 227.63<br>ia                    | MMscf/D   | Wellbore<br>TVD BML<br>Water TVD<br>DS Status<br>Parameter<br>Par Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8000<br>10000<br>dropped<br>csg<br>12.75     | units<br>ft<br>ft<br>n/a<br>n/a                                    |
|    | Depth, ft           10000           10800           11600           12400                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617                                                                                                                                                                                 | 227.63<br>iia                   | MMscf/D   | WellboreTVD BMLWater TVDDS StatusParameterPar. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8000<br>10000<br>dropped<br>csg<br>12.75     | units<br>ft<br>ft<br>n/a<br>n/a                                    |
|    | Depth, ft           10000           10800           11600           12400           13200                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938                                                                                                                                                                     | 227.63                          | MMscf/D   | Wellbore         TVD BML         Water TVD         DS Status         Parameter         Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8000<br>10000<br>dropped<br>csg<br>12.75     | units<br>ft<br>ft<br>n/a<br>n/a                                    |
|    | Depth, ft           10000           10800           11600           12400           13200                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938<br>5054.504                                                                                                                                                         | 227.63                          | MMscf/D   | Wellbore         TVD BML         Water TVD         DS Status         Parameter         Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8000<br>10000<br>dropped<br>csg<br>12.75     | units<br>ft<br>ft<br>n/a<br>n/a                                    |
|    | Depth, ft           10000           10800           11600           12400           13200           14000                                                                                                                                                                                                                                                                                                                                                                                                                             | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938<br>5054.504<br>5170.308                                                                                                                                             | 227.63                          | MMscf/D   | Wellbore         TVD BML         Water TVD         DS Status         Parameter         Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8000<br>10000<br>dropped<br>csg<br>12.75     | units<br>ft<br>ft<br>n/a<br>n/a                                    |
|    | Depth, ft           10000           10800           11600           12400           13200           14000           14800                                                                                                                                                                                                                                                                                                                                                                                                             | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938<br>5054.504<br>5170.308<br>5286.345                                                                                                                                 | 227.63                          | MMscf/D   | Wellbore         TVD BML         Water TVD         DS Status         Parameter         Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8000<br>10000<br>dropped<br>csg<br>12.75     | units<br>ft<br>n/a<br>n/a                                          |
|    | Depth, ft           10000           10800           11600           12400           13200           14000           14800           15600                                                                                                                                                                                                                                                                                                                                                                                             | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938<br>5054.504<br>5170.308<br>5286.345<br>5402.600                                                                                                                     | 227.63                          | MMscf/D   | Wellbore         TVD BML         Water TVD         DS Status         Parameter         Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8000<br>10000<br>dropped<br>csg<br>12.75     | units<br>ft<br>n/a<br>n/a                                          |
|    | Depth, ft           10000           10800           11600           12400           13200           14000           14800           15600           16400                                                                                                                                                                                                                                                                                                                                                                             | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938<br>5054.504<br>5170.308<br>5286.345<br>5402.609<br>5510.005                                                                                                         | 227.63                          | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8000<br>10000<br>dropped<br>csg<br>12.75     | units<br>ft<br>n/a<br>n/a                                          |
|    | Depth, ft           10000           10800           11600           12400           13200           14000           14800           15600           16400           17200                                                                                                                                                                                                                                                                                                                                                             | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938<br>5054.504<br>5170.308<br>5286.345<br>5402.609<br>5519.095                                                                                                         | 227.63                          | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8000<br>10000<br>dropped<br>csg<br>12.75     | units<br>ft<br>n/a<br>n/a                                          |
|    | Depth, ft           10000           10800           11600           12400           13200           14000           14800           15600           16400           17200           18000                                                                                                                                                                                                                                                                                                                                             | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938<br>5054.504<br>5170.308<br>5286.345<br>5402.609<br>5519.095<br>5831.946                                                                                             | 227.63                          | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8000<br>10000<br>dropped<br>csg<br>12.75     | units<br>ft<br>n/a<br>n/a                                          |
|    | Depth, ft           10000           10800           11600           12400           13200           14000           14800           15600           16400           17200           18000                                                                                                                                                                                                                                                                                                                                             | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938<br>5054.504<br>5170.308<br>5286.345<br>5402.609<br>5519.095<br>5831.946                                                                                             | 227.63                          | MMscf/D   | Wellbore         TVD BML         Water TVD         DS Status         Parameter         Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8000<br>10000<br>dropped<br>csg<br>12.75     | units<br>ft<br>n/a<br>n/a                                          |
| 74 | Depth, ft           10000           10800           11600           12400           13200           14000           14800           15600           16400           17200           18000                                                                                                                                                                                                                                                                                                                                             | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938<br>5054.504<br>5170.308<br>5286.345<br>5402.609<br>5519.095<br>5831.946<br>904-915                                                                                  | 227.63                          | MMscf/D   | Wellbore         TVD BML         Water TVD         DS Status         Parameter         Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8000<br>10000<br>dropped<br>csg<br>12.75     | units<br>ft<br>ft<br>n/a<br>n/a                                    |
| 74 | Depth, ft           10000           10800           11600           12400           13200           14000           14800           15600           16400           17200           18000           Run #           Intitial Condition                                                                                                                                                                                                                                                                                                | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938<br>5054.504<br>5170.308<br>5286.345<br>5402.609<br>5519.095<br>5831.946<br>904-915<br>IS                                                                            | 227.63                          | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8000<br>10000<br>dropped<br>csg<br>12.75     | units<br>ft<br>ft<br>n/a<br>n/a                                    |
| 74 | Depth, ft           10000           10800           11600           12400           13200           14000           14800           15600           16400           17200           18000           Run #           Intitial Condition           Surface Gas Rate                                                                                                                                                                                                                                                                     | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938<br>5054.504<br>5170.308<br>5286.345<br>5402.609<br>5519.095<br>5831.946<br>904-915<br>ns                                                                            | 227.63                          | MMscf/D   | Wellbore         TVD BML         Water TVD         DS Status         Parameter         Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8000<br>10000<br>dropped<br>csg<br>12.75     | units ft ft n/a n/a                                                |
| 74 | Depth, ft           10000           10800           11600           12400           13200           14000           14800           15600           16400           17200           18000           Run #           Intitial Condition           Surface Gas Rate                                                                                                                                                                                                                                                                     | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938<br>5054.504<br>5170.308<br>5286.345<br>5402.609<br>5519.095<br>5831.946<br>904-915<br>IS                                                                            | 227.63<br>iia<br>143.336        | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8000<br>10000<br>dropped<br>csg<br>12.75     | units<br>ft<br>n/a<br>n/a                                          |
| 74 | Depth, ft           10000           10800           11600           12400           13200           14000           14800           15600           16400           17200           18000           Run #           Intitial Condition           Surface Gas Rate           Depth, ft                                                                                                                                                                                                                                                 | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938<br>5054.504<br>5170.308<br>5286.345<br>5402.609<br>5519.095<br>5831.946<br>904-915<br>Is<br>Pressure, ps                                                            | 227.63<br>ia<br>143.336<br>ia   | MMscf/D   | Wellbore TVD BML Water TVD DS Status Parameter Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8000<br>10000<br>dropped<br>csg<br>12.75     | units<br>ft<br>n/a<br>n/a<br>units<br>ft<br>ft                     |
| 74 | Depth, ft           10000           10800           11600           12400           13200           14000           14800           15600           16400           17200           18000           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           100000                                                                                                                                                                                                                                | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938<br>5054.504<br>5170.308<br>5286.345<br>5402.609<br>5519.095<br>5831.946<br>904-915<br>ns<br>Pressure, ps<br>4485.53                                                 | 227.63<br>ia<br>143.336<br>ia   | MMscf/D   | Wellbore         TVD BML         Water TVD         DS Status         Parameter         Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8000<br>10000<br>dropped<br>csg<br>12.75     | units<br>ft<br>n/a<br>n/a<br>units<br>ft<br>ft<br>ft<br>n/a        |
| 74 | Depth, ft           10000           10800           11600           12400           13200           14000           14800           15600           16400           17200           18000           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           10000           10800                                                                                                                                                                                                                 | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938<br>5054.504<br>5170.308<br>5286.345<br>5402.609<br>5519.095<br>5831.946<br>904-915<br>hs<br>Pressure, ps<br>4485.53<br>4718.213<br>4015.53                          | 227.63<br>iia<br>143.336<br>iia | MMscf/D   | Wellbore         TVD BML         Water TVD         DS Status         Parameter         Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8000<br>10000<br>dropped<br>csg<br>12.75     | units<br>ft<br>n/a<br>n/a<br>units<br>ft<br>ft<br>ft<br>n/a<br>n/a |
|    | Depth, ft           10000           10800           11600           12400           13200           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           16400           17200           18000           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           10000           10800           11600 | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938<br>5054.504<br>5170.308<br>5286.345<br>5402.609<br>5519.095<br>5831.946<br>904-915<br>18<br>Pressure, ps<br>4485.53<br>4718.213<br>1919.007                         | 227.63<br>iia<br>143.336<br>iia | MMscf/D   | Wellbore         TVD BML         Water TVD         DS Status         Parameter         Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8000<br>10000<br>dropped<br>csg<br>12.75<br> | units<br>ft<br>n/a<br>n/a<br>units<br>ft<br>ft<br>n/a<br>n/a       |
|    | Depth, ft           10000           10800           11600           12400           13200           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           14000           16400           17200           18000           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           10000           10800           11600           12400                                 | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938<br>5054.504<br>5170.308<br>5286.345<br>5402.609<br>5519.095<br>5831.946<br>904-915<br>18<br>Pressure, ps<br>4485.53<br>4718.213<br>1919.007<br>5178.209             | 227.63<br>iia<br>143.336<br>iia | MMscf/D   | Wellbore         TVD BML         Water TVD         DS Status         Parameter         Par. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8000<br>10000<br>dropped<br>csg<br>12.75<br> | units<br>ft<br>n/a<br>n/a<br>units<br>ft<br>ft<br>n/a<br>n/a       |
|    | Depth, ft           10000           10800           11600           12400           13200           14000           14000           14800           15600           16400           17200           18000           Run #           Intitial Condition           Surface Gas Rate           Depth, ft           10000           12400           13200                                                                                                                                                                                 | Pressure, ps<br>4479.174<br>4593.728<br>4708.545<br>4823.617<br>4938.938<br>5054.504<br>5170.308<br>5286.345<br>5402.609<br>5519.095<br>5831.946<br>904-915<br>18<br>Pressure, ps<br>4485.53<br>4718.213<br>1919.007<br>5178.209<br>5406.059 | 227.63<br>iia<br>143.336<br>iia | MMscf/D   | Wellbore         TVD BML         Water TVD         DS Status         Parameter         Par. Value         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - | 8000<br>10000<br>dropped<br>csg<br>12.75<br> | units<br>ft<br>n/a<br>n/a<br>units<br>ft<br>ft<br>ft<br>n/a<br>n/a |

|    | 14800              | 5858.443       |          |           |            |           |             |
|----|--------------------|----------------|----------|-----------|------------|-----------|-------------|
|    | 15600              | 6083.265       |          |           |            |           |             |
|    | 16400              | 6307.328       |          |           |            | 1         |             |
|    | 17200              | 6530.723       |          |           |            | 1         |             |
|    | 18000              | 7560 357       |          |           |            |           |             |
|    | 10000              | 10001007       |          |           | -          | -         |             |
| 75 | Run #              | 916-927        |          |           |            | +         |             |
| 15 | Intitial Condition | <u>910-927</u> |          |           |            | +         |             |
|    | Surface Gas Pate   | 5              | 157 553  | MMscf/D   | Wollborg   |           | unite       |
|    | Surface Gas Kate   |                | 137.333  | WIWISCI/D |            | 8000      | units<br>fr |
|    | Donth ft           | Duccessie ne   |          |           |            | 10000     | n<br>a      |
|    | 10000              | Pressure, ps   |          |           | DS Status  | 10000     | IL<br>n/a   |
|    | 10000              | 4450.23        |          |           | DS Status  | aropped   | n/a         |
|    | 10800              | 4526.02        |          |           | Parameter  | ds length | n/a         |
|    | 11600              | 4601.975       |          |           | Par. Value | 25        | %           |
|    | 12400              | 4678.091       |          |           |            |           |             |
|    | 13200              | 4754.363       |          |           |            |           |             |
|    | 14000              | 4947.983       |          |           |            |           |             |
|    | 14800              | 5211.061       |          |           |            |           |             |
|    | 15600              | 5471.591       |          |           |            |           |             |
|    | 16400              | 5729.96        |          |           |            |           |             |
|    | 17200              | 5986.476       |          |           |            |           |             |
|    | 18000              | 7248           |          |           |            |           |             |
|    |                    |                |          |           |            |           |             |
| 76 | Run #              | 928-939        |          |           |            |           |             |
|    | Intitial Condition | IS             |          |           |            |           |             |
|    | Surface Gas Rate   |                | 235.551  | MMscf/D   | Wellbore   |           | units       |
|    |                    |                |          |           | TVD BML    | 8000      | ft          |
|    | Depth, ft          | Pressure, ps   | sia      |           | Water TVD  | 10000     | ft          |
|    | 10000              | 4480.381       |          |           | DS Status  | no DS     | n/a         |
|    | 10800              | 4572.782       |          |           | Parameter  | csg       | n/a         |
|    | 11600              | 4665.439       |          |           | Par. Value | 8.625     |             |
|    | 12400              | 4758.344       |          |           |            | 1         |             |
|    | 13200              | 4851.491       |          |           |            |           |             |
|    | 14000              | 4944.872       |          |           | -          |           |             |
|    | 14800              | 5038 482       |          |           |            | -         |             |
|    | 15600              | 5132 313       |          |           |            | -         |             |
|    | 16400              | 5226 361       |          |           | -          | -         |             |
|    | 17200              | 5320.619       |          |           | -          | +         |             |
|    | 18000              | 5454 079       |          |           |            | +         |             |
|    | 10000              | 5151.077       |          |           | -          | +         |             |
| 77 | Run #              | 940-951        |          |           |            | 1         |             |
|    | Intitial Condition |                |          |           |            | +         |             |
|    | Surface Gas Pate   | 5              | 245 872  | MMscf/D   | Wollborg   |           | unite       |
|    | Surface Gas Rate   |                | 243.072  | WIWISCI/D | TVD BMI    | 8000      | ft          |
|    | Donth ft           | Proceuro ne    | zio      |           | Water TVD  | 10000     | ft          |
|    | 10000              | 4515 504       | 14       |           | DS Status  | no DS     | n/a         |
|    | 10000              | 4505 600       |          |           | Do Status  |           | n/a<br>n/o  |
|    | 10600              | 4595.008       |          |           | Dar Value  | 10 75     | 11/a        |
|    | 12400              | 40/3.00/       |          |           | rai. value | 10.73     |             |
|    | 12400              | 4/30.18/       |          |           |            |           |             |
|    | 13200              | 4017.40        |          |           | +          | +         |             |
|    | 14000              | 4917.409       | <u> </u> |           |            | ļ         |             |
|    | 1 40 0 0           | 4000 262       |          |           |            |           |             |
|    | 14800              | 4998.363       |          |           |            |           |             |

|    | 16400              | 5160.633       |         |                 |                      |                |          |
|----|--------------------|----------------|---------|-----------------|----------------------|----------------|----------|
|    | 17200              | 5242.002       |         |                 |                      |                |          |
|    | 18000              | 5338.905       |         |                 |                      |                |          |
|    |                    |                |         |                 |                      |                |          |
| 78 | Run #              | 952-963        |         |                 |                      |                |          |
| 10 | Intitial Condition | <u> </u>       |         |                 |                      | 1              |          |
|    | Surface Gas Rate   | .5             | 255.41  | MMscf/D         | Wellbore             |                | unite    |
|    | Surface Gas Rate   |                | 255.71  | WINISCH/D       | TVD BMI              | 8000           | ff       |
|    | Donth ft           | Droccuro no    | vio     |                 | Weter TVD            | 10000          | n<br>ff  |
|    | 10000              | 4470 077       | la      |                 |                      | 10000          | n<br>n/o |
|    | 10000              | 4479.977       |         |                 | DS Status            | no DS          | n/a      |
|    | 10800              | 4555.745       |         |                 | Parameter            | csg            | n/a      |
|    | 11600              | 4631.673       |         |                 | Par. Value           | 12.75          |          |
|    | 12400              | 4707.757       |         |                 |                      |                |          |
|    | 13200              | 4783.991       |         |                 |                      |                |          |
|    | 14000              | 4860.374       |         |                 | _                    |                |          |
|    | 14800              | 4936.9         |         |                 |                      |                |          |
|    | 15600              | 5013.567       |         |                 |                      |                |          |
|    | 16400              | 5090.37        |         |                 |                      |                |          |
|    | 17200              | 5167.308       |         |                 |                      |                |          |
|    | 18000              | 5250.147       |         |                 |                      |                |          |
|    |                    |                |         |                 |                      |                |          |
| 79 | Run #              | 970-981        |         | The drillstring | could not be any lon | ger than 11700 | ft       |
|    | Intitial Condition | ıs             |         | pressure did    | not converge         | Ī              |          |
|    | Surface Gas Rate   |                | 28.049  | MMscf/D         | Wellbore             |                | units    |
|    |                    |                |         |                 | TVD BML              | 12000          | ft       |
|    | Depth. ft          | Pressure, ps   | sia     |                 | Water TVD            | 0              | ft       |
|    | 0                  | 178 698        |         |                 | DS Status            | hanging        | n/a      |
|    | 1200               | 1675 161       |         |                 | Parameter            | csg            | n/a      |
|    | 2400               | 2378 249       |         |                 | Par Value            | 8 625          | 11/ a    |
|    | 3600               | 2970.249       |         |                 | DS Length            | 11700          |          |
|    | 4800               | 2934.403       |         |                 | DS Lengui            | 11700          |          |
|    | 4000               | 2050 452       |         |                 |                      |                |          |
|    | 7200               | 3939.433       |         |                 |                      |                |          |
|    | 7200               | 4424.707       |         |                 |                      |                |          |
|    | 8400               | 48/5.4/1       |         |                 |                      |                |          |
|    | 9600               | 5315.645       |         |                 |                      | 1              |          |
|    | 10800              | 5/4/./66       |         |                 | -                    | +              |          |
|    | 12000              | 6543.663       |         |                 |                      |                |          |
|    |                    |                |         |                 |                      |                |          |
| 80 | Run #              | <u>982-993</u> |         |                 |                      |                |          |
|    | Intitial Condition | IS             |         |                 |                      |                |          |
|    | Surface Gas Rate   |                | 106.096 | MMscf/D         | Wellbore             |                | units    |
|    |                    |                |         |                 | TVD BML              | 12000          | ft       |
|    | Depth, ft          | Pressure, ps   | sia     |                 | Water TVD            | 0              | ft       |
|    | 0                  | 165.567        |         |                 | DS Status            | hanging        | n/a      |
|    | 1200               | 114.113        |         |                 | Parameter            | csg            | n/a      |
|    | 2400               | 1606.949       |         |                 | Par. Value           | 10.75          |          |
|    | 3600               | 1982.571       |         |                 |                      |                |          |
|    | 4800               | 2317.358       |         |                 |                      |                |          |
|    | 6000               | 2628.552       |         |                 |                      |                |          |
|    | 7200               | 2924.553       |         |                 |                      |                |          |
|    | 8400               | 3210.076       |         |                 |                      |                |          |
|    | 9600               | 3488.014       |         |                 |                      |                |          |
|    | 10800              | 3760.258       |         |                 |                      | T              |          |

|    | 12000              | 4727.526     |         |            |            |           |       |
|----|--------------------|--------------|---------|------------|------------|-----------|-------|
|    |                    |              |         |            |            |           |       |
| 81 | Run #              | 994-1005     |         |            |            |           |       |
|    | Intitial Condition | s            |         |            |            | 1         |       |
|    | Surface Gas Rate   | -5           | 191 509 | MMscf/D    | Wellbore   | 1         | units |
|    | Surface Gus Huite  |              | 171.507 | initiaen D | TVD BML    | 12000     | ft    |
|    | Denth ft           | Prossure no  | ria     |            | Water TVD  | 0         | ft    |
|    |                    | 120 125      | na –    |            | DS Status  | hanging   | n/2   |
|    | 1200               | 681 875      |         |            | Do Status  |           | n/a   |
|    | 2400               | 050.021      |         |            | Par Valua  | 12 75     | 11/a  |
|    | 2400               | 930.021      |         |            | ral. value | 12.75     |       |
|    | 3600               | 1250 820     |         |            |            |           |       |
|    | 4800               | 1539.839     |         |            |            |           |       |
|    | 6000               | 1537.902     |         |            |            | +         |       |
|    | 7200               | 1706.427     |         |            |            | +         |       |
|    | 8400               | 1868.295     |         |            |            |           |       |
|    | 9600               | 2025.318     |         |            |            |           |       |
|    | 10800              | 2178.704     |         |            |            |           |       |
|    | 12000              | 2652.204     |         |            |            |           |       |
|    |                    |              |         |            |            |           |       |
| 82 | Run #              | 1006-1017    |         |            |            |           |       |
|    | Intitial Condition | is           |         |            | _          |           |       |
|    | Surface Gas Rate   |              | 140.464 | MMscf/D    | Wellbore   |           | units |
|    |                    |              |         |            | TVD BML    | 12000     | ft    |
|    | Depth, ft          | Pressure, ps | sia     |            | Water TVD  | 0         | ft    |
|    | 0                  | 185.764      |         |            | DS Status  | hanging   | n/a   |
|    | 1200               | 1500.82      |         |            | Parameter  | ds length | n/a   |
|    | 2400               | 2108.681     |         |            | Par. Value | 50        |       |
|    | 3600               | 2605.855     |         |            |            |           |       |
|    | 4800               | 3052.184     |         |            |            |           |       |
|    | 6000               | 3469.432     |         |            |            |           |       |
|    | 7200               | 3557.314     |         |            |            |           |       |
|    | 8400               | 3638.077     |         |            |            | -         |       |
|    | 9600               | 3718.254     |         |            |            | -         |       |
|    | 10800              | 3797.88      |         |            |            | 1         |       |
|    | 12000              | 3884 374     |         |            |            |           |       |
|    | 12000              | 00011071     |         |            |            |           |       |
| 83 | Run #              | 1018-1029    |         |            |            | 1         |       |
|    | Intitial Condition | IS IS        |         |            |            |           |       |
|    | Surface Gas Rate   |              | 163.122 | MMscf/D    | Wellbore   | -         | units |
|    |                    |              |         |            | TVD BML    | 12000     | ft    |
|    | Depth. ft          | Pressure, ps | sia     |            | Water TVD  | 0         | ft    |
|    | 0                  | 260.305      |         |            | DS Status  | hanging   | n/a   |
|    | 1200               | 1734.345     |         |            | Parameter  | ds length | n/a   |
|    | 2400               | 2438.992     |         |            | Par. Value | 25        | %     |
|    | 3600               | 2785.737     |         |            |            |           |       |
|    | 4800               | 2859 509     |         |            |            | 1         |       |
|    | 6000               | 2932.847     |         |            |            | 1         |       |
|    | 7200               | 3005 781     |         |            | 1          | +         |       |
|    | 8400               | 3078 337     |         |            |            | +         |       |
|    | 0600               | 3150 539     |         |            |            | +         |       |
|    | 10800              | 3222 407     |         |            |            | +         |       |
|    | 10800              | 3305 /61     |         |            |            | +         |       |
|    | 12000              | 5505.401     |         |            |            |           |       |
|    |                    | 1            |         | 1          | 1          | 1         | 1     |

| 84  | Run #              | 1030-1041    | DS length ca  | used surface 1 | pressure to not c      | onverge      |             |
|-----|--------------------|--------------|---------------|----------------|------------------------|--------------|-------------|
|     | Intitial Condition | 15           | had to reduce | DS length to   | 9000 ft.               |              |             |
|     | Surface Gas Rate   |              | 28 441        | MMscf/D        | Wellbore               |              | units       |
|     | Surface Gus Hate   |              | 20.111        |                | TVD BML                | 12000        | ft          |
|     | Denth ft           | Pressure no  | sia           |                | Water TVD              | 0            | ft          |
|     | 0                  | 154 134      | <i></i>       |                | DS Status              | dropped      | n/a         |
|     | 1200               | 170 3/8      |               |                | Parameter              | csg          | n/a         |
|     | 2400               | 185 081      |               |                | Par Value              | esg<br>8 625 | 11/ a       |
|     | 3600               | 1254 654     |               |                | DS length              | 9000         | ft          |
|     | 4800               | 2154.34      |               |                | Do lengui              | 2000         | n           |
|     | 4800               | 2134.34      |               |                |                        |              |             |
|     | 7200               | 3381 752     |               |                |                        |              |             |
|     | 8400               | 3005 131     |               |                |                        |              |             |
|     | 0600               | 4400.004     |               |                |                        |              |             |
|     | 9000               | 4400.004     |               |                |                        |              |             |
|     | 12000              | 6524 454     |               |                |                        |              |             |
|     | 12000              | 0334.434     |               |                |                        |              |             |
| 85  | Dup #              | 1042 1052    |               |                |                        |              |             |
| 6.5 | Kull #             | 1042-1055    |               |                |                        |              |             |
|     | Surface Gas Pate   | 15           | 106.006       | MMscf/D        | Wollborg               |              | unite       |
|     | Surface Gas Kate   |              | 100.090       | WIIVISCI/D     | TVD PMI                | 12000        | units<br>ff |
|     | Donth ft           | Prossura no  | vio           |                | Water TVD              | 12000        | n<br>ft     |
|     | Deptil, ft         | 165 567      |               |                | DS Status              | drannad      | n<br>n/o    |
|     | 1200               | 1144 112     |               |                | DS Status              |              | 11/a        |
|     | 1200               | 1144.113     |               |                | Parameter<br>Dar Value | csg 10.75    | n/a         |
|     | 2400               | 1000.949     |               |                | Par. value             | 10.75        |             |
|     | 3000               | 1962.371     |               |                |                        | -            |             |
|     | 4800               | 2517.556     |               |                |                        |              |             |
|     | 7200               | 2026.332     |               |                |                        |              |             |
|     | 8400               | 2924.333     |               |                |                        |              |             |
|     | 0600               | 3210.070     |               |                |                        |              |             |
|     | 10800              | 3760 258     |               |                |                        |              |             |
|     | 12000              | 4727 526     |               |                |                        |              |             |
|     | 12000              | 4727.520     |               |                |                        |              |             |
| 86  | Run #              | 1054-1065    |               |                |                        |              |             |
| 00  | Intitial Condition | 10011000     |               |                |                        |              |             |
|     | Surface Gas Rate   |              | 191 509       | MMscf/D        | Wellbore               |              | units       |
|     |                    |              | 1,110.07      |                | TVD BML                | 12000        | ft          |
|     | Depth. ft          | Pressure, ps | sia           |                | Water TVD              | 0            | ft          |
|     | 0                  | 120.125      |               |                | DS Status              | dropped      | n/a         |
|     | 1200               | 681.875      |               |                | Parameter              | csg          | n/a         |
|     | 2400               | 950.021      |               |                | Par. Value             | 12.75        |             |
|     | 3600               | 1167.223     |               |                |                        |              |             |
|     | 4800               | 1359.839     |               |                |                        |              |             |
|     | 6000               | 1537.902     |               |                |                        |              |             |
|     | 7200               | 1706.427     |               |                |                        |              |             |
|     | 8400               | 1868 295     |               |                |                        |              |             |
|     | 9600               | 2025.318     |               |                | 1                      |              |             |
|     | 10800              | 2178 704     |               |                |                        |              |             |
|     | 12000              | 2652.204     |               |                | 1                      |              |             |
|     | 12000              | 2002.201     |               |                | 1                      |              |             |
| 87  | Run #              | 1066-1077    |               |                | 1                      |              |             |
|     |                    |              |               | l              | 1                      | 1            |             |

|    | Surface Gas Rate   |              | 123.09  | MMscf/D     | Wellbore     |           | units      |
|----|--------------------|--------------|---------|-------------|--------------|-----------|------------|
|    |                    |              |         |             | TVD BML      | 12000     | ft         |
|    | Depth, ft          | Pressure, ps | sia     |             | Water TVD    | 0         | ft         |
|    | 0                  | 57.533       |         |             | DS Status    | dropped   | n/a        |
|    | 1200               | 167.783      |         |             | Parameter    | ds length | n/a        |
|    | 2400               | 229.247      |         |             | Par. Value   | 50        |            |
|    | 3600               | 279 615      |         |             |              |           |            |
|    | 4800               | 324 404      |         |             |              |           |            |
|    | 6000               | 365 788      |         |             |              |           |            |
|    | 7200               | 1424 254     |         |             |              |           |            |
|    | 8400               | 1991 911     |         |             |              |           |            |
|    | 9600               | 2454 005     |         |             |              |           |            |
|    | 10800              | 2865 555     |         |             |              |           |            |
|    | 12000              | 4314 801     |         |             |              |           |            |
|    | 12000              | +51+.071     |         |             |              |           |            |
| 88 | Run #              | 1078-1088    |         |             |              |           |            |
| 00 | Intitial Condition |              |         |             |              |           |            |
|    | Surface Gas Rate   | 5            | 135 363 | MMscf/D     | Wellbore     |           | units      |
|    | Surface Gus Rate   |              | 155.505 | WINISCH D   | TVD BML      | 12000     | ft         |
|    | Denth ft           | Pressure no  | sia     |             | Water TVD    | 0         | ft         |
|    | 0                  | 68 522       | na      |             | DS Status    | dropped   | n/a        |
|    | 1200               | 185 619      |         |             | Parameter    | ds length | n/a<br>n/a |
|    | 2400               | 252 751      |         |             | Par Value    | 25        | 11/a       |
|    | 2400               | 207.884      |         |             | I al. value  | 23        |            |
|    | 3000               | 256.056      |         |             |              |           |            |
|    | 4800               | 330.930      |         |             |              |           |            |
|    | 7200               | 402.522      |         |             |              |           |            |
|    | 7200               | 445.195      |         |             |              |           |            |
|    | 8400               | 480.287      |         |             |              |           |            |
|    | 9600               | 1204.675     |         |             |              |           |            |
|    | 10800              | 1970.222     |         |             |              |           |            |
|    | 12000              | 4011.798     |         |             |              |           |            |
| 80 | Dun #              | 1000 1101    |         |             |              |           |            |
| 07 | Intitial Condition | 1070-1101    |         |             |              |           |            |
|    | Surface Gas Rate   | 5            | 212 186 | MMscf/D     | Wellbore     |           | unite      |
|    | Surface Gas Rate   |              | 212.100 | IVIIVISCI/D | TVD BMI      | 12000     | ff         |
|    | Denth ft           | Pressure no  | sia     |             | Water TVD    | 12000     | ft         |
|    | 0                  | 115 132      | nu      |             | DS Status    | no DS     | n/a        |
|    | 1200               | 507.452      |         |             | Parameter    | CSG       | n/a        |
|    | 2400               | 701 292      |         |             | Par Value    | 8 625     | 11/ a      |
|    | 3600               | 858 953      |         |             | i ui. v uiue | 0.025     |            |
|    | 4800               | 998.86       |         |             |              |           |            |
|    | 6000               | 1128 131     |         |             |              |           |            |
|    | 7200               | 1250.361     |         |             |              |           |            |
|    | 8400               | 1367 637     |         |             |              |           |            |
|    | 0600               | 1481 282     |         |             |              |           |            |
|    | 10800              | 1502.10      |         |             |              |           |            |
|    | 12000              | 1802.19      |         |             |              |           |            |
|    | 12000              | 1002.077     |         |             |              |           |            |
| 90 | Run #              | 1102-1113    |         |             |              |           |            |
| 70 | Intitial Condition | 102 1113     |         |             | 1            |           |            |
|    | Surface Gas Rate   |              | 237,405 | MMscf/D     | Wellbore     |           | units      |
|    |                    |              |         |             | TVD BML      | 12000     | ft         |

|     | Depth. ft          | Pressure, ps | sia           |              | Water TVD         | 0       | ft    |
|-----|--------------------|--------------|---------------|--------------|-------------------|---------|-------|
|     | 0                  | 69.17        |               |              | DS Status         | no DS   | n/a   |
|     | 1200               | 315 518      |               |              | Parameter         | CS9     | n/a   |
|     | 2400               | 433.812      |               |              | Par. Value        | 10.75   |       |
|     | 3600               | 530.201      |               |              |                   |         |       |
|     | 4800               | 615.749      |               |              |                   |         |       |
|     | 6000               | 694.748      |               |              |                   |         |       |
|     | 7200               | 769.376      |               |              |                   |         |       |
|     | 8400               | 840.903      |               |              |                   |         |       |
|     | 9600               | 910.143      |               |              |                   |         |       |
|     | 10800              | 977.646      |               |              |                   |         |       |
|     | 12000              | 1118.184     |               |              |                   |         |       |
|     |                    |              |               |              |                   |         |       |
| 91  | Run #              | 1114-1125    |               |              |                   |         |       |
|     | Intitial Condition | is           |               |              |                   |         |       |
|     | Surface Gas Rate   |              | 254.085       | MMscf/D      | Wellbore          |         | units |
|     |                    |              |               |              | TVD BML           | 12000   | ft    |
|     | Depth, ft          | Pressure, ps | sia           |              | Water TVD         | 0       | ft    |
|     | 0                  | 48.827       |               |              | DS Status         | no DS   | n/a   |
|     | 1200               | 199.015      |               |              | Parameter         | csg     | n/a   |
|     | 2400               | 271.892      |               |              | Par. Value        | 12.75   |       |
|     | 3600               | 331.415      |               |              |                   |         |       |
|     | 4800               | 384.292      |               |              |                   |         |       |
|     | 6000               | 433.133      |               |              |                   |         |       |
|     | 7200               | 479.268      |               |              |                   |         |       |
|     | 8400               | 523.474      |               |              |                   |         |       |
|     | 9600               | 566.251      |               |              |                   |         |       |
|     | 10800              | 607.937      |               |              |                   |         |       |
|     | 12000              | 696.632      |               |              |                   |         |       |
|     |                    |              |               |              |                   |         |       |
| 92  | Run #              | 1132-1143    | DS length cau | ised surface | pressure to not c | onverge |       |
|     | Intitial Condition | ns           | had to reduce | DS length to | o 11500 ft.       |         |       |
|     | Surface Gas Rate   |              | 39.948        | MMscf/D      | Wellbore          |         | units |
|     |                    |              | -             |              | TVD BML           | 12000   | ft    |
|     | Depth, ft          | Pressure, ps | sia           |              | Water TVD         | 5000    | ft    |
|     | 5000               | 2233.037     |               |              | DS Status         | hanging | n/a   |
|     | 6200               | 3228.878     |               |              | Parameter         | csg     | n/a   |
|     | 7400               | 4067.113     |               |              | Par. Value        | 8.625   | G     |
|     | 8000               | 4821.911     |               |              | DS Length         | 11500   | п     |
|     | 9800               | 6224 752     |               |              | -                 | -       |       |
|     | 12200              | 6004 512     |               |              |                   |         |       |
|     | 12200              | 7550 703     |               |              |                   |         |       |
|     | 1/600              | 8203.62      |               |              |                   |         |       |
|     | 15800              | 8838 531     |               |              |                   |         |       |
|     | 13300              | 9272 727     |               |              |                   |         |       |
|     | 17000              | 72121121     | <u> </u>      |              |                   |         |       |
| 93  | Run #              | 1144-1155    |               |              |                   |         |       |
| ,,, | Intitial Condition | IS           |               |              |                   |         |       |
|     | Surface Gas Rate   |              | 142.881       | MMscf/D      | Wellbore          |         | units |
|     |                    |              |               |              | TVD BML           | 12000   | ft    |
|     | Depth, ft          | Pressure, ps | sia           |              | Water TVD         | 5000    | ft    |
|     | 5000               | 2225.023     |               |              | DS Status         | hanging | n/a   |

|    | 6200               | 2686.583     |         |         | Parameter  | csg        | n/a   |
|----|--------------------|--------------|---------|---------|------------|------------|-------|
|    | 7400               | 3114.88      |         |         | Par. Value | 10.75      |       |
|    | 8600               | 3518.58      |         |         |            |            |       |
|    | 9800               | 3906.309     |         |         |            |            |       |
|    | 11000              | 4282.943     |         |         |            |            |       |
|    | 12200              | 4651.481     |         |         |            |            |       |
|    | 13400              | 5013.892     |         |         |            |            |       |
|    | 14600              | 5371.528     |         |         |            |            |       |
|    | 15800              | 5725.353     |         |         |            |            |       |
|    | 17000              | 6981.855     |         |         |            |            |       |
|    |                    |              |         |         |            |            |       |
| 94 | Run #              | 1156-1167    |         |         |            |            |       |
|    | Intitial Condition | IS           |         |         |            |            |       |
|    | Surface Gas Rate   |              | 259.481 | MMscf/D | Wellbore   |            | units |
|    |                    |              |         |         | TVD BML    | 12000      | ft    |
|    | Depth, ft          | Pressure, ps | sia     |         | Water TVD  | 5000       | ft    |
|    | 5000               | 2231.141     |         |         | DS Status  | hanging    | n/a   |
|    | 6200               | 2431.956     |         |         | Parameter  | csg        | n/a   |
|    | 7400               | 2631.477     |         |         | Par. Value | 12.75      |       |
|    | 8600               | 2828.034     |         |         |            |            |       |
|    | 9800               | 3022.396     |         |         |            |            |       |
|    | 11000              | 3215.108     |         |         |            |            |       |
|    | 12200              | 3406.562     |         |         |            |            |       |
|    | 13400              | 3597.05      |         |         |            |            |       |
|    | 14600              | 3786.789     |         |         |            |            |       |
|    | 15800              | 3975.946     |         |         |            |            |       |
|    | 17000              | 4504.613     |         |         |            |            |       |
|    |                    |              |         |         |            |            |       |
| 95 | Run #              | 1168-1179    |         |         |            |            |       |
|    | Intitial Condition | IS           |         |         |            |            |       |
|    | Surface Gas Rate   |              | 174.174 | MMscf/D | Wellbore   |            | units |
|    |                    |              |         |         | TVD BML    | 12000      | ft    |
|    | Depth, ft          | Pressure, ps | sia     |         | Water TVD  | 5000       | ft    |
|    | 5000               | 2251.437     |         |         | DS Status  | hanging    | n/a   |
|    | 6200               | 2884.577     |         |         | Parameter  | ds length  | n/a   |
|    | 7400               | 3451.11      |         |         | Par. Value | 50         | %     |
|    | 8600               | 3976.176     |         |         |            |            |       |
|    | 9800               | 4475.905     |         |         |            |            |       |
|    | 11000              | 4958.624     |         |         |            |            |       |
|    | 12200              | 5429.174     |         |         |            |            |       |
|    | 13400              | 5890.608     |         |         |            |            |       |
|    | 14600              | 6042.772     |         |         |            |            |       |
|    | 15800              | 6160.471     |         |         |            |            |       |
|    | 17000              | 6285.125     |         |         |            |            |       |
|    |                    |              |         |         |            |            |       |
| 96 | Run #              | 1180-1191    |         |         |            |            |       |
|    | Intitial Condition | IS           |         |         |            |            |       |
|    | Surface Gas Rate   |              | 206.778 | MMscf/D | Wellbore   |            | units |
|    |                    |              |         |         | TVD BML    | 12000      | ft    |
|    | Depth, ft          | Pressure, ps | sia     |         | Water TVD  | 5000       | ft    |
|    | 5000               | 2248.118     |         |         | DS Status  | hanging    | n/a   |
|    | (000               | 2000 704     |         | 1       | Doromotor  | da lan ath | mla   |
|    | 6200               | 3088.794     |         |         | Parameter  | ds length  | 11/a  |

|    | 8600               | 4473.625     |               |              |                   |          |             |
|----|--------------------|--------------|---------------|--------------|-------------------|----------|-------------|
|    | 9800               | 4877.035     |               |              |                   |          |             |
|    | 11000              | 4990.087     |               |              |                   |          |             |
|    | 12200              | 5102.619     |               |              |                   | 1        |             |
|    | 13400              | 5214.657     |               |              |                   | 1        |             |
|    | 14600              | 5326.225     |               |              |                   |          |             |
|    | 15800              | 5437 343     |               |              |                   | +        |             |
|    | 17000              | 5559 545     |               |              |                   | +        |             |
|    | 17000              | 5557.515     |               |              |                   | +        |             |
| 07 | Pup #              | 1102 1203    | DS length cou | used surface | pressure to not a | onverge  |             |
| 21 | Intitial Condition | 1192-1205    | bod to roduce | DS longth to | > 8500 ft         |          |             |
|    | Surface Cas Pate   | 15           | 28 /19        | MMoof/D      | Wellborg          | +        | unito       |
|    | Sullace Gas Kale   |              | 30.410        | WINISCH/D    |                   | 12000    | units<br>ft |
|    | Donth ft           | Duccesses as |               |              | I VD BML          | 50000    | n<br>6      |
|    | <b>Deptn</b> , It  | Pressure, ps | sia           |              | DC Status         | 30000    | IL<br>n/o   |
|    | 5000               | 2244.629     |               |              | DS Status         | aropped  | n/a         |
|    | 6200               | 2306.673     |               |              | Parameter         | csg      | n/a         |
|    | 7400               | 2368.675     |               |              | Par. Value        | 8.625    |             |
|    | 8600               | 2512.553     |               |              |                   | <b> </b> |             |
|    | 9800               | 3453.615     |               |              |                   | <u> </u> |             |
|    | 11000              | 4253.232     |               |              |                   | <u> </u> |             |
|    | 12200              | 4984.885     |               |              |                   |          |             |
|    | 13400              | 5676.284     |               |              |                   |          |             |
|    | 14600              | 6340.959     |               |              |                   |          |             |
|    | 15800              | 6986.547     |               |              |                   |          |             |
|    | 17000              | 9308.083     |               |              |                   |          |             |
|    |                    |              |               |              |                   |          |             |
| 98 | Run #              | 1204-1215    |               |              |                   |          |             |
|    | Intitial Condition | is           |               |              |                   |          |             |
|    | Surface Gas Rate   |              | 142.806       | MMscf/D      | Wellbore          |          | units       |
|    |                    |              |               |              | TVD BML           | 12000    | ft          |
|    | Depth, ft          | Pressure, ps | sia           |              | Water TVD         | 5000     | ft          |
|    | 5000               | 2225.189     |               |              | DS Status         | dropped  | n/a         |
|    | 6200               | 2693.896     |               |              | Parameter         | csg      | n/a         |
|    | 7400               | 3121.207     |               |              | Par. Value        | 10.75    |             |
|    | 8600               | 3524.19      |               |              |                   | 1        |             |
|    | 9800               | 3911.353     |               |              | 1                 | 1        |             |
|    | 11000              | 4287.513     |               |              |                   | 1        |             |
|    | 12200              | 4655.638     |               |              |                   | 1        |             |
|    | 13400              | 5017.679     |               |              |                   | 1        |             |
|    | 14600              | 5374.975     |               |              |                   | 1        |             |
|    | 15800              | 5728.485     |               |              |                   | +        |             |
|    | 17000              | 6983 535     |               |              | 1                 | 1        |             |
|    | 1,000              | 0700.000     | <u> </u>      |              | 1                 | +        |             |
| 99 | Run #              | 1216-1227    |               |              | 1                 | +        |             |
| ,, | Intitial Condition | 1210 1227    |               |              |                   | +        |             |
|    | Surface Gas Rate   |              | 259.416       | MMscf/D      | Wellbore          | +        | unite       |
|    | Surface Gas Kale   |              | 237.410       | 111110CI/D   | TVD BMI           | 12000    | ft          |
|    | Denth ft           | Prossure no  |               |              | Water TVD         | 5000     | ft          |
|    | 5000               | 2220 067     | 91a           |              | DS Status         | dropped  | n/9         |
|    | 5000               | 2230.907     |               |              | Do Status         | losa     | n/a         |
|    | 7400               | 2434.418     |               |              | Par Value         | 10 75    | 11/a        |
|    | 2400               | 2033.008     |               |              | rai. value        | 12.73    |             |
|    | 0008               | 2024 510     |               |              | +                 | +        |             |
|    | 9800               | 3024.519     |               |              |                   |          |             |

|     | 11000              | 3217.144     |         |           |             |           |             |
|-----|--------------------|--------------|---------|-----------|-------------|-----------|-------------|
|     | 12200              | 3408.519     |         |           |             |           |             |
|     | 13400              | 3598.935     |         |           |             |           |             |
|     | 14600              | 3788.606     |         |           |             |           |             |
|     | 15800              | 3977.7       |         |           |             |           |             |
|     | 17000              | 4506.038     |         |           |             | 1         |             |
|     | 17000              | +300.030     |         |           |             | -         |             |
| 100 | Pup #              | 1228 1230    |         |           |             | 1         |             |
| 100 | Intitial Condition | 1220-1257    |         |           |             | 1         |             |
|     | Surface Cas Pate   | 15           | 154 717 | MMcof/D   | Wallborg    | -         | unito       |
|     | Sufface Oas Kale   |              | 134.717 | WINISCI/D |             | 12000     | units<br>A  |
|     | Dowth ft           | Duccesses as |         |           |             | 5000      | n<br>e      |
|     | Deptil, It         | rressure, ps | sia     |           | Water TVD   | 3000      | n<br>       |
|     | 5000               | 2248.266     |         |           | DS Status   | aropped   | n/a         |
|     | 6200               | 2315.583     |         |           | Parameter   | ds length | n/a         |
|     | 7400               | 2382.979     |         |           | Par. Value  | 50        |             |
|     | 8600               | 2409.311     |         |           |             |           |             |
|     | 9800               | 3017.497     |         |           |             |           |             |
|     | 11000              | 3497.437     |         |           |             |           |             |
|     | 12200              | 3949.219     |         |           |             |           |             |
|     | 13400              | 4382.436     |         |           |             |           |             |
|     | 14600              | 4802.569     |         |           |             |           |             |
|     | 15800              | 5213.032     |         |           |             |           |             |
|     | 17000              | 6718.187     |         |           |             |           |             |
|     |                    |              |         |           |             |           |             |
| 101 | Run #              | 1240-1251    |         |           |             |           |             |
|     | Intitial Condition | is           |         |           |             |           |             |
|     | Surface Gas Rate   |              | 174.581 | MMscf/D   | Wellbore    |           | units       |
|     |                    |              |         |           | TVD BML     | 12000     | ft          |
|     | Depth, ft          | Pressure, ps | sia     |           | Water TVD   | 5000      | ft          |
|     | 5000               | 2253.842     |         |           | DS Status   | dropped   | n/a         |
|     | 6200               | 2323.072     |         |           | Parameter   | ds length | n/a         |
|     | 7400               | 2392.417     |         |           | Par. Value  | 25        |             |
|     | 8600               | 2461.872     |         |           |             |           |             |
|     | 9800               | 2531.435     |         |           |             |           |             |
|     | 11000              | 2601.1       |         |           |             | 1         |             |
|     | 12200              | 2670 866     |         |           |             |           |             |
|     | 13400              | 3065 38      |         |           |             | 1         |             |
|     | 14600              | 3673 698     |         |           |             |           |             |
|     | 15800              | 4232 331     |         |           |             | -         |             |
|     | 17000              | 6276.075     |         |           |             |           |             |
|     | 17000              | 0270.075     |         |           |             | -         |             |
| 102 | Pup #              | 1252 1263    |         |           |             | 1         |             |
| 102 | Intitial Condition | 1252-1205    |         |           |             |           |             |
|     | Surface Gas Pate   | 15           | 284.44  | MMscf/D   | Wellborg    | 1         | unite       |
|     | Sullace Gas Kate   |              | 204.44  | WINISCI/D | TVD PMI     | 12000     | units<br>fr |
|     | Donth ft           | Duccesses as |         |           | T V D BIVIL | 5000      | n<br>a      |
|     | 5000               | 2254 147     | na      |           |             | 000C      | 11<br>n/o   |
|     | 5000               | 2254.147     |         |           | DS Status   | no DS     | n/a         |
|     | 6200               | 2588.826     |         |           | Parameter   | csg       | 11/a        |
|     | 7400               | 2523.24      |         |           | Par. Value  | 8.625     |             |
|     | 8600               | 2657.512     |         |           |             |           |             |
|     | 9800               | 2791.729     |         |           |             | <u> </u>  |             |
|     | 11000              | 2925.958     |         |           |             | ───       |             |
|     | 12200              | 3060.247     |         |           |             |           |             |

|     | 13400              | 3194.632                              |               |                |                   |         |          |
|-----|--------------------|---------------------------------------|---------------|----------------|-------------------|---------|----------|
|     | 14600              | 3329.139                              |               |                |                   |         |          |
|     | 15800              | 3463.786                              |               |                |                   |         |          |
|     | 17000              | 3683.365                              |               |                |                   |         |          |
|     | 1,000              | 20021202                              |               |                |                   |         |          |
| 103 | Run #              | 1264-1275                             |               |                |                   |         |          |
| 105 | Intitial Condition | 1201 1275                             |               |                |                   |         |          |
|     | Surface Gas Rate   | 15                                    | 312 868       | MMscf/D        | Wellbore          |         | units    |
|     | Surface Gas Rate   |                                       | 512.000       | WIWISCH D      | TVD BMI           | 12000   | ft       |
|     | Donth ft           | Proceuro no                           | zio           |                | Woter TVD         | 5000    | n<br>ft  |
|     | 5000               | 1100000000000000000000000000000000000 | sia           |                | DS Status         | 5000    | n<br>n/o |
|     | 5000               | 2242.420                              |               |                | DS Status         | 10 DS   | 11/a     |
|     | 7400               | 2329.038                              |               |                | Paralleter        | 10 75   | II/a     |
|     | /400               | 2417.230                              |               |                | Par. Value        | 10.75   |          |
|     | 8600               | 2505.146                              |               |                |                   |         |          |
|     | 9800               | 2593.372                              |               |                |                   |         |          |
|     | 11000              | 2681.9                                |               |                |                   |         |          |
|     | 12200              | 2770.719                              |               |                |                   |         |          |
|     | 13400              | 2859.814                              |               |                |                   |         |          |
|     | 14600              | 2949.175                              |               |                |                   |         |          |
|     | 15800              | 3038.791                              |               |                |                   |         |          |
|     | 17000              | 3170.387                              |               |                |                   |         |          |
|     |                    |                                       |               |                |                   |         |          |
| 104 | Run #              | 1276-1287                             |               |                |                   |         |          |
|     | Intitial Condition | IS                                    |               |                |                   |         |          |
|     | Surface Gas Rate   |                                       | 327.848       | MMscf/D        | Wellbore          |         | units    |
|     |                    |                                       |               |                | TVD BML           | 12000   | ft       |
|     | Depth, ft          | Pressure, ps                          | sia           |                | Water TVD         | 5000    | ft       |
|     | 5000               | 2256.46                               |               |                | DS Status         | no DS   | n/a      |
|     | 6200               | 2327.072                              |               |                | Parameter         | csg     | n/a      |
|     | 7400               | 2397.823                              |               |                | Par. Value        | 12.75   |          |
|     | 8600               | 2468.708                              |               |                |                   |         |          |
|     | 9800               | 2539.722                              |               |                |                   |         |          |
|     | 11000              | 2610.859                              |               |                |                   |         |          |
|     | 12200              | 2682.116                              |               |                |                   |         |          |
|     | 13400              | 2753.488                              |               |                |                   |         |          |
|     | 14600              | 2824.97                               |               |                |                   |         |          |
|     | 15800              | 2896.559                              |               |                |                   |         |          |
|     | 17000              | 2984.868                              |               |                |                   |         |          |
|     |                    |                                       |               |                |                   |         |          |
| 105 | Run #              | 1294-1306                             | DS length cau | ised surface p | pressure to not c | onverge |          |
|     | Intitial Condition | IS                                    | had to reduce | DS length to   | 11500 ft.         |         |          |
|     | Surface Gas Rate   |                                       | 46.045        | MMscf/D        | Wellbore          |         | units    |
|     |                    |                                       |               |                | TVD BML           | 12000   | ft       |
|     | Depth, ft          | Pressure, ps                          | sia           |                | Water TVD         | 10000   | ft       |
|     | 10000              | 4469.968                              |               |                | DS Status         | hanging | n/a      |
|     | 11200              | 5350.204                              |               |                | Parameter         | csg     | n/a      |
|     | 12400              | 6197.633                              |               |                | Par. Value        | 8.625   |          |
|     | 13600              | 7013.631                              |               |                | 1                 |         |          |
|     | 14800              | 7807.605                              |               |                | 1                 |         |          |
|     | 16000              | 8585.175                              |               |                | 1                 |         |          |
|     | 17200              | 9349.979                              |               |                | 1                 |         |          |
|     | 18400              | 10104.523                             |               |                | 1                 |         |          |
|     | 19600              | 10850.609                             |               |                | 1                 |         | -        |

|     | 20800              | 11589.582    |         |         |            |           |       |
|-----|--------------------|--------------|---------|---------|------------|-----------|-------|
|     | 22000              | 12094.059    |         |         |            |           |       |
|     |                    |              |         |         |            |           |       |
| 106 | Run #              | 1306-1317    |         |         |            |           |       |
|     | Intitial Condition | ıs           |         |         |            |           |       |
|     | Surface Gas Rate   |              | 162.096 | MMscf/D | Wellbore   |           | units |
|     |                    |              |         |         | TVD BML    | 12000     | ft    |
|     | Depth, ft          | Pressure, ps | sia     |         | Water TVD  | 10000     | ft    |
|     | 10000              | 4498.425     |         |         | DS Status  | hanging   | n/a   |
|     | 11200              | 4906.203     |         |         | Parameter  | csg       | n/a   |
|     | 12400              | 5314.213     |         |         | Par. Value | 10.75     |       |
|     | 13600              | 5717.712     |         |         |            |           |       |
|     | 14800              | 6117.623     |         |         |            |           |       |
|     | 16000              | 6514.616     |         |         |            |           |       |
|     | 17200              | 6909.193     |         |         |            |           |       |
|     | 18400              | 7301.74      |         |         |            |           |       |
|     | 19600              | 7692.557     |         |         |            | -         |       |
|     | 20800              | 8081.886     |         |         |            | -         |       |
|     | 22000              | 9446.124     |         |         |            | 1         |       |
|     |                    |              |         |         |            | 1         |       |
| 107 | Run #              | 1318-1329    |         |         |            |           |       |
| 107 | Intitial Condition | IS IS IS     |         |         |            | 1         |       |
|     | Surface Gas Rate   |              | 283.957 | MMscf/D | Wellbore   | 1         | units |
|     |                    |              |         |         | TVD BML    | 12000     | ft    |
|     | Depth. ft          | Pressure, ps | sia     |         | Water TVD  | 10000     | ft    |
|     | 10000              | 4496.458     |         |         | DS Status  | hanging   | n/a   |
|     | 11200              | 4700.333     |         |         | Parameter  | csg       | n/a   |
|     | 12400              | 4906.133     |         |         | Par. Value | 12.75     |       |
|     | 13600              | 5112.035     |         |         |            |           |       |
|     | 14800              | 5318.036     |         |         |            |           |       |
|     | 16000              | 5524.133     |         |         |            |           |       |
|     | 17200              | 5730.324     |         |         |            | 1         |       |
|     | 18400              | 5936.604     |         |         |            | 1         |       |
|     | 19600              | 6142.972     |         |         |            | 1         |       |
|     | 20800              | 6349.422     |         |         |            | 1         |       |
|     | 22000              | 6854.937     |         |         |            |           |       |
|     |                    |              |         |         |            |           |       |
| 108 | Run #              | 1330-1341    |         |         |            |           |       |
|     | Intitial Condition | IS           |         |         |            |           |       |
|     | Surface Gas Rate   |              | 183.994 | MMscf/D | Wellbore   |           | units |
|     |                    |              |         |         | TVD BML    | 12000     | ft    |
|     | Depth, ft          | Pressure, ps | sia     |         | Water TVD  | 10000     | ft    |
|     | 10000              | 4503.164     |         |         | DS Status  | hanging   | n/a   |
|     | 11200              | 4994.398     |         |         | Parameter  | ds length | n/a   |
|     | 12400              | 5482.607     |         |         | Par. Value | 50        |       |
|     | 13600              | 5962.739     |         |         |            |           |       |
|     | 14800              | 6436.613     |         |         |            |           |       |
|     | 16000              | 6905.499     |         |         |            |           |       |
|     | 17200              | 7370.315     |         |         |            | <u> </u>  |       |
|     | 18400              | 7831.7545    |         |         |            |           |       |
|     | 19600              | 8290.317     |         |         |            | 1         |       |
|     | 20800              | 8746.442     |         |         |            | 1         |       |
|     | 22000              | 8951.26      |         |         |            | 1         |       |

| 109 | Run #              | 1342-1353    |               |              |                   |           |               |
|-----|--------------------|--------------|---------------|--------------|-------------------|-----------|---------------|
|     | Intitial Condition | 15           |               |              |                   |           |               |
|     | Surface Gas Rate   |              | 220,159       | MMscf/D      | Wellbore          |           | units         |
|     |                    |              |               |              | TVD BML           | 12000     | ft            |
|     | Depth. ft          | Pressure, p  | sia           |              | Water TVD         | 10000     | ft            |
|     | 10000              | 4501 931     |               |              | DS Status         | hanging   | n/a           |
|     | 11200              | 5152 195     |               |              | Parameter         | ds length | n/a           |
|     | 12400              | 5789.802     |               |              | Par Value         | 25        | 11 <i>7</i> u |
|     | 13600              | 6410 782     |               |              | i un vulue        |           |               |
|     | 14800              | 7019 464     |               |              |                   | +         |               |
|     | 16000              | 7436 231     |               |              |                   |           |               |
|     | 17200              | 7576 311     |               |              |                   |           |               |
|     | 18400              | 7715 625     |               |              |                   |           |               |
|     | 19600              | 7854 201     |               |              |                   |           |               |
|     | 20800              | 7007.201     |               |              |                   |           |               |
|     | 20000              | 8130 586     |               |              |                   | +         |               |
|     | 22000              | 8139.380     |               |              |                   |           |               |
| 110 | Run #              | 1354-1365    | DS length car | sed surface  | pressure to not c | onverge   |               |
| 110 | Intitial Condition | 1554-1505    | had to reduce | DS length to | x 8500 ft         |           |               |
|     | Surface Gas Rate   | 15           | 43 992        | MMscf/D      | Wellbore          |           | units         |
|     | Surface Gas Rate   |              | +3.772        | WIWISCH D    | TVD BML           | 12000     | ft            |
|     | Denth ft           | Pressure ne  | i<br>sia      |              | Water TVD         | 10000     | ft            |
|     | 10000              | 4475 112     | , iu          |              | DS Status         | dropped   | n/a           |
|     | 11200              | 4585 983     |               |              | Parameter         | csg       | n/a<br>n/a    |
|     | 1200               | 4696 126     |               |              | Par Value         | 8 625     | 11/ a         |
|     | 13600              | 4866 224     |               |              |                   | 0.025     |               |
|     | 13000              | 5703 971     |               |              |                   | -         |               |
|     | 16000              | 6501 774     |               |              |                   |           |               |
|     | 17200              | 7272.643     |               |              |                   | +         |               |
|     | 18400              | 8024.002     |               |              |                   |           |               |
|     | 19600              | 8760.505     |               |              |                   |           |               |
|     | 20800              | 9486.271     |               |              |                   | 1         |               |
|     | 22000              | 12143.047    |               |              |                   | 1         |               |
|     |                    |              |               |              |                   | 1         |               |
| 111 | Run #              | 1366-1377    |               |              |                   |           |               |
|     | Intitial Condition | is           |               |              |                   |           |               |
|     | Surface Gas Rate   |              | 162.019       | MMscf/D      | Wellbore          |           | units         |
|     |                    |              |               |              | TVD BML           | 12000     | ft            |
|     | Depth, ft          | Pressure, ps | sia           |              | Water TVD         | 10000     | ft            |
|     | 10000              | 4498.437     |               |              | DS Status         | dropped   | n/a           |
|     | 11200              | 4911.828     |               |              | Parameter         | csg       | n/a           |
|     | 12400              | 5319.442     |               |              | Par. Value        | 10.75     |               |
|     | 13600              | 5722.58      |               |              |                   |           |               |
|     | 14800              | 6122.155     |               |              |                   |           |               |
|     | 16000              | 6518.831     |               |              |                   |           |               |
|     | 17200              | 6913.107     |               |              |                   |           |               |
|     | 18400              | 7305.363     |               |              |                   |           |               |
|     | 19600              | 7695.901     |               |              |                   |           |               |
|     | 20800              | 8084.958     |               |              |                   |           |               |
|     | 22000              | 9447.875     |               |              |                   |           |               |
|     |                    |              |               |              |                   |           |               |
| 112 | Run #              | 1379-1390    |               |              |                   |           |               |

|     | Intitial Condition | IS           |         |         |              |           |            |
|-----|--------------------|--------------|---------|---------|--------------|-----------|------------|
|     | Surface Gas Rate   |              | 283.893 | MMscf/D | Wellbore     |           | units      |
|     |                    |              |         |         | TVD BML      | 12000     | ft         |
|     | Depth, ft          | Pressure, ps | sia     |         | Water TVD    | 10000     | ft         |
|     | 10000              | 4496.573     |         |         | DS Status    | dropped   | n/a        |
|     | 11200              | 4702.231     |         |         | Parameter    | csg       | n/a        |
|     | 12400              | 4907.993     |         |         | Par. Value   | 12.75     |            |
|     | 13600              | 5113.857     |         |         |              |           |            |
|     | 14800              | 5319.821     |         |         |              |           |            |
|     | 16000              | 5525.881     |         |         |              | -         |            |
|     | 17200              | 5732.034     |         |         |              |           |            |
|     | 18400              | 5938.278     |         |         |              |           |            |
|     | 19600              | 6144.608     |         |         |              | -         |            |
|     | 20800              | 6351.021     |         |         |              | +         | -          |
|     | 22000              | 6856.324     |         |         |              | +         | -          |
|     |                    |              |         |         |              | +         | -          |
| 113 | Run #              | 1390-1401    |         |         |              | -         |            |
|     | Intitial Condition | IS IS        |         |         |              |           |            |
|     | Surface Gas Rate   |              | 165.37  | MMscf/D | Wellbore     | +         | units      |
|     |                    |              |         |         | TVD BML      | 12000     | ft         |
|     | Depth. ft          | Pressure, ps | sia     |         | Water TVD    | 10000     | ft         |
|     | 10000              | 4497.941     |         |         | DS Status    | dropped   | n/a        |
|     | 11200              | 4662.878     |         |         | Parameter    | ds length | n/a<br>n/a |
|     | 12400              | 5088 627     |         |         | Par Value    | 50        | ii/u       |
|     | 13600              | 5508 192     |         |         | i ui. v uiue |           |            |
|     | 14800              | 5922 944     |         |         |              | -         |            |
|     | 16000              | 6333 849     |         |         |              |           |            |
|     | 17200              | 6741 615     |         |         |              | -         |            |
|     | 18400              | 7146 774     |         |         |              | -         |            |
|     | 19600              | 7549,733     |         |         |              | -         |            |
|     | 20800              | 7950.816     |         |         |              | -         |            |
|     | 22000              | 9371.963     |         |         |              | +         |            |
|     |                    |              |         |         |              | -         |            |
| 114 | Run #              | 1402-1503    |         |         |              |           |            |
|     | Intitial Condition | IS           |         |         |              |           |            |
|     | Surface Gas Rate   |              | 188.757 | MMscf/D | Wellbore     |           | units      |
|     |                    |              |         |         | TVD BML      | 12000     | ft         |
|     | Depth, ft          | Pressure, ps | sia     |         | Water TVD    | 10000     | ft         |
|     | 10000              | 4495.571     |         |         | DS Status    | dropped   | n/a        |
|     | 11200              | 4611.152     |         |         | Parameter    | ds length | n/a        |
|     | 12400              | 4726.094     |         |         | Par. Value   | 25        |            |
|     | 13600              | 4840.434     |         |         |              |           |            |
|     | 14800              | 4954.2       |         |         |              |           |            |
|     | 16000              | 5067.423     |         |         |              |           |            |
|     | 17200              | 5422.988     |         |         |              |           |            |
|     | 18400              | 5943.862     |         |         |              |           |            |
|     | 19600              | 6454.308     |         |         |              |           |            |
|     | 20800              | 6956.624     |         |         |              |           |            |
|     | 22000              | 8843.969     |         |         |              | 1         |            |
|     |                    |              |         |         | Ī            | 1         |            |
| 115 | Run #              | 1414-1425    |         |         |              | 1         |            |
|     | Intitial Condition | IS           |         |         |              | 1         |            |
|     | Surface Gas Rate   |              | 304.261 | MMscf/D | Wellbore     |           | units      |

|     |                    |              |         |           | TVD BML    | 12000 | ft    |
|-----|--------------------|--------------|---------|-----------|------------|-------|-------|
|     | Depth, ft          | Pressure, ps | sia     |           | Water TVD  | 10000 | ft    |
|     | 10000              | 4497.873     |         |           | DS Status  | no DS | n/a   |
|     | 11200              | 4655.111     |         |           | Parameter  | csg   | n/a   |
|     | 12400              | 4812.334     |         |           | Par. Value | 8.625 |       |
|     | 13600              | 4969.542     |         |           |            |       |       |
|     | 14800              | 5126.735     |         |           |            |       |       |
|     | 16000              | 5283.913     |         |           |            |       |       |
|     | 17200              | 5441.078     |         |           |            |       |       |
|     | 18400              | 5598.229     |         |           |            |       |       |
|     | 19600              | 5755.367     |         |           |            |       |       |
|     | 20800              | 5912.492     |         |           |            |       |       |
|     | 22000              | 6134.996     |         |           |            |       |       |
|     |                    |              |         |           |            |       |       |
| 116 | Run #              | 1426-1437    |         |           | _          |       |       |
|     | Intitial Condition | is           |         |           | _          |       |       |
|     | Surface Gas Rate   |              | 325.962 | MMscf/D   | Wellbore   |       | units |
|     |                    |              | -       |           | TVD BML    | 12000 | ft    |
|     | Depth, ft          | Pressure, ps | sia     |           | Water TVD  | 10000 | ft    |
|     | 10000              | 4522.838     |         |           | DS Status  | no Ds | n/a   |
|     | 11200              | 4649.351     |         |           | Parameter  | csg   | n/a   |
|     | 12400              | 4775.423     |         |           | Par. Value | 10.75 |       |
|     | 13600              | 4901.079     |         |           |            |       |       |
|     | 14800              | 5026.343     |         |           |            |       |       |
|     | 16000              | 5151.234     |         |           |            |       |       |
|     | 17200              | 5275.773     |         |           |            |       |       |
|     | 18400              | 5399.977     |         |           |            |       |       |
|     | 19600              | 5523.862     |         |           |            | -     |       |
|     | 20800              | 5647.444     |         |           |            | -     |       |
|     | 22000              | 5798.533     |         |           |            | -     |       |
| 117 | Dara #             | 1429 1440    |         |           |            |       |       |
| 11/ | Kull #             | 1438-1449    |         |           |            |       |       |
|     | Surface Cas Pate   | 15           | 340.082 | MMscf/D   | Wallborg   |       | unite |
|     | Surface Gas Rate   |              | 540.762 | WIWISCI/D | TVD BMI    | 12000 | ff    |
|     | Denth ft           | Pressure no  | <br>sia |           | Water TVD  | 12000 | ft    |
|     | 10000              | 4483.238     |         |           | DS Status  | no Ds | n/a   |
|     | 11200              | 4599.012     |         |           | Parameter  | CS9   | n/a   |
|     | 12400              | 4714.159     |         |           | Par. Value | 12.75 |       |
|     | 13600              | 4828.714     |         |           |            |       |       |
|     | 14800              | 4942.706     |         |           |            |       |       |
|     | 16000              | 5056.163     |         |           |            |       |       |
|     | 17200              | 5169.113     |         |           |            |       |       |
|     | 18400              | 5281.578     |         |           |            |       |       |
|     | 19600              | 5393.58      |         |           |            |       |       |
|     | 20800              | 5505.141     |         |           |            |       |       |
|     | 22000              | 5626.952     |         |           |            |       |       |

### **APPENDIX C**

## **RELIEF WELL KILL REQUIREMENTS**

| Run |      |       |              |        |       |        | ANN   |        |          |        |          |        |
|-----|------|-------|--------------|--------|-------|--------|-------|--------|----------|--------|----------|--------|
| #   | TVD  | WATER | DRILLSTRING  | PAR.   | PAR.  | MD/TVD | ID/   | KILL   | SPP      | RELIEF | SPP/WELL | PUMP   |
|     | BML  | DEPTH | STATUS       | VARIED | VALUE | Ratio  | DS OD | RATE   |          | WELLS  |          | HP     |
|     |      |       | Hanging from | Casing |       |        |       |        |          |        |          |        |
| 487 | 8000 | 0     | BOP          | OD     | 8.625 | 1      | 1.5   | 177.3  | 2950.6   | 1      | 2950.6   | 305.2  |
|     |      |       | Hanging from | Casing |       |        |       |        |          |        |          |        |
| 491 | 8000 | 0     | BOP          | OD     | 8.625 | 1.5    | 1.5   | 177.3  | 3405.6   | 1      | 3405.6   | 352.2  |
|     |      |       | Hanging from | Casing |       |        |       |        |          |        |          |        |
| 495 | 8000 | 0     | BOP          | OD     | 8.625 | 2      | 1.5   | 177.3  | 3860.6   | 1      | 3860.6   | 399.3  |
|     |      |       | Hanging from | Casing |       |        |       |        |          |        |          |        |
| 499 | 8000 | 0     | BOP          | OD     | 10.75 | 1      | 1.5   | 1017.2 | 31423.1  | 2      | 9416.7   | 2807.6 |
|     |      |       | Hanging from | Casing |       |        |       |        |          |        |          |        |
| 503 | 8000 | 0     | BOP          | OD     | 10.75 | 1.5    | 1.5   | 1017.2 | 46103.5  | 2      | 13161.5  | 3905.5 |
|     |      |       | Hanging from | Casing |       |        |       |        |          |        |          |        |
| 507 | 8000 | 0     | BOP          | OD     | 10.75 | 2      | 1.5   | 1017.2 | 60784.0  | 2      | 8666.1   | 1714.4 |
|     |      |       | Hanging from | Casing |       |        |       |        |          |        |          |        |
| 511 | 8000 | 0     | BOP          | OD     | 12.75 | 1      | 1.5   | 3430.8 | 328184.0 | 6      | 11527.4  | 3845.6 |
|     |      |       | Hanging from | Casing |       |        |       |        |          |        |          |        |
| 515 | 8000 | 0     | BOP          | OD     | 12.75 | 1.5    | 1.5   | 3430.8 | 491183.0 | 7      | 12496.7  | 3573.4 |
|     |      |       | Hanging from | Casing |       |        |       |        |          |        |          |        |
| 519 | 8000 | 0     | BOP          | OD     | 12.75 | 2      | 1.5   | 3430.8 | 654181.9 | 8      | 12725.5  | 3183.9 |
|     |      |       | Hanging from | DS     |       |        |       |        |          |        |          |        |
| 523 | 8000 | 0     | BOP          | Length | 50%   | 1      | 1.5   | 1944.3 | 108466.3 | 3      | 14349.3  | 5425.7 |
|     |      |       | Hanging from | DS     |       |        |       |        |          |        |          |        |
| 527 | 8000 | 0     | BOP          | Length | 50%   | 1.5    | 1.5   | 1944.3 | 161516.9 | 4      | 12507    | 3546.8 |
|     |      |       | Hanging from | DS     |       |        |       |        |          |        |          |        |
| 531 | 8000 | 0     | BOP          | Length | 50%   | 2      | 1.5   | 1944.3 | 214567.5 | 5      | 11038.7  | 2504.3 |
|     |      |       | Hanging from | DS     |       |        |       |        |          |        |          |        |
| 535 | 8000 | 0     | BOP          | Length | 25%   | 1      | 1.5   | 2684.1 | 203073.7 | 5      | 10527.1  | 3297.1 |
|     |      |       | Hanging from | DS     |       |        |       |        |          |        |          |        |
| 539 | 8000 | 0     | BOP          | Length | 25%   | 1.5    | 1.5   | 2684.1 | 303466.4 | 5      | 14646.5  | 4587.2 |

| 543 | 8000 | 0 | Hanging from<br>BOP | DS<br>Length | 25%   | 2   | 1.5 | 2684.1  | 403859.1  | 6   | 13752   | 3589.2 |
|-----|------|---|---------------------|--------------|-------|-----|-----|---------|-----------|-----|---------|--------|
| 547 | 8000 | 0 | Dropped DS          | Casing       | 8 625 | 1   | 1.5 | 177.3   | 2950.6    | 1   | 2950.6  | 305.2  |
| 547 | 8000 | 0 | Diopped D3          | Casing       | 0.025 | 1   | 1.5 | 177.5   | 2930.0    | 1   | 2950.0  | 303.2  |
| 551 | 8000 | 0 | Dropped DS          | OD           | 8.625 | 1.5 | 1.5 | 177.3   | 3405.6    | 1   | 3405.6  | 352.2  |
| 555 | 8000 | 0 | Dropped DS          | Casing<br>OD | 8.625 | 2   | 1.5 | 177.3   | 3860.6    | 1   | 3860.6  | 399.3  |
| 559 | 8000 | 0 | Dropped DS          | Casing<br>OD | 10.75 | 1   | 1.5 | 1017.2  | 31423.1   | 2   | 9461.7  | 2807.6 |
| 563 | 8000 | 0 | Dropped DS          | Casing<br>OD | 10.75 | 1.5 | 1.5 | 1017.2  | 46103.5   | 2   | 13161.5 | 3905.5 |
| 567 | 8000 | 0 | Dropped DS          | Casing<br>OD | 10.75 | 2   | 1.5 | 1017.2  | 60784.0   | 3   | 8666.1  | 1714.4 |
| 571 | 8000 | 0 | Dropped DS          | Casing<br>OD | 12.75 | 1   | 1.5 | 3430.8  | 328184.0  | 6   | 11527.4 | 3845.6 |
| 575 | 8000 | 0 | Dropped DS          | Casing<br>OD | 12.75 | 1.5 | 1.5 | 3430.8  | 491183.0  | 7   | 12496.7 | 3573.4 |
| 579 | 8000 | 0 | Dropped DS          | Casing<br>OD | 12.75 | 2   | 1.5 | 3430.8  | 654181.9  | 8   | 12725.5 | 3183.9 |
| 583 | 8000 | 0 | Dropped DS          | DS<br>Length | 50%   | 1   | 1.5 | 1158.4  | 39824.6   | 2   | 11402.1 | 3853   |
| 587 | 8000 | 0 | Dropped DS          | DS<br>Length | 50%   | 1.5 | 1.5 | 1158.4  | 58827.5   | 3   | 8233.7  | 1854.9 |
| 591 | 8000 | 0 | Dropped DS          | DS<br>Length | 50%   | 2   | 1.5 | 1158.4  | 77830.4   | 3   | 10372   | 2336.6 |
| 595 | 8000 | 0 | Dropped DS          | DS<br>Length | 25%   | 1   | 1.5 | 1247.2  | 45625.8   | 2   | 12719.9 | 4627.8 |
| 599 | 8000 | 0 | Dropped DS          | DS<br>Length | 25%   | 1.5 | 1.5 | 1247.2  | 67628.9   | 3   | 9050.3  | 2195.1 |
| 603 | 8000 | 0 | Dropped DS          | DS<br>Length | 25%   | 2   | 1.5 | 1247.2  | 89635.0   | 3   | 11527.2 | 2795.9 |
| 607 | 8000 | 0 | No DS               | Casing<br>OD | 8.625 | 1   | 1.5 | 6127.3  | 1023995.1 | 10  | 13091   | 4679.8 |
| 611 | 8000 | 0 | No DS               | Casing<br>OD | 8.625 | 1.5 | 1.5 | 6127.3  | 1534806.6 | 10+ |         |        |
| 615 | 8000 | 0 | No DS               | Casing<br>OD | 8.625 | 2   | 1.5 | 6127.3  | 1611428.3 | 10+ |         |        |
| 619 | 8000 | 0 | No DS               | Casing<br>OD | 10.75 | 1   | 1.5 | 11231.4 | 3356966.5 | 10+ |         |        |

| 623          | 8000 | 0    | No DS               | Casing       | 10.75  | 15  | 15  | 11231.4 | 5034252.0  | 10+ |          |        |
|--------------|------|------|---------------------|--------------|--------|-----|-----|---------|------------|-----|----------|--------|
| 025          | 0000 | 0    | 110 D5              | Casing       | 10.75  | 1.5 | 1.5 | 11231.4 | 5054252.0  | 10+ |          |        |
| 627          | 8000 | 0    | No DS               | OD           | 10.75  | 2   | 1.5 | 11231.4 | 6711537.7  | 10+ |          |        |
|              |      |      |                     | Casing       |        |     |     |         |            |     |          |        |
| 631          | 8000 | 0    | No DS               | OD           | 12.75  | 1   | 1.5 | 19778.7 | 10143065.6 | 10+ |          |        |
| 635          | 8000 | 0    | No DS               | Casing<br>OD | 12.75  | 1.5 | 1.5 | 19778.7 | 15213380.9 | 10+ |          |        |
|              | 0000 | ,    | 110 2.5             | Casing       | 12.170 | 110 | 110 | 1777017 | 102100000  | 101 |          |        |
| 639          | 8000 | 0    | No DS               | OD           | 12.75  | 2   | 1.5 | 19778.7 | 20283696.1 | 10+ |          |        |
|              |      |      | Hanging from        | Casing       |        |     |     |         |            |     |          |        |
| 649          | 8000 | 5000 | BOP                 | OD           | 8.625  | 1   | 1.5 | 217.8   | 5288.2     | 1   | 5288.2   | 671.9  |
|              |      |      | Hanging from        | Casing       |        |     |     |         |            |     |          |        |
| 653          | 8000 | 5000 | BOP                 | OD           | 8.625  | 1.5 | 1.5 | 217.8   | 6571.5     | 1   | 6571.5   | 834.9  |
| 657          | 8000 | 5000 | Hanging from<br>BOP | Casing<br>OD | 8.625  | 2   | 1.5 | 217.8   | 7512.6     | 1   | 7512.6   | 954.5  |
| 007          | 0000 | 2000 | Hanging from        | Casing       | 0.025  | -   | 1.5 | 217.0   | 7512.0     | 1   | 7512.0   | 20110  |
| 661          | 8000 | 5000 | BOP                 | OD           | 10.75  | 1   | 1.5 | 1266.3  | 76875.4    | 3   | 11476.2  | 2826.1 |
|              |      |      | Hanging from        | Casing       |        |     |     |         |            |     |          |        |
| 665          | 8000 | 5000 | BOP                 | OD           | 10.75  | 1.5 | 1.5 | 1266.3  | 119392.3   | 4   | 10560.2  | 1950.4 |
|              |      |      | Hanging from        | Casing       |        |     |     |         |            |     |          |        |
| 669          | 8000 | 5000 | BOP                 | OD           | 10.75  | 2   | 1.5 | 1266.3  | 150571.3   | 4   | 12540.4  | 2316.1 |
| ( <b>=</b> ) |      |      | Hanging from        | Casing       |        |     |     | 10010   |            | 0   | 1000 ( 0 |        |
| 673          | 8000 | 5000 | BOP                 | OD           | 12.75  | 1   | 1.5 | 4294.8  | 828349.5   | 9   | 13996.8  | 3896.9 |
| 677          | 8000 | 5000 | Hanging from<br>BOP | OD           | 12.75  | 1.5 | 1.5 | 4294.8  | 1240822.0  | 10+ |          |        |
|              |      |      | Hanging from        | Casing       |        |     |     |         |            |     |          |        |
| 681          | 8000 | 5000 | BOP                 | OD           | 12.75  | 2   | 1.5 | 4294.8  | 1653294.4  | 10+ |          |        |
|              |      |      | Hanging from        | DS           |        |     |     |         |            |     |          |        |
| 685          | 8000 | 5000 | BOP                 | Length       | 50%    | 1   | 1.5 | 1919.1  | 171739.8   | 4   | 14419.1  | 4036.1 |
| 600          |      |      | Hanging from        | DS           |        |     |     | 1010.1  |            | _   |          |        |
| 689          | 8000 | 5000 | BOP                 | Length       | 50%    | 1.5 | 1.5 | 1919.1  | 255753.1   | 5   | 14013.6  | 3138.1 |
| (02          | 8000 | 5000 | Hanging from        | DS<br>Longth | 500    | 2   | 15  | 1010.1  | 2207665    | (   | 12269.2  | 2476   |
| 693          | 8000 | 5000 | BOP<br>Honging from | Length       | 50%    | 2   | 1.5 | 1919.1  | 339/66.5   | 6   | 13268.2  | 2476   |
| 697          | 8000 | 5000 |                     | DS<br>Length | 250%   | 1   | 15  | 2611.0  | 320450.8   | 6   | 12582.8  | 3236.1 |
| 077          | 0000 | 5000 | Hanging from        | DS           | 2370   | 1   | 1.5 | 2044.9  | 520459.8   | U   | 12302.0  | 5250.1 |
| 701          | 8000 | 5000 | BOP                 | Length       | 25%    | 1.5 | 1.5 | 2644.9  | 478921.0   | 7   | 13521    | 2980.6 |
|              |      |      | Hanging from        | DS           |        |     |     |         |            |     |          |        |
| 705          | 8000 | 5000 | BOP                 | Length       | 25%    | 2   | 1.5 | 2644.9  | 637382.1   | 8   | 13742.7_ | 2650.8 |

| 709 | 8000 | 5000 | Dropped DS  | Casing<br>OD | 8.625 | 1   | 1.5 | 218.6   | 5330.4    | 1   | 5330.4  | 679.7  |
|-----|------|------|-------------|--------------|-------|-----|-----|---------|-----------|-----|---------|--------|
|     |      |      |             | Casing       |       |     |     |         |           |     |         |        |
| 713 | 8000 | 5000 | Dropped DS  | OD           | 8.625 | 1.5 | 1.5 | 218.6   | 6450.8    | 1   | 6450.8  | 822.6  |
| 717 | 8000 | 5000 | Deserved DC | Casing       | 9 (25 | 2   | 15  | 219.6   | 7571.0    | 1   | 7571.0  | 0655   |
| /1/ | 8000 | 5000 | Dropped DS  | Casing       | 8.025 | 2   | 1.5 | 218.0   | /5/1.2    | I   | /3/1.2  | 905.5  |
| 721 | 8000 | 5000 | Dropped DS  | OD           | 10.75 | 1   | 1.5 | 1270.4  | 77376.0   | 3   | 11554.1 | 2854.6 |
| 725 | 8000 | 5000 | Dropped DS  | Casing<br>OD | 10.75 | 1.5 | 1.5 | 1270.4  | 114463.4  | 4   | 10269.8 | 1902.9 |
|     |      |      | III III II  | Casing       |       |     |     |         |           |     |         |        |
| 729 | 8000 | 5000 | Dropped DS  | OD           | 10.75 | 2   | 1.5 | 1270.4  | 151550.0  | 4   | 12625.2 | 2339.4 |
| 733 | 8000 | 5000 | Dropped DS  | Casing<br>OD | 12.75 | 1   | 1.5 | 4307.7  | 833259.2  | 9   | 14084.2 | 3933   |
|     |      |      |             | Casing       |       |     |     |         |           |     |         |        |
| 737 | 8000 | 5000 | Dropped DS  | OD           | 12.75 | 1.5 | 1.5 | 4307.7  | 1248174.0 | 10+ |         |        |
| 741 | 8000 | 5000 | Dropped DS  | Casing<br>OD | 12.75 | 2   | 1.5 | 4307.7  | 1663089.7 | 10+ |         |        |
|     |      |      |             | DS           |       |     |     |         |           | -   |         |        |
| 745 | 8000 | 5000 | Dropped DS  | Length       | 50%   | 1   | 1.5 | 1329.8  | 84300.8   | 3   | 12235.1 | 3164.1 |
| 740 | 8000 | 5000 | Dronned DS  | DS<br>Longth | 5007  | 15  | 15  | 1220.9  | 124006 4  | 4   | 10929 4 | 2100.2 |
| 749 | 8000 | 3000 | Dropped DS  | DS           | 30%   | 1.3 | 1.5 | 1529.8  | 124900.4  | 4   | 10828.4 | 2100.2 |
| 753 | 8000 | 5000 | Dropped DS  | Length       | 50%   | 2   | 1.5 | 1329.8  | 165512.0  | 4   | 13407.9 | 2600.6 |
|     |      |      |             | DS           |       |     |     |         |           |     |         |        |
| 757 | 8000 | 5000 | Dropped DS  | Length       | 25%   | 1   | 1.5 | 1504.7  | 106574.4  | 3   | 14498.6 | 4242.8 |
| 761 | 8000 | 5000 | Dropped DS  | DS<br>Length | 25%   | 1.5 | 1.5 | 1504.7  | 158460.3  | 4   | 12699.3 | 2787.2 |
|     |      |      |             | DS           |       |     |     |         |           |     |         |        |
| 765 | 8000 | 5000 | Dropped DS  | Length       | 25%   | 2   | 1.5 | 1504.7  | 210346.2  | 5   | 11267.2 | 1978.3 |
| 769 | 8000 | 5000 | No DS       | Casing<br>OD | 8.625 | 1   | 1.5 | 7662.7  | 2579528.2 | 10+ |         |        |
|     |      |      |             | Casing       |       |     |     |         |           |     |         |        |
| 773 | 8000 | 5000 | No DS       | OD           | 8.625 | 1.5 | 1.5 | 7662.7  | 3867451.0 | 10+ |         |        |
| 777 | 8000 | 5000 | No DS       | Casing       | 8 625 | r   | 1.5 | 7662 7  | 5155275 0 | 10. |         |        |
| 111 | 8000 | 3000 | 110 D3      | Casing       | 0.023 | 2   | 1.5 | 7002.7  | 5155575.0 | 10+ |         |        |
| 781 | 8000 | 5000 | No DS       | OD           | 10.75 | 1   | 1.5 | 14093.4 | 8503352.5 | 10+ |         |        |
| 785 | 8000 | 5000 | No DS       | Casing<br>OD | 10.75 | 1.5 | 1.5 | 14093.4 | 10E6+     | 10+ |         |        |

| 780         | 8000 | 5000  | No DS               | Casing | 10.75 | 2   | 15  | 14002.4                  | 10E6      | 10. |         |        |
|-------------|------|-------|---------------------|--------|-------|-----|-----|--------------------------|-----------|-----|---------|--------|
| 109         | 8000 | 5000  | NO DS               | Cosing | 10.75 | 2   | 1.5 | 14095.4                  | 10E0+     | 10+ |         |        |
| 793         | 8000 | 5000  | No DS               | OD     | 12.75 | 1   | 1.5 | 24879.6                  | 10E6+     | 10+ |         |        |
|             |      |       |                     | Casing |       |     |     |                          |           |     |         |        |
| 797         | 8000 | 5000  | No DS               | OD     | 12.75 | 1.5 | 1.5 | 24879.6                  | 10E6+     | 10+ |         |        |
| 0.01        | 0000 |       | N DC                | Casing | 10.75 |     |     | <b>2</b> 40 <b>7</b> 0 ( | 1057      | 10  |         |        |
| 801         | 8000 | 5000  | No DS               | OD .   | 12.75 | 2   | 1.5 | 24879.6                  | 10E6+     | 10+ |         |        |
| <b>Q</b> 11 | 8000 | 10000 | Hanging from        | Casing | 8 625 | 1   | 15  | 254.0                    | 8201.2    | 1   | 8201.2  | 1249.1 |
| 011         | 8000 | 10000 | BOP<br>Hanging from | Casing | 8.023 | 1   | 1.3 | 234.9                    | 6391.3    | I   | 6391.3  | 1246.1 |
| 815         | 8000 | 10000 |                     |        | 8 625 | 15  | 15  | 254.0                    | 10/07 0   | 1   | 10/07.0 | 1561 5 |
| 015         | 8000 | 10000 | Hanging from        | Casing | 0.025 | 1.5 | 1.5 | 234.9                    | 10497.9   | 1   | 10497.9 | 1501.5 |
| 819         | 8000 | 10000 | BOP                 | OD     | 8.625 | 2   | 1.5 | 254.9                    | 12604.5   | 1   | 12604.5 | 1874.8 |
|             |      |       | Hanging from        | Casing |       |     |     |                          |           |     |         |        |
| 823         | 8000 | 10000 | BOP                 | OD     | 10.75 | 1   | 1.5 | 1494.5                   | 146153.8  | 4   | 13417.6 | 2924.8 |
|             |      |       | Hanging from        | Casing |       |     |     |                          |           |     |         |        |
| 827         | 8000 | 10000 | BOP                 | OD     | 10.75 | 1.5 | 1.5 | 1494.5                   | 217027.8  | 5   | 13077.1 | 2280.4 |
|             |      |       | Hanging from        | Casing |       |     |     |                          |           |     |         |        |
| 831         | 8000 | 10000 | BOP                 | OD     | 10.75 | 2   | 1.5 | 1494.5                   | 287901.8  | 6   | 12451.3 | 1809.4 |
|             |      | 10000 | Hanging from        | Casing |       |     |     |                          |           | 10  |         |        |
| 835         | 8000 | 10000 | BOP                 | OD     | 12.75 | 1   | 1.5 | 5078.4                   | 1593548.9 | 10+ |         |        |
| 820         | 8000 | 10000 | Hanging from        | Casing | 10.75 | 1.5 | 15  | 5079 4                   | 2227057.9 | 10. |         |        |
| 839         | 8000 | 10000 | BOP<br>Honging from | OD     | 12.75 | 1.5 | 1.5 | 5078.4                   | 238/95/.8 | 10+ |         |        |
| 843         | 8000 | 10000 | ROP                 | OD     | 12 75 | 2   | 15  | 5078.4                   | 3182366.6 | 10+ |         |        |
| 015         | 0000 | 10000 | Hanging from        | DS     | 12.75 | 2   | 1.5 | 5070.1                   | 5102500.0 | 101 |         |        |
| 847         | 8000 | 10000 | BOP                 | Length | 50%   | 1   | 1.5 | 1494.5                   | 146153.8  | 4   | 13417.6 | 2924.8 |
|             |      |       | Hanging from        | DS     |       | _   |     |                          |           | -   |         |        |
| 851         | 8000 | 10000 | BOP                 | Length | 50%   | 1.5 | 1.5 | 1494.5                   | 217027.8  | 5   | 13077.1 | 2280.4 |
|             |      |       | Hanging from        | DS     |       |     |     |                          |           |     |         |        |
| 855         | 8000 | 10000 | BOP                 | Length | 50%   | 2   | 1.5 | 1494.5                   | 287901.8  | 6   | 12451.3 | 1809.4 |
|             |      |       | Hanging from        | DS     |       |     |     |                          |           |     |         |        |
| 859         | 8000 | 10000 | BOP                 | Length | 25%   | 1   | 1.5 | 2647.5                   | 444522.2  | 7   | 14093.2 | 3109.8 |
|             |      |       | Hanging from        | DS     |       |     |     |                          |           |     |         |        |
| 863         | 8000 | 10000 | BOP                 | Length | 25%   | 1.5 | 1.5 | 2647.5                   | 664353.4  | 9   | 13260   | 2275.7 |
| 0(7         | 8000 | 10000 | Hanging from        | DS     | 050   |     | 1.5 | 2647.5                   | 004104 7  | 10  |         |        |
| 867         | 8000 | 10000 | BOD                 | Length | 25%_  | 2   | 1.5 | 2647.5                   | 884184.7  | 10+ |         |        |
| 871         | 8000 | 10000 | Dropped DS          | OD     | 8 625 | 1   | 15  | 255.9                    | 8457 3    | 1   | 8457 3  | 1262.6 |
| 0/1         | 0000 | 10000 | Diopped Do          | 00     | 0.025 | 1   | 1.5 | 255.9                    | 0-57.5    | 1   | 0-57.5  | 1202.0 |

| 875 | 8000 | 10000 | Dropped DS | Casing<br>OD | 8.625 | 1.5 | 1.5 | 255.9  | 10579.4   | 1   | 10579.4 | 1579.4 |
|-----|------|-------|------------|--------------|-------|-----|-----|--------|-----------|-----|---------|--------|
| 879 | 8000 | 10000 | Dropped DS | Casing<br>OD | 8.625 | 2   | 1.5 | 255.9  | 12701.5   | 1   | 12701.5 | 1896.2 |
| 883 | 8000 | 10000 | Dropped DS | Casing<br>OD | 10.75 | 1   | 1.5 | 1499.2 | 147083.2  | 4   | 13507.4 | 2953.7 |
| 887 | 8000 | 10000 | Dropped DS | Casing<br>OD | 10.75 | 1.5 | 1.5 | 1499.2 | 218405.7  | 5   | 13164.7 | 2303   |
| 891 | 8000 | 10000 | Dropped DS | Casing<br>OD | 10.75 | 2   | 1.5 | 1499.2 | 289728.1  | 6   | 12534.9 | 1827.4 |
| 895 | 8000 | 10000 | Dropped DS | Casing<br>OD | 12.75 | 1   | 1.5 | 5093.2 | 1602741.2 | 10+ |         |        |
| 899 | 8000 | 10000 | Dropped DS | Casing<br>OD | 12.75 | 1.5 | 1.5 | 5093.2 | 2401729.8 | 10+ |         |        |
| 903 | 8000 | 10000 | Dropped DS | Casing<br>OD | 12.75 | 2   | 1.5 | 5093.2 | 3200718.5 | 10+ |         |        |
| 907 | 8000 | 10000 | Dropped DS | DS<br>Length | 50%   | 1   | 1.5 | 1499.2 | 147083.2  | 4   | 13507.4 | 2953.7 |
| 911 | 8000 | 10000 | Dropped DS | DS<br>Length | 50%   | 1.5 | 1.5 | 1499.2 | 218405.7  | 5   | 13164.7 | 2303   |
| 915 | 8000 | 10000 | Dropped DS | DS<br>Length | 50%   | 2   | 1.5 | 1499.2 | 289728.1  | 6   | 12534.9 | 1827.4 |
| 919 | 8000 | 10000 | Dropped DS | DS<br>Length | 25%   | 1   | 1.5 | 1706.9 | 188617.3  | 5   | 11686.9 | 2327.7 |
| 923 | 8000 | 10000 | Dropped DS | DS<br>Length | 25%   | 1.5 | 1.5 | 1706.9 | 280847.7  | 6   | 12015.8 | 1994.3 |
| 927 | 8000 | 10000 | Dropped DS | DS<br>Length | 25%   | 2   | 1.5 | 1706.9 | 373078.1  | 6   | 14635.6 | 2429.1 |
| 931 | 8000 | 10000 | No DS      | Casing<br>OD | 8.625 | 1   | 1.5 | 9033.9 | 4931328.8 | 10+ |         |        |
| 935 | 8000 | 10000 | No DS      | Casing<br>OD | 8.625 | 1.5 | 1.5 | 9033.9 | 7394452.7 | 10+ |         |        |
| 939 | 8000 | 10000 | No DS      | Casing<br>OD | 8.625 | 2   | 1.5 | 9033.9 | 8857576.6 | 10+ |         |        |
| 943 | 8000 | 10000 | No DS      | Casing<br>OD | 10.75 | 1   | 1.5 | 16646  | 6299319.7 | 10+ |         |        |
| 947 | 8000 | 10000 | No DS      | Casing<br>OD | 10.75 | 1.5 | 1.5 | 16646  | 10E6+     | 10+ |         |        |
| 951 | 8000 | 10000 | No DS      | Casing<br>OD | 10.75 | 2   | 1.5 | 16646  | 10E6+     | 10+ |         |        |

| 955    | 8000   | 10000 | No DS        | Casing | 12 75 | 1   | 15  | 29415.6 | 9466214.6     | 10+ |           |        |
|--------|--------|-------|--------------|--------|-------|-----|-----|---------|---------------|-----|-----------|--------|
|        | 0000   | 10000 | 110 D5       | Casing | 12.75 | 1   | 1.5 | 27415.0 | 7400214.0     | 101 |           |        |
| 959    | 8000   | 10000 | No DS        | OD     | 12.75 | 1.5 | 1.5 | 29415.6 | 10E6+         | 10+ |           |        |
|        |        |       |              | Casing |       |     |     |         |               |     |           |        |
| 963    | 8000   | 10000 | No DS        | OD     | 12.75 | 2   | 1.5 | 29415.6 | 10E6+         | 10+ |           |        |
|        |        |       | Hanging from | Casing |       |     |     |         |               |     |           |        |
| 973    | 12000  | 0     | BOP          | OD     | 8.625 | 1   | 1.5 | 223.2   | 5684.8        | 1   | 5684.8    | 740.2  |
|        | 1.0000 | 0     | Hanging from | Casing | 0.405 |     |     |         | (= ( = )      |     |           | 000 (  |
| 977    | 12000  | 0     | BOP          | OD     | 8.625 | 1.5 | 1.5 | 223.2   | 6762.8        | 1   | 6762.8    | 880.6  |
|        |        |       | Hanging from | Casing |       |     |     |         |               |     |           |        |
| 981    | 12000  | 0     | BOP          | OD     | 8.625 | 2   | 1.5 | 223.2   | 7840.8        | 1   | 7840.8    | 1020.9 |
|        |        |       | Hanging from | Casing |       |     |     |         |               | _   |           |        |
| 985    | 12000  | 0     | BOP          | OD     | 10.75 | 1   | 1.5 | 1090.6  | 53657.2       | 3   | 8774.4    | 1860.9 |
|        | 1.0000 | 0     | Hanging from | Casing | 10    |     |     | 1000 6  |               |     |           |        |
| 989    | 12000  | 0     | BOP          | OD     | 10.75 | 1.5 | 1.5 | 1090.6  | 78943.1       | 3   | 11618.9   | 2464.2 |
|        | 1.0000 | 0     | Hanging from | Casing | 10    |     |     | 1000 (  | 101000        |     |           |        |
| 993    | 12000  | 0     | BOP          | OD     | 10.75 | 2   | 1.5 | 1090.6  | 104229.0      | 3   | 14463.3   | 3067.5 |
| 007    | 12000  | 0     | Hanging from | Casing | 10.75 |     |     | 2627.6  | 550106 5      | -   | 1 40 2 0  | 1105 6 |
| 997    | 12000  | 0     | BOP          | OD     | 12.75 | I   | 1.5 | 3637.6  | 552106.7      | 7   | 14828     | 4495.6 |
| 1001   | 1.0000 | 0     | Hanging from | Casing | 10.55 |     |     | a (a= ( |               | 2   |           |        |
| 1001   | 12000  | 0     | BOP          | OD     | 12.75 | 1.5 | 1.5 | 3637.6  | 826538.3      | 9   | 13781.7   | 3249.9 |
| 1007   | 1.0000 | 0     | Hanging from | Casing | 10.55 |     |     | a (a= ( | 11000 (0.0    | 10  |           |        |
| 1005   | 12000  | 0     | BOP          | OD     | 12.75 | 2   | 1.5 | 3637.6  | 1100969.0     | 10+ |           |        |
| 1000   | 1.0000 | 0     | Hanging from | DS     |       |     |     | 1005    | 1 - 1 - 2 + 2 |     | 10000 5   |        |
| _1009_ | 12000  | 0     | BOP          | Length | 50%   | 1   | 1.5 | 1895    | 154634.3      | 4   | 12999.5   | 3593.1 |
| 1010   | 1.0000 | 0     | Hanging from | DS     |       |     |     | 1005    |               | _   | 10/01/7   |        |
| 1013   | 12000  | 0     | BOP          | Length | 50%   | 1.5 | 1.5 | 1895    | 230270.3      | 5   | 12634.5   | 2793.8 |
|        | 1.0000 | 0     | Hanging from | DS     |       |     |     | 400.5   |               | -   |           |        |
| 1017   | 12000  | 0     | BOP          | Length | 50%   | 2   | 1.5 | 1895    | 305906.3      | 6   | 11963.6   | 2204.5 |
| 1001   | 12000  | 0     | Hanging from | DS     | 250   |     | 1.7 | 0(10.7  | 0005051       | _   | 1 40 40 0 |        |
| 1021   | 12000  | 0     | BOP          | Length | 25%   | 1   | 1.5 | 2612.7  | 288785.1      | 5   | 14949.8   | 4557.7 |
|        | 1.0000 | 0     | Hanging from | DS     |       |     |     |         |               | _   |           |        |
| 1025   | 12000  | 0     | BOP          | Length | 25%   | 1.5 | 1.5 | 2612.7  | 431559.1      | 7   | 12230.9   | 2663.4 |
| 10.00  | 1.0000 |       | Hanging from | DS     |       |     |     |         | 5= (222.2.0   |     |           |        |
| 1029   | 12000  | 0     | BOP          | Length | 25%   | 2   | 1.5 | 2612.7  | 574333.0      | 8   | 12430.7   | 2368.6 |
| 1022   | 12000  | 0     | D 100        | Casing | 0.60- |     |     | 2012    | 1602 1        |     | 1600 1    |        |
| 1033   | 12000  | 0     | Dropped DS   | OD     | 8.625 | 1   | 1.5 | 204.2   | 4683.4        | 1   | 4683.4    | 557.9  |
| 1007   | 12000  | 0     | D 100        | Casing | 0.60- |     |     | 2012    | 55060         |     | 55050     |        |
| 1037   | 12000  | 0     | Dropped DS   | OD     | 8.625 | 1.5 | 1.5 | 204.2   | 5586.8        | 1   | 5586.8    | 665.5  |

| 1041 | 12000 | 0 | Dropped DS  | Casing<br>OD | 8.625 | 2   | 1.5 | 204.2   | 6490.1    | 1   | 6490.1  | 773.1  |
|------|-------|---|-------------|--------------|-------|-----|-----|---------|-----------|-----|---------|--------|
| 1045 | 12000 | 0 | Descared DS | Casing       | 10.75 | 1   | 15  | 1000 6  | 52657.2   | 2   | 9774 4  | 1860.0 |
| 1045 | 12000 | 0 | Dropped DS  | OD           | 10.75 | 1   | 1.5 | 1090.0  | 55057.2   | 3   | 0774.4  | 1800.9 |
| 1049 | 12000 | 0 | Dropped DS  | OD           | 10.75 | 1.5 | 1.5 | 1090.6  | 78943.1   | 3   | 11618.9 | 2464.2 |
| 1053 | 12000 | 0 | Dropped DS  | Casing<br>OD | 10.75 | 2   | 1.5 | 1090.6  | 104229.0  | 3   | 14463.3 | 3067.5 |
| 1057 | 12000 | 0 | Dropped DS  | Casing       | 12.75 | 1   | 15  | 3637.6  | 552106.7  | 7   | 1/1828  | 1195 6 |
| 1057 | 12000 | 0 |             | Casing       | 12.75 | 1   | 1.5 | 5057.0  | 552100.7  | 7   | 14020   | 4495.0 |
| 1061 | 12000 | 0 | Dropped DS  | OD           | 12.75 | 1.5 | 1.5 | 3637.6  | 826538.3  | 9   | 13781.7 | 3249.9 |
| 1065 | 12000 | 0 | Dropped DS  | Casing<br>OD | 12.75 | 2   | 1.5 | 3637.6  | 1100696.9 | 10+ |         |        |
| 1069 | 12000 | 0 | Dropped DS  | DS<br>Length | 50%   | 1   | 1.5 | 1292.1  | 73548.0   | 3   | 10713.2 | 2692   |
|      |       |   |             | DS           |       |     |     |         |           |     |         |        |
| 1073 | 12000 | 0 | Dropped DS  | Length       | 50%   | 1.5 | 1.5 | 1292.1  | 97150.4   | 3   | 13370.6 | 3359.8 |
| 1077 | 12000 | 0 | Dropped DS  | DS<br>Length | 50%   | 2   | 1.5 | 1292.1  | 144355.2  | 4   | 11735.6 | 2211.7 |
| 1081 | 12000 | 0 | Dropped DS  | DS<br>Length | 25%   | 1   | 1.5 | 1741.4  | 131487.1  | 4   | 11676.1 | 2965.8 |
| 1085 | 12000 | 0 | Dropped DS  | DS<br>Length | 25%   | 1.5 | 15  | 1741.4  | 105465.2  | 5   | 11367 7 | 2300.0 |
| 1005 | 12000 | 0 | Diopped DS  | DS           | 2570  | 1.5 | 1.5 | 1/41.4  | 193403.2  | 5   | 11507.7 | 2309.9 |
| 1089 | 12000 | 0 | Dropped DS  | Length       | 25%   | 2   | 1.5 | 1741.4  | 259443.3  | 5   | 13980   | 2840.8 |
| 1093 | 12000 | 0 | No DS       | Casing<br>OD | 8.625 | 1   | 1.5 | 6273    | 1608410.8 | 10+ |         |        |
| 1097 | 12000 | 0 | No DS       | Casing<br>OD | 8 625 | 15  | 15  | 6273    | 2410869.8 | 10+ |         |        |
| 1057 | 12000 | 0 |             | Casing       | 0.025 | 1.5 | 1.5 | 0213    | 2110009.0 | 101 |         |        |
| 1101 | 12000 | 0 | No DS       | OD           | 8.625 | 2   | 1.5 | 6273    | 3213328.7 | 10+ |         |        |
| 1105 | 12000 | 0 | No DS       | Casing<br>OD | 10.75 | 1   | 1.5 | 11571   | 8004591.0 | 10+ |         |        |
| 1109 | 12000 | 0 | No DS       | Casing<br>OD | 10.75 | 1.5 | 1.5 | 11571   | 8004591.2 | 10+ |         |        |
|      |       |   |             | Casing       |       |     |     |         |           | -   |         |        |
| 1113 | 12000 | 0 | No DS       | OD           | 10.75 | 2   | 1.5 | 11571   | 10E6+     | 10+ |         |        |
| 1117 | 12000 | 0 | No DS       | Casing<br>OD | 12.75 | 1   | 1.5 | 20406.3 | 6170659.5 | 10+ |         |        |

| 1121 | 12000  | 0    | N- DC               | Casing       | 10.75 | 15  | 1.5 | 20406.2 | 1056      | 10. |          |        |
|------|--------|------|---------------------|--------------|-------|-----|-----|---------|-----------|-----|----------|--------|
| 1121 | 12000  | 0    | NO DS               | OD           | 12.75 | 1.5 | 1.5 | 20406.3 | 10E6+     | 10+ |          |        |
| 1125 | 12000  | 0    | No DS               | OD           | 12.75 | 2   | 1.5 | 20406.3 | 10E6+     | 10+ |          |        |
|      |        |      | Hanging from        | Casing       |       |     |     |         |           |     |          |        |
| 1135 | 12000  | 5000 | BOP                 | OD           | 8.625 | 1   | 1.5 | 280.8   | 9618.6    | 1   | 9618.6   | 1575.9 |
| 1120 | 10000  | 5000 | Hanging from        | Casing       | 0.605 |     |     | 200.0   | 12020.1   |     | 12020.1  | 1071   |
| 1139 | 12000  | 5000 | BOP                 | OD .         | 8.625 | 1.5 | 1.5 | 280.8   | 12030.1   | 1   | 12030.1  | 19/1   |
| 11/3 | 12000  | 5000 | Hanging from        | Casing       | 8 625 | 2   | 1.5 | 280.8   | 14441.5   | 1   | 14441 5  | 2366-1 |
| 1145 | 12000  | 3000 | BOF<br>Hanging from | Casing       | 8.025 | 2   | 1.5 | 200.0   | 14441.3   | 1   | 14441.3  | 2300.1 |
| 1147 | 12000  | 5000 | ROP                 | OD           | 10.75 | 1   | 15  | 1265.6  | 100407 8  | 3   | 14979 4  | 3686.8 |
| 1117 | 12000  | 2000 | Hanging from        | Casing       | 10.75 | 1   | 1.0 | 1205.0  | 100107.0  | 5   | 117777.1 | 2000.0 |
| 1151 | 12000  | 5000 | BOP                 | OD           | 10.75 | 1.5 | 1.5 | 1265.6  | 148540.8  | 4   | 13312.6  | 2457.4 |
|      |        |      | Hanging from        | Casing       |       |     |     |         |           |     |          |        |
| 1155 | 12000  | 5000 | BOP                 | OD           | 10.75 | 2   | 1.5 | 1265.6  | 196673.8  | 5   | 11986.9  | 1770.1 |
|      |        |      | Hanging from        | Casing       |       |     |     |         |           |     |          |        |
| 1159 | 12000  | 5000 | BOP                 | OD           | 12.75 | 1   | 1.5 | 4239.8  | 1056094.1 | 10+ |          |        |
|      |        |      | Hanging from        | Casing       |       |     |     |         |           |     |          |        |
| 1163 | 12000  | 5000 | BOP                 | OD           | 12.75 | 1.5 | 1.5 | 4239.8  | 1581946.5 | 10+ |          |        |
|      |        |      | Hanging from        | Casing       |       |     |     |         |           |     |          |        |
| 1167 | 12000  | 5000 | BOP                 | OD           | 12.75 | 2   | 1.5 | 4239.8  | 2107799.0 | 10+ |          |        |
| 1171 | 10000  | 5000 | Hanging from        | DS           | 500   |     |     | 1050.0  | 210020 7  | -   | 12000.0  | 2017 7 |
| 1171 | 12000  | 5000 | BOP                 | Length       | 50%   | I   | 1.5 | 1858.8  | 210839.7  | 5   | 12990.8  | 2817.7 |
| 1175 | 12000  | 5000 | Hanging from        | DS<br>Longth | 500   | 15  | 15  | 1050 0  | 212077.0  | 6   | 12250.2  | 2414.5 |
| 1175 | 12000  | 3000 | BOF<br>Hanging from | DS           | 30%   | 1.3 | 1.5 | 1030.0  | 515977.9  | 0   | 15556.5  | 2414.3 |
| 1179 | 12000  | 5000 |                     | Length       | 50%   | 2   | 15  | 1858.8  | 4171161   | 7   | 13193.4  | 2044-1 |
| 1172 | 12000  | 5000 | Hanging from        | DS           | 5070  | 4   | 1.5 | 1050.0  | 11/110.1  | /   | 15175.1  | 2011.1 |
| 1183 | 12000  | 5000 | BOP                 | Length       | 25%   | 1   | 1.5 | 2543.7  | 387991.0  | 7   | 12347.1  | 2617.8 |
|      |        |      | Hanging from        | DS           |       | -   |     |         |           | -   |          |        |
| 1187 | 12000  | 5000 | BOP                 | Length       | 25%   | 1.5 | 1.5 | 2543.7  | 579839.9  | 8   | 13555.2  | 2514.7 |
|      |        |      | Hanging from        | DS           |       |     |     |         |           |     |          |        |
| 1191 | 12000  | 5000 | BOP                 | Length       | 25%   | 2   | 1.5 | 2543.7  | 771688.7  | 9   | 14063    | 2319   |
|      |        |      |                     | Casing       |       |     |     |         |           |     |          |        |
| 1195 | 12000  | 5000 | Dropped DS          | OD           | 8.625 | 1   | 1.5 | 239.1   | 7289.5    | 1   | 7289.5   | 1016.9 |
|      | 1.0000 |      |                     | Casing       | 0.60- |     |     |         | 0046.5    |     | 0046.5   | 10/1-  |
| 1199 | 12000  | 5000 | Dropped DS          | OD           | 8.625 | 1.5 | 1.5 | 239.1   | 9040.9    | 1   | 9040.9   | 1261.2 |
| 1203 | 12000  | 5000 | Dropped DS          | Casing<br>OD | 8 625 | 2   | 15  | 239.1   | 10792 3   | 1   | 10792 3  | 1505 5 |
| 1205 | 12000  | 5000 | Propher Do          | 00           | 0.025 | 4   | 1.5 | 257.1   | 10172.3   | 1   | 10172.3  | 1505.5 |

| 1207 | 12000 | 5000 | Dropped DS | Casing<br>OD | 10.75 | 1   | 1.5 | 1270.3  | 101159.2  | 4   | 10337.1 | 1915.3 |
|------|-------|------|------------|--------------|-------|-----|-----|---------|-----------|-----|---------|--------|
| 1211 | 12000 | 5000 | Dronned DS | Casing       | 10.75 | 1.5 | 1.5 | 1270.3  | 140640.0  | 4   | 13416.8 | 2485.0 |
| 1211 | 12000 | 3000 | Diopped DS | Casing       | 10.75 | 1.5 | 1.5 | 1270.3  | 149049.9  | 4   | 15410.8 | 2403.9 |
| 1215 | 12000 | 5000 | Dropped DS | OD           | 10.75 | 2   | 1.5 | 1270.3  | 198140.6  | 5   | 12081.2 | 1790.7 |
| 1210 | 12000 | 5000 | Dropped DS | Casing       | 10.75 | 1   | 1.5 | 4254.4  | 1062280.2 | 10. |         |        |
| 1219 | 12000 | 3000 | Dropped DS | Casing       | 12.75 | 1   | 1.5 | 4234.4  | 1003280.5 | 10+ |         |        |
| 1223 | 12000 | 5000 | Dropped DS | OD           | 12.75 | 1.5 | 1.5 | 4254.4  | 1592708.1 | 10+ |         |        |
|      |       |      |            | Casing       |       |     |     |         |           |     |         |        |
| 1227 | 12000 | 5000 | Dropped DS | OD           | 12.75 | 2   | 1.5 | 4254.4  | 2122135.9 | 10+ |         |        |
| 1231 | 12000 | 5000 | Dropped DS | DS<br>Length | 50%   | 1   | 1.5 | 1397.7  | 121204.4  | 4   | 11424.1 | 2329   |
|      |       |      |            | DS           |       |     |     |         |           |     |         |        |
| 1235 | 12000 | 5000 | Dropped DS | Length       | 50%   | 1.5 | 1.5 | 1397.7  | 179819.3  | 5   | 11143   | 1817.3 |
| 1239 | 12000 | 5000 | Dropped DS | DS<br>Length | 50%   | 2   | 1.5 | 1397.7  | 238434.2  | 5   | 13532.5 | 2207.1 |
|      |       |      |            | DS           |       |     |     |         |           |     |         |        |
| 1243 | 12000 | 5000 | Dropped DS | Length       | 25%   | 1   | 1.5 | 1620.7  | 160811.7  | 4   | 13601.4 | 3215.2 |
| 1247 | 12000 | 5000 | Dropped DS | DS<br>Length | 25%   | 1.5 | 1.5 | 1620.7  | 239417.6  | 5   | 13222.9 | 2500.6 |
|      |       |      |            | DS           |       |     |     |         |           |     |         |        |
| 1251 | 12000 | 5000 | Dropped DS | Length       | 25%   | 2   | 1.5 | 1620.7  | 318023.4  | 6   | 12527.7 | 1974.3 |
| 1255 | 12000 | 5000 | No DS      | Casing<br>OD | 8.625 | 1   | 1.5 | 7304.2  | 3070682.1 | 10+ |         |        |
|      |       |      |            | Casing       |       |     |     |         |           |     |         |        |
| 1259 | 12000 | 5000 | No DS      | OD           | 8.625 | 1.5 | 1.5 | 7304.2  | 4603666.8 | 10+ |         |        |
| 1263 | 12000 | 5000 | No DS      | Casing<br>OD | 8.625 | 2   | 1.5 | 7304.2  | 6136651.4 | 10+ |         |        |
|      |       |      |            | Casing       |       |     |     |         |           |     |         |        |
| 1267 | 12000 | 5000 | No DS      | OD           | 10.75 | 1   | 1.5 | 13509.7 | 10E6+     | 10+ |         |        |
| 1271 | 12000 | 5000 | No DS      | Casing       | 10.75 | 15  | 15  | 13509.7 | 10E6+     | 10+ |         |        |
| 12/1 | 12000 | 5000 | 110 25     | Casing       | 10.75 | 1.5 | 1.5 | 15507.7 | TOLOT     | 101 |         |        |
| 1275 | 12000 | 5000 | No DS      | OD           | 10.75 | 2   | 1.5 | 13509.7 | 10E6+     | 10+ |         |        |
|      | 10000 |      |            | Casing       |       |     |     |         | 1071      | 10  |         |        |
| 1279 | 12000 | 5000 | No DS      | OD<br>Casing | 12.75 | 1   | 1.5 | 23872   | 10E6+     | 10+ |         |        |
| 1283 | 12000 | 5000 | No DS      | OD           | 12.75 | 1.5 | 1.5 | 23872   | 10E6+     | 10+ |         |        |

| 1007 | 12000  | 5000  | N DC                | Casing       | 10.75  | 2   | 1.5 | 22972  | 1056      | 10. |           |        |
|------|--------|-------|---------------------|--------------|--------|-----|-----|--------|-----------|-----|-----------|--------|
| 1287 | 12000  | 5000  | No DS               | OD           | 12.75  | 2   | 1.5 | 23872  | 10E6+     | 10+ |           |        |
| 1297 | 12000  | 10000 | BOP                 | OD           | 8.625  | 1   | 1.5 | 313.2  | 13688.3   | 1   | 13688.3   | 2501.1 |
|      |        |       | Hanging from        | Casing       |        |     |     |        |           |     |           |        |
| 1301 | 12000  | 10000 | BOP                 | OD           | 8.625  | 1.5 | 1.5 | 313.2  | 17564.9   | 2   | 8869.7    | 810.3  |
| 1005 | 1.0000 | 10000 | Hanging from        | Casing       | 0.405  |     |     |        |           |     | 0.0.10    |        |
| 1305 | 12000  | 10000 | BOP                 | OD           | 8.625  | 2   | 1.5 | 313.2  | 21441.6   | 2   | 9848      | 899.7  |
| 1200 | 12000  | 10000 | Hanging from        | Casing       | 10.75  | 1   | 1.5 | 1424.2 | 1640667   | -   | 11200     | 1076.2 |
| 1309 | 12000  | 10000 | BOP<br>Honging from | OD           | 10.75  | 1   | 1.5 | 1434.2 | 104900.7  | 3   | 11809     | 1970.3 |
| 1313 | 12000  | 10000 |                     |              | 10.75  | 1.5 | 15  | 1/3/ 2 | 244800.6  | 6   | 12004.6   | 1686 7 |
| 1515 | 12000  | 10000 | Hanging from        | Casing       | 10.75  | 1.5 | 1.5 | 1434.2 | 244800.0  | 0   | 12094.0   | 1000.7 |
| 1317 | 12000  | 10000 | BOP                 | OD           | 10.75  | 2   | 1.5 | 1434.2 | 324634.4  | 6   | 14359.8   | 2002.6 |
|      |        |       | Hanging from        | Casing       |        |     |     |        |           |     |           |        |
| 1321 | 12000  | 10000 | BOP                 | OD           | 12.75  | 1   | 1.5 | 4813.7 | 1753315.0 | 10+ |           |        |
|      |        |       | Hanging from        | Casing       |        |     |     |        |           |     |           |        |
| 1325 | 12000  | 10000 | BOP                 | OD           | 12.75  | 1.5 | 1.5 | 4813.7 | 2627156.8 | 10+ |           |        |
|      |        |       | Hanging from        | Casing       |        | -   |     |        |           |     |           |        |
| 1329 | 12000  | 10000 | BOP                 | OD           | 12.75  | 2   | 1.5 | 4813.7 | 3500997.9 | 10+ |           |        |
| 1222 | 12000  | 10000 | Hanging from        | DS           | 500    |     | 1.5 | 10((1  | 274052.5  | (   | 12570 4   | 2462.0 |
| 1333 | 12000  | 10000 | BOP                 | Length       | 50%    | I   | 1.5 | 1866.1 | 274953.5  | 6   | 13578.4   | 2463.9 |
| 1227 | 12000  | 10000 | Hanging from        | DS<br>Longth | 500    | 15  | 1.5 | 1966-1 | 4004647   | 7   | 1 4 2 7 2 | 2225 5 |
| 1557 | 12000  | 10000 | DUP<br>Hanging from | DS           | 30%    | 1.5 | 1.5 | 1800.1 | 409404.7  | /   | 14575     | 2255.5 |
| 1341 | 12000  | 10000 |                     | DS<br>Length | 50%    | 2   | 15  | 1866 1 | 543975 8  | 8   | 14562 7   | 1981 9 |
| 1511 | 12000  | 10000 | Hanging from        | DS           | 5070   | 2   | 1.5 | 1000.1 | 515775.0  | 0   | 11502.7   | 1701.7 |
| 1345 | 12000  | 10000 | BOP                 | Length       | 25%    | 1   | 1.5 | 2516.2 | 491373.2  | 8   | 13217.8   | 2425.5 |
|      |        |       | Hanging from        | DS           |        |     |     |        | .,        |     |           |        |
| 1349 | 12000  | 10000 | BOP                 | Length       | 25%    | 1.5 | 1.5 | 2516.2 | 734360.3  | 9   | 14677.7   | 2394.1 |
|      |        |       | Hanging from        | DS           |        |     |     |        |           |     |           |        |
| 1353 | 12000  | 10000 | BOP                 | Length       | 25%    | 2   | 1.5 | 2516.2 | 977348.0  | 10+ |           |        |
|      |        |       |                     | Casing       |        |     |     |        |           |     |           |        |
| 1357 | 12000  | 10000 | Dropped DS          | OD           | 8.625  | 1   | 1.5 | 271.5  | 10703.9   | 1   | 10703.9   | 1695.6 |
|      |        |       |                     | Casing       |        |     |     |        |           |     |           |        |
| 1361 | 12000  | 10000 | Dropped DS          | OD           | 8.625  | 1.5 | 1.5 | 271.5  | 13622.3   | 1   | 13622.3   | 2158   |
| 1265 | 12000  | 10000 | Duran d DC          | Casing       | 0 ( )5 | 2   | 15  | 0715   | 16540 7   | 2   | 7016 5    | (10.1  |
| 1365 | 12000  | 10000 | Dropped DS          | OD           | 8.625  | 2   | 1.5 | 2/1.5  | 16540.7   | 2   | /816.5    | 019.1  |
| 1369 | 12000  | 10000 | Dropped DS          | OD           | 10.75  | 1   | 1.5 | 1439.5 | 166189.3  | 5   | 11902.6   | 1999.3 |

| 1373                                         | 12000                                              | 10000                                              | Dropped DS                                                  | Casing<br>OD                                                                                                                                                           | 10.75                                                                | 15                                                                                                                                                      | 15                                                                                  | 1439 5                                                              | 246611.8                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12190.3 | 1706.4 |
|----------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| 1575                                         | 12000                                              | 10000                                              | Diopped Do                                                  | Casing                                                                                                                                                                 | 10.75                                                                | 1.5                                                                                                                                                     | 1.5                                                                                 | 1157.5                                                              | 210011.0                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12190.5 | 1700.1 |
| 1377                                         | 12000                                              | 10000                                              | Dropped DS                                                  | OD                                                                                                                                                                     | 10.75                                                                | 2                                                                                                                                                       | 1.5                                                                                 | 1439.5                                                              | 327034.2                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14472.2 | 2025.8 |
|                                              |                                                    |                                                    |                                                             | Casing                                                                                                                                                                 |                                                                      |                                                                                                                                                         |                                                                                     |                                                                     |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |        |
| 1381                                         | 12000                                              | 10000                                              | Dropped DS                                                  | OD                                                                                                                                                                     | 12.75                                                                | 1                                                                                                                                                       | 1.5                                                                                 | 4830.1                                                              | 1765106.1                                                           | 10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |
| 1385                                         | 12000                                              | 10000                                              | Dronned DS                                                  | Casing                                                                                                                                                                 | 12 75                                                                | 15                                                                                                                                                      | 1.5                                                                                 | 4830.1                                                              | 2644810.0                                                           | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |
| 1565                                         | 12000                                              | 10000                                              | Diopped DS                                                  | Casing                                                                                                                                                                 | 12.75                                                                | 1.5                                                                                                                                                     | 1.5                                                                                 | +0.00.1                                                             | 2044019.9                                                           | 10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |
| 1389                                         | 12000                                              | 10000                                              | Dropped DS                                                  | OD                                                                                                                                                                     | 12.75                                                                | 2                                                                                                                                                       | 1.5                                                                                 | 4830.1                                                              | 3524533.0                                                           | 10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |
|                                              |                                                    |                                                    |                                                             | DS                                                                                                                                                                     |                                                                      |                                                                                                                                                         |                                                                                     |                                                                     |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |        |
| 1393                                         | 12000                                              | 10000                                              | Dropped DS                                                  | Length                                                                                                                                                                 | 50%                                                                  | 1                                                                                                                                                       | 1.5                                                                                 | 1475.7                                                              | 174238.0                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12161.4 | 2094.2 |
| 1207                                         | 12000                                              | 10000                                              | D 100                                                       | DS                                                                                                                                                                     | 500                                                                  |                                                                                                                                                         |                                                                                     | 1 455 5                                                             | 050501.5                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10460.4 | 1500 5 |
| 1397                                         | 12000                                              | 10000                                              | Dropped DS                                                  | Length                                                                                                                                                                 | 50%                                                                  | 1.5                                                                                                                                                     | 1.5                                                                                 | 14/5.7                                                              | 258721.5                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12463.4 | 1788.5 |
| 1401                                         | 12000                                              | 10000                                              | Dropped DS                                                  | Length                                                                                                                                                                 | 50%                                                                  | 2                                                                                                                                                       | 1.5                                                                                 | 1475.7                                                              | 343205.0                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14860.8 | 2132.5 |
| 1.01                                         | 12000                                              | 10000                                              | Diopped DD                                                  | DS                                                                                                                                                                     | 2070                                                                 |                                                                                                                                                         | 110                                                                                 | 111011                                                              | 0.1020010                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1100010 | 210210 |
| 1405                                         | 12000                                              | 10000                                              | Dropped DS                                                  | Length                                                                                                                                                                 | 25%                                                                  | 1                                                                                                                                                       | 1.5                                                                                 | 1781.8                                                              | 250430.5                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14977.2 | 3113.9 |
|                                              |                                                    |                                                    |                                                             | DS                                                                                                                                                                     |                                                                      |                                                                                                                                                         |                                                                                     |                                                                     |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |        |
| 1409                                         | 12000                                              | 10000                                              | Dropped DS                                                  | Length                                                                                                                                                                 | 25%                                                                  | 1.5                                                                                                                                                     | 1.5                                                                                 | 1781.8                                                              | 373169.7                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12652.2 | 1879   |
| 1412                                         | 12000                                              | 10000                                              | Dropped DS                                                  | DS<br>Longth                                                                                                                                                           | 250%                                                                 | 2                                                                                                                                                       | 1.5                                                                                 | 1701.0                                                              | 405008.0                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12925 6 | 1666.6 |
| 1415                                         | 12000                                              | 10000                                              |                                                             | Casing                                                                                                                                                                 | 2370                                                                 | <u>∠</u>                                                                                                                                                | 1.5                                                                                 | 1/01.0                                                              | 493908.9                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12823.0 | 1000.0 |
| 1417                                         | 12000                                              | 10000                                              | No DS                                                       | OD                                                                                                                                                                     | 8 625                                                                | 1                                                                                                                                                       | 15                                                                                  | 8270                                                                | 5060017.6                                                           | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |
|                                              |                                                    |                                                    |                                                             |                                                                                                                                                                        | 0.040                                                                | -                                                                                                                                                       | 1.5                                                                                 | 0270                                                                | 3009017.0                                                           | 10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |
| 1421                                         |                                                    |                                                    |                                                             | Casing                                                                                                                                                                 | 0.025                                                                | 1                                                                                                                                                       | 1.5                                                                                 | 8270                                                                | 3009017.0                                                           | 10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |
|                                              | 12000                                              | 10000                                              | No DS                                                       | Casing<br>OD                                                                                                                                                           | 8.625                                                                | 1.5                                                                                                                                                     | 1.5                                                                                 | 8270                                                                | 7600520.0                                                           | 10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |
| 1.405                                        | 12000                                              | 10000                                              | No DS                                                       | Casing<br>OD<br>Casing                                                                                                                                                 | 8.625                                                                | 1.5                                                                                                                                                     | 1.5                                                                                 | 8270                                                                | 7600520.0                                                           | 10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |
| 1425                                         | 12000<br>12000                                     | 10000                                              | No DS<br>No DS                                              | Casing<br>OD<br>Casing<br>OD                                                                                                                                           | 8.625<br>8.625                                                       | 1.5<br>2                                                                                                                                                | 1.5<br>1.5                                                                          | 8270<br>8270<br>8270                                                | 7600520.0<br>10E6+                                                  | 10+<br>10+<br>10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |        |
| 1425                                         | 12000<br>12000                                     | 10000<br>10000                                     | No DS<br>No DS<br>No DS                                     | Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD                                                                                                                           | 8.625<br>8.625<br>10.75                                              | 1.5<br>2                                                                                                                                                | 1.5<br>1.5<br>1.5                                                                   | 8270<br>8270<br>15323 5                                             | 7600520.0<br>10E6+                                                  | 10+<br>10+<br>10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |        |
| 1425<br>1429                                 | 12000<br>12000<br>12000                            | 10000<br>10000<br>10000                            | No DS<br>No DS<br>No DS                                     | Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing                                                                                                                 | 8.625<br>8.625<br>10.75                                              | 1.5<br>2<br>1                                                                                                                                           | 1.5<br>1.5<br>1.5                                                                   | 8270<br>8270<br>15323.5                                             | 7600520.0<br>10E6+<br>6946833.0                                     | 10+<br>10+<br>10+<br>10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |
| 1425<br>1429<br>1433                         | 12000<br>12000<br>12000<br>12000                   | 10000<br>10000<br>10000<br>10000                   | No DS<br>No DS<br>No DS<br>No DS                            | Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD                                                                                                           | 8.625<br>8.625<br>10.75<br>10.75                                     | 1.5<br>2<br>1<br>1.5                                                                                                                                    | 1.5<br>1.5<br>1.5<br>1.5                                                            | 8270<br>8270<br>15323.5<br>15323.5                                  | 7600520.0<br>10E6+<br>6946833.0<br>10E6+                            | 10+<br>10+<br>10+<br>10+<br>10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |        |
| 1425<br>1429<br>1433                         | 12000<br>12000<br>12000<br>12000                   | 10000<br>10000<br>10000<br>10000                   | No DS<br>No DS<br>No DS<br>No DS                            | Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing                                                                                                 | 8.625<br>8.625<br>10.75<br>10.75                                     | 1.5<br>2<br>1<br>1.5                                                                                                                                    | 1.5<br>1.5<br>1.5<br>1.5                                                            | 8270<br>8270<br>15323.5<br>15323.5                                  | 7600520.0<br>10E6+<br>6946833.0<br>10E6+                            | 10+<br>10+<br>10+<br>10+<br>10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |        |
| 1425         1429         1433         1437  | 12000<br>12000<br>12000<br>12000<br>12000          | 10000<br>10000<br>10000<br>10000<br>10000          | No DS<br>No DS<br>No DS<br>No DS<br>No DS<br>No DS          | Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD                                                                                           | 8.625<br>8.625<br>10.75<br>10.75<br>10.75                            | 1.5<br>2<br>1<br>1.5<br>2                                                                                                                               | 1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                     | 8270<br>8270<br>15323.5<br>15323.5                                  | 7600520.0<br>10E6+<br>6946833.0<br>10E6+<br>10E6+                   | 10+<br>10+<br>10+<br>10+<br>10+<br>10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |        |
| 1425<br>1429<br>1433<br>1437                 | 12000<br>12000<br>12000<br>12000<br>12000          | 10000<br>10000<br>10000<br>10000<br>10000          | No DS<br>No DS<br>No DS<br>No DS<br>No DS                   | Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD                                                                           | 8.625<br>8.625<br>10.75<br>10.75<br>10.75                            | 1.5<br>2<br>1<br>1.5<br>2                                                                                                                               | 1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                     | 8270<br>8270<br>15323.5<br>15323.5<br>15323.5                       | 7600520.0<br>10E6+<br>6946833.0<br>10E6+<br>10E6+                   | 10+<br>10+<br>10+<br>10+<br>10+<br>10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |        |
| 1425<br>1429<br>1433<br>1437<br>1441         | 12000<br>12000<br>12000<br>12000<br>12000<br>12000 | 10000<br>10000<br>10000<br>10000<br>10000<br>10000 | No DS<br>No DS<br>No DS<br>No DS<br>No DS<br>No DS<br>No DS | Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing                                                                 | 8.625<br>8.625<br>10.75<br>10.75<br>10.75<br>10.75<br>12.75          | $     \begin{array}{r}       1.5 \\       2 \\       1 \\       1.5 \\       2 \\       1 \\       1.5 \\       2 \\       1 \\       1   \end{array} $ | 1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                              | 8270<br>8270<br>15323.5<br>15323.5<br>15323.5<br>27104.5            | 7600520.0<br>10E6+<br>6946833.0<br>10E6+<br>10E6+<br>10E6+          | 10+<br>10+<br>10+<br>10+<br>10+<br>10+<br>10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |        |
| 1425<br>1429<br>1433<br>1437<br>1441<br>1445 | 12000<br>12000<br>12000<br>12000<br>12000<br>12000 | 10000<br>10000<br>10000<br>10000<br>10000<br>10000 | No DS<br>No DS<br>No DS<br>No DS<br>No DS<br>No DS<br>No DS | Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD                                                           | 8.625<br>8.625<br>10.75<br>10.75<br>10.75<br>12.75                   | 1.5<br>2<br>1<br>1.5<br>2<br>1<br>1.5<br>2<br>1<br>1.5                                                                                                  | 1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                       | 8270<br>8270<br>15323.5<br>15323.5<br>15323.5<br>27104.5<br>27104.5 | 7600520.0<br>10E6+<br>6946833.0<br>10E6+<br>10E6+<br>10E6+<br>10E6+ | 10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+ |         |        |
| 1425<br>1429<br>1433<br>1437<br>1441<br>1445 | 12000<br>12000<br>12000<br>12000<br>12000<br>12000 | 10000<br>10000<br>10000<br>10000<br>10000<br>10000 | No DS<br>No DS<br>No DS<br>No DS<br>No DS<br>No DS<br>No DS | Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing<br>OD<br>Casing | 8.625<br>8.625<br>10.75<br>10.75<br>10.75<br>10.75<br>12.75<br>12.75 | $   \begin{array}{r}     1.5 \\     2 \\     1 \\     1.5 \\     2 \\     1 \\     1.5 \\     1.5 \\   \end{array} $                                    | 1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5 | 8270<br>8270<br>15323.5<br>15323.5<br>15323.5<br>27104.5<br>27104.5 | 7600520.0<br>10E6+<br>6946833.0<br>10E6+<br>10E6+<br>10E6+<br>10E6+ | 10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+     10+ |         |        |

#### **APPENDIX D**

#### **KILL WITH DRILLSTRING INITIAL CONDITIONS**

| Run #         | DS1          |                |            |     |       |       |
|---------------|--------------|----------------|------------|-----|-------|-------|
| Intitial Conc | litions      |                |            |     |       |       |
| Surface Gas   | Rate         | 20.938 MMscf/D | Wellbore   |     |       | units |
|               |              |                | TVD BML    |     | 8000  | ft    |
| Depth, ft     | Pressure, ps | sia            | Water TVD  |     | 0     | ft    |
| C             | 126.193      |                | DS Status  |     | 1     | n/a   |
| 800           | 1049.791     |                | Parameter  | csg |       | n/a   |
| 1600          | 1465.164     |                | Par. Value |     | 8.625 |       |
| 2400          | 1795.191     |                |            |     |       |       |
| 3200          | 2083.724     |                |            |     |       |       |
| 4000          | 2347.506     |                |            |     |       |       |
| 4800          | 2594.901     |                |            |     |       |       |
| 5600          | 2830.717     |                |            |     |       |       |
| 6400          | 3057.974     |                |            |     |       |       |
| 7200          | 3278.685     |                |            |     |       |       |
| 8000          | 4313.13      |                |            |     |       |       |
| <b>D</b> "    | Daa          |                |            |     |       |       |
| Run #         | DS2          |                |            |     |       |       |
| Intitial Cond | litions      |                |            |     |       |       |
| Surface Gas   | Rate         | 28.335 MMscf/D | Wellbore   |     | 0000  | units |
|               | P            |                | TVD BML    |     | 8000  | ft    |
| Depth, It     | Pressure, ps | sia            | Water TVD  |     | 0     | ft    |
| 0             | 164.682      |                | DS Status  | 000 | 0.75  | n/a   |
| 800           | 1406.603     |                | Parameter  | CSG | 0 (25 | n/a   |
| 1600          | 1962.283     |                | Par. Value |     | 8.625 |       |
| 2400          | 2406.842     |                |            |     |       |       |
| 3200          | 2798.486     |                |            |     |       |       |
| 4000          | 3159.017     |                |            |     |       |       |
| 4800          | 3499.122     |                |            |     |       |       |
| 5600          | 3824.842     |                |            |     |       |       |
| 6400          | 4018.567     |                |            |     |       |       |
| 7200          | 40/8.264     |                |            |     |       |       |
| 8000          | 4138.461     |                |            |     |       |       |

| Run #      | DS3        |
|------------|------------|
| Intitial C | Conditions |

8000 4019.229

8000 3775.447

| Surface Gas F | Rate           | 33.345 MMscf/D | Wellbore   |     | units   |
|---------------|----------------|----------------|------------|-----|---------|
| -             |                |                | TVD BML    |     | 8000 ft |
| Depth, ft     | Pressure, psia |                | Water TVD  |     | 0 ft    |
| 0             | 205.358        |                | DS Status  |     | 0.5 n/a |
| 800           | 1645.894       |                | Parameter  | csg | n/a     |
| 1600          | 2297.404       |                | Par. Value |     | 8.625   |
| 2400          | 2822.193       |                | -          |     |         |
| 3200          | 3287.36        |                |            |     |         |
| 4000          | 3717.66        |                |            |     |         |
| 4800          | 3783.938       |                |            |     |         |
| 5600          | 3842.827       |                |            |     |         |
| 6400          | 3901.497       |                |            |     |         |
| 7200          | 3959.954       |                |            |     |         |

| Run #<br>Intitial Con | DS4<br>ditions |                |            |     |          |
|-----------------------|----------------|----------------|------------|-----|----------|
| Surface Gas           | Rate           | 43.472 MMscf/D | Wellbore   |     | units    |
| -                     |                |                | TVD BML    |     | 8000 ft  |
| Depth, ft             | Pressure, ps   | ia             | Water TVD  |     | 0 ft     |
| (                     | 0 216.1        |                | DS Status  |     | 0.25 n/a |
| 80                    | 0 2125.579     |                | Parameter  | csg | n/a      |
| 160                   | 0 2977.565     |                | Par. Value |     | 8.625    |
| 240                   | 0 3379.629     |                |            |     |          |
| 320                   | 0 3436.495     |                |            |     |          |
| 400                   | 0 3493.154     |                |            |     |          |
| 480                   | 0 3549.614     |                |            |     |          |
| 560                   | 0 3605.883     |                |            |     |          |
| 640                   | 0 3661.968     |                |            |     |          |
| 720                   | 0 3717.874     |                |            |     |          |

# Run # DS5 Intitial Conditions

8000 2905.814

7200 2432.08 8000 2475.881

| Surface Gas R | ate            | 79.633 MMscf/D | Wellbore   |     | units   |
|---------------|----------------|----------------|------------|-----|---------|
| -             |                |                | TVD BML    |     | 8000 ft |
| Depth, ft     | Pressure, psia |                | Water TVD  |     | 0 ft    |
| 0             | 117.527        |                | DS Status  |     | 1 n/a   |
| 800           | 724.449        |                | Parameter  | csg | n/a     |
| 1600          | 1000.264       |                | Par. Value |     | 10.75   |
| 2400          | 1219.84        |                |            |     |         |
| 3200          | 1411.413       |                |            |     |         |
| 4000          | 1585.945       |                |            |     |         |
| 4800          | 1749.01        |                |            |     |         |
| 5600          | 1903.869       |                |            |     |         |
| 6400          | 2052.605       |                |            |     |         |
| 7200          | 2196.632       |                |            |     |         |

| Run #       |     | DS6            |                |            |          |
|-------------|-----|----------------|----------------|------------|----------|
| Intitial Co | nd  | itions         |                |            |          |
| Surface Gas | s F | Rate           | 95.837 MMscf/D | Wellbore   | units    |
| -           |     |                |                | TVD BML    | 8000 ft  |
| Depth, ft   |     | Pressure, psia |                | Water TVD  | 0 ft     |
|             | 0   | 165.571        |                | DS Status  | 0.75 n/a |
| 80          | 00  | 868.323        |                | Parameter  | CSG n/a  |
| 160         | 00  | 1197.592       |                | Par. Value | 10.75    |
| 240         | 00  | 1459.932       |                |            |          |
| 320         | 00  | 1689.147       |                |            |          |
| 400         | 00  | 1898.328       |                |            |          |
| 480         | 00  | 2094.106       |                |            |          |
| 560         | 00  | 2280.338       |                |            |          |
| 640         | 00  | 2393.013       |                |            |          |

| Kull #   |            |
|----------|------------|
| Intitial | Conditions |

8000 2246.406

6400 1794.2257200 1825.7088000 1866.641

| Surface Gas Rate |                | 104.061 MMscf/D | Wellbore   | units   |
|------------------|----------------|-----------------|------------|---------|
| -                |                |                 | TVD BML    | 8000 ft |
| Depth, ft        | Pressure, psia |                 | Water TVD  | 0 ft    |
| 0                | 158.454        |                 | DS Status  | 0.5 n/a |
| 800              | 940.208        |                 | Parameter  | CSG n/a |
| 1600             | 1296.631       |                 | Par. Value | 10.75   |
| 2400             | 1580.708       |                 |            |         |
| 3200             | 1829.122       |                 |            |         |
| 4000             | 2056.043       |                 |            |         |
| 4800             | 2095.771       |                 |            |         |
| 5600             | 2131.862       |                 |            |         |
| 6400             | 2167.97        |                 |            |         |
| 7200             | 2204.095       |                 |            |         |

| Run #               | DS8         |                 |            |          |  |  |  |
|---------------------|-------------|-----------------|------------|----------|--|--|--|
| Intitial Conditions |             |                 |            |          |  |  |  |
| Surface Gas Rate    |             | 116.914 MMscf/D | Wellbore   | units    |  |  |  |
| -                   |             |                 | TVD BML    | 8000 ft  |  |  |  |
| Depth, ft           | Pressure, p | osia            | Water TVD  | 0 ft     |  |  |  |
|                     | 0 72.14     |                 | DS Status  | 0.25 n/a |  |  |  |
| 80                  | 0 1052.635  |                 | Parameter  | CSG n/a  |  |  |  |
| 160                 | 0 1451.144  |                 | Par. Value | 10.75    |  |  |  |
| 240                 | 0 1637.885  |                 |            |          |  |  |  |
| 320                 | 0 1669.036  |                 |            |          |  |  |  |
| 400                 | 0 1700.25   |                 |            |          |  |  |  |
| 480                 | 0 1731.526  |                 |            |          |  |  |  |
| 560                 | 0 1762.861  |                 |            |          |  |  |  |

| Run #      | DS9       |
|------------|-----------|
| Intitial C | onditions |

8000 1501.619

7200 1160.932 8000 1188.539

| Surface Gas H | Rate           | 130.997 MMscf/D | Wellbore   | units   |
|---------------|----------------|-----------------|------------|---------|
| -             |                |                 | TVD BML    | 8000 ft |
| Depth, ft     | Pressure, psia |                 | Water TVD  | 0 ft    |
| 0             | 105.627        |                 | DS Status  | 1 n/a   |
| 800           | 396.879        |                 | Parameter  | CSG n/a |
| 1600          | 541.958        |                 | Par. Value | 12.75   |
| 2400          | 658.096        |                 | -          |         |
| 3200          | 759.556        |                 |            |         |
| 4000          | 851.94         |                 |            |         |
| 4800          | 938.122        |                 |            |         |
| 5600          | 1019.805       |                 |            |         |
| 6400          | 1098.087       |                 |            |         |
| 7200          | 1173.723       |                 |            |         |

| Run #        | D    | <mark>0</mark> S10 |         |         |            |     |        |
|--------------|------|--------------------|---------|---------|------------|-----|--------|
| Intitial Con | diti | ions               |         |         |            |     |        |
| Surface Gas  | Rat  | te                 | 139.977 | MMscf/D | Wellbore   |     | units  |
| -            |      |                    |         |         | TVD BML    | 80  | 00 ft  |
| Depth, ft    | Р    | ressure, psia      |         |         | Water TVD  |     | 0 ft   |
|              | 0    | 83.312             |         |         | DS Status  | 0.  | 75 n/a |
| 80           | 0    | 422.255            |         |         | Parameter  | CSG | n/a    |
| 160          | 0    | 577.351            |         |         | Par. Value | 12. | 75     |
| 240          | 0    | 701.361            |         |         |            |     |        |
| 320          | 0    | 809.652            |         |         |            |     |        |
| 400          | 0    | 908.239            |         |         |            |     |        |
| 480          | 0    | 1000.207           |         |         |            |     |        |
| 560          | 0    | 1087.377           |         |         |            |     |        |
| 640          | 0    | 1140.839           |         |         |            |     |        |

| Run #    | DS11       |
|----------|------------|
| Intitial | Conditions |

7200 1008.436 8000 1035.954

Run # DS12

7200

8000

790.584

819.489

| Surface Gas I | Rate           | 144.002 MMscf/D | Wellbore   | units   |
|---------------|----------------|-----------------|------------|---------|
| -             |                |                 | TVD BML    | 8000 ft |
| Depth, ft     | Pressure, psia |                 | Water TVD  | 0 ft    |
| 0             | 103.607        |                 | DS Status  | 0.5 n/a |
| 800           | 434.601        |                 | Parameter  | CSG n/a |
| 1600          | 593.912        |                 | Par. Value | 12.75   |
| 2400          | 721.325        |                 |            |         |
| 3200          | 832.601        |                 |            |         |
| 4000          | 933.917        |                 |            |         |
| 4800          | 953.639        |                 |            |         |
| 5600          | 971.84         |                 |            |         |
| 6400          | 990.106        |                 |            |         |

| Intitial Con | ditions        |                 |            |          |
|--------------|----------------|-----------------|------------|----------|
| Surface Gas  | Rate           | 149.281 MMscf/D | Wellbore   | units    |
| -            |                |                 | TVD BML    | 8000 ft  |
| Depth, ft    | Pressure, psia | a               | Water TVD  | 0 ft     |
| (            | 0 81.422       |                 | DS Status  | 0.25 n/a |
| 80           | 0 449.811      |                 | Parameter  | CSG n/a  |
| 160          | 0 614.903      |                 | Par. Value | 12.75    |
| 240          | 0 693.88       |                 |            |          |
| 320          | 0 709.846      |                 |            |          |
| 400          | 0 725.873      |                 |            |          |
| 480          | 0 741.961      |                 |            |          |
| 560          | 0 758.109      |                 |            |          |
| 640          | 0 774.317      |                 |            |          |
| Run #         | DS13           |                |            |     |       |      |
|---------------|----------------|----------------|------------|-----|-------|------|
| Intitial Cond | litions        |                |            |     |       |      |
| Surface Gas I | Rate           | 31.473 MMscf/D | Wellbore   |     |       | unit |
|               |                |                | TVD BML    |     | 8000  | ft   |
| Depth, ft     | Pressure, psia |                | Water TVD  |     | 5000  | ft   |
| 5000          | 2235.089       |                | DS Status  |     | 1     | n/a  |
| 5800          | 2704.047       |                | Parameter  | CSG |       | n/a  |
| 6600          | 3121.677       |                | Par. Value |     | 8.625 |      |
| 7400          | 3508.542       |                |            |     |       |      |
| 8200          | 3874.979       |                |            |     |       |      |
| 9000          | 4226.916       |                |            |     |       |      |
| 9800          | 4568.06        |                |            |     |       |      |
| 10600         | 4900.88        |                |            |     |       |      |
| 11400         | 5227.096       |                |            |     |       |      |
| 12200         | 5547.957       |                |            |     |       |      |
| 13000         | 7093.52        |                |            |     |       |      |
| Run #         | DS14           |                |            |     |       |      |
| Intitial Cond | litions        |                |            |     |       |      |
| Surface Gas I | Rate           | 47.176 MMscf/D | Wellbore   |     |       | unit |
| -             |                |                | TVD BML    |     | 8000  | ft   |
| Depth, ft     | Pressure, psia |                | Water TVD  |     | 5000  | ft   |
| 5000          | 2254.505       |                | DS Status  |     | 0.75  | n/a  |
| 5800          | 3177.214       |                | Parameter  | csg |       | n/a  |
| 6600          | 3931.308       |                | Par. Value |     | 8.625 |      |
| 7400          | 4608.069       |                |            |     |       |      |

8200

9000

9800

10600

11400

12200 13000 5239.728

5841.584

6393.038

6480.274

6567.509 6654.744

6743.342

units

units

| Run #         | DS15         |                |            |     |
|---------------|--------------|----------------|------------|-----|
| Intitial Cond | litions      |                |            |     |
| Surface Gas H | Rate         | 74.205 MMscf/D | Wellbore   |     |
|               |              |                | TVD BML    |     |
| Depth, ft     | Pressure, ps | ia             | Water TVD  |     |
| 5000          | 2244.051     |                | DS Status  |     |
| 5800          | 4183.142     |                | Parameter  | csg |
| 6600          | 5469.953     |                | Par. Value |     |
| 7400          | 5553.565     |                |            |     |
| 8200          | 5637.224     |                |            |     |
| 9000          | 5720.927     |                |            |     |
| 9800          | 5804.673     |                |            |     |
| 10600         | 5888.462     |                |            |     |
| 11400         | 5972.292     |                |            |     |
| 12200         | 6056.161     |                |            |     |

13000 6143.647

13000 5132.52

units

8000 ft 5000 ft 0.5 n/a n/a

8.625

| Run #<br>Intitial Cond | DS17<br>litions |                 |               |         |
|------------------------|-----------------|-----------------|---------------|---------|
| Surface Gas I          | Rate            | 122.562 MMscf/D | Wellbore      | units   |
|                        |                 |                 | TVD BML       | 8000 ft |
| Depth, ft              | Pressure, psia  |                 | Water TVD     | 5000 ft |
| 5000                   | 2227.765        |                 | DS Status     | 1 n/a   |
| 5800                   | 2474.895        |                 | Parameter csg | n/a     |
| 6600                   | 2708.915        |                 | Par. Value    | 10.75   |
| 7400                   | 2933.494        |                 |               |         |
| 8200                   | 3151.022        |                 |               |         |
| 9000                   | 3363.133        |                 |               |         |
| 9800                   | 3570.99         |                 |               |         |
| 10600                  | 3775.445        |                 |               |         |
| 11400                  | 3977.139        |                 |               |         |
| 12200                  | 4176.565        |                 |               |         |

| Run #         | DS18           |                 |                            |     |       |
|---------------|----------------|-----------------|----------------------------|-----|-------|
| Intitial Cond | litions        |                 |                            |     |       |
| Surface Gas I | Rate           | 156.02 MMscf/D  | <b>Wellbore</b><br>TVD BML |     | 8000  |
| Depth, ft     | Pressure, psia |                 | Water TVD                  |     | 5000  |
| 5000          | 2260.831       |                 | DS Status                  |     | 0.75  |
| 5800          | 2624.979       |                 | Parameter                  | csg |       |
| 6600          | 2958.494       |                 | Par. Value                 | -   | 10.75 |
| 7400          | 3272.059       |                 |                            |     |       |
| 8200          | 3571.685       |                 |                            |     |       |
| 9000          | 3861.085       |                 |                            |     |       |
| 9800          | 4130.086       |                 |                            |     |       |
| 10600         | 4198.412       |                 |                            |     |       |
| 11400         | 4266.917       |                 |                            |     |       |
| 12200         | 4335.596       |                 |                            |     |       |
| 13000         | 4411.525       |                 |                            |     |       |
| Run #         | DS19           |                 |                            |     |       |
| Intitial Cond | litions        |                 |                            |     |       |
| Surface Gas I | Rate           | 190.465 MMscf/D | Wellbore                   |     |       |
| -             |                |                 | TVD BML                    |     | 8000  |
| Depth, ft     | Pressure, psia |                 | Water TVD                  |     | 5000  |
| 5000          | 2248.771       |                 | DS Status                  |     | 0.5   |
| 5800          | 2760.952       |                 | Parameter                  | csg |       |
| 6600          | 3167.274       |                 | Par. Value                 |     | 10.75 |
| 7400          | 3227.204       |                 |                            |     |       |
| 8200          | 3287.413       |                 |                            |     |       |
| 9000          | 3347.894       |                 |                            |     |       |
| 9800          | 3408.64        |                 |                            |     |       |
| 10600         | 3469.646       |                 |                            |     |       |

3530.907

3592.416

3666.403

11400 12200

13000

units ft ft n/a n/a

units ft ft n/a n/a

| Run #    | DS21       |
|----------|------------|
| Intitial | Conditions |

13000 3466.962

12200 3046.737 13000 3105.133

| Surface Gas Rate |                | 203.923 | MMscf/D | Wellbore   |     |       | units |
|------------------|----------------|---------|---------|------------|-----|-------|-------|
| _                |                |         |         | TVD BML    |     | 8000  | ft    |
| Depth, ft        | Pressure, psia |         |         | Water TVD  |     | 5000  | ft    |
| 5000             | 2244.619       |         |         | DS Status  |     | 1     | n/a   |
| 5800             | 2344.404       |         |         | Parameter  | csg |       | n/a   |
| 6600             | 2443.682       |         |         | Par. Value |     | 12.75 |       |
| 7400             | 2542.579       |         |         |            |     |       |       |
| 8200             | 2641.198       |         |         |            |     |       |       |
| 9000             | 2739.624       |         |         |            |     |       |       |
| 9800             | 2837.926       |         |         |            |     |       |       |
| 10600            | 2936.162       |         |         |            |     |       |       |
| 11400            | 3034.378       |         |         |            |     |       |       |
| 12200            | 3132.615       |         |         |            |     |       |       |

| Run #         | DS22          |                 |            |     |          |
|---------------|---------------|-----------------|------------|-----|----------|
| Intitial Cond | litions       |                 |            |     |          |
| Surface Gas   | Rate          | 220.816 MMscf/D | Wellbore   |     | units    |
| -             |               |                 | TVD BML    |     | 8000 ft  |
| Depth, ft     | Pressure, psi | a               | Water TVD  |     | 5000 ft  |
| 5000          | 2247.438      |                 | DS Status  |     | 0.75 n/a |
| 5800          | 2357.243      |                 | Parameter  | csg | n/a      |
| 6600          | 2466.143      |                 | Par. Value | -   | 12.75    |
| 7400          | 2574.334      |                 |            |     |          |
| 8200          | 2681.976      |                 |            |     |          |
| 9000          | 2789.195      |                 |            |     |          |
| 9800          | 2892.744      |                 |            |     |          |
| 10600         | 2943.811      |                 |            |     |          |
| 11400         | 2995.143      |                 |            |     |          |

| 0025          |                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                    |                                                                                                                                                                        |                                                                                                                                                                                                           |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| itions        |                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                    |                                                                                                                                                                        |                                                                                                                                                                                                           |
| Rate          | 231.313 MMscf/D                                                                                                                                        | Wellbore                                                                                                                                                              |                                                                                                                                                                                    |                                                                                                                                                                        | units                                                                                                                                                                                                     |
|               |                                                                                                                                                        | TVD BML                                                                                                                                                               |                                                                                                                                                                                    | 8000                                                                                                                                                                   | ft                                                                                                                                                                                                        |
| Pressure, psi | ia                                                                                                                                                     | Water TVD                                                                                                                                                             |                                                                                                                                                                                    | 5000                                                                                                                                                                   | ft                                                                                                                                                                                                        |
| 2264.392      |                                                                                                                                                        | DS Status                                                                                                                                                             |                                                                                                                                                                                    | 0.5                                                                                                                                                                    | n/a                                                                                                                                                                                                       |
| 2380.569      |                                                                                                                                                        | Parameter                                                                                                                                                             | csg                                                                                                                                                                                |                                                                                                                                                                        | n/a                                                                                                                                                                                                       |
| 2487.448      |                                                                                                                                                        | Par. Value                                                                                                                                                            |                                                                                                                                                                                    | 12.75                                                                                                                                                                  |                                                                                                                                                                                                           |
| 2534.379      |                                                                                                                                                        | -                                                                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                        |                                                                                                                                                                                                           |
| 2581.605      |                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                    |                                                                                                                                                                        |                                                                                                                                                                                                           |
| 2629.122      |                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                    |                                                                                                                                                                        |                                                                                                                                                                                                           |
| 2676.926      |                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                    |                                                                                                                                                                        |                                                                                                                                                                                                           |
| 2725.011      |                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                    |                                                                                                                                                                        |                                                                                                                                                                                                           |
| 2773.374      |                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                    |                                                                                                                                                                        |                                                                                                                                                                                                           |
| 2822.009      |                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                    |                                                                                                                                                                        |                                                                                                                                                                                                           |
|               | itions<br>Rate<br>Pressure, ps<br>2264.392<br>2380.569<br>2487.448<br>2534.379<br>2581.605<br>2629.122<br>2676.926<br>2725.011<br>2773.374<br>2822.009 | itions   itions   Rate 231.313 MMscf/D   Pressure, psia   2264.392   2380.569   2487.448   2534.379   2581.605   2629.122   2676.926   2725.011   2773.374   2822.009 | Wellbore   Water Water   VD BML Water   2264.392 DS Status   2380.569 DS Status   2487.448 Parameter   2534.379 2581.605   2629.122 2676.926   2725.011 2773.374   2822.009 Status | Wellbore   Pressure, psia 231.313 MMscf/D   2264.392 TVD BML   2380.569 DS Status   2487.448 Parameter csg   2534.379 2581.605   2676.926 2725.011   2773.374 2822.009 | Wellbore   Rate 231.313 MMscf/D   Pressure, psia TVD BML   2264.392 DS Status   2380.569 DS Status   2487.448 DS Status   2534.379 Par. Value   2581.605 2629.122   2676.926 2725.011   2773.374 2822.009 |

## Run # DS23

13000

2878.62

## **APPENDIX E**

## KILL WITH DRILLSTRING KILL REQUIREMENTS

| RUN         | TVD   | WATER | DS         | PAR.      | PAR.  | DS   | KILL    | SPP      | PUMP     |
|-------------|-------|-------|------------|-----------|-------|------|---------|----------|----------|
|             | BML   | DEPTH | STATUS     | VARIED    | VALUE | LEN. | RATE    | /WELL    | HP       |
| DS1         | 8000  | 0     | Kill w/ DS | Casing OD | 8.625 | 1    | 177.9   | 2084.9   | 216.4    |
| DS2         | 8000  | 0     | Kill w/ DS | Casing OD | 8.625 | 0.75 | 361.9   | 4142.2   | 874.5    |
| DS3         | 8000  | 0     | Kill w/ DS | Casing OD | 8.625 | 0.5  | 518.1   | 5535.6   | 1673.3   |
| DS4         | 8000  | 0     | Kill w/ DS | Casing OD | 8.625 | 0.25 | 825.8   | 6868.8   | 3309.4   |
| DS5         | 8000  | 0     | Kill w/ DS | Casing OD | 10.75 | 1    | 1020.4  | 2819.1   | 1678.3   |
| DS6         | 8000  | 0     | Kill w/ DS | Casing OD | 10.75 | 0.75 | 2128    | 6415.8   | 7965.5   |
| DS7         | 8000  | 0     | Kill w/ DS | Casing OD | 10.75 | 0.5  | 3097.2  | 8860.8   | 16011.4  |
| DS8         | 8000  | 0     | Kill w/ DS | Casing OD | 10.75 | 0.25 | 5022.3  | 11362.4  | 33293.7  |
| DS9         | 8000  | 0     | Kill w/ DS | Casing OD | 12.75 | 1    | 3440.7  | 9940.4   | 19954.8  |
| DS10        | 8000  | 0     | Kill w/ DS | Casing OD | 12.75 | 0.75 | 6888.1  | 26706.2  | 107.3251 |
| DS11        | 8000  | 0     | Kill w/ DS | Casing OD | 12.75 | 0.5  | 10101.3 | 37573.7  | 221436.9 |
| DS12        | 8000  | 0     | Kill w/ DS | Casing OD | 12.75 | 0.25 | 16491.5 | 48903.1  | 470527.9 |
| DS13        | 8000  | 5000  | Kill w/ DS | Casing OD | 8.625 | 1    | 216     | 3156.2   | 402.5    |
| DS14        | 8000  | 5000  | Kill w/ DS | Casing OD | 8.625 | 0.75 | 508.6   | 6488.5   | 1925.4   |
| DS15        | 8000  | 5000  | Kill w/ DS | Casing OD | 8.625 | 0.5  | 1079.8  | 9246.8   | 5825.4   |
| <b>DS16</b> | 8000  | 5000  | Kill w/ DS | Casing OD | 8.625 | 0.25 | FRICTIO | N FACTOF | R FAILED |
| DS17        | 8000  | 5000  | Kill w/ DS | Casing OD | 10.75 | 1    | 1270.4  | 5037.1   | 3733.4   |
| DS18        | 8000  | 5000  | Kill w/ DS | Casing OD | 10.75 | 0.75 | 3038.4  | 13959.8  | 24746.8  |
| DS19        | 8000  | 5000  | Kill w/ DS | Casing OD | 10.75 | 0.5  | 6606.7  | 31824.1  | 122667.8 |
| <b>DS20</b> | 8000  | 5000  | Kill w/ DS | Casing OD | 10.75 | 0.25 | FRICTIO | N FACTOF | R FAILED |
| DS21        | 8000  | 5000  | Kill w/ DS | Casing OD | 12.75 | 1    | 4307.7  | 22903.8  | 57563.5  |
| DS22        | 8000  | 5000  | Kill w/ DS | Casing OD | 12.75 | 0.75 | 9908    | 81039.6  | 468461.8 |
| DS23        | 8000  | 5000  | Kill w/ DS | Casing OD | 12.75 | 0.5  | 21736.8 | 239273.8 | 3034447  |
| DS24        | 8000  | 5000  | Kill w/ DS | Casing OD | 12.75 | 0.25 | FRICTIO | N FACTOF | R FAILED |
| DS25        | 8000  | 10000 | Kill w/ DS | Casing OD | 8.625 | 1    |         |          |          |
| DS26        | 8000  | 10000 | Kill w/ DS | Casing OD | 8.625 | 0.75 |         |          |          |
| DS27        | 8000  | 10000 | Kill w/ DS | Casing OD | 8.625 | 0.5  |         |          |          |
| DS28        | 8000  | 10000 | Kill w/ DS | Casing OD | 8.625 | 0.25 | FRICTIO | N FACTOF | R FAILED |
| DS29        | 8000  | 10000 | Kill w/ DS | Casing OD | 10.75 | 1    |         |          |          |
| DS30        | 8000  | 10000 | Kill w/ DS | Casing OD | 10.75 | 0.75 |         |          |          |
| DS31        | 8000  | 10000 | Kill w/ DS | Casing OD | 10.75 | 0.5  |         |          |          |
| DS32        | 8000  | 10000 | Kill w/ DS | Casing OD | 10.75 | 0.25 | FRICTIO | N FACTOF | R FAILED |
| DS33        | 8000  | 10000 | Kill w/ DS | Casing OD | 12.75 | 1    |         |          |          |
| DS34        | 8000  | 10000 | Kill w/ DS | Casing OD | 12.75 | 0.75 |         |          |          |
| DS35        | 8000  | 10000 | Kill w/ DS | Casing OD | 12.75 | 0.5  |         |          |          |
| DS36        | 8000  | 10000 | Kill w/ DS | Casing OD | 12.75 | 0.25 | FRICTIO | N FACTOF | R FAILED |
| DS37        | 12000 | 0     | Kill w/ DS | Casing OD | 8.625 | 1    |         |          |          |
| DS38        | 12000 | 0     | Kill w/ DS | Casing OD | 8.625 | 0.75 |         |          |          |
| DS39        | 12000 | 0     | Kill w/ DS | Casing OD | 8.625 | 0.5  |         |          |          |
| <b>DS40</b> | 12000 | 0     | Kill w/ DS | Casing OD | 8.625 | 0.25 |         |          |          |

| DS41        | 12000 | 0     | Kill w/ DS | Casing OD | 10.75 | 1    |  |  |
|-------------|-------|-------|------------|-----------|-------|------|--|--|
| DS42        | 12000 | 0     | Kill w/ DS | Casing OD | 10.75 | 0.75 |  |  |
| DS43        | 12000 | 0     | Kill w/ DS | Casing OD | 10.75 | 0.5  |  |  |
| DS44        | 12000 | 0     | Kill w/ DS | Casing OD | 10.75 | 0.25 |  |  |
| DS45        | 12000 | 0     | Kill w/ DS | Casing OD | 12.75 | 1    |  |  |
| DS46        | 12000 | 0     | Kill w/ DS | Casing OD | 12.75 | 0.75 |  |  |
| DS47        | 12000 | 0     | Kill w/ DS | Casing OD | 12.75 | 0.5  |  |  |
| DS48        | 12000 | 0     | Kill w/ DS | Casing OD | 12.75 | 0.25 |  |  |
| DS49        | 12000 | 5000  | Kill w/ DS | Casing OD | 8.625 | 1    |  |  |
| DS50        | 12000 | 5000  | Kill w/ DS | Casing OD | 8.625 | 0.75 |  |  |
| DS51        | 12000 | 5000  | Kill w/ DS | Casing OD | 8.625 | 0.5  |  |  |
| DS52        | 12000 | 5000  | Kill w/ DS | Casing OD | 8.625 | 0.25 |  |  |
| DS53        | 12000 | 5000  | Kill w/ DS | Casing OD | 10.75 | 1    |  |  |
| DS54        | 12000 | 5000  | Kill w/ DS | Casing OD | 10.75 | 0.75 |  |  |
| DS55        | 12000 | 5000  | Kill w/ DS | Casing OD | 10.75 | 0.5  |  |  |
| DS56        | 12000 | 5000  | Kill w/ DS | Casing OD | 10.75 | 0.25 |  |  |
| DS57        | 12000 | 5000  | Kill w/ DS | Casing OD | 12.75 | 1    |  |  |
| DS58        | 12000 | 5000  | Kill w/ DS | Casing OD | 12.75 | 0.75 |  |  |
| DS59        | 12000 | 5000  | Kill w/ DS | Casing OD | 12.75 | 0.5  |  |  |
| DS60        | 12000 | 5000  | Kill w/ DS | Casing OD | 12.75 | 0.25 |  |  |
| DS61        | 12000 | 10000 | Kill w/ DS | Casing OD | 8.625 | 1    |  |  |
| DS62        | 12000 | 10000 | Kill w/ DS | Casing OD | 8.625 | 0.75 |  |  |
| DS63        | 12000 | 10000 | Kill w/ DS | Casing OD | 8.625 | 0.5  |  |  |
| DS64        | 12000 | 10000 | Kill w/ DS | Casing OD | 8.625 | 0.25 |  |  |
| DS65        | 12000 | 10000 | Kill w/ DS | Casing OD | 10.75 | 1    |  |  |
| DS66        | 12000 | 10000 | Kill w/ DS | Casing OD | 10.75 | 0.75 |  |  |
| DS67        | 12000 | 10000 | Kill w/ DS | Casing OD | 10.75 | 0.5  |  |  |
| DS68        | 12000 | 10000 | Kill w/ DS | Casing OD | 10.75 | 0.25 |  |  |
| DS69        | 12000 | 10000 | Kill w/ DS | Casing OD | 12.75 | 1    |  |  |
| <b>DS70</b> | 12000 | 10000 | Kill w/ DS | Casing OD | 12.75 | 0.75 |  |  |
| DS71        | 12000 | 10000 | Kill w/ DS | Casing OD | 12.75 | 0.5  |  |  |
| DS72        | 12000 | 10000 | Kill w/ DS | Casing OD | 12.75 | 0.25 |  |  |

## VITA

| Name:      | Samuel F. Noynaert                                            |
|------------|---------------------------------------------------------------|
| Parents:   | Mr. Chris C. Noynaert<br>Mrs. Peggy K. Noynaert               |
| Address:   | 4504 Ashley Stone<br>College Station, TX 77845                |
| Education: | Texas A&M University<br>B.S. – Agricultural Engineering, 2003 |
|            | Texas A&M University<br>M.S. – Petroleum Engineering, 2004    |