The HYDRUS Software Package for Simulating the Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media

User Manual

Version 1.0

March 2006

PC-Progress, Prague, Czech Republic

© 2006 J. Šimůnek and M. Šejna. All rights reserved.

The HYDRUS Software Package for Simulating the Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media

User Manual

Version 1.0

J. Šimůnek¹, M. Šejna² and M. Th. van Genuchten³

March 2006

¹University of California Riverside, Riverside, CA ²PC-Progress, Prague, Czech Republic ³George E. Brown, Jr. Salinity Laboratory, Riverside, CA

© 2006 J. Šimůnek and M. Šejna. All rights reserved.

Table of Contents

At	Abstract				
In	troduct	ion to the HYDRUS Graphical User Interface			
1.	Proje	ct Manager and Data Management	19		
2.	Proje				
3.	Flow	Parameters			
	3.1.	Main Processes			
	3.2.	Inverse Solution			
	3.3.	Time Information			
	3.4.	Output Information			
	3.5.	Iteration Criteria			
	3.6.	Soil Hydraulic Model	41		
	3.7.	Water Flow Parameters	43		
	3.8.	Neural Network Predictions	46		
	3.9.	Anisotropy in the Hydraulic Conductivity	47		
	3.10.	Solute Transport			
	3.11.	Solute Transport Parameters			
	3.12.	Solute Reaction Parameters			
	3.13.	Temperature Dependence of Solute Transport Parameters			
	3.14.	Heat Transport Parameters			
	3.15.	Root Water Uptake Model			
	3.16.	Root Water Uptake Parameters			
	3.17.	Root Distribution Parameters			
	3.18.	Time Variable Boundary Conditions	64		
	3.19.	Constructed Wetlands			
4.	Geom	etry of the Transport Domain			
	4.1.	Boundary Objects			
		4.1.1. <i>Points</i>	70		
		4.1.2. Lines and Polylines	71		
		4.1.3. Arcs and Circles	72		
		4.1.4. Curves and Splines	74		
		4.1.5. Move, Copy, Rotate and Mirror Operations	75		

		4.1.6.	Additional Operations	76
	4.2.	Surface	2	77
	4.3.	Openin	<i>igs</i>	79
	4.4.	Solids		
	4.5.	Thickne	esses	
	4.6.	Auxilia	ry Objects	
		4.6.1.	Dimensions	
		4.6.2.	Labels	
		4.6.3.	Bitmaps (Textures)	
		4.6.4.	Cross-Sections	
		4.6.5.	Mesh-Lines	
5.	Finite	e Elemen	nt Mesh	
	5.1.	Finite I	Element Mesh Generator	
	5.2.	Structu	red Finite Element Mesh Generator	
	5.3.	Unstru	ctured Finite Element Mesh Parameters	
	5.4.	Finite I	Element Mesh Refinement	96
	5.5.	Unstru	ctured Finite Element Mesh Generator MeshGen2D	
	5.6.	Finite I	Element Mesh Statistics	
	5.7.	Finite I	Element Mesh Sections	
6.	Doma	ain Prop	erties, Initial and Boundary Conditions	
	6.1.	Default	t Domain Properties	
	6.2.	Initial	Conditions	
	6.3.	Bounda	ary Conditions	
	6.3.	Domain	n Properties	
7.	Grap	hical Ou	.tput	111
	7.1.	Results	r – Graphical Display	111
		7.1.1.	Display Options	
		7.1.2.	Edit Isoband Value and Color Spectra	
	7.2.	Results	e – Other Information	
		7.2.1.	Convert to ASCII	117
8.	Grap	hical Use	er Interface Components	
	8.1.	View W	Vindow	
		8.1.1	Scene and Viewing Commands	

		8.1.2	Grid and Work Plane	118
		8.1.3	Stretching Factors	120
		8.1.4.	Rendering Model	120
		8.1.5.	Selection and Edit Commands	121
		8.1.6.	Pop-up Menus	122
		8.1.7.	Drag and Drop	123
		8.1.8.	Sections	123
	8.2.	Navigate	or Bars	124
	8.3.	Edit Bar	<i>'S</i>	126
	8.4.	Toolbar	<i>s</i>	131
	8.5.	HYDRU	S Menus	135
9.	Misce	llaneous 1	Information	153
	9.1.	Progran	n Options	153
	9.2.	HYDRU	S License and Activation	155
	9.3.	Print Op	otions	156
	9.4.	Coordin	ate Systems	157
	9.5.	DOS Wi	ndow During Calculations	158
Re	ference		159	

List of Figures

Figure 1.	The HYDRUS Graphical User Interface (the main window)	.18
Figure 2.	The project Manager with the Workspaces tab	.19
Figure 3.	The Project Manager with the Projects tab.	.20
Figure 4.	The Project Information dialog window.	.22
Figure 5.	General description of the HYDRUS workspace.	.22
Figure 6.	The Geometry Information dialog window (with 3D preview).	.24
Figure 7.	The Geometry Information dialog window (with 2D axisymmetrical preview)	.25
Figure 8.	Examples of rectangular (top) and general (bottom) two-dimensional geometries	.26
Figure 9.	Example of a hexahedral three-dimensional geometry.	.26
Figure 10.	The Rectangular Domain Definition dialog window.	.27
Figure 11.	The Hexahedral Domain Definition dialog window.	.27
Figure 12.	The Main Processes dialog window.	.29
Figure 13.	The Inverse Solution dialog window.	.30
Figure 14.	The Data for Inverse Solution dialog window.	.31
Figure 15.	The Time Information dialog window	.34
Figure 16.	The Output Information dialog window.	.36
Figure 17.	The Iteration Criteria dialog window	.38
Figure 18.	The Soil Hydraulic Model dialog window	.41
Figure 19.	The Water Flow Parameters dialog window for direct (top) and inverse (bottom) problems.	.43
Figure 20.	The Rosetta Lite (Neural Network Predictions) dialog window.	.46
Figure 21.	The Tensors of the Anisotropy dialog window	.47
Figure 22.	The Solute Transport dialog window	.48
Figure 23.	The Solute Transport Parameters dialog window	.51
Figure 24.	The Solute Reaction Parameters dialog window.	.52
Figure 25.	The Temperature Dependent Solute Transport and Reaction Parameters dialog window	.55
Figure 26.	The Heat Transport Parameters dialog window	.56
Figure 27.	The Root Water Uptake Model dialog window	.58
Figure 28.	The Root Water Uptake Parameters dialog window for the stress response function <i>Feddes</i> et al. [1978] (left) and <i>van Genuchten</i> [1985] (right)	

Figure 29.	The Root Water Uptake Parameters dialog window for the solute stress response function based on the threshold model (left) and S-shape model of <i>van Genuchten</i> [1985] (right)	60
Figure 30	The Root Distribution Parameters dialog window.	
-	The Time Variable Boundary Conditions dialog window	
	The Constructed Wetland Model Parameter I dialog window	
-	The Constructed Wetland Model Parameter II dialog window.	
U	The Edit Point dialog window	
-	The Edit Curve dialog window	
	The New Line (Arc) dialog window	
-	The New Line (Circle) dialog window	
	The Move - Copy dialog windows	
-	The Rotate (left) and Mirror (right) dialog windows	
	The Insert Point on Curve dialog window	
	The Edit Surface dialog window	
	A solid showing the base surface	
Figure 43.	Solid showing separate vertical columns	78
Figure 44.	A solid with its base surface in the XZ plane and thickness vectors in the Y direction	79
Figure 45.	FE-Mesh for a solid with its base surface in the XZ plane and thickness vectors in t Y direction.	
Figure 46.	The New Opening dialog window	80
Figure 47.	The 3D-Layered Solid dialog window; the General and Layers Tabs	81
Figure 48.	The 3D-Layered Solid dialog window; the FE-Mesh Tab for single and multiple layers	82
Figure 49.	The Thickness dialog window	
Figure 50.	A solid with several thickness vectors	84
Figure 51.	FE-Mesh for the solid in Figure 50	84
Figure 52.	Missing internal curves in the base surface	85
Figure 53.	Consequence of missing an internal curve in the base surface on the FE-Mesh of th top surface	
Figure 54.	The Edit Comment dialog window	86
Figure 55.	The Cross-Section dialog window	87

	structured FE mesh is shown at the top and one for the unstructured mesh at the bottom of the window.	
Figure 57	. The Rectangular Domain Discretization dialog window	
-	. The Hexahedral Domain Discretization dialog window	
-	. The FE-Mesh Parameters dialog window (Tab Main).	
-	. The FE-Mesh Parameters dialog window (Tab Stretching).	
	. The FE-Mesh Parameters dialog window (Tab Options 1).	
-	. The FE-Mesh Parameters dialog window (Tab Options 2).	
-	. The New FE-Mesh Refinement dialog window.	
-	. Example of FE-Mesh Refinements (top) and FE-Mesh (bottom).	
	. Example of mesh stretching using a stretching factor of 3 in the <i>y</i> -direction	
Figure 66	. The FE-Mesh Information dialog window for a two-dimensional problem (top) three-dimensional problem (bottom).	
Figure 67	. The FE-Mesh Sections dialog window.	103
Figure 68	. The Default Domain Properties dialog window	105
Figure 69	. The Water Flow Initial Condition dialog window	106
Figure 70	. The Temperature distribution dialog window	107
Figure 71	. The Import Initial Condition dialog window	108
Figure 72	. The Stochastic Distribution of Scaling Factors dialog window	109
Figure 73	. The Stochastic Parameters dialog window	110
Figure 74	. The Display Options dialog window	112
Figure 75	. The Edit Isoband Value and Color Spectra dialog window	113
Figure 76	. The Color dialog window	114
Figure 77	. The Convert to ASCII dialog window	117
Figure 78	. The Grid and Work Plane dialog window	119
Figure 79	. The View Stretching Factors dialog window	120
Figure 80	. The Rendering part of the View Tab of the Navigator Bar.	120
Figure 81	. The Pop-up Menu from the View window	122
Figure 82	. Selected Navigator Bars (Data Tabs on the left and in the middle, the View Tab the right)	
Figure 83	. Selected Edit Bars (from left to right) for Material Distribution in Domain Prop Water Flow Boundary Conditions, Pressure Head Initial Conditions, and Water Content Results.	•

Figure 84.	The Color Scale Display Options menu	130
Figure 85.	Selected Edit Bars (for Domain Geometry and FE-Mesh)	130
Figure 86.	The Toolbars dialog window	131
Figure 87.	The Customize Toolbars dialog window	131
Figure 88.	The HYDRUS Menus I (File, Edit, and View)	135
Figure 89.	The HYDRUS Menus II (Insert, Calculations, and Results)	136
Figure 90.	The HYDRUS Menus II (Tools, Options, Windows, and Help)	136
Figure 91.	The Program Options dialog window (the Graphics Tab)	153
Figure 92.	The Program Options dialog window (the Program Directories Tab)	154
Figure 93.	The HYDRUS License and Activation dialog window	155
Figure 94.	The General, Picture, and Legend tabs of the Print Options dialog window	156
Figure 95.	The Coordinate Systems dialog windows	157

List of Tables

Table 1.	Commands in the Project Manager	.21
Table 2.	The project Manager with the Workspaces plane (Inverse Problem)	.32
Table 3.	Definition of the column X in Fig. 14 based on Data Type (Inverse Problem)	.32
Table 4.	Definition of the column Y in Fig. 14 based on Data Type (Inverse Problem)	.33
Table 5.	Time Information variables.	.35
Table 6.	Time Step Control variables.	.40
Table 7.	Soil hydraulic parameters for the analytical functions of <i>van Genuchten</i> [1980] for twelve textural classes of the USDA soil textural triangle according to <i>Carsel and Parish</i> [1988].	.45
Table 8.	Soil hydraulic parameters for the analytical functions of <i>van Genuchten</i> [1980] for twelve textural classes of the USDA textural triangle as obtained with the Rosetta Lite program [<i>Schaap et al.</i> , 2001].	.45
Table 9.	Definition of terms related to geometry design.	.69
Table 10.	Definition of terms related to boundary discretization.	.98
Table 11.	Graph options in the HYDRUS interface.	115
Table 12.	HYDRUS menu commands	137
Table 13.	Brief description of HYDRUS menu commands	143

Abstract

Šimůnek, J., Šejna, M., and M. Th. van Genuchten, The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, User Manual, Version 1.0, PC Progress, Prague, Czech Republic, 2006.

This report documents version 1.0 of the **Graphical User Interface of HYDRUS**, a software package for simulating water, heat, and solute movement in two- and three- dimensional variably saturated media. The software package consists of the computational computer program, and the interactive graphics-based user interface. The HYDRUS program numerically solves the Richards equation for variably saturated water flow and advection-dispersion equations for both heat and solute transport. The flow equation incorporates a sink term to account for water uptake by plant roots. The heat transport equation considers transport due to conduction and convection with flowing water. The solute transport equations consider advective-dispersive transport in the liquid phase, as well as diffusion in the gaseous phase. The transport equations also include provisions for nonlinear nonequilibrium reactions between the solid and liquid phases, linear equilibrium reactions between the liquid and gaseous phases, zero-order production, and two first-order degradation reactions. In addition, physical nonequilibrium solute transport can be accounted for by assuming a two-region, dual-porosity type formulation which partitions the liquid phase into mobile and immobile regions. Attachment/detachment theory, including filtration theory, is additionally included to enable simulations of the transport of viruses, colloids, and/or bacteria.

HYDRUS may be used to analyze water and solute movement in unsaturated, partially saturated, or fully saturated porous media. The program can handle flow regions delineated by irregular boundaries. The flow region itself may be composed of nonuniform soils having an arbitrary degree of local anisotropy. Flow and transport can occur in the two-dimensional vertical or horizontal plane, a three-dimensional region exhibiting radial symmetry about the vertical axis, or a fully three-dimensional domain. The two-dimensional part of this program also includes a Marquardt-Levenberg type parameter optimization algorithm for inverse estimation of soil hydraulic and/or solute transport and reaction parameters from measured transient or steady-state data for two dimensional problems. Details of the various processes and features included in HYDRUS are provided in the **Technical Manual** [*Šimůnek et al.*, 2006].

The main program unit of the **HYDRUS Graphical User Interface** (GUI) defines the overall computational environment of the system. This main module controls execution of the program and determines which other optional modules are necessary for a particular application. The module contains a project manager and both the pre-processing and post-processing units. The pre-processing unit includes specification of all necessary parameters to successfully run the **HYDRUS** FORTRAN codes, grid generators for relatively simple rectangular and hexahedral transport domains, a grid generator for unstructured finite element meshes for complex two-dimensional domains, a small catalog of soil hydraulic properties, and a Rosetta Lite program for generating soil hydraulic properties for graphical presentation of soil hydraulic properties, as well as such output as distributions versus time of a particular variable at selected observation points, and actual or cumulative water and solute fluxes across boundaries of a particular type. The post-processing unit also includes options

to present results of a particular simulation by means of contour maps, isolines, spectral maps, and velocity vectors, and/or by animation using both contour and spectral maps.

This report serves as a **User Manual** and reference document of the **Graphical User Interface** of the **HYDRUS** software package. Technical aspects such as governing equations and details about the invoked numerical techniques are documented in a separate **Technical Manual**.

Introduction to the HYDRUS Graphical User Interface

The past several decades or so has seen an explosion of increasingly sophisticated numerical models for simulating water flow and contaminant transport in the subsurface, including models dealing with one- and multi-dimensional flow and transport processes in the unsaturated or vadose zone between the soil surface and the ground water table. Even with an abundance of well-documented models now available, one major problem often preventing their optimal use is the extensive work required for data preparation, numerical grid design, and graphical presentation of the output results. Hence, the more widespread use of multi-dimensional models requires ways which make it easier to create, manipulate and display large data files, and which facilitate interactive data management. Introducing such techniques will free users from cumbersome manual data processing, and should enhance the efficiency in which programs are being implemented for a particular example. To avoid or simplify the preparation and management of relatively complex input data files for two- and three-dimensional applications, and to graphically display the final simulation results, we developed an interactive graphics-based user-friendly interface HYDRUS for the MS Windows 95, 98, NT, ME, and XP environments. The interface is connected directly to the computational codes. The current version 1.0 of the HYDRUS graphical user interface represents a complete rewrite of the version 2.0 of HYDRUS-2D, and expands its capabilities to three-dimensional problems.

In addition to information given in this user manual, extensive context-sensitive on-line help is made part of the graphical user interface (GUI). By holding the F1 button or clicking on the Help button while working in any window, the user obtains information about the window content. In addition, context-sensitive help is available in every module using the "SHIFT+F1" help button. In this mode, the mouse cursor changes to a help cursor (a combination arrow + question mark), which a user can use to select a particular object for which help is needed (e.g., a menu item, toolbar button, or other features). At that point, a help file will be displayed giving information about the item on which the user clicked. Except for the computational modules that are written in FORTRAN, the entire GUI is written in C++.

The HYDRUS Graphical User Interface (Fig. 1) is the main program unit defining the overall computational environment of the system. This main module controls execution of the program and determines which other optional modules are necessary for a particular application. The module contains a project manager and both the pre-processing and post-processing units. The pre-processing unit includes specification of all necessary parameters to successfully run the **HYDRUS** FORTRAN codes (modules H2D_CALC, H2D_CLCI, H2D_WETL and/or H3D_CALC), grid generators for relatively simple rectangular and hexahedral transport domains, a grid generator for unstructured finite element meshes appropriate for more complex two-dimensional domains, a small catalog of soil hydraulic properties, and a Rosetta Lite program for generating soil hydraulic properties from textural information. The post-processing unit consists of simple *x-y* graphs for graphical presentation of the soil hydraulic properties, distributions versus time of a particular variable at selected observation points, as well as actual or cumulative water and solute fluxes across boundaries of a particular type. The post-processing unit also includes options to present results of a simulation by means of contour maps, isolines, spectral maps, and velocity vectors, and/or by animation using both contour and spectral maps.

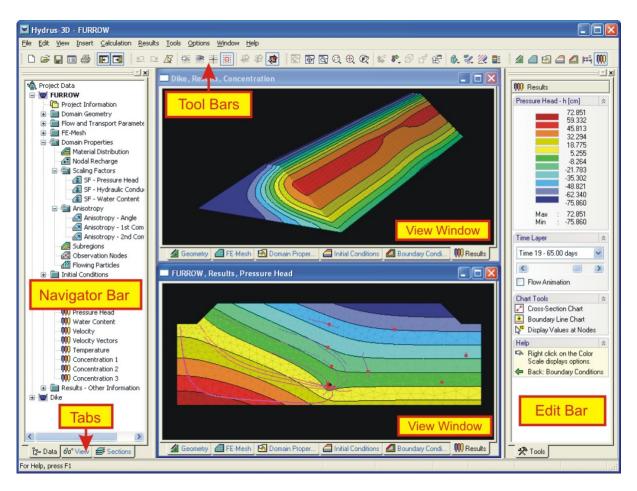


Figure 1. The HYDRUS Graphical User Interface (the main window).

Figure 1 shows the main window of the HYDRUS graphical user interface, including its main components such as the **Menu**, **Toolbars**, the **View Window**, the **Navigator Bar**, **Tabs**, and the **Edit Bar**. These terms will be used throughout this user manual. The text below provides a detailed description of all major components of the graphical user interface. At the end of this user manual a list is given of all commands accessible through the menu (Table 12), as well as a brief discussion of the action taken with particular commands (Table 13). More detailed descriptions are available through the on-line help.

Work for a new project should begin by opening the Project Manager (see Chapter 1), and giving a name and brief description to the new project. Next the **Geometry Information** dialog Window (Figs. 6 and 7) appears (this window can be also selected from the Pre-processing Menu). From this point on the program will navigate users through the entire process of entering input files. Users may either select particular commands from a menu, or allow the interface to lead them through the process of entering input data by selecting the <u>Next</u> button. Alternatively, clicking the <u>Previous</u> button will return users to the previous window. Pre- and post processing commands and processes are also sequentially listed on the **Data Tab** of the **Navigator Bar**. Green arrows on the **Edit Bar** always direct users to subsequent or previous input processes for a particular command. Many commands and processes can be alternatively accessed using either the **Toolbars** and **Menus**, or the **Navigator** and **Edit Bars**.

1. Project Manager and Data Management

A **Project Manager** (called by the command *File->Project Manager*, Figs. 2 and 3) is used to manage the data of existing projects, and helps to locate, open, copy, delete and/or rename desired projects or their input or output data. A **Project** represents any particular problem to be solved by HYDRUS. The project name, as well as a brief description of the project (Fig. 4), helps to locate a particular problem. Projects are represented by a file *project_name.h3d* that contains all input and output data. HYDRUS input files (used by the computational modules) are extracted from the *project_name.h3d* file into a working subdirectory; output data created by the calculation module are sent into the same folder. When saving a project, output files (created by the computational modules) are also included into the *project_name.h3d* file. The input and output files can be either permanently kept in the external working directory, or are stored in this folder only during calculations (Fig. 4, the radio buttons *Temporary – is deleted after closing the project* and *Permanent – result files are kept in this directory*). The location of the external working directory is specified in the **Program Options** dialog window (Fig. 92).

Project Manager						
Workspaces (Projects					
Current Workspace						
Current 2Dtests						
Description: Directory:	C:\ussl\Hydrus3D\2D_Tests					
Name	Description	Path				
2Dtests		C:\ussl\Hydrus3D\2D_Tests				
3Dtests		C:\USSL\Hydrus3D\3D_Tests				
Direct	Direct Problem Examples	C:\USSL\Hydrus3D\Projects\Direct				
Inverse old	Inverse Problem Examples	C:\USSL\Hydrus3D\Projects\Inverse				
old		C:\Projekty_Progress\a_internal\Bin\Projekty_H3D				
			×			
			_			
New	Edit Remove Set As Current	Close				

Figure 2. The project Manager with the Workspaces tab.

Current Workspace Options								
Name:	2D_te	ests			🗸 Shov	v Project	Preview	
Description: Two-dimensional examples Show Hydrus-2D Projects								
Directory: C:\USSL\HYDRUS3D\2D_Tests					now nyaras-zo ni ojects			
Name	Ext	Description	Туре	Processes	Res	MB	Modified	
Furrow	H3D	Water flow from furrow to a drain	2D	WSH	×	2.4	12/13/2005	
Furrow1	НЗD	Test on boundary conditions options	2D	W	×	1.4	12/19/2005	
Grignon	H3D	Reworked mesh to TDR/tensio profile, adjusted, tdr,	2D	WS	×	10.9	12/28/2005	
Hyster	H3D	Multiple Hysteretic loops, Lenhard et al., 1991.	2D	W	×	1.3	12/13/2005	
Pond	H3D	Flow and transport from a pond	2D	WSH	×	4.3	12/13/2005	
Sweden	H3D	Sweded - uniform flow and transport in a heterogenec	2D	WR	×	11.7	12/30/2005	
Test1	H3D	Column test, One dimensional infiltration test	2D	W	×	1.3	12/13/2005	
Test2	H3D	Grass field problem (Hupselse Beek 1982)	2D	WR	×	1.6	12/13/2005	
Test3	H3D	Comparison with the 2-D analytical solution	2D	S	×	1.1	12/13/2005	
Test4	H3D	Solute transport with nitrification chain	2D	S	×	1.4	12/13/2005	
Test5	H3D	Solute transport with nonlinear cation adsorption	2D	S	×	1.0	12/13/2005	
Test5i	H3D	Solute transport with nonlinear cation adsorption, inve	2D	S, Inv	×	1.0	12/13/2005	
Test6	H3D	Solute transport with kinetic linear cation adsorption	2D	S	×	0.9	12/13/2005	
Test6a	H3D	Solute transport with kinetic first-order attachment/de	2D	S	×	0.9	12/13/2005	
Test6b	H3D	Solute transport with mobile-immobile nonequilibrium	2D	S	×	0.9	12/13/2005	
Test7	H3D	Three-dimensional infiltration	2D	WSH	×	2.2	12/13/2005	
VarBC	НЗD	Test of the variable flux BC	2D	WS	×	0.9	12/15/2005	
Wetland1	H3D	Wetland - PSCW - VF CW - reactive transport - 4 loar	2D	WSHR	×	21.7	1/30/2006	~
		Project Name : Furrow Description : Water flow from furro	ow to a dr	ain				
		Program Name : Hydrus-3D Project Type : 2D Processes : Water Flow, Solute 1	Fransport	. Heat Transp	ort			
		Results : Yes	ransport	, near nansp	on			
File Size : 2.4 MB								

Figure 3. The Project Manager with the Projects tab.

The **Project Manager** gives users considerable freedom in organizing their projects. The projects are grouped into **Workspaces** (Fig. 2), which can be placed anywhere in accessible memory (i.e., on local and/or network hard drives). **Workspaces** serve to organize projects into logical groups defined by a user. Each **Workspace** has its own *name*, *description*, and *pathway* (Figs. 2 and 5). A **Workspace** can be any existing accessible subdirectory (folder). HYDRUS is installed together with two default workspaces, 2D_Tests and 3D_Tests, which are located in the HYDRUS3D folder. The 2D_Tests and 3D_Tests workspaces contain test examples for two- and three-dimensional problems, respectively. We suggest that users create their own workspaces (e.g., the My_2D_Direct, My_2D_Inverse, and My_3D_Direct workspaces), and keep the provided examples intact for future reference. Projects can be copied with the **Project Manager** only within a particular workspace. Users can copy projects between workspaces using standard file managing software, such as

Windows Explorer. In that case one must copy only the *project_name.h3d* file. When temporary data are kept in the working directory (i.e., the radio button *Temporary – is deleted after closing the project*, Fig. 4), the working directory must be copied together with the *project name.h3d* file.

In addition to a *Name* and a brief *Description* of a **Project**, the **Project Manager** also displays dimensions for a particular problem (*Type*), what *Processes* are involved (W – water flow, S – solute transport, T – heat transport, R – root water uptake, Inv – Inverse problem), the size of the project (MB), when the project was created (*Date*) and whether or not the *Results* exist (Fig. 3). The **Project Manager** can also display a preview of the **Project**'s geometry (see the check box *Show Project Preview* in Fig. 3). Commands of the **Project Manager** are listed in Table 1.

Group	Command	Description
Workspace	New	Registers a new workspace in the Project Manager.
() officially used	Edit	Renames the selected workspace, and changes its description and/or location.
	Remove	Removes registration of a selected workspace from the Project Manager.
		Sets a selected workspace as the active workspace.
	Close	Closes the Project Manager.
Project	New	Creates a new project in the current workspace.
	Сору	Copies a selected project within the current workspace.
	Rename	Renames a selected project.
	Delete	Deletes a selected project.
	Open	Opens a selected project.
	Close	Closes the Project Manager.
	Convert	Converts HYDRUS-2D (version 2.x) projects to HYDRUS.

Table 1. Commands in the **Project Manager**.

The commands **New** and **Rename** from the **Project Tab** of the **Project Manager** dialog window (Fig. 3) call the **Project Information** dialog window (Fig. 4), which contains the *Name* and *Description* of the project, as well as information about the **Workspace** (name, description, and pathway) to which the project belongs. It also contains information whether or not the input and output data are kept permanently in an external directory (the radio buttons *Temporary – is deleted after closing the project* and *Permanent – result files are kept in this directory*, Fig. 4).

Project Info	rmation	
Project		<u>о</u> к
Name:	000	<u>C</u> ancel
Description:	Three-dimensional infiltration	<u>H</u> elp
Working Dire	ctory	
 Temporar, 	y - is deleted after closing the project	
O Permaner	nt - result files are kept in this directory	
Directory:	C:\ussl\hydrus3d\~Hydrus3D0\000	
Workspace		
Name:	2D_tests Project Manager	
Description:	Two-dimensional examples	۷ÅL
Directory:	C:\USSL\HYDRUS3D\2D_Tests\	<u>N</u> ext

Figure 4. The Project Information dialog window.

New Workspa	ce 🛛 🗙
Workspace Attri	outes
Name:	3d_tests
Description:	Examples of three-dimensional problems
Directory:	C:\ussl\Hydrus3D\3D_Tests Browse
	OK Cancel

Figure 5. General description of the HYDRUS workspace.

Projects created by the previous version 2.0 of HYDRUS-2D can be imported into the current version of HYDRUS using two ways:

A. Individual projects can be converted using the command *File->Import and Export->Import HYDRUS-2D Project*. This is done by first creating a new **Project**, and then selecting the above command and browsing for the location of a project created with a previous version of HYDRUS-2D. The input data of the older project are then converted into the new HYDRUS format. Results of the older project can then be viewed using the new version of HYDRUS, while projects can be modified or recalculated as needed.

B. Multiple HYDRUS-2D projects can be converted simultaneously using the **Convert** command of the **Project Manager**. One first creates a HYDRUS workspace for a folder in which the HYDRUS-2D projects are located and selects the **Show HYDRUS-2D Projects** option at the **Project Tab** of the **Project Manager**. One then selects projects to be converted and clicks the **Convert** command. HYDRUS in this way creates HYDRUS projects and stores all input and output files in the **project_name.h3d** files.

Input data can be edited either using the HYDRUS graphical user interface (this modifies directly the *project_name.h3d* file) or the input data can be modified manually. In such case, HYDRUS input files need to be stored in the working external directory (sent there by the command *File-*>*Import and Export-*>*Export Data for HYDRUS Solver*), and then can be imported back into the HYDRUS *project_name.h3d* file using the command *File-*>*Import and Export-*>*Import Input Data from *.In Files.*

The **Working Directory** is a folder into which the program stores temporary data. Each open project has its own Working Directory, where the program stores, for example, input files for computational modules, and where computational modules write the output files. When saving a project, data from the Working Directory are copied into the main project file *project_name.h3d*. When the project is closed, the Working Directory is deleted. Only when a user selects the option "*Permanent – result files are kept in this directory*" (Fig. 4) is the Working Directory not deleted after closing the project, in which case the temporary data are not copied into the main project file.

2. Projects Geometry Information

HYDRUS can solve water flow, and solute and heat transport for two- and three-dimensional transport domains. Geometry type is selected in the **Geometry Information** dialog Window (Fig. 6 and 7). In this dialog window, users specify the **Type of Geometry**, the **Domain Definition**, the **Length Units**, and the size of the **Initial Workspace** (the approximate size of the transport domain).

Type of Geometry: In the first dialog window that a user encounters after creating a new project, he/she needs to specify whether the flow and transport problem occurs in a two- or threedimensional transport domain. Two-dimensional flow and transport can occur in a horizontal or vertical plane, or in an axisymmetrical quasi-three-dimensional transport domain. When a threedimensional axisymmetrical system is selected, the *z*-coordinate must coincide with the vertical axis of symmetry. A typical example of the selected 2D or 3D geometry is shown in the preview part of the dialog window.

Geometry Information		X
Type of Geometry 2D - Horizontal Plane 2D - Vertical Plane 2D - Axisymmetrical Vertical Flow 3D - Layered 3D - General Domain Definition Hexahedral General Units Length: cm	3D Layered domain defined by a general base surface and one or more thickness vectors.	<u>O</u> K <u>C</u> ancel <u>H</u> elp
Initial Workspace X Y Min: 0.00 0.00 Max: 1000.00 1000.00	Z 0.00 [cm] 200.00 [cm]	Next Previous

Figure 6. The Geometry Information dialog window (with 3D preview).

Geometry Information		
Type of Geometry 2D - Horizontal Plane 2D - Vertical Plane 2D - Axisymmetrical Vertical Flow 3D - Layered 3D - General Domain Definition Rectangular General Units Length: cm	Simple 2D rectangular domain defined by dimensions W x H.	<u>O</u> K <u>C</u> ancel <u>H</u> elp
Initial Workspace X Y Min: 0.00 0.00 Max: 1000.00 1000.00	Z 0.00 [cm] 200.00 [cm]	<u>N</u> ext Previous

Figure 7. The Geometry Information dialog window (with 2D axisymmetrical preview).

Domain Definition: This section allows a user to choose between a simple geometry having a structured finite element mesh, or a more general geometry having an unstructured finite element mesh. Only simple geometries may be used depending on the authorization. Simple rectangular domains are defined by three straight lines, one at the bottom of the domain and two at the sides, whereas the upper boundary may or may not be straight. Nodes along the upper boundary line may in that case have variable *x*- and *z*-coordinates. However, the lower boundary line must always be horizontal (or have a specified slope), while the left and right boundary lines must be vertical. The flow region is then discretized into a structured triangular mesh. Hexahedral domains must have similar properties as rectangular domains, i.e., vertical planes at the sides, a horizontal (or with a specified slope) plane at the bottom boundary, and with only the upper boundary not needing to be a plane. Examples of simple rectangular and general two-dimensional geometries are shown in Figure 8. An example of a simple hexahedral three-dimensional geometry is given in Figure 9.

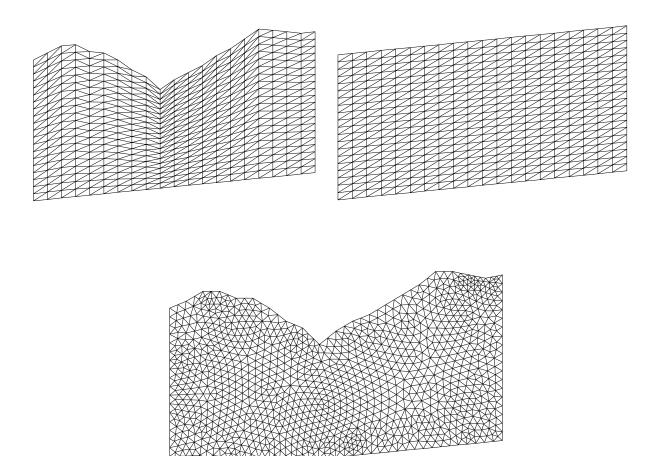


Figure 8. Examples of rectangular (top) and general (bottom) two-dimensional geometries.

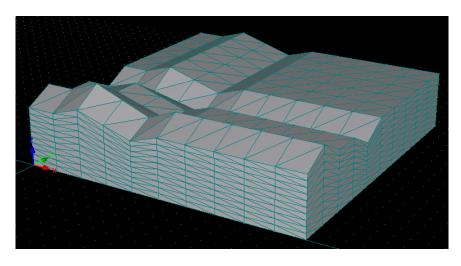


Figure 9. Example of a hexahedral three-dimensional geometry.

The simple geometries are defined in the *Rectangular* (Fig. 10) or *Hexahedral Domain Definition* (Fig. 11) dialog windows for two-dimensional and three-dimensional problems, respectively. In each of these windows, users need to specify the vertical and horizontal dimensions of the transport domain, as well as a possible slope of the base of the domain in different directions (if applicable; α is in the x-direction and β is in the y-direction). The preview in the middle of the dialog window of a simple example showing all geometry parameters should help users in specifying their desired transport domain (*Dimensions* and *Slope*).

Rectangular Domain I	Definition	
Dimensions Lx: 1000.00 [cm] Lz: 200.00 [cm] Slope		OK Cancel Help Next Previous

Figure 10. The Rectangular Domain Definition dialog window.

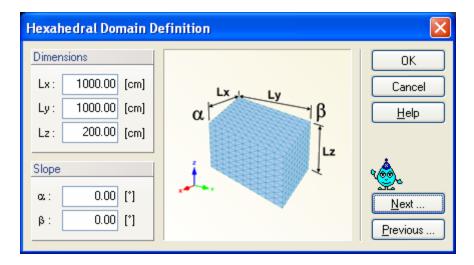


Figure 11. The Hexahedral Domain Definition dialog window.

In the **Geometry Information** dialog Window (Figs. 6 and 7) users also select the geometry **Units** to be used throughout the application (mm, cm, m) and the size of the **Initial Workspace**. When units are changed during specification or after reading the input data, then all input variables are automatically converted into the new units.

Initial Workspace: This part of the dialog allows users to define the initial dimensions of the graphical view window.

There are three types of three-dimensional transport domains (Solids, see also Section 4.4) depending upon the selection made in the Geometry Information dialog window (Fig. 6 and 7):

- **3D-Layered Hexahedral:** This type of solid has a **Hexahedral Shape** and is defined by its basic dimensions. The base can have a certain slope in the X and Y dimensions.
- **3D-Layered General:** This type of solid is defined by the **Base Surface** (see Section 4.2) and one or more **Thickness Vectors** (see Section 4.5).
- **3D-General:** This type of solid is defined using a set of surfaces that form its boundaries. This selection is not possible in the current version of HYDRUS.

3. Flow Parameters

3.1. Main Processes

In the **Main Processes** dialog window (Fig. 12), users specify the processes to be simulated, i.e., water flow, multiple solute transport, heat transport, and/or root water uptake.

The program automatically considers transient water flow when the "water flow" option is selected. Otherwise the code tries to calculate steady-state flow from the specified initial and boundary conditions. The success of such calculations depends on the complexity and/or nonlinearity of the problem. If unsuccessful, then a model run with constant boundary conditions and long simulation time may be required.

If the solute transport, heat transport or root water uptake options originally considered in an existing project are switched off by the user, the program issues a warning that all data related to these processes will be lost. If this loss is undesirable we recommend that users first copy the input data of the current project to a new project before switching off the solute transport, heat transport and/or root water uptake options.

For two-dimensional problems a user can also select if a **Direct** or **Inverse problem** is to be solved. Inverse problems involve the estimation of selected parameters from available experimental data.

Figure 12. The Main Processes dialog window.

3.2. Inverse Solution

HYDRUS implement a Marquardt-Levenberg type parameter estimation technique (Šimůnek and Hopmans, 2002) for inverse estimation of soil hydraulic (Hopmans et al., 2002) and/or solute transport and reaction (Šimůnek et al., 2002) parameters from measured transient or steady-state flow and/or transport data. The **Inverse Solution** dialog window (Fig. 13) appears only when the **Inverse Problem** in the **Main processes** dialog window (Fig. 12) is selected. Users select which parameters (the soil hydraulic, solute transport and reaction, and/or heat transport parameters) are to be optimized (**Estimate ...**) from the specified experimental data.

One also selects the method of **Weighting of Inversion Data** in the objective function. Users can choose between no weighting, weighting by mean ratios, or weighting by standard deviations. When no weighting is selected, one needs to supply weights for particular data points in the **Data for Inverse Solution** dialog window (Fig. 14). When weighting by mean ratio or weighting by standard deviation is selected, then the code calculates either the means or the standard deviations of the different data sets (e.g., water contents, pressure heads, concentrations, ...) and adjusts the weights proportionally. These internal weights can still be multiplied by weights from the **Data for Inverse Solution** dialog window (Fig. 14).

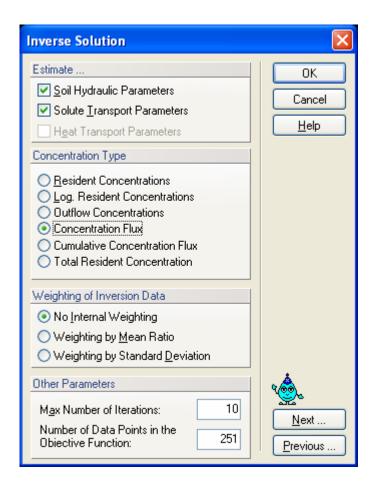


Figure 13. The Inverse Solution dialog window.

The objective function for the inverse estimation of solute transport parameter can be defined using different types of concentrations. Available **Concentration Types** are: a) the resident concentration in the liquid phase, b) a log-transformation of the resident concentration in the liquid phase, c) the outflow (flux) concentration, d) the solute concentration flux, e) the cumulative concentration (solute) flux, and f) the total resident concentration. The total resident concentration includes concentrations in the sorbed and nonequilibrium phases.

The maximum number of iterations for the inverse solution is also specified in this dialog window. If one selects zero number of iterations then only the direct simulation is carried out. However, users can still enter measured data, in which case the code compares results of the direct simulation with the measured data.

							OK
	X	Y	Туре	Position	Weight	^	Cancel
1	1	-47.61	1	2	1		
2	5	-48.8	1	2	1		<u>H</u> elp
3	10	-48.15	1	2	1		
4	15	-47.07	1	2	1		Add Line
5	20	-35.77	1	2	1		Addrine
6	25	-24.8	1	2	1		Delete Lir
7	30	-19.52	1	2	1		
8	35	-17.48	1	2	1		
9	40	-15.33	1	2	1		
10	45	-15.43	1	2	1		
11	50	-14.03	1	2	1		
12	55	-13.17	1	2	1		
13	60	-12.42	1	2	1		*
14	65	-12.64	1	2	1		400 L
15	70	-13.6	1	2	1	~	Next

Figure 14. The Data for Inverse Solution dialog window.

In the table **Data for Inverse Solution** (Fig. 14) one specifies the measured data that will be analyzed during the parameter optimization process. Many different types of data can be used to define the objective function that will be minimized for this purpose. How the values in the **X** and **Y** columns are interpreted depends on the **Type** and **Position** values. **Weight** is the weight associated with a particular data point. The following information can be included into the objective function:

Туре	Data Point
0	Cumulative boundary fluxes across a specified boundary
1	Pressure head measurements at selected observation point(s)
2	Water content measurements at selected observation point(s)
3	Boundary flux across a specified boundary
4	Concentration or temperature measurements at observation point(s)
5	$h(\theta)$ measurements; soil water retention data
6	K(h) measurements; hydraulic conductivity data point
7	Prior knowledge of parameter α
8	Prior knowledge of parameter <i>n</i>
9	Prior knowledge of parameter θ_r
10	Prior knowledge of parameter θ_s
11	Prior knowledge of parameter K_s

Table 2. Data Types for the objective function (Inverse Problem).

Depending upon the value of parameter **Type**, the first column (X) contains the following information:

Table 3. Definition of the column X in Fig. 14 based on Data Type (Inverse Problem).

X	Туре
Time	0, 1, 2, 3, 4
Pressure head	5, 6
Dummy variable	7, 8, 9, 10, 11

Depending upon the value of parameter **Type**, the second (Y) and fourth (Position) columns contain the following information:

Y	Туре	Position
Cumulative boundary flux across a specified	0	Code for the specified boundary [*]
boundary		
Pressure head	1	Observation node number
Water content	2	Observation node number
Averaged water content of the entire flow domain	2	0
Averaged water content of the subregion	2	Negative subregion number
Concentrations/temperatures	4	Observation node number
Concentrations for the second solute		Negative observation node
		number
Total amount of solute in the entire flow domain	4	0
Boundary flux across a specified boundary	3	Code for the specified boundary [*]
Water content	5	Material number
Hydraulic conductivity	6	Material number
Particular parameter	7-11	Material number

Table 4. Definition of the column Y in Fig. 14 based on Data Type (Inverse Problem).

*1 – constant pressure head or flux boundary; 2 – seepage face; 3 – variable pressure head or flux boundary 1; 4 – atmospheric boundary; 5 – drains; 6 – free or deep drainage boundary; 7, 8, and 9 – variable pressure head or flux boundaries 2, 3, or 4, respectively.

3.3. *Time Information*

The **Time Information** dialog window (Fig. 15) contains information associated with the **Time Discretization**, the **Time Units**, and the implementation of **Boundary Conditions**.

Time Information	1			
Time Units	Time Discretization		ОК	
<u>○ S</u> econds	Initial Time:	0	Cancel	
○ <u>M</u> inutes	<u>F</u> inal Time:	1	<u>H</u> elp	
O H <u>o</u> urs	Ini <u>t</u> ial Time Step:	0.0001		
⊙ <u>D</u> ays	Minim <u>u</u> m Time Step:	1e-005		
	M <u>a</u> ximum Time Step:	5		
Boundary Conditions				
☑ Time-Variable <u>E</u>	<u>N</u> ext			
Number of Time-Variable Boundary <u>R</u> ecords: 1 <u>Previous</u>				

Figure 15. The Time Information dialog window.

Table 5. Time Information variables.

Time Units	Time units [T] to be used throughout the application (days, hours, min, sec). When units are changed during or after data entry, then all input variables are converted automatically into the new units.
Initial Time	Starting time [T] of the calculation.
Final Time	Final time [T] of the calculation.
Initial Time Step	Initial time increment, dt [T]. The initial time step should be a function of the type of problem being solved. Problems with high pressure gradients (e.g., infiltration into an initially dry soil) and for soils with highly nonlinear soil hydraulic properties require relatively small initial time steps. The initial time step is used at the beginning of the simulation or whenever boundary conditions are substantially changed (e.g., the water flux changes by 25% or more).
Minimum Time Step	Minimum permitted value of the time increment, dt_{min} [T].
Maximum Time Step	Maximum permitted value of the time increment, dt_{max} [T].

Boundary Conditions

Time-Variable Boundary Condition - The number of time-dependent boundary records and time-dependent boundary conditions must be specified when this box is checked. The boundary conditions otherwise are assumed to be constant in time.

3.4. Output Information

The **Output Information** dialog window (Fig. 16) contains information governing output from the computational module of HYDRUS.

Output Informatio	n	X
Print Options		ОК
✓ I-Level Information	n	
<u>E</u> very n time step	s: 10	Cancel
🔄 Interval Output		<u>H</u> elp
Time Interval:	1	
Screen <u>O</u> utput		
Press Enter at the	End	
Print Times		
<u>C</u> ount: 7	t [sec]	
Update	1 60 1 2 900	
	3 1800	
<u>D</u> efault	4 2700	
	5 3600	
	6 5400	
L	7 7200 👽	
		1 1
Subregions		<u>N</u> ext
1 Number of L	ayers (for Mass Balances)	Previous

Figure 16. The Output Information dialog window.

In the **Print Options** part of the dialog window, one decides whether certain information concerning mean pressure heads and concentrations, mean water and solute fluxes, cumulative water and solute fluxes, and time and iteration information is printed at each time step (*T-Level Information*), after *n* time steps (*Every n time steps*), at a certain defined time interval (*Interval Output*), or if the information is sent to the screen during the calculations (*Screen Output*). When the simulation ends users are by default asked to hit the Enter key of the keyboard to return to the GUI from the computational window. This action can be disabled by unchecking the **Hit Enter at the End** check box.

- **T-Level Information** This check box decides whether certain information concerning mean pressure heads and concentrations, mean water and solute fluxes, cumulative water and solute fluxes, and time and iteration information, are to be printed at each time step, after n time steps, or only at preselected times (**Print Times**) or **Time Intervals**.
- **Interval Output** Users can specify whether or not information concerning mean pressure heads and concentrations, mean water and solute fluxes, cumulative water and solute fluxes, and time and iteration information is to be printed at a regular **Time Interval**.
- Screen Output Check box to decide whether or not information about the simulation run is to be printed to the screen during execution of the HYDRUS computational code. We recommend to check this box for direct problems, but not for inverse problems.

In the **Print Times** part of the dialog window one specifies the number of Print Times (**Count**) at which detailed information about the pressure heads, water contents, concentrations, temperatures, fluxes, and the soil water and solute balances will be printed. Clicking on the **Default** command button will cause the print times to be distributed evenly between the initial and final time.

Finally, in the **Subregions** part one selects the number of regions for which a mass balance will be evaluated and printed to the Balance.out output file.

3.5. Iteration Criteria

The **Iteration Criteria** dialog window (Fig. 17) contains information related to the iterative process that is used to solve the Richards equation. Because of the nonlinear nature of the Richards equation, an iterative process must be used to obtain solutions of the global matrix equation at each new time step. For each iteration a system of linearized algebraic equations is first derived and then solved using either Gaussian elimination or the conjugate gradient method. After solving the matrix equation, the coefficients are re-evaluated using this solution, and the new equations are again solved. The iterative process continues until a satisfactory degree of convergence is obtained, i.e., until for all nodes in the saturated (unsaturated) region the absolute change in pressure head (water content) between two successive iterations becomes less than some small value determined by the imposed absolute **Pressure Head** (or **Water Content**) **Tolerance**. The first estimate (at zero iteration) of the unknown pressure heads at each time step is obtained by extrapolation from the pressure head values at the previous two time levels.

Iteration Criteria		
Iteration Criteria		ОК
<u>M</u> aximum Number of Iterations: <u>W</u> ater Content Tolerance: Pressure Head <u>T</u> olerance:	10 0.001 1	Cancel <u>H</u> elp
Time Step Control		
Lower Optimal Iteration Range:	3	
Upper Optimal Iteration Range:	7	
Lower Time Step Multiplication Factor:	1.3	
Upper Time Step Multiplication <u>Factor</u> :	0.7	
Internal Interpolation Tables		
Lower Limit of the Tension Interval:	0.0001	
Upper Limit of the Tension Interval:	10000	
Initial Condition		<u>v</u>
In the Pressure Head		<u>N</u> ext
◯ In the <u>W</u> ater Content		Previous

Figure 17. The Iteration Criteria dialog window.

In the **Iteration Criteria** part of the dialog window, one specifies the maximum number of iterations during one time step, and the water content and pressure head precision tolerances.

Max. Number of Iterations	Maximum number of iterations allowed during any time step while
	solving the nonlinear Richards equation using a modified Picard
	method. The recommended and default value is 10.

- Water Content Tolerance Absolute water content tolerance for nodes in the unsaturated part of the flow region [-]. When the water contents between two successive iterations during a particular time step change less than this parameter, the iterative process stops and the numerical solution proceeds to the new time step. Its recommended and default value is 0.001.
- **Pressure Head Tolerance** Absolute pressure head tolerance for nodes in the saturated part of the flow region [L]. When the pressure heads between two successive iterations during a particular time step change less than this parameter, the iterative process stops and the numerical solution proceeds to the new time step. Its recommended and default value is 1 cm.

Information specified in the **Time Step Control** part of the dialog window is related to the automatic adjustment of the time step during calculations. Four different time discretizations are introduced in HYDRUS: (1) time discretizations associated with the numerical solution, (2) time discretizations associated with implementation of boundary conditions, (3) time discretizations associated with data points used in the inverse problem, and (4) time discretizations which provide printed output of the simulation results (e.g., nodal values of dependent variables, water and solute mass balance components, and other information about the flow regime).

Discretizations 2, 3, and 4 are mutually independent; they generally involve variable time steps as described in the input data file (**Time-Variable Boundary Conditions**, Fig. 31 and **Output Information**, Fig. 16). Discretization 1 starts with a prescribed initial time increment, Δt . This time increment is automatically adjusted at each time level according to the following rules:

- a. Discretization 1 must coincide with time values resulting from discretizations 2, 3, and 4.
- b. Time increments cannot become less than a preselected minimum time step, Δt_{min} , nor exceed a maximum time step, Δt_{max} (i.e., $\Delta t_{min} \leq \Delta t \leq \Delta t_{max}$).
- c. If, during a particular time step, the number of iterations necessary to reach convergence is ≤ 3 , the time increment for the next time step is increased by multiplying Δt with a predetermined constant >1 (usually between 1.1 and 1.5). If the number of iterations is ≥ 7 , Δt for the next time level is multiplied by a constant <1 (usually between 0.3 and 0.9).
- d. If, during a particular time step, the number of iterations at any time level becomes greater than a prescribed maximum (usually between 10 and 50), the iterative process for that time level is terminated. The time step is subsequently reset to $\Delta t/3$, and the iterative process restarted.

We note that the selection of optimal time steps, Δt , during execution is also influenced by the adopted solution scheme for solute transport.

Lower Optimal Iteration	When the number of iterations necessary to reach
-	
Range	convergence for water flow is less than this number,
	the time step is multiplied by the lower time step
	multiplication factor (the time step is increased).
	Recommended and default value is 3.
Upper Optimal Iteration	When the number of iterations necessary to reach
Range	convergence for water flow is higher than this number,
	the time step is multiplied by the upper time step
	multiplication factor (the time step is decreased).
	Recommended and default value is 7.
Lower Time Step	If the number of iterations necessary to reach
Multiplication Factor	convergence for water flow is less than the lower
-	optimal iteration range, the time step is multiplied by
	this number (time step is increased). Recommended
	and default value is 1.3.
Upper Time Step	If the number of iterations necessary to reach
Multiplication Factor	convergence for water flow is higher than the upper
A ,	optimal iteration range, the time step is multiplied by
	this number (time step is decreased). Recommended
	and default value is 0.7.
	and uclauit value is 0.7.

Table 6. Time Step Control variables.

Internal Interpolation Tables. At the beginning of a numerical simulation, HYDRUS generates for each soil type in the flow domain a table of water contents, hydraulic conductivities, and specific water capacities from the specified set of hydraulic parameters. Values of the hydraulic properties are then computed during the iterative solution process using linear interpolation between entries in the table. If the pressure head h at some node falls outside the prescribed interval (*ha*, *hb*), the hydraulic characteristics at that node are evaluated directly from the hydraulic functions (i.e., without interpolation). The above interpolation technique was found to be much faster computationally than direct evaluation of the hydraulic functions over the entire range of pressure heads. Interpolation using tables can be avoided by setting *ha* and *hb* both to zero. Then the soil hydraulic properties are always evaluated directly from the hydraulic functions (i.e., without interpolation). Output graphs of the soil hydraulic properties will be given also for the interval (*ha*, *hb*).

Lower limit of the tension interval	Absolute value of the lower limit [L] of the pressure head interval for which a table of hydraulic properties will be generated internally for each material.
Upper limit of the tension interval	Upper value of the lower limit [L] of the pressure head interval for which a table of hydraulic properties will be generated internally for each material.

Finally, in the **Initial Conditions** part of the dialog window, a user specifies whether the initial conditions for the water flow calculations are to be specified in terms of the pressure head or water content.

3.6. Soil Hydraulic Model

In the **Soil Hydraulic Model** dialog window (Fig. 18) users select the **Hydraulic Model** to be used to describe the soil hydraulic properties, and specify whether or not **Hysteresis** is to be considered during the calculations.

Soil Hydraulic Model	X
Hydraulic Model Image: van Genuchten - Mualem Image: With Air-Entry Value of -2 cm Image: Modified van Genuchten Image: Brooks-Corey Image: Kosugi (log-normal) Image: Dual-porosity (Durner, dual van Genuchten - Mualem) Image: Dual-porosity (mobile-immobile, water c. mass transfer) Image: Dual-porosity (mobile-immobile, head mass transfer) Image: Dual-permeability Image: Look-up Tables	OK Cancel <u>H</u> elp
Hysteresis Hysteresis in Retention Curve Hysteresis in Retention Curve and Conductivity Hysteresis in retention curve (no pumping, Bob Lenhard) Initially Drying Curve Initially Wetting Curve	<u>N</u> ext Previous

Figure 18. The Soil Hydraulic Model dialog window.

Hydraulic Model: The code allows users to select six types of models for the soil hydraulic properties: a) the van Genuchten-Mualem model [*van Genuchten*, 1980], b) the van Genuchten-Mualem model with an air-entry value of -2 cm, c) the modified van Genuchten type equations [*Vogel and Cislerova*, 1988], d) the equations of *Brooks and Corey* [1964], e) the lognormal distribution model of *Kosugi* [1996], and f) a dual-porosity model [*Durner*, 1994]. Additionally, user can select two dual-porosity nonequilibrium flow models with mass transfer between the mobile and immobile zones assumed to be proportional to either f) the water content or g) the pressure head. For a detailed description of these models, see the technical manual of HYDRUS. Two other approaches (a dual-permeability model and look-up tables) are not available in the current version of HYDRUS.

Hysteresis: When the van Genuchten model is used, either a) a non-hysteretic description (*No Hysteresis*), b) a hysteretic description only in the retention curve (*Hysteresis in Retention Curve*), or c) hysteretic descriptions in both the retention curve and the hydraulic conductivity curve (*Hysteresis in Retention Curve and Conductivity*) can be used. When hysteresis in the soil hydraulic properties is assumed, users must specify whether the initial condition is associated with the main wetting (**Initially Wetting Curve**) or main drying (**Initially Drying Curve**) retention curve. The HYDRUS code incorporates hysteresis by using the empirical model introduced by *Scott et al.* [1983]. This model was also employed by *Kool and Parker* [1987], who modified the formulation to account for air entrapment. While relatively simple to implement, the above model has been found to suffer sometimes from a so-called pumping effect, in which the hysteresis loops can move to physically unrealistic parts of the retention function. As an alternative, we also incorporated in HYDRUS the hysteresis model of *Lenhard et al.* [1991] and *Lenhard and Parker* [1992] that eliminates pumping by keeping track of historical reversal points (*Hysteresis in Retention Curve, no pumping, Bob Lenhard*).

3.7. Water Flow Parameters

Parameters for the soil hydraulic models are specified in the Water Flow Parameters dialog window (Fig. 19).

In all models (i.e., *Brooks and Corey*, 1964; *van Genuchten*, 1980; *Vogel and Cislerova*, 1988; *Kosugi*, 1996, and *Durner*, 1994), θ_r (Qr) and θ_s (Qs) denote the residual and saturated water contents, respectively; K_s (Ks) [LT⁻¹] is the saturated hydraulic conductivity, and *l* is a pore-connectivity parameter. The parameters α (Alpha) [L⁻¹] and *n* [-] are empirical coefficients affecting the shape of the hydraulic functions.

The modified van Genuchten model has four additional parameters: θ_a (Qa) – a water content smaller or equal to θ_r , θ_m (Qm) – a water content larger or equal to θ_s , K_k (Kk) [LT⁻¹] – the unsaturated hydraulic conductivity at water content θ_k , and θ_k (Qk) – the water content associated with K_k .

W	later F	low Paran	neters								X
ł	Material F	Properties for	Water Flow								ОК
	Number	r of Materials:	2	Update							Cancel
	Mat	Qr	Qs	Alpha	n	1.50		Ks		0.5	<u>H</u> elp
	1	0.078	0.43	0.036		1.56		24	.96	0.5	
	2	0.034	0.46	0.016		1.37			6	0.5 🔽	
											4 📥
											<u>_</u>
-											<u>N</u> ext
9	oil Catal	og Silt		V Neu	ral Network I	Prediction		Tempera	iture Depe	ndence	Previous
w	ator E	low Daram	otors - Inv	erse Solution -	Material	1					×
	ater i	low Param	leters - IIIv	erse solution -	materiat						
h	Material P	Properties for 1	Water Flow								ОК
	Number	of Materials:	1								Cancel
		or matchalo.									
	-		Qr		pha	n		Ks		1	<u>H</u> elp
		al Estimate	0.008	0.35	0.05		4		0.012	0.5	
		num Value	0	0.1	0		2		0.0001	0.001	. 🛦
		mum Value	0	0.6	0		(1	5	1 1
	F	illeu :				<u> </u>					Next
]			
-	<u>S</u> oil Catal	log:		Neu Neu	ral Network F	Prediction			ure Deper	idence	Previous

Figure 19. The Water Flow Parameters dialog window for direct (top) and inverse (bottom) problems.

Durner's [1994] model has three additional parameters: w_2 (w2), α_2 (Alpha2) [L⁻¹], and n_2 (n2), where w_2 is the weighting factor for the second overlapping region, and α_2 and n_2 are empirical parameters for the second region.

The hysteretic model has also three additional parameters: θ_{sw} (QsW) – the saturated water content of the main wetting branch, α_w (AlphaW) [L⁻¹] – the shape parameter of the main wetting branch, and K_{sw} (KsW) [LT⁻¹] - the saturated hydraulic conductivity associated with the main wetting branch (in case hysteresis also occurs in the conductivity function).

Temperature Dependence: Check this box if the hydraulic properties are considered to be temperature dependent. Using capillary theory, the influence of temperature on the soil water pressure head is then quantitatively predicted from the influence of temperature on surface tension, while the influence of temperature on the hydraulic conductivity is predicted from the influence of temperature on viscosity and the density of water.

Soil Catalog: The hydraulic parameters of selected soils were included into a catalog from which users can make selections. The parameters were taken from *Carsel and Parrish* [1988] (Table 7). Some caution is needed when using these parameter values since they only represent very approximate averages for different textural classes.

The following soil textural classes are represented in the soil hydraulic catalog:

Sand Loamy Sand Sandy Loam Loam Silt Loam Sandy Clay Loam Silty Clay Loam Sandy Clay Silty Clay Clay

Neural Network Prediction: The program uses pedotransfer functions (PTFs) based on neural networks to predict *van Genuchten*'s [1980] water retention parameters and the saturated hydraulic conductivity (K_s) based on textural information (see Section 3.8 below).

When the parameter estimation option is selected, then users have to provide initial estimates of the optimized soil hydraulic parameters, specify which parameters are to be optimized (check appropriate checkboxes), and provide parameter constraints for the optimization. Entering zeros (the default values) for the minimum and maximum values signifies that the parameters are unconstrained.

Textural class	θ_r	$ heta_{s}$	α	п	K_s
	$[L^{3}L^{-3}]$	$[L^{3}L^{-3}]$	$[\text{cm}^{-1}]$	[-]	$[\operatorname{cm} \operatorname{d}^{-1}]$
Sand	0.045	0.430	0.145	2.68	712.8
Loamy Sand	0.057	0.410	0.124	2.28	350.2
Sandy Loam	0.065	0.410	0.075	1.89	106.1
Loam	0.078	0.430	0.036	1.56	24.96
Silt	0.034	0.460	0.016	1.37	6.00
Silty Loam	0.067	0.450	0.020	1.41	10.80
Sandy Clay Loam	0.100	0.390	0.059	1.48	31.44
Clay Loam	0.095	0.410	0.019	1.31	6.24
Silty Clay Loam	0.089	0.430	0.010	1.23	1.68
Sandy Clay	0.100	0.380	0.027	1.23	2.88
Silty Clay	0.070	0.360	0.005	1.09	0.48
Clay	0.068	0.380	0.008	1.09	4.80

Table 7. Soil hydraulic parameters for the analytical functions of *van Genuchten* [1980] for twelve textural classes of the USDA soil textural triangle according to *Carsel and Parish* [1988].

Table 8. Soil hydraulic parameters for the analytical functions of *van Genuchten* [1980] for twelve textural classes of the USDA textural triangle as obtained with the Rosetta Lite program [*Schaap et al.*, 2001].

Textural class	θ_r	θ_s	α	п	K_{s}
	$[L^{3}L^{-3}]$	$[L^{3}L^{-3}]$	$[\mathrm{cm}^{-1}]$	[-]	$[cm d^{-1}]$
Sand	0.053	0.375	0.035	3.18	643.
Loamy Sand	0.049	0.390	0.035	1.75	105.
Sandy Loam	0.039	0.387	0.027	1.45	38.2
Loam	0.061	0.399	0.011	1.47	12.0
Silt	0.050	0.489	0.007	1.68	43.7
Silty Loam	0.065	0.439	0.005	1.66	18.3
Sandy Clay Loam	0.063	0.384	0.021	1.33	13.2
Clay Loam	0.079	0.442	0.016	1.41	8.18
Silty Clay Loam	0.090	0.482	0.008	1.52	11.1
Sandy Clay	0.117	0.385	0.033	1.21	11.4
Silty Clay	0.111	0.481	0.016	1.32	9.61
Clay	0.098	0.459	0.015	1.25	14.8

3.8. Neural Network Predictions

The HYDRUS code was coupled with the Rosetta Lite DLL (Dynamically Linked Library) (Fig. 20), which was independently developed by Marcel Schaap at the U.S. Salinity Laboratory (mschaap@ussl.ars.usda.gov) [Schaap et al., 2001]. Rosetta implements pedotransfer functions (PTFs) which predict van Genuchten's [1980] water retention parameters and the saturated hydraulic conductivity (K_s) in a hierarchical manner from soil textural class, the soil textural distribution, bulk density and one or two water retention points as input. Rosetta has its own help features containing all relevant information and references. Rosetta provides soil hydraulic parameters for the analytical functions of van Genuchten [1980] for twelve textural classes of the USDA textural triangle (Table 8).

Rosetta Lite v. 1	.1 (June 2003)		X
Select Model	0	SSCBD+ water content at 33 kPa i	(ТН33)
 % Sand, Silt and Clay (SSC) Same + water content at 1500 kPa (TH1500) % Sand, Silt, Clay and Bulk Density (BD) 			(TH1500)
Input Textural Class	Unknown	Output Theta r [cm3/cm3]	0.0737
Sand [%] Silt [%]	30 45	Theta s [cm3/cm3] Alpha [1/cm]	0.4291
Clay [%] BD [gr/cm3]	25 1.35	n [-] Ks [cm/day]	1.5577
TH33 [cm3/cm3] TH1500 [cm3/cm3]		Help! Predict Ac	cept Cancel

Figure 20. The Rosetta Lite (Neural Network Predictions) dialog window.

3.9. Anisotropy in the Hydraulic Conductivity

For two-dimensional problems users may need to specify the principal components of the anisotropy tensor, K_1^A and K_2^A , together with the angle ω_a between the principal direction of K_1^A and the *x*-axis of the global coordinate system for each element. This has been simplified for threedimensional problems where user can specify one or more **Tensors of Anisotropy** (Fig. 21), which may be assigned to different parts of the transport domain. The anisotropy tensor is defined by three principal components, K_1^A (ConAX), K_2^A (ConAY), and K_3^A (ConAZ), and six coefficients a_{ij} that represent the cosine of angles between the *i*th principal direction of the tensor K^A and the *j*-axis of the global coordinate system (i.e., Cos(X-x), Cos(Y-y), Cos(X-y), Cos(X-z), Cos(Y-z)).

Tensors of Anisotropy	×
Tensors of Anisotropy for Hydraulic Conductivity Number of Tensors of Anisotropy: 1	OK Cancel
Aniz ConAX ConAY Cos(X-x) Cos(Y-y) Cos(X-z) Cos(Y-z) Cos(Y-z) <thcos(y-z)< th=""> <thcos(y-z)< th=""> <thcos(y-z)< td=""><td>Help</td></thcos(y-z)<></thcos(y-z)<></thcos(y-z)<>	Help

Figure 21. The Tensors of the Anisotropy dialog window.

3.10. Solute Transport

Basic information needed for defining solute transport problem are entered in the **Solute Transport** dialog window (Fig. 22). In this window users specify the **Space** and **Time Weighting Schemes**, the **Iteration Criteria** (for nonlinear problems), and additional **Solute Information** such as mass units, pulse duration (if applicable), and number of solutes.

Solute Transport		
Time Weighting Scheme Explicit Scheme Implicit Scheme Implicit Scheme Solute Information	Space Weighting Scheme <u>G</u>alerkin Finite Elements Upstream <u>W</u>eighting FE GFE with <u>A</u>rtificial Dispersion 	OK Cancel <u>H</u> elp
Number of Solutes: Pulse Duration: Mass Units: Mass Units:	 Use Tortuosity Eactor Iemperature Dependence of Transport and Reaction Parameters Attachment/Detachment Concept (virus, bacteria transport) Filtration Theory Wetland Module 	
Iteration Criteria (for Nonlinear A A <u>b</u> solute Concentration Tolera <u>R</u> elative Concentratin Toleran <u>M</u> aximum Number of Iteration:	nce: 0	Next Previous

Figure 22. The Solute Transport dialog window.

a) Time Weighting Scheme

The **Time Weighting Scheme** defines the temporal weighing coefficient, ε , used in the numerical solution of the transport equation. The temporal weighting coefficient is equal to 0.0 for an *explicit scheme*, 0.5 for a *Crank-Nicholson time-centered implicit scheme*, and 1.0 for a *fully implicit scheme*. The structure of the final set of linear equations [G] {c} = {g}, obtained after the spatial and temporal discretization of the governing advection-dispersion equation, depends upon the value of the temporal weighing factor, ε . The explicit (ε =0) and fully implicit (ε =1) schemes require that the global matrix [G] and the vector {g} be evaluated at only one time level (the previous or current time level). The other two schemes require evaluation at both time levels. Also, the Crank-Nicholson and implicit schemes lead to an asymmetric banded matrix [G]. By contrast, the explicit scheme (ε =0) leads to a diagonal matrix [G] which is much easier to solve (but generally requires much smaller time steps).

The Crank-Nicholson centered scheme is recommended in view of solution precision. The fully implicit scheme also leads to numerical dispersion, but is better in avoiding numerical instabilities. The explicit scheme is most prone to numerical instabilities with undesired oscillations (and is currently disabled).

b) Space Weighting Scheme

HYDRUS provides three options for the **Space Weighting Scheme**, i.e., the regular *Galerkin Finite Elements* formulation, the *Upstream Weighting Finite Elements* formulation, and the *Galerkin Finite Elements* formulation *with Artificial Dispersion*.

While the **Galerkin Finite Elements** formulation is recommended in view of solution precision, **Upstream Weighting** is provided as an option in HYDRUS to minimize some of the problems with numerical oscillations when relatively steep concentration fronts are being simulated. For this purpose the second (flux) term of advective-dispersive equation is not weighted by regular linear basis functions, but instead using nonlinear functions [*Yeh and Tripathi*, 1990]. The weighing functions ensure that relatively more weight is placed on flow velocities of nodes located at the upstream side of an element.

Additional **Artificial Dispersion** may be added also to stabilize the numerical solution and to limit or avoid undesired oscillations in the Galerkin finite element results. Artificial dispersion is added such that a **Stability Criterion** involving Pe.Cr (the product of the Peclet number and the Curant number) [*Perrochet and Berod*, 1993] is satisfied. The recommended value for Pe.Cr is 2.0.

c) Solute Information

Number of Solutes	Number of solutes to be simulated simultaneously or involved in a decay chain reaction.
Pulse Duration	Time duration of the concentration pulse. Concentrations (flux or resident) along all boundaries, for which no time-variable boundary conditions are specified, are then set equal to zero for times larger than the "Pulse Duration".
Mass Units	Units to be printed to the output files or displayed in various graphs. Mass units have no effect on the calculations.
Stability Criterion	Product of the dimensionless Peclet and Curant numbers (Pe.Cr). This criterion is used either to add artificial dispersion in the <i>Galerkin Finite Elements with Artificial Dispersion</i> scheme or to limit the time step (leading to lower Courant numbers for a given Peclet number) for the <i>Galerkin Finite Elements</i> scheme.
Use Tortuosity Factor	Check this box when molecular diffusion coefficients in the water and gas phases are to be multiplied by a tortuosity factor according to the formulation of <i>Millington and Quirk</i> [1991].

Temperature Dependence Check this box if the solute transport and reaction parameters are assumed to be temperature dependent. **Attachment/Detachment** Check this box if the solute is assumed to be subject to attachment/detachment to/from the solid phase. This process is often used in simulations of the transport of viruses, colloids, or bacteria. Check this box if the attachment coefficient is to be calculated **Filtration Theory** from filtration theory. Wetland Module Check this box if the Wetland module is to be used. This module is described in detail by Langergraber and Šimůnek [2005]. The Wetland module (for two-dimensional problems only) was developed to model biochemical transformation and degradation processes in subsurface flow constructed wetlands. The module considers the following components: dissolved oxygen, organic matter (3 fractions of chemical oxygen demand - COD: readilyand slowly-biodegradable, and inert), nitrogen compounds (ammonia, nitrite, nitrate, and dinitrogen), inorganic phosphorus, and heterotrophic and autotrophic microorganisms. Organic nitrogen and organic phosphorus are modeled as part of the COD. Heterotrophic bacteria are assumed to be responsible for hydrolysis, mineralization of organic matter (aerobic growth) and denitrification (anoxic growth), while Autotrophic bacteria are responsible for nitrification.

d) Iteration Criteria

The advection-dispersion solute transport equation becomes nonlinear when nonlinear adsorption is considered. Similarly as for the Richards equation, an iterative process must then be used to obtain solutions of the global matrix equation at each new time step. During each iteration a system of linearized algebraic equations is derived and solved using either Gaussian elimination or the conjugate gradient method. After inversion, the coefficients are re-evaluated using the initial solution, and the new equations are again solved. This iterative process continues until a satisfactory degree of convergence is obtained, i.e., until at all nodes the absolute change in concentration between two successive iterations becomes less than some concentration tolerance (defined in HYDRUS as the sum of an **Absolute Concentration Tolerance** and the product of the concentration and a **Relative Concentrations** allowed during a certain time step needs to be specified (recommended value is 10). When the **Maximum Number of Iterations** is reached then the numerical solution is either (a) terminated for problems involving transient water flow or (b) restarted with a reduced time step for steady-state flow problems.

3.11. Solute Transport Parameters

Soil and Solute Specific Transport Parameters are specified in the Solute Transport Parameters dialog window (Fig. 23).

	ransport P		s			Colute Cr	pecific Parameters			
Mat 1 2	Bulk.D. 1.5 1.5	Disp.L. 0.5 0.5	Disp.T. 0.1 0.1	Fract. 1 1	Thimob. 0 0	Solute sp Sol	Difus. W.	Difus. G. O	Canc	el
									Next . Previou	

Figure 23. The Solute Transport Parameters dialog window.

The following **Soil Specific Parameters** (left part of the dialog window) are specified for each soil material:

Bulk.d.	Bulk density, ρ [ML ⁻³]
Disp.L.	Longitudinal dispersivity, D_L [L]
Disp.T.	Transverse dispersivity, D_T [L]
Frac	Dimensionless fraction of adsorption sites classified as type-1 sites, i.e., sites with
	instantaneous sorption when the chemical nonequilibrium option is considered [-].
	Set this parameter equal to 1 when equilibrium transport is considered. Frac
	becomes the dimensionless fraction of adsorption sites in contact with mobile water
	when the physical nonequilibrium option is considered [-]. In that case <i>Frac</i>
	should be set equal to 1 when all sorption sites are in contact with mobile water.
ThImob	The immobile water content. Set equal to 0 when the physical nonequilibrium option is not considered.

The following **Solute Specific Parameters** (right part of the dialog window) are specified for each solute:

Diffus.W	Molecular diffusion coefficient in free water, D_w [L ² T ⁻¹]
Diffus.G	Molecular diffusion coefficient in soil air, $D_a [L^2 T^{-1}]$

3.12. Solute Reaction Parameters

The *Solute Reaction Parameters* and concentrations for *Boundary Conditions* are specified in the **Solute Reaction Parameters** dialog window (Fig. 24). Each solute has its own Solute Reaction Parameters dialog window.

	Solute -	1						СК
	cBnd3 0	cBnd4 0	cRoot 0	cWell 0	cBnd7 0	cAtm 0	d O	Cancel <u>H</u> elp
Meters Kd 0	Nu O	Beta	1	Henry 0	SinkL1	O Sink	S1 0	
								۵.
	ditions nd1 cBnd2 1 0 meters Kd 4	ditions nd1 cBnd2 cBnd3 1 0 0 meters Kd Nu	nd1 cBnd2 cBnd3 cBnd4 1 0 0 0 meters Kd Nu Beta	ditions nd1 cBnd2 cBnd3 cBnd4 cRoot 1 0 0 0 0 meters Kd Nu Beta	ditions hd1 cBnd2 cBnd3 cBnd4 cRoot cWell 1 0 0 0 0 0 0 meters Kd Nu Beta Henry	ditions nd1 cBnd2 cBnd3 cBnd4 cRoot cWell cBnd7 1 0 0 0 0 0 Immeters Kd Nu Beta Henry SinkL1	ditions nd1 cBnd2 cBnd3 cBnd4 cRoot cWell cBnd7 cAtm 1 0 0 0 0 0 0 immeters Kd Nu Beta Henry SinkL1 Sink	ditions ditions nd1 cBnd2 cBnd3 cBnd4 cRoot cWell cBnd7 cAtm d 1 0 0 0 0 0 0 0 0 Immeters Kd Nu Beta Henry SinkL1 SinkS1

Figure 24. The Solute Reaction Parameters dialog window.

The following Solute Reaction Parameters are specified for each soil material:

Kd	Adsorption isotherm coefficient, $k_s [M^{-1}L^3]$
Nu	Adsorption isotherm coefficient, $\eta [M^{-1}L^3]$
Beta	Adsorption isotherm exponent, β [-]
Henry	Equilibrium distribution constant between liquid and gaseous phases, k_g [-]
SinkL1	First-order rate constant for dissolved phase, μ_w [T ⁻¹]
SinkS1	First-order rate constant for solid phase, μ_s [T ⁻¹]
SinkG1	First-order rate constant for gas phase, $\mu_g [T^{-1}]$
SinkL1'	First-order rate constant for dissolved phase, μ_w , $[T^{-1}]$, as part of a solute decay chain
SinkS1'	First-order rate constant for solid phase, μ_s [T ⁻¹], as part of a solute decay chain
SinkG1'	First-order rate constant for gas phase, μ_{g} (T ⁻¹], as part of a solute decay chain
SinkW0	Zero-order rate constant for dissolved phase, γ_w [ML ⁻³ T ⁻¹]
SinkS0	Zero-order rate constant for solid phase, γ_w [T ⁻¹]
SinkG0	Zero-order rate constant for gas phase, γ_s [ML ⁻³ T ⁻¹]

Alpha First-order rate coefficient for one-site or two-site nonequilibrium adsorption, mass transfer coefficient for solute exchange between mobile and immobile liquid regions, $\omega[T^{-1}]$

When the **Attachment/Detachment Model** (Fig. 22) is used, then some parameters listed above are replaced with different parameters needed for the attachment/detachment model:

D_Soil iPsi2	Diameter of the sand grains, d_c [L]. Type of blocking on the second sorption sites: = 0: No blocking.
	= 1: Langmuirian dynamics.
	= 2: Ripening.
	= 3: random sequential adsorption model.
	= 4: depth dependent blocking coefficient.
iPsi1	Same for the first sorption sites.
SMax2	Parameter in the blocking function for the second sorption sites (s_{max} for
	blocking options (1), (2) and (3), and b for (4)).
AttachSolid2	First-order deposition (attachment) coefficient, k_a [T ⁻¹], for the second sorption sites.
DetachSolid2	First-order entrainment (detachment) coefficient, k_d [T ⁻¹], for the second sorption sites.
SMax1	Parameter in the blocking function for the first sorption sites.
AttachSolid1	First-order deposition (attachment) coefficient, k_a [T ⁻¹], for the first sorption sites.
DetachSolid1	First-order entrainment (detachment) coefficient, k_d [T ⁻¹], for the first sorption sites.

When **Filtration Theory** (Fig. 22) is used to calculate the attachment coefficient, then the following parameters must be entered instead:

D_Soil	Diameter of the sand grains, d_c [L].
D_Virus	Diameter of the particle, d_p (e.g., virus, bacteria) (e.g., = 0.95 µm or 0.95e-6 m)
	[L].
SMax2	Parameter in the blocking function for the second sorption sites (s_{max} for model
	(1)).
Stick. Eff2	Sticking efficiency, a [-], for the second sorption sites.
DetachSolid2	First-order entrainment (detachment) coefficient, k_d [T ⁻¹], for the second
	sorption sites.
SMax1	Parameter in the blocking function for the first sorption sites.
Stick. Eff1	Sticking efficiency, a [-], for the first sorption sites.
DetachSolid1	First-order entrainment (detachment) coefficient, k_d [T ⁻¹], for the first sorption
	sites.

Boundary Conditions:

Concentrations for time-independent Boundary Conditions are also specified in this dialog window.

- **cBnd1** Value of the concentration for the first time-independent boundary condition [ML⁻³]. Set equal to zero if no time-independent boundary condition is specified. The same for cBnd2 through cBnd4
- **cRoot** Value of the concentration for the fifth time-independent boundary condition [ML³]. If water uptake is considered then *cRoot* is automatically used for the maximum concentration of water removed from the flow region by root water uptake. When zero is specified, then all solute is left behind in the soil and only a solute-free solution is being taken up. When the concentration is lower than *cRoot*, all solute is taken up. When the concentration is higher than *cRoot*, the excess solute stays behind. Set equal to zero if no fifth time-independent boundary condition and no solute uptake by roots is considered.
- **cWell** Value of the concentration for the sixth time-independent boundary condition [ML³]. If internal sources are specified, then *cWell* is automatically used for the concentration of water injected into the flow region through internal sources. Set equal to zero if no sixth time-independent boundary condition and no internal sources are specified.
- **cBnd7** Concentration of the incoming fluid for a volatile type boundary condition at the soil surface $[ML^{-3}]$. Set equal to zero if no volatile boundary condition is specified.
- **cAtm** Concentration above the stagnant boundary layer, g_{atm} [ML⁻³], for a volatile type boundary condition. Set equal to zero if no volatile boundary condition is being specified.
- **d** Thickness of the stagnant boundary layer, *d* [L], for a volatile type boundary condition. Set equal to zero if no volatile boundary condition is being specified.

When the parameter estimation option is selected, then users have to provide initial estimates of the optimized solute transport parameters, specify which parameters are to be optimized (select appropriate checkboxes), and provide parameter constraints for the optimization. Zero values for minimum and maximum values signify that the parameters are unconstrained. The **Solute Transport and Reaction Parameters** dialog window for the inverse problem is not further shown here.

3.13. Temperature Dependence of Solute Reaction Parameters

Several of the diffusion (D_w, D_g) , zero-order production $(\gamma_w, \gamma_s, \gamma_g)$, first-order degradation $(\mu_w', \mu_s', \mu_g', \mu_w, \mu_s, \text{ and } \mu_g)$, and adsorption $(k_s, k_g, \beta, \eta, \omega)$ coefficients may be strongly dependent upon temperature. HYDRUS assumes that this dependency can be expressed by the Arrhenius equation [*Stumm and Morgan*, 1981]. This equation can be expressed in the general form

$$a_T = a_r \exp\left[\frac{E_a(T^A - T_r^A)}{R_u T^A T_r^A}\right]$$

where a_r and a_T are values of the coefficient being considered at a reference absolute temperature T_r^A and absolute temperature T^4 , respectively; R_u is the universal gas constant, and E_a [ML²T⁻²M⁻¹] is the activation energy of the particular reaction or process being modeled.

The activation energy characterizing the temperature dependence of the solute transport and reaction parameters is entered in the dialog window shown in Figure 25.

	SinkWater1	SinkSolid1	SinkGas1	SinkWater1'	SinkSolid1'	SinkGas1'	Cancel
1	51213	0	0	81171	0	0	
2	51213	0	0	81171	0	0	<u>H</u> elp
3	51213	0	0	81171	0	0	
			1			>	
							. 🛦
							ೀಲ್ರ್

Figure 25. The Temperature Dependent Solute Transport and Reaction Parameters dialog window.

3.14. *Heat Transport Parameters*

Information needed for defining heat transport problem is entered in the **Heat Transport** dialog window (Fig. 26). In this window users specify *Heat Transport Parameters* and temperatures for the *Boundary Conditions*.

Heat Transport Parameters 2	
Boundary Conditions	ОК
TBound1 TBound2 TBound3 TBound4 TBound5 TWell	Cancel
	<u>H</u> elp
Heat Transport Parameters 1	
Temperature Amplitude: 5 Set Default Volume	
Time interval for one temp. cycle: 1 Heat Capacities	
Ihermal Conductivity:	
Heat Transport Parameters 2	
Mat Solid Org.M. Disp.L. Disp.T. b1 b2	
1 0.57 0 5 1 1.56728E+016 2.53474E+016	
	<u> (</u>
	<u>N</u> ext
	Previous

Figure 26. The Heat Transport Parameters dialog window.

The following **Heat Transport Parameters** (bottom part of the dialog window) are specified for each soil material:

- **Solid** Volume fraction of solid phase, θ_n [-]
- **Org.M.** Volume fraction of organic matter, θ_0 [-]
- **Disp.L.** Longitudinal thermal dispersivity, λ_L [L]
- **Disp.T.** Longitudinal thermal dispersivity, $\lambda_T[L]$
- **b1** Coefficient b_1 in the expression for the thermal conductivity function [W/L/K]
- **b2** Coefficient b_2 in the expression for the thermal conductivity function [W/L/K]
- **b3** Coefficient b_3 in the expression for the thermal conductivity function [W/L/K]
- **Cn** Volumetric heat capacity of the solid phase, C_n [J/L³/K]
- **Co** Volumetric heat capacity of organic matter, $C_o [J/L^3/K]$

Cw Volumetric heat capacity of the liquid phase, C_w [J/L³/K]

Boundary Conditions:

Temperatures for *Boundary Conditions* with time-independent boundary conditions are also specified in this dialog window.

- **TBound1** Value of the temperature for the first time-independent boundary condition [K]. Set equal to zero if no time-independent boundary condition is specified. The same for TBound2 through TBound4
- **TWell** Value of the temperature for the sixth time-independent boundary condition [K]. If internal sources are specified, then *TWell* is automatically used for the temperature of water injected into the flow region from sources in the transport domain. Set equal to zero if no sixth time-independent boundary condition and no internal sources are specified.

The boundary condition at the soil surface may be approximated using a sinus wave with the maximum one hour after noon and the minimum one hour after midnight as follows:

$$T = T_0 + A\cos\left[2\pi\left(\frac{t-13}{24}\right)\right]$$

where T_0 is the average temperature at the soil surface [K], A is the **Temperature Amplitude** at the soil surface [K], and p is the **Time Interval** for completion of one sine wave temperature (usually 1 day, the default value). The second part of the sine term is included to set the maximum temperature at 1 p.m.

Default values for the parameters in the **Thermal Conductivities** of three textural classes (sand, loam and clay) are provided by HYDRUS [*Chung and Horton*, 1987]. Default volumetric heat capacities for the solid phase, organic matter, and liquid phase are also given (*Set Default Volumetric Heat Capacities*).

When the parameter estimation option is selected, then users must provide initial estimates of the optimized heat transport parameters, specify which parameters are to be optimized (check appropriate checkboxes), and provide parameter constraints for the optimization. Zero values for the minimum and maximum values signify that parameters are unconstrained. The **Heat Transport Parameters** dialog window for the inverse problem is not further shown here.

3.15. Root Water Uptake Model

Users may select a particular **Water Uptake Reduction Model** and a **Solute Stress Model** in the **Root Water Uptake Model** dialog window (Fig. 27).

Root Water Uptake Model	
Water Uptake Reduction Model Eeddes S-Shape Critical Stress Index: 	OK Cancel <u>H</u> elp
Solute Stress Model	
 Additive Model Multiplicative Model Threshold Model S-Shape Model 	<u>N</u> ext Previous

Figure 27. The Root Water Uptake Model dialog window.

Water Uptake Reduction Model

Either a water stress response function suggested by *Feddes* et al. [1978] or an S-shaped function suggested by *van Genuchten* [1985] can be used to reduce the potential root water uptake to the actual water uptake rate (Fig. 28). Root water uptake with compensation can be simulated when the *Critical Stress Index* is smaller than one (see the Technical Manual; *Šimůnek et al.* [2006]).

Solute Stress Model

The effect of salinity stress on the root water uptake can be either neglected (*No Solute Stress*) or considered using the *Additive* or *Multiplicative* models, i.e., salinity stress is either added to water stress, or uptake reduction due to water stress and salinity stress are multiplied. When the multiplicative model is used for salinity stress, one can use either the *Threshold Model* [*Maas*, 1990] or an *S-Shaped Model* [*van Genuchten*, 1985] (Fig. 29).

3.16. Root Water Uptake Parameters

Parameters for the water and salinity stress response functions are specified in the **Root Water Uptake Parameters** dialog window (Fig. 28 and Fig. 29, respectively).

Root Water Uptake Parameters	X		
Feddes' Parameters	ОК		
P <u>o</u> -10	Cancel		
POp <u>t</u> -25	Help		
P2 <u>H</u> -200		Root Water Uptake Pa	rameters 🛛 🔀
P2 <u>L</u> -800		S-Shape Parameters	ОК
P <u>3</u> -8000		P <u>5</u> 0: -800	Cancel
<u>г</u> 2Н 0.5		P <u>3</u> : 3	
r <u>2</u> L 0.1	. 🛦	PW: -1e+010	<u> </u>
	1 1		1 * 👰 👘
Database	<u>N</u> ext		<u>N</u> ext
	Previous		Previous

Figure 28. The Root Water Uptake Parameters dialog window for the water stress response function of *Feddes et al.* [1978] (left) and *van Genuchten* [1985] (right).

The **Root Water Uptake Parameters** for the water stress response function suggested by *Feddes et al.* [1978] (Fig. 28, left) are described in detail in the HYDRUS technical manual. Water uptake in this model is assumed to be zero close to saturation (i.e. wetter than some arbitrary "anaerobiosis point" **P0**). Root water uptake is also zero for pressure heads less (more negative) than the wilting point (**P3**). Water uptake is considered optimal between pressure heads **Popt** and **P2**, whereas for pressure heads between **P2** and **P3** (or **P0** and **Popt**) water uptake decreases (or increases) linearly with pressure head.

- **P0** Value of the pressure head [L] below which roots start to extract water from the soil.
- **POpt** Value of the pressure head [L] below which roots extract water at the maximum possible rate.
- **P2H** Value of the limiting pressure head [L] below which roots cannot longer extract water at the maximum rate (assuming a potential transpiration rate of r2H).
- **P2L** As P2H, but for a potential transpiration rate of *r2L*.
- **P3** Value of the pressure head [L] below which root water uptake ceases (usually taken at the wilting point).
- **r2H** Potential transpiration rate $[LT^{-1}]$ (currently set at 0.5 cm/day).

r2L Potential transpiration rate $[LT^{-1}]$ (currently set at 0.1 cm/day).

The above input parameters permit one to make the variable P2 a function of the potential transpiration rate, T_p (P2 presumably decreases at higher transpiration rates). HYDRUS currently implements the same linear interpolation scheme as used in several versions of the SWATRE code (e.g., *Wesseling and Brandyk*, 1985). The interpolation scheme is defined in the manual.

A database of suggested values for different plants for the *Feddes et al.* [1978] model is provided in HYDRUS based on studies by *Wesseling* [1991] and *Taylor and Ashcroft* [1972].

The **Root Water Uptake Parameters** for the S-shaped water stress response function as suggested by *van Genuchten* [1985] (Fig. 28, right) are as follows:

- **P50** The coefficient, h50, in the root water uptake response function associated with water stress [L]. Root water uptake at this pressure head is reduced by 50%.
- **P3** The exponent, *p3*, in the root water uptake response function associated with water stress [-]; its recommended and default value is 3.

We have additionally included a parameter **PW**, i.e., pressure head at the wilting point [L], below which transpiration stops.

Root Water Uptake Parameters	X	Root Water Uptake Parameters	
Threshold Model Ihreshold: 8 Slope: 5	OK Cancel <u>H</u> elp	S-Shape Parameters c50 0 P3 3	OK Cancel <u>H</u> elp
Conversion to pressure/osmotic head Osm. Coeff. 1 1		Conversion to pressure/osmotic head	
Database Barley	<u>N</u> ext <u>P</u> revious		<u>N</u> ext Previous

Figure 29. The Root Water Uptake Parameters dialog window for the solute stress response function based on the threshold model (left) and S-shaped model of *van Genuchten* [1985] (right).

The **Root Water Uptake Parameters** for the *Threshold Model* [*Maas*, 1990] of the salinity stress response function (multiplicative) (Fig. 29, left) are as follows:

Threshold Value of the minimum osmotic head [L] (the salinity threshold) above which root water uptake occurs without a reduction.

Slope Slope of the curve determining the fractional root water uptake decline per unit increase in salinity below the threshold.

The **Root Water Uptake Parameters** for the *S-Shaped Model* [*van Genuchten*, 1985] of the salinity stress response function (multiplicative) (Fig. 29, right) are as follows:

- **P3** The exponent, *p*, in the root water uptake response function associated with salinity stress [-]. The recommended value is 3.
- c50 The coefficient, h50, in the root water uptake response function associated with salinity stress [L]. Root water uptake at this osmotic head is reduced by 50%.

Both salinity stress response functions require a coefficient (*Osmotic Coefficient*) that transforms concentrations into equivalent osmotic pressure heads (Fig. 29).

3.17. Root Distribution Parameters

The spatial distribution of the roots can be specified using the **Root Distribution Parameters** dialog window (Fig. 30). The following two- and three-dimensional root distribution functions are implemented in HYDRUS [*Vrugt et al.*, 2001, 2002]:

$$b(x,z) = \left(1 - \frac{z}{Z_m}\right) \left(1 - \frac{x}{X_m}\right) e^{-\left(\frac{p_z}{Z_m}|z^* - z| + \frac{p_r}{X_m}|x^* - x|\right)}$$
$$b(x,y,z) = \left(1 - \frac{x}{X_m}\right) \left(1 - \frac{y}{Y_m}\right) \left(1 - \frac{z}{Z_m}\right) e^{-\left(\frac{p_x}{X_m}|x^* - x| + \frac{p_y}{Y_m}|y^* - y| + \frac{p_z}{Z_m}|z^* - z|\right)}$$

where X_m , Y_m , and Z_m are the maximum rooting lengths in the x-, y-, and z- directions [L], respectively; x, y, and z are distances from the origin of the plant (tree) in the x-, y-, and z-directions [L], respectively; p_x [-], p_y [-], p_z [-], x^* [L], y^* [L], and z^* [L] are empirical parameters (in Fig. 30 indicated as *Depth of Maximum Intensity* or *Radius of Maximum Intensity*, and b(x,z) and b(x,y,z) denote two- and three-dimensional spatial distribution of the potential root water uptake [-]. See *Vrugt et al.* [2001, 2002] for different configurations of the normalized spatial distribution of potential root water uptake rate.

Root Distribution Parameters				
Vertical Distribution				
Maximum Rooting Depth	90			
Depth of Maximum Intensity	30			
Parameter Pz	1			
Horizontal Distribution - X (R)				
Specify Parameters for Horizontal Distribution				
Ma <u>x</u> imum Rooting Radius	90			
<u>R</u> adius of Maximum Intensity	30			
Parameter Px	1			
Horizontal Distribution - Y				
Specify Parameters for Horizontal Distribution				
OK Cancel				

Figure 30. The Root Distribution Parameters dialog window.

3.18. *Time Variable Boundary Conditions*

The Time Variable Boundary Conditions dialog window is shown in Figure 31.

Parameters OK								
	Time	Precip.	Evap.	Transp.	hCritA	rGWL	GWL 🔼	Cancel
1	1	0	0.1	0.4	10000	0	0 📃	
2	2	0.5	0.12	0.4	10000	0	0	<u>H</u> elp
3	3	0	0.13	0.4	10000	0	0	
4	4	0	0.2	0.4	10000	0	0	Add Line
5	5	0	0.3	0.4	10000	0	0	Add Line
6	6	0	0.32	0.4	10000	0	0	Delete Lin
7	7	0.33	0.1	0.4	10000	0	0	
8	8	0	0.25	0.4	10000	0	0	
9	9	0	0.25	0.4	10000	0	0	
10	10	0.2	0.1	0.4	10000	0	0	
11	11	0	0.3	0.4	10000	0	0	400 L
12	12	0	0.3	0.4	10000	0	0 🗸	<u> </u>
Next								

Figure 31. The Time Variable Boundary Conditions dialog window.

The following variables are specified in the **Time Variable Boundary Conditions** dialog window:

Time Time for which a data record is provided [T].

Precip Precipitation rate [LT⁻¹] (in absolute value) (applied to the atmospheric boundary).

Evap Potential evaporation rate $[LT^{-1}]$ (in absolute value) (applied to the atmospheric boundary).

Trans Potential transpiration rate $[LT^{-1}]$ (in absolute value).

- **hCritA** Absolute value of the minimum allowed pressure head at the soil surface [L] (applied to the atmospheric boundary).
- **rGWL1** Drainage flux [LT⁻¹] across the bottom boundary, or another time-dependent prescribed flux boundary condition (positive when water leaves the flow region); set to zero when no time-dependent flux boundary condition is specified. Same for rGWL2, rGWL3, or rGWL4.
- **GWL1** Groundwater level [L] (usually negative), or other time-dependent prescribed head boundary condition; set equal to zero when no time-dependent head boundary condition is specified. Same for GWL2, GWL3, or GWL4.

Temp1	The first time-dependent temperature [K] that can be used for nodes with time variable boundary conditions (atmospheric BC, variable head/flux BC) (is not specified when heat transport or time variable boundary conditions are not considered).
Temp2	The second time-dependent temperature [K] that can be used for nodes with time variable boundary conditions (is not specified when heat transport or time variable boundary conditions are not considered).
Conc1	The first time-dependent solute concentration [ML ⁻³] that can be used for nodes with prescribed time variable boundary conditions (atmospheric BC, variable head/flux BC) (not specified when solute transport is not considered).
Conc2	The second time-dependent solute concentration [ML ⁻³] that can be used for nodes with prescribed time variable boundary conditions (atmospheric BC, variable head/flux BC) (not specified when solute transport is not considered).
Conc3	The third time-dependent solute concentration [ML ⁻³] that can be used for nodes with prescribed time variable boundary conditions (atmospheric BC, variable head/flux BC) (not specified when solute transport is not considered).

The last three entries are entered for each solute.

The table in Figure 31 can be edited by manually adding or deleting lines. The table has a capacity for about 32,000 records (depends on the number of columns). When a longer time record is to be simulated, then one needs to directly edit the Atmosph.in input file in the working directory using any standard software, such as MS Excel. Data for the **Time Variable Boundary Conditions** can be prepared in any spreadsheet software and then copied into the table using Windows paste hot keys (i.e., Ctrl+V).

The total number of atmospheric data records is given in the Main Time Information dialog window (Fig. 15).

3.19. Constructed Wetlands

Parameters for constructed wetlands are entered in the **Constructed Wetland Model Parameters I and II** dialog windows (Fig. 32 and 33, respectively). This module is described in detail by *Langergraber and Šimůnek* [2005]. The Wetland module (two-dimensional) was developed to model biochemical transformation and degradation processes in subsurface flow constructed wetlands. The module considers the following components: dissolved oxygen, organic matter (3 fractions of chemical oxygen demand - COD: readily- and slowlybiodegradable, and inert), nitrogen compounds (ammonia, nitrite, nitrate, and dinitrogen), inorganic phosphorus, and heterotrophic and autotrophic micro-organisms. Organic nitrogen and organic phosphorus are modeled as part of the COD. Heterotrophic bacteria are assumed to be responsible for hydrolysis, mineralization of organic matter (aerobic growth) and denitrification (anoxic growth), while autotrophic bacteria are responsible for nitrification.

Solute Transport - Constructed Wetland Model Parameters I					
Hydrolysis					
0.05	Hydrolysis Rate Constant	.1 9	at./Inh. Coeff. for Hydrolysis	OK	
Heterotrophi	c Organisms: Mineralization			Cancel	
0.1	Max. Aerobic Growth Rate	2	Sat./Inh. Coeff. for Substr.	Help	
0.0025	Rate Constant for Lysis	0.05	Sat./Inh. Coeff. for NH4	<u> </u>	
0.2	Sat./Inh. Coeff. for O2	0.01	Sat./Inh. Coeff. for P		
Heterotrophi	c Organisms: Denitrification			<u>N</u> ext	
0.08	Max. Denitrification Rate	0.5	Sat./Inh. Coeff. for NO2	Previous	
0.2	Sat./Inh. Coeff. for O2	2	Sat./Inh. Coeff. for Substr.		
0.5	Sat./Inh. Coeff. for NO3	0.05	Sat./Inh. Coeff. for NH4		
0.01	Sat./Inh. Coeff. for P				
Autotrophic	Bacteria: Nitrosonomas				
0.015	Max. Aerobic Growth Rate	0.5	Sat./Inh. Coeff. for NH4		
0.0015	Rate Constant for Lysis	0.01	Sat./Inh. Coeff. for P		
1 Sat./Inh. Coeff. for 02					
Autotrophic Bacteria: Nitrobacter					
0.0167	Max. Aerobic Growth Rate	0.1	Sat./Inh. Coeff. for NO2		
0.0015	Rate Constant for Lysis	0.05	Sat./Inh. Coeff. for NH4		
0.1	Sat./Inh. Coeff. for 02	0.01	Sat./Inh. Coeff. for P		

Figure 32. The Constructed Wetland Model Parameter I dialog window.

S		sport - Constructed We	tland Mod	el Parameters II	×		
	Temperature	Dependence					
	47800	Heterotrophic Organisms	28000	Hydrolysis	ОК		
	69000	Autotrophic Organisms	0	Кх	Cancel		
	Stoichiometric Parameterss						
	0	Production of CI in Hydrolysis	0.02	Fraction of CI in biom. Lysis			
	0.1	Fraction of CR in biomass Lys	sis				
	Yield Coeffic	ients			<u>N</u> ext		
	0.65	Yield Coeff. for Heterotr.	0.24	Yield Coeff. for N.Bacter.	Previous		
	0.24	Yield Coeff. for N Somonas					
	Composition	Parameters					
	0.03	N Content of CR	0.01	N Content of Cl			
	0.04	N Content of CS	0.07	N Content of biomass			
	0.01	P Content of CR	0.01	P Content of Cl			
	0.01	P Content of CS	0.02	P Content of biomass			
	Oxygen						
	9.18	02 Saturation	10	Rate 02			
	-15000	Temp. Dep. 02 Saturation					
L		remp. Dep. 02 Jakarakon					

Figure 33. The Constructed Wetland Model Parameter II dialog window.

4. Geometry of the Transport Domain

The transport domain may be defined using relatively simple two-dimensional rectangular (Fig. 10) or three-dimensional hexahedral (Fig. 11) objects. In that case, the dimensions and other parameters of the transport domain are specified numerically using either the *Rectangular* (Fig. 10) or *Hexahedral Domain Definition* (Fig. 11) dialog windows. In both of these cases the transport domain is discretized into a structured finite element mesh. Alternatively, a more general geometry can be defined from basic boundary objects, such as points, lines, splines, polylines, arcs and/or circles. Boundary curves can consist of any combination of polylines, arcs, circles or cubical splines. The program permits one to specify internal boundaries (e.g., drains, wells, impermeable objects), as well as internal curves. A user can define from these boundary objects either a two-dimensional transport domain or the base plane (**base surface**) of the three-dimensional domain. In both cases the two-dimensional transport domain or the base plane of the three-dimensional domain is discretized into an unstructured finite element mesh.

4.1. Boundary Objects

The **computational domain** (the two-dimensional transport domain or the **base surface** of the three-dimensional domain) is formed by an arbitrary number of mutually nonintersecting **curves**. Each curve can be formed by connecting an arbitrary number of **objects**. Objects are defined by nodes, the positions of which can be specified either graphically with the mouse with possibilities to use **grid** alignment (Fig. 78) or by numerically defining their coordinates *X*, *Y*, and *Z*. It is also possible to read in the objects with a large number of nodes (**spline**, **polyline**) from a file. The order of inputting particular objects is arbitrary; the code automatically forms the desired curves. In order to have a physically realistic domain, only one closed outer curve can exists (for multicomponent domains such a curve must exist for each component of the domain). The domain can have an arbitrary number of **holes** or **internal curves**. The consistency of the geometry can be verified at any time using the command (up to ten levels backward in time) or redone using the **redo** command (again up to 10 levels).

An object type (e.g., polyline, spline, arc, or circle) must be selected first when designing a new object from the **Edit Bar** on the right side of the view window, or from menu (e.g., Insert->Domain Geometry->Nodes). Then points defining a particular object should be entered. The manner in which nodes are entered depends on the selected input style. When entering data graphically, an appropriate **Work Plane** (*x*-*y y*-*z*, *x*-*z*) and a grid with appropriately set parameters (Fig. 78 and Section 8.1.2) can be used to facilitate the input, while the coordinates *X*, *Y*, and *Z* of the cursor are continuously displayed in the bottom right corner of the window.

It is possible to edit existing objects by double-clicking on a particular object. The current selection, displayed in yellow, may be modified (edited) using the following operations: **delete**, **copy** (Fig. 38), **move** (Fig. 38), **rotate** (Fig. 39, left) and **mirror** (Fig. 39, right). Note that, in addition to objects, particular nodes of an object can belong to a selected set as well, in which case the edit operations are carried out also for these points. Editing of selected objects (e.g., moving objects) also depends on the currently selected input style. The objects are moved with

the cursor when the graphical mode is selected, while in numerical mode a vector of translation (X, Y, and Z) must be specified. It is possible to directly edit nodes of objects with the commands **insert point** (Fig. 34), **delete point**, and/or **move point**.

Before saving the data, an option is always displayed whether or not to verify the consistency of the geometry. We strongly recommend to regularly perform this test in order to prevent errors in subsequent calculations, e.g., during mesh generation.

Table 9. Definition of terms related to geometry design.

Surface

A surface (the computational domain of two-dimensional applications) is defined by a finite number of continuous disjunctive bounded two-dimensional subdomains. This means that the domain can be multicomponent, but that each of its components must have only one outer boundary curve. The domain can contain any finite number of internal holes or internal curves. The base surface is a two-dimensional surface that can be extended into a three-dimensional solid (the computational domain of three-dimensional applications) using thickness vectors.

Computational Domain

The term **computational domain** is used for a particular **base surface** in two-dimensional applications and a **solid** in three-dimensional applications. **Computation domain** can be formed using several surfaces that can touch each other, but can not overlap. It is possible to create an opening in the base surface and then enter another surface into it. Division of the transport domain into individual surfaces enables easier work with it, since the program creates for each surface its own section and users can then specify different domain properties and initial and boundary conditions on these sections.

Curves

A **curve** is a set consisting of a finite number of objects connected by boundary nodes. Except at point nodes, objects cannot intersect each other or themselves. A curve can be open or closed.

Outer Boundary Curves

An outer boundary curve is a boundary **curve** with the following properties: the curve is closed, positively oriented (i.e., in a counter-clockwise direction), does not intersect any other curve or itself, and has the computational domain (surface) located on its left side (in the sense of positive orientation), while the right side is not part of a computational domain.

Openings

An opening is defined by one or more boundary **curves** that form a closed boundary.

Internal Curves

An internal curve must be located entirely within the computational domain. It can touch (but not intersect) the outside boundary of the computational domain at its definition points. An internal curve can be open or closed, and can intersect itself, provided the intersect occurs at a definition point of the internal curve.

Objects

The following types of geometric objects can be used:

- points
- polylines
- arcs
- circles
- splines
- single points

Lines

Lines and polylines are the most commonly used objects for describing boundaries of a domain or internal curves. Lines are defined by two points specifying their beginning and end. Several lines can be connected to form "polylines" by connecting the beginning and end of two neighboring lines. Nodes can not coincide, while lines can not intersect each other.

Arcs

An arc can be defined either by a) **three points** on its circumference, b) a **center**, a **radius**, **two angles** (starting and final angle) and its orientation, and c) **two points**, a **center**, and a **radius**.

Circles

A circle can be defined either by a center and a radius, or by three different points.

Thickness Vectors

The term **thickness vector** is used for a vector perpendicular to the **base surface** that extends the Base Surface to form a **solid** (three-dimensional **computational domain**).

Solids

The term **solid** represents a three dimensional **computational domain** that is formed by the **base surface** and **thickness vectors**.

4.1.1. Points

Points can be either used to define **Boundary Objects** or can be located inside of the **Surface** (computational domain) and not be associated with any boundary object (**Single Points**). Points can be entered either graphically using a cursor (most common) or using the **New Point** dialog window (identical to the **General Tab** of the **New Point** dialog, Fig. 34). To enter a new point graphically, select the command *Insert->Domain Geometry->Point->Graphically* from the menu, or **Points** from the **Insert Object** part of the **Domain Geometry** version of the **Tool Bar** at the right side of the **View Window**, and then enter the points using a cursor. Double-clicking on an existing point will recall the **Edit Point** dialog window (Fig. 34). In addition to the **General Tab** (Fig. 34, left) in the **New Point** dialog window, the **Edit Point** dialog window has also the **FE-Mesh Tab** (Fig. 34, right). Coordinates of a point and its number are entered in the **General Tab**, while the **FE-Mesh Refinement** at a given point can be defined in the **FE-Mesh Tab**.

Edit Point	X	Edit Point	X
General FE-Mesh		General FE-Mesh	
Point No. 9 Coordinates	Point Type Standard Point	Point No. 9 FE-Mesh Refinement	FE-mesh Refinement
Coordinate system: Cartesian V Reference Point No: 0 Pick Coordinate X: 40.00 [cm] Coordinate Y: 0.00 [cm] Coordinate Z: 100.00 [cm] Coordinate Z: 100.00 [cm]	Z P(X,Y,Z) Z Z X X Y X X	Available New Edit Type: Press [New] V	Global FE-Size = 5 cm
OK Can	cel Apply Help	OK Cancel	Apply Help

Figure 34. The Edit Point dialog window.

4.1.2. Lines and Polylines

Lines and Polylines are the most commonly used objects for describing the boundaries of a twodimensional domain and its internal curves. Similarly as above for Points, Lines and Polylines can be entered either graphically using a cursor (most common) or using the New Line dialog window (identical to the General Tab of the Edit Line dialog, Fig. 35). When entering a new line graphically, users can select the command *Insert->Domain Geometry->Line(Polyline)-Graphically* from the menu, or Line - Abscissa or Line - Polyline from the Insert Object part of the Domain Geometry version of the Tool Bar at the right side of the View Window and then enter the lines using a cursor. Double-clicking on an existing line will recall the Edit Line dialog window (Fig. 35). Before using the New Line dialog window, a user needs to first define points which are then used to define the line. In addition to the General Tab (Fig. 35, left) in the New Line dialog window, the Edit Curve dialog window has also the FE-Mesh Tab (Fig. 35, right). Points defining the line are entered in the General Tab, while the FE-Mesh Refinement along a given line can be defined in the FE-Mesh Tab.

Edit Curve	Edit Curve 🛛 🛛
General FE-Mesh	General FE-Mesh
P1 T	1 FE-Size S=2 cm +
Curve Type Polyline P4	FE-Mesh Refinement
List of Points 3-4 P2 P3	Type: Press [New]
Comment	Global FE-Size = 5 cm
OK Cancel Apply Help	OK Cancel Apply Help

Figure 35. The Edit Curve dialog window.

4.1.3. Arcs and Circles

An **arc** is part of a **circle**. An **Arc** can be defined either by a) **three points** on its circumference, b) **a center, a radius, two angles** (starting and final angle) and its orientation, or c) by **two points**, a **center**, and a **radius**. Again, **arcs** can be entered either graphically using a cursor (most common) or using the **New Line** dialog window (Fig. 36). When entering a new **arc** or circle graphically, a user must select the command *Insert->Domain Geometry->Arc->Graphically* from the menu, or one of the following commands (a) **Arc by 3 Points**, b) **Arc by 2 Points and R**, or c) **Arc by Center, R and Angle**) from the **Insert Object** part of the **Domain Geometry** version of the **Tool Bar** at the right side of the **View Window** and then enters **arc** using a cursor.

In addition to the **General Tab** (Fig. 36, left) in the **New Line** dialog window, the **Edit Line** dialog window has also the **Arc Tab** (Fig. 36, right). A list of points defining the arc are given in the **General Tab**, while coordinates of points defining the arc, its center and other parameters are entered in the **Arc Tab**. Double-clicking on an existing line will recall the **Edit Curve** dialog window (Fig. 36). The **Edit Curve** dialog window (Fig. 36) has an additional **FE-Mesh Tab** (similarly as for a line in Fig. 35; not shown here) where a user can refine the **FE-Mesh** along a given arc.



Figure 36. The New Line (Arc) dialog window.

A circle can be defined either by a center and a radius, or by three different points. Again, circles can be entered either graphically using the cursor (most common) or using the New Line dialog window (Fig. 36). A new circle can be entered graphically, by selecting the command *Insert->Domain Geometry->Arc(Circle)->Graphically* from the menu, or by using one of the following commands (a) Circle by 3 Points, or b) Circle by Center and Radius) from the Insert Object part of the Domain Geometry version of the Tool Bar at the right side of the View Window, and then entering lines using the cursor. The list of points defining the circle must be entered in the General Tab (Fig. 37, left), while coordinates of points defining the circle, its center and radius are entered in the Circle Tab (Fig. 37, right).

Adjustable Point: When a radius or the center of an arc is modified, it is usually also necessary to modify the location of one of the arc definition points. An adjustable point enables one to choose a point whose coordinates are to be changed.

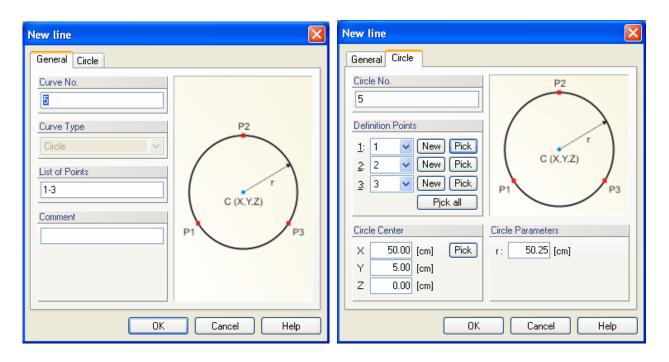


Figure 37. The New Line (Circle) dialog window.

4.1.4. Curves and Splines

A spline is a set of more than 2 points connected smoothly by cubic arcs. HYDRUS allows three types of splines:

- cubic spline, i.e., a curve defined by multiple polynomials of the third order. It passes smoothly through all points.
- Bezier's curve a smooth curve that passes through boundary points, but does not have to pass through internal points .
- B-spline a general Bezier's curve.

More information can be found at <u>http://mathworld.wolfram.com/BezierCurve.html</u> <u>http://mathworld.wolfram.com/B-Spline.html</u>

4.1.5. Move, Copy, Rotate and Mirror Operations

All boundary objects can be manipulated using the Move, Copy, Rotate or Mirror operations in the Move – Copy (Fig. 38), Rotate (Fig. 39, left) and Mirror (Fig. 39, right) dialog windows. These commands can be access either from the Tools Menu or from the Transform Object part of the Domain Geometry version of the Tool Bar at the right side of the View Window. Users first select an object to be manipulated, then click on the command, and specify the Vector of Translation for the Move or Copy operations, or the Angle of Rotation for a Rotation, or define the Mirroring Plane/Axis for a Mirroring operation.

Move - Copy	X
Vector of Translation d≿: 0.00 [cm] Pick d∑: 0.00 [cm] d dZ: 0.00 [cm] d	Numbering Set starting numbers for new objects that will be created during copying: Points: Image: Automatic during copying during du
Copy Number of <u>C</u> opies: 2	Lines: 1 Automatic Surfaces: Automatic Soli <u>d</u> s: Automatic
	<u>OK</u> Cancel <u>H</u> elp

Figure 38. The Move - Copy dialog window.

Rotate			
Botation Copy Angle: 5.00 \$ ['] Number of Copies: 0 \$ Definition of the Axis of Rotation	<u>Q</u> K <u>C</u> ancel <u>H</u> elp	Mirror Definition of the Mirroring Plane • Point and Parallel Plane: YZ • YZ • YZ • Second	<u>Q</u> K <u>C</u> ance <u>H</u> elp
1. Point: 24.91 422.90 0.00 [cm] Pick 2. Point: [cm] Pick Mumbering Set starting numbers for new objects that will be created during copying:		2. Point: 0.00 0.00 0.00 [cm] Pick 3. Point: 0.00 0.00 0.00 [cm] Pick Copy ann Numbering Make Copy Set first number for numbering of new objects that will be created during copying:	
Points: Image: Automatic Lines: Image: Automatic Surfaces Image: Automatic Solids: Image: Automatic		Points: ✓ Automatic Lines: ✓ Automatic Surfaces ✓ Automatic Solids: ✓ Automatic	Аррі

Figure 39. The Rotate (left) and Mirror (right) dialog windows.

4.1.6. Additional Operations

Additional operations that can be used to manipulate boundary objects are **Intersect Lines**, **Insert Points on Line**, and **Split Line**. All three commands again can be accessed either from the **Tools** menu or from the **Transform Object** part of the **Domain Geometry** version of the **Tool Bar** on the right side of the **View Window**. The first command (**Intersect Lines**) finds the **Intersect** of two lines, whereas the second command **Inserts Points on a Line**. This can be done either graphically or numerically by specifying the number of nodes to be inserted on the line or distance of the point from the beginning of the line (Fig. 40). The third (**Split Line**) command can be used to split a line into two or more parts.

Insert Points on Curve	×
Line No. Pick Number of Points Number of New Points: 1 Type of Points Split Curve at Inserted Points Split Curve at Inserted Points Insert Parametric Points Insert Intermediate Points	Z Z New points
Numbering starts with No. Point: Automatic Line: Automatic	
	OK Cancel Help

Insert Points on Curve		
Line No.	Pick	
Type of Points		
 Split Curve at Inserted Insert Parametric Point Insert Intermediate Point 	s	New point d ₂
Distance related to		1
● <u>T</u> rue line length:	Length 0.00 [cm]	Distance between new node and
○ Projection in ≚	0.00 [cm]	Line Start: 0.00 [cm] 0.000 [%]
○ Projection in ⊻	0.00 [cm]	Line End: 0.00 [cm] 0.000 [%]
O Projection in Z:	0.00 [cm]	Numbering starts with
O Projection in YZ:	0.00 [cm]	No.
O Projection in XZ:	0.00 [cm]	Point:
O Projection in XY:	0.00 [cm]	Line:
		OK Cancel Help

Figure 40. The Insert Point on Curve dialog window.

4.2. Surface

A surface is a closed two-dimensional domain that is either the computational domain for twodimensional applications or the **base surface** that can be extended into a solid for threedimensional applications. A surface is defined by the List of Boundary Curves. It can be created using either the *Insert->Domain Geometry->Surfaces->Graphically* or *Insert->Domain Geometry->Surfaces->Graphically Rectangle* commands. Alternative commands on the Insert Object part of the Domain Geometry version of the Tool Bar are Surface by Rectangle and Surface by Boundaries. In the first case, a cursor appears and users can create a rectangular surface using the mouse. In the second case, users can create a surface by clicking on a closed curve (one or more boundary objects forming a close curve). A surface can be edited using the Edit Surface dialog window (Fig. 41), which specifies surface type, the number of boundary curves defining the surface, its number, and had a box for possible comments or a description. A surface must be created before one can do finite element discretization.

Edit Surface	
General Integrated	
Surface No.	
Surface Type Planar	
List of Boundary Curves	2
Comment 1	•
OK Cancel Apply	Help

Figure 41. The Edit Surface dialog window.

A **base surface** is formed by a planar surface of arbitrary shape. The base surface can contain **openings**, **internal curves**, and **internal points** (Fig. 42). In the current version of HYDRUS, a base surface can be formed by a single surface. Future versions will permit multiple surfaces to form one single base surface.

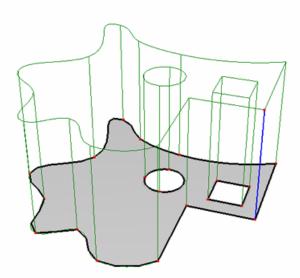


Figure 42. A solid showing the base surface.

If the solid needs to be divided into vertical columns, then these columns must be defined using internal curves in the base surface. The FE-mesh then follows exactly the specified shape of these internal curves (Fig. 43):

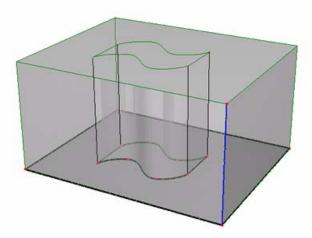


Figure 43. Solid showing separate vertical columns.

A base surface can be defined by a plane other than the horizontal plane, while thickness vectors can be defined in other than the vertical direction. Figures 44 and 45 show an example of a solid that has a base surface in the XZ plane and thickness vectors in the Y direction.

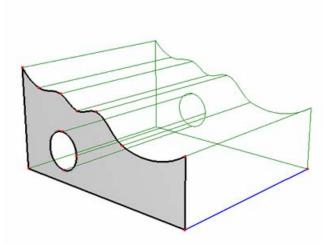


Figure 44. A solid with its base surface in the XZ plane and thickness vectors in the Y direction.

Figure 45. FE-Mesh for a solid with its base surface in the XZ plane and thickness vectors in the Y direction.

4.3. Opening

An **opening** is an internal hole defined by a **boundary curve** having the following properties: the curve is closed, positively oriented (in a counter-clockwise direction), does not intersect any other curve or itself, and has the computational domain located on its right-hand side (in the sense of positive orientation), while the left side is not part of a computational domain. An **opening** is not part of the computational domain or surface. An **opening** is created graphically as follows: One first defines boundary objects that create a closed boundary curve. One then uses the command *Insert->Domain Geometry->Opening->Graphically* from the menu, or alternatively the command **Opening by Boundaries** on the **Insert Object** part of the **Domain Geometry** version of the **Tool Bar**. A user creates an **opening** by clicking on the closed curve (one or more boundary objects forming a closed curve). Alternatively, an **opening** can be created using the **New Opening** dialog window (Fig. 46) by clicking on the command *Insert->Domain Geometry->Opening* can be edited using the **Edit Curve** dialog window (Fig. 35), which specifies the number boundary curves defining the opening, its number, and has a box for possible comments or a description.

New Opening	\mathbf{X}
Opening No. in Surface No. 1 1 Boundary Curves 1 1.2.3.4	
C	<u>O</u> K Cancel <u>H</u> elp

Figure 46. The New Opening dialog window.

4.4. Solids

Solids are three-dimensional objects defined by the base surface and one or more thickness vectors. Thickness vectors do not have to be perpendicular to the base surface. A Solid, i.e., its base surface and thickness vectors, is defined and can be edited in the Edit Solid dialog window (Fig. 47) that has three tabs: General, Layers, and FE-Mesh. The General Tab provides information on which **base surface** and which **thickness vectors** define the solid. The Layers Tab informs whether the solid is divided into one or more Layers. Layers are other objects that can be used to subdivide a single solid. These layers can be used, for example, to keep constant thicknesses of selected horizons or constant discretization close to the soil surface (to get good estimates of evaporation) across the entire transport domain (solid). Layers can be specified using **Profiles**. One profile is created by the code automatically. Users can then define one or more profiles that are associated with different **Thickness Vectors**. These profiles can then be subdivided into multiple layers that can have either constant or variable thickness (T) across the transport domain. Thicknesses and the mode (constant or variable) of particular layers are specified in a table. Depth (**D**) is then calculated by adding thicknesses of particular layers. At least one layer thickness must be variable. The finite element discretization then follows these layers. Finally, the FE-Mesh Tab (Fig. 48) specifies how many horizontal FE-Layers are used to discretize the solid. When only one layer exists then users can specify relative finite element spacing (spacing of vertical discretization layers) on the vertical side (FE-Mesh Layer Spacing) using the RS1 (relative size at the top) and RS2 (relative size at the bottom) factors below Generate Mesh Laver Spacing. The element sizes are then proportionally distributed. The preview part of the dialog window shows the main terms used on each Tab. When multiple layers exist then users can specify relative sizes of elements for each layer (FE-Mesh Density in Layers).

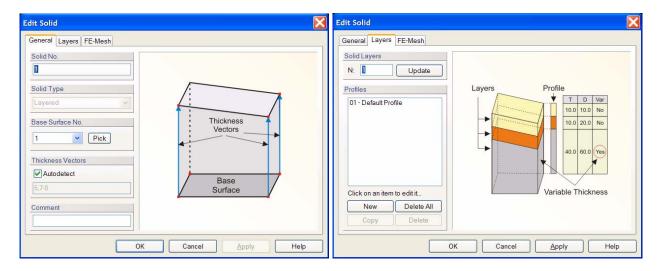


Figure 47. The Edit Solid dialog window; the General and Layers Tabs.

Edit Solid General Layers FE-Mesh FE-Mesh Layers Generate Mesh Layer Spacing Set relative size of finite elements at the first point 20 N: Update (the top) and at the last point (the bottom): FE-Mesh Layer Spacing RS1: 0.3 Generate Spacing Dist <0,1> ~ RS2: 1 1 1.0000 2 0.9757 3 0.9483 0.9177 4 RS1=1.0 0.8839 5 6 0.8471 7 0.8070 0.7638 8 RS2=5.0 9 0.7175 10 0.6680 < 111 > Cancel OK Apply Help

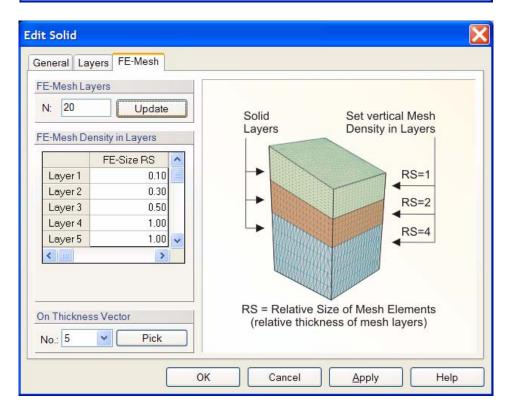


Figure 48. The Edit Solid dialog window; the FE-Mesh Tab for a single and multiple layers.

4.5. Thicknesses

The term **Thickness Vector** is used for a vector (usually but not always perpendicular to the **Base Surface**) that extends the Base Surface to form a **solid** (the three-dimensional **computational domain**). A definition of the **Thickness Vector** (i.e., its **Boundary Points**), is given and can be edited in the **Thickness** dialog window (Fig. 49).

New thickness	
Thickness No. 2 at Point No. P: 1 Boundary Points No. N1: 2 Q New P: 1 P: 1 P: 1 New Pick Doundary Points No. New N1: 2 New Pick New Pick New Omment	Solid Top Surface N ₂ Thickness Bottom Surface N, Offset Base Surface P
	<u>IK</u> Cancel <u>H</u> elp

Figure 49. The Thickness dialog window.

The height of a solid is defined using one or more **Thickness vectors**. Each thickness vector is defined by an **Anchor Point P** and two **Boundary Points N1** and **N2**. The anchor point P must be part of the base surface, i.e., it must be either a defining point of the external boundary or the internal curve, or an internal point in the base surface. Boundary points N1 and N2 are arbitrary points in 3D space. Coordinates of these points can be edited, thus allowing one to specify the thickness vector in an arbitrary direction (i.e., not necessarily perpendicular to the base surface). Usually the anchor point P is the same as boundary point N1 so that one can use the same index for both P and N1. If, for whatever reason, we do not want to have the base surface on the bottom of the transport domain (Solid) (e.g., when the bottom of the transport domain is not in the same plane), users can make the N1 node be different from P (the red part in Fig. 50).

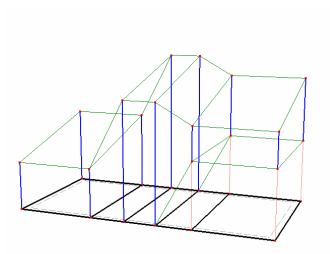


Figure 50. A solid with several thickness vectors.

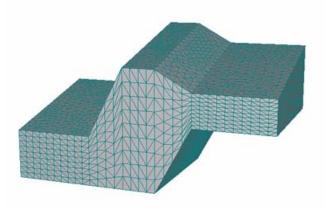


Figure 51. FE-Mesh for the solid in Figure 50.

The height of a solid is constant when less than three thickness vectors are used. Three thickness vectors define a linear plane (with generally an inclined surface). More than three thickness vectors with different lengths then define the top surface that is formed by triangles, whose coordinates are calculated from the thickness vectors using linear interpolation or extrapolation.

When breaks in the slope of the top surface are to be defined exactly, then it is necessary to define internal curves in the base surface. Figures 52 and 53 show the importance of having internal curves (or not having them) in the Y direction for proper definition of the solid (compare Figures 50 and 52 Figures 51 and 53).

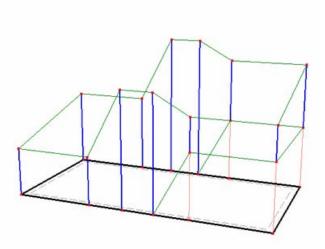


Figure 52. Missing internal curves in the base surface.

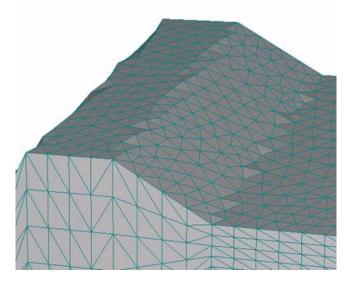


Figure 53. Consequence of missing an internal curve in the base surface on the FE-Mesh of the top surface.

4.6. Auxiliary Objects

In addition to objects that define the computational domain, the HYDRUS GUI allows users to employ several **Auxiliary Objects** that can be used to, for example, add **Dimensions** to the computational domain, include various **Labels**, or define permanent **Cross Sections** or **Mesh-Lines**.

4.6.1. Dimensions

Dimensions can be added to describe spatial properties of the computational domain in the **View** window using the *Insert->Auxiliary Objects->Dimensions* command or the **Dimensions** command from the **Insert Object** part of the **Domain Geometry** version of the **Edit Bar**. Then one needs to click at two points defining the computational domain and drag **Dimensions** to the required position. Figure 64 shows an example of how **Dimensions** can be used.

4.6.2. *Labels*

Labels can add any desired text to the computational domain in the **View** window using the *Insert->Auxiliary Objects->Dimensions* command or the **Comments** command from the **Insert Object** part of the **Domain Geometry** version of the **Edit Bar**. One then clicks simply anywhere in the **View** window and write the desired text. The text itself, its color, frame, and its offset can be specified in the **Edit Comment** dialog window (Fig. 54). Figure 64 shows an example of how the "Furrow" **Label** is used.

Edit Comment	
No. Text This is a well	
Options Font Frame	Offset dX: [pixels] dY: [pixels]
	Cancel <u>H</u> elp

Figure 54. The Edit Comment dialog window.

4.6.3. Bitmaps (Textures)

Bitmaps (**Textures**) serve to use scanned figures (maps) as means to define the computational domain in the **View** window. **Bitmaps** can be added using the *Insert->Auxiliary Objects->Textures* command. Corners of the **Bitmap** must be anchored at 4 points, coordinates of which must be selected such that the scale of the Bitmap corresponds with the scale of the View window. One can then simply trace the bitmap to specify the computational domain.

4.6.4. Cross-Sections

In the HYDRUS-2D software package one could click at any two points of the transport domain to display results of selected variables between those two points, i.e., along a specified cross-section. The exact location of these cross-sections was not saved and they had to be redefined whenever a new graph was required. In HYDRUS one can define the cross-sections and save their locations so that graphs along the cross-sections can be recalled at any time by simply clicking at them. Graphs along pre-defined cross-sections can be display for both the initial conditions and the output results. For example, if a plot of the pressure head along a predefined cross-section at a particular time is needed, one needs to display the pressure head outputs, find a particular time, and then click on the predefined cross-section. The graph is displayed instantaneously. Specifying the cross-section within a two-dimensional domain is straightforward. For three-dimensional domains one can use the **Cross-Section** dialog window (Fig. 55) for this purpose.

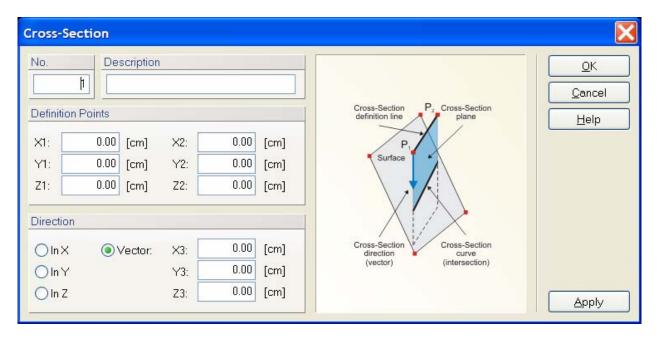


Figure 55. The Cross-Section dialog window.

4.6.5. Mesh-Lines

Mesh-Lines are very similar to **Cross-Sections**, except that **Mesh-Lines** follow edges of the finite elements and do not have to be straight. They are used, similarly to **Cross-Sections**, to display selected variables along defined **Mesh-Lines**. Similarly to **Cross-Sections**, the locations of **Mesh-Lines** are saved and can be recalled at any time.

5. Finite Element Mesh

5.1. Finite Element Mesh Generator

The **Finite Element Mesh Generator** dialog window (Fig. 56) is used whether to select a structured finite element mesh for relatively simple rectangular or hexahedral domain, or a more general unstructured finite element mesh. The dialog provides a brief description of each mesh generator and a simple bitmap with an explanation of the main terms involved. While the structured finite element generator can be used only for simple rectangular of hexahedral domains, the unstructured finite element generator is used for more complicated geometries.

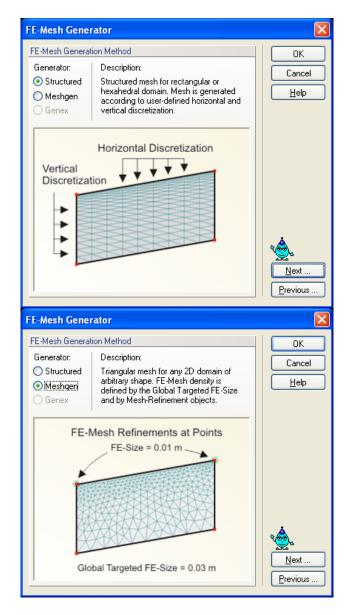


Figure 56. The Finite Element Mesh Generator dialog window. One version of the dialog for the structured FE mesh is shown at the top and one for the unstructured mesh at the bottom of the window.

5.2. Structured Finite Element Mesh Generator

As discussed in Section 2, two-dimensional transport domains can be defined using modified rectangles. Simple rectangular domains are defined by three straight lines, one at the bottom of the domain and two at the sides, while the upper boundary may or may not be straight (see examples in Fig. 8). Nodes along the upper boundary may in that case have variable *x*- and *z*-coordinates, but the lower boundary line must be straight (horizontal or with a specified slope), whereas the left and right boundary lines must be vertical. The flow region can then be discretized into either a structured or an unstructured triangular finite element mesh.

When the structured mesh is used one then needs to specify in the **Rectangular Domain Discretization** dialog window the number of nodes (*Count*) on the horizontal (*Horizontal Discretization in X-Direction*) and vertical (*Vertical Discretization in Z-Direction*) sides of the rectangular region, including their nodal coordinates (Fig. 57). The *relative size of finite elements* on the vertical side can be modified using the RS1 (relative size at the top) and RS2 (relative size at the bottom) factors below *General Vertical Coordinates*. The element sizes are then proportionally distributed.

The upper boundary is by default parallel with the bottom boundary. Any possible vertical deviations from this parallel line can be defined using dz values (in the *Horizontal Discretization in X-Direction* part of the window). Relatively general domains can still be defined by properly adjusting the dz values (see Fig. 8).

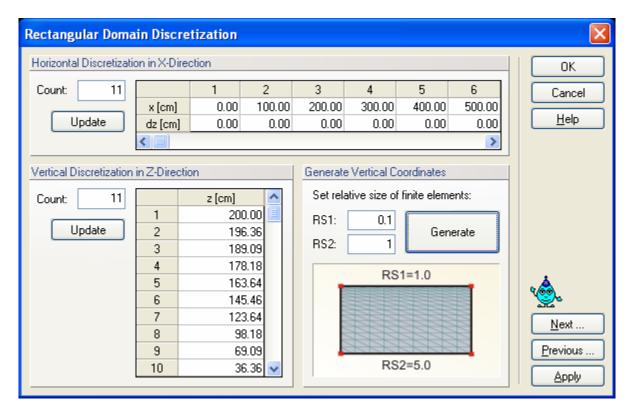


Figure 57. The Rectangular Domain Discretization dialog window.

A similar approach can be used to discretize simple hexahedral domains in three dimensions. Hexahedral domains must have similar properties as rectangular domains in that they are defined by vertical planes at the sides, a horizontal plane (possibly with a certain slope) at the bottom boundary, and with only the upper boundary not having to be a plane. The discretization of the hexahedral domain is then defined in the **Hexahedral Domain Discretization** dialog window. Again, one needs to specify the number of nodes (*Count*) on the horizontal (*Horizontal Discretization in X*, *Horizontal Discretization in Y*) and vertical (*Vertical Discretization in Z-Direction*) sides of the hexahedral region and their nodal coordinates (Fig. 58). The *relative size of finite elements* on the vertical side can again be modified using RS1 (relative size at the top) and RS2 (relative size at the bottom) factors (*General Vertical Coordinates*). The vertical final element sizes are then proportionally distributed.

Any possible vertical deviations from the plane parallel with the bottom of the domain can be defined using the *dz* values (in the *Horizontal Discretization in X* and *Horizontal Discretization in Y* parts of the window). This feature still allows relatively general domains too be created (see Fig. 9).

Hexahedral Doma	in Space Discretiz	ation				×
Horizontal Discretizat	ion in X					ОК
Count: 5 Update Horizontal Discretizat	1 x [cm] 0.0 dz [cm] 0.0		3 500.00 0.00	4 750.00 0.00	5 1000.00 0.00	Cancel <u>H</u> elp
Count: 11 Update	I y [cm] dz [cm] 0.00		4 0.00 300.00 0.00 0.00		6 500.00 0.00	
Vertical Discretization Count: 51 Update	z [cm] 1 20 2 19 3 19 4 18 5 18 6 18 7 17 8 17 9 16	0.00 S		of finite eleme		Next Previous Apply

Figure 58. The Hexahedral Domain Discretization dialog window.

5.3. Unstructured Finite Element Mesh Parameters

Parameters for generating the *Unstructured Finite Element Mesh* are specified in the **FE-Mesh Parameters** dialog window (Figs. 59 through 62). This dialog window has four Tabs in which various parameters of the unstructured finite element mesh can be specified.

The Main Tab

The *Targeted FE size* (i.e., the average size of the triangular elements in the generated finite element mesh) is specified on the **Main** Tab (Figs. 59). The program selects by default a **Targeted FE Size**. Users can change this value by deselecting the **Automatic** check box. The finite element mesh with this *Targeted FE size* can be further modified using various tools, such as *Stretching* in different directions (on the **Stretching** Tab, Fig. 60) to make the mesh anisotropic, specifying the *Maximum Number of Nodes on Boundary Curve* (on the **Options 1** Tab, Fig. 61) and *Minimum Number of Nodes on Boundary Curve* (on the **Options 2** Tab, Fig. 62), and using **Finite Element Mesh Refinement** (Fig. 63). While the **Page Default** command sets default values on a particular tab of the **FE-Mesh Parameters**, the **All Default** command sets default values on all four tabs. A user can specify on the **Main** Tab the **No. of Horizontal Layers** (only for three-dimensional applications), which are layers parallel with the **Base Surface** to add the third dimension to the problem.

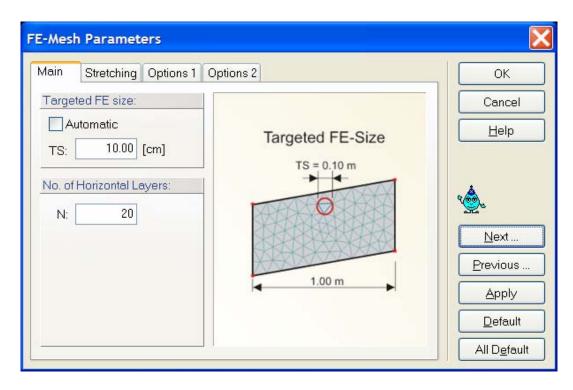


Figure 59. The FE-Mesh Parameters dialog window (Tab Main).

The Stretching Tab

Stretching of the finite element mesh (i.e., the degree of mesh anisotropy in a certain direction) is defined using the **Stretching Factor** and **Stretching Direction** (Fig. 60). The finite elements are made larger in the particular **Stretching Direction** if the **Stretching Number** is larger than one, and smaller if smaller that one. The result of this transformation is a mesh deformed in the given direction, which can be desirable for problems that, for example, require different spatial steps (mesh sizes) in the X and Y directions. The **Stretching Direction** is defined by a vector with two coordinates (Vx and Vz) for vertical two-dimensional domains. For three-dimensional problems this vector requires three components (Vx, Vy, and Vz).

FE-Mesh Parameters		X
Main Stretching Options 1 C Stretching Factor	Options 2	OK Cancel
Fs : 1 Fs = 1 - No Stretching	Mesh stretched in x-direction with factor Fs = 3.0	Help
Stretching Direction		<u>\$</u>
O General Vector V √x: 1	z	Next Previous
	L→ x	Apply Default
Vz: 0		All Default

Figure 60. The FE-Mesh Parameters dialog window (Tab Stretching).

The Option 1 Tab

Parameters for the unstructured triangular finite element generator are given in the **Options 1** Tab of the **FE-Mesh Parameters** dialog window (Fig. 61). The parameters are divided into *FE-Mesh Limits* (which limits the number of elements) and *FE-Mesh Quality* (which affects the smoothness of the FE mesh) groups.

The following parameters are specified in the *FE-Mesh Limits* group:

Maximum Number of Nodes on Boundary Curves: This is the maximum total number of nodes on all boundary curves for two-dimensional applications, or on all boundary curves defining the bottom plane (base surface) for three-dimensional applications.

Maximum Number of FE-Mesh Nodes (2D Mesh): This is the maximum total number of finite element nodes in two-dimensional domains, or on the bottom plane (base surface) of three-dimensional domains.

Both parameters are mainly informative and may lead to an interruption of the FE-mesh generation process. The mesh generation is interrupted by the message: Achieved the maximum number of nodes! This means that the maximum allowed number of nodes (either on the boundary curves or in the two-dimensional domain) was reached during the mesh generation process. This is usually a consequence of having too many nodes along the boundaries (the number of mesh nodes inside a domain increases approximately with the square of the number of boundary nodes). It is then necessary to decide whether or not so many nodes are needed for the envisioned triangular mesh. If the answer is 'yes' then the maximum number of nodes must be increased in this dialog window. If the answer is 'no' then it is necessary to decrease the **Targeted FE Size** (Figs. 59) or to increase the **Smoothing Factor** (in the *FE-Mesh Quality* group discussed below).

FE-Mesh Parameters	
Main Stretching Options 1 Options 2 FE-mesh Limits Max. number of nodes on boundary curves: Image: Comparison of the stress of t	OK 1200 000000
FE-mesh Quality Max. number of overall remeshing iterations: Number of intensive smoothing steps: Number of internal iterations for intensive smoothing: Number of internal iterations for standard smoothing: Smoothing factor (>1):	10 Next 1 Previous 20 Apply 1.3 Page Default

Figure 61. The FE-Mesh Parameters dialog window (Tab Options 1).

The following parameters are specified in the FE-Mesh Quality group:

Maximum Number of Overall Remeshing Iterations:

This number defines the maximum number of iterations during finite element mesh remeshing. In most cases the resulting mesh is obtained within fewer iterations than the default value of 10. In some cases the repeated adding and removing of nodes can cause an infinite loop. In that case (or when the mesh generation process converges very slowly) the code terminates after reaching the maximum number of iterations as defined by this value.

Number of Intensive Smoothing Steps:

Intensive smoothing repeats the operations of Delaunay remeshing and smoothing until there are no more changes during the Delaunay remeshing step. This parameter specifies the number of intensive smoothing cycles in the beginning of the mesh generation process, which can significantly influence the mesh smoothness. However, too many smoothing cycles can significantly slow down the mesh generation process. The recommended value is between 1 (less smoothing) and 3 (more smoothing).

Number of Internal Iterations for Intensive Smoothing:

This number defines the maximum number of iterations during one intensive smoothing step. This number guaranties that intensive smoothing will stop after a specified number of iterations, even when the prescribed criterion is not reached (i.e., some changes would still occuer during Delaunay remeshing).

Number of Internal Iterations for Standard Smoothing:

This number defines the maximum number of iterations while solving the elliptic equations, a process needed during mesh smoothing; it significantly influences the final smoothness of the mesh. A higher number of iterations improves the mesh smoothness. It serves little purpose to increase the number above 20 since the mesh is then virtually constant anyway, while the whole process of mesh generation would be slowed down significantly.

Smoothing Factor:

The smoothing factor is the ratio of the maximum and minimum height of a finite element triangle. For a triangle with equal sizes this factor is equal to 1 (which is theoretically not achievable for finite element meshes). The smoothing factor can be decreased to a value of about 1.1 when a highly smooth finite element mesh is required and, vice-versa, can be increased when a course mesh can be tolerated. The smoothing factor significantly affects the final number of elements.

In general, the default values in the FE-Mesh Parameters dialog window should be preserved; only experienced users should modify the various parameters needed for the mesh generation process.

The Option 2 Tab

Minimum Number of Points on Each Closed Boundary Curve is set by default equal to 15. This number can be changed in the **FE-Mesh Parameters** dialog window of the **Options 2** Tab (Fig. 63). This parameter is important when such objects as openings representing wells or drains are included in the transport domain. These objects may be very small compared to the global finite element mesh (i.e., smaller than the targeted finite element size). Having a minimum number of nodes on boundary curves will then lead to local refinement of the finite element mesh around these objects, thereby ensuring that relatively small objects are accurately represented in the numerical solution.

FE-Mesh Parameters	
Main Stretching Options 1 Options 2 Minimum Number of Points on each closed Boundary curve Image: Check and set minimum number of points Nmin: 15	OK Cancel <u>H</u> elp
	<u>Next</u> <u>Previous</u> <u>Apply</u> Page <u>D</u> efault All D <u>e</u> fault

Figure 62. The FE-Mesh Parameters dialog window (Tab Options 2).

5.4. Finite Element Mesh Refinement.

The Finite Element Mesh Refinement is carried out in two steps:

- 1. One must first define the desired type of **FE Mesh Refinement** using the dialog window shown in Figure 63. Mesh refinement can be defined around **Points**, **Lines**, **Number of Points on the Line**, or **Surfaces**.
- 2. Next, users must assign the refinement to particular Points, Lines or Surfaces, so the program knows where the refinement should take place. After double clicking on a particular point, line, arc, circle or spline, the corresponding dialog window will appear (the Edit Point dialog window, Fig. 34; or the Edit Curve dialog window, Fig. 35), where users should select FE-Mesh Refinement in the FE-Mesh Tab. The code will then create a list of nodes (or lines or surfaces) for a particular refinement that can be further edited by a user. FE Mesh Refinement is graphically displayed using red dots in green circles for nodes, green nodes for lines, and a small square in the corner of a surface. By clicking on these colored items, the FE Refinement can be deleted or edited. Editing of the FE mesh refinement will affect all objects to which a particular refinement was assigned.

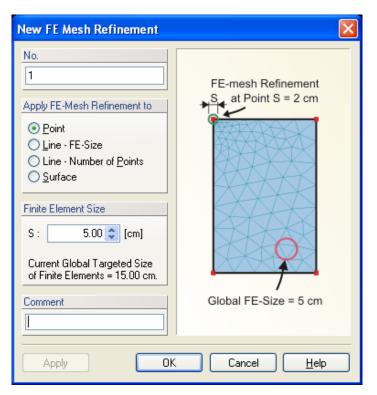


Figure 63. The New FE-Mesh Refinement dialog window.

As an example, Figure 64 shows the transport domain (700 * 650 cm) and the finite element mesh of a problem with a furrow and a drain. The mesh was generated with a **Targeted FE Size** of 50 cm and three **FE-Mesh Refinements** (Fig. 64, top). Refinement 1 (with a finite element size of 10 cm) was assigned to nodes 1, 2, 4 and 5, refinement 2 (5 cm) to node 3, and refinement 3 (15 cm) to nodes 8 and 9. There were 15 nodes on the drain boundary (due to the command **Minimum Number of Points on Each Closed Boundary Curve**). The resulting finite element mesh is shown in Figure 64 (bottom).

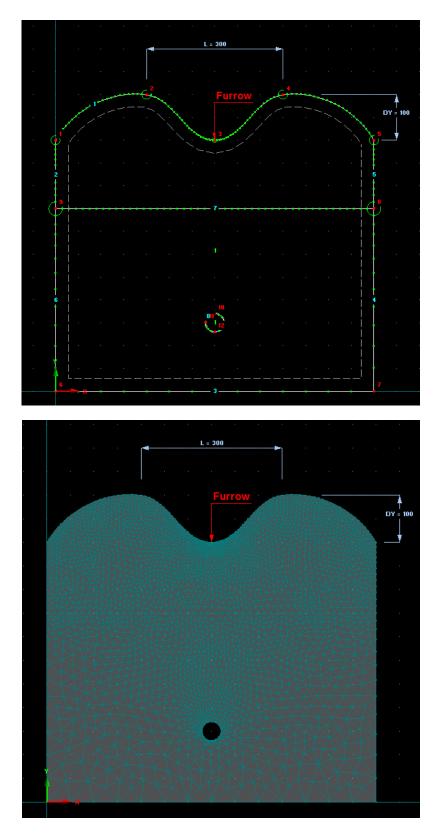


Figure 64. Example of FE-Mesh Refinements (top) and FE-Mesh (bottom).

5.5. Unstructured Finite Element Mesh Generator MeshGen2D

The **MeshGen2D** module may be used to discretize a two-dimensional flow region (or a base plane of the three-dimensional domain) into an unstructured triangular mesh. The algorithm used for this purpose is general and can be applied to virtually any two-dimensional computational domain. The first step of the mesh generation process discretizes the boundary curves, while the second step generates the unstructured triangular mesh.

Generation of Boundary Points

The first step of the mesh generation process involves discretization of the boundary curves. During this step boundary nodes are generated on all boundaries and internal curves by dividing them in abscissas (i.e., short boundary edges). If no previous boundary nodes existed, the program automatically generates a default equidistant point distribution. Boundary nodes can be edited by users to optimize the lengths of the boundary edges using the **FE-Mesh Parameters** dialog window (Figs. 59 through 62). The local density of the mesh can thereby be determined in any part of the domain (also taking into account the use of internal curves). There are two ways to obtain appropriate distributions of the boundary nodes, i.e., by (1) specifying the *Targeted FE size* (Figs. 59, the Main Tab), and (2) refining the FE-Mesh (the **FE Mesh refinement** dialog window, Fig. 63).

- 1) A global **Targeted FE Size** (Fig. 59) is the main variable of the FE-Mesh process. Although a default Targeted FE-Size is specified by the program, this value should be adjusted by users in most applications. The default value is used to generate at least a reasonable initial mesh, even for inexperienced users.
- 2) The finite element mesh can be adjusted locally in the domain by using FE-Mesh Stretching (Fig. 51) or FE-Mesh Refinement (Figs. 34, 35, and 63). FE-Mesh Refinement can be implemented for various geometrical objects, including Points, Lines or Surfaces (Fig. 63). When several FE-Mesh Refinements overlap in one location (such as when the FE-Mesh Refinement is defined for both a point and a line), then the FE-Mesh Refinement specified for the lower level objects (i.e., a point rather than a line) is used.

The boundary nodal distribution determines in a very substantial manner the ultimate quality and size of the unstructured finite element mesh. Optimally distributing nodes along the boundaries of relatively complicated domains (e.g., a very irregular anisotropic domain) can be a very difficult problem, and may require some experience.

Table 10. Definition of terms related to the boundary discretization.

Boundary Nodes Boundary nodes are points, marked by green squares, which discretize boundary curves. These nodes are generated along every boundary curve and are ordered in a counter-clockwise direction (on closed curves). Boundary nodes determine the local densities of the triangular mesh that is

being generated for a given boundary nodal distribution, and are part of the triangular mesh.
Boundary Edges
Boundary edges are abscissas discretizing boundary curves. They connect generated boundary nodes, are oriented in a counter-clockwise direction, and are located on the edge of the mesh.
Fixed Points
Fixed points are points on boundary curves marked by red squares. These points may be used to adjust the local density of boundary nodes (using FE Mesh refinement). By default, fixed points are placed on all nodes of polylines and on all object boundary points describing the boundary, but they can be also inserted or deleted at any other point on boundary curves.

Generation of the Unstructured Triangular Mesh

The unstructured triangular mesh is generated by means of five operations:

- (1) discretization of the flow domain into triangles with vertices at given boundary nodes (Fundamental Triangulation),
- (2) inserting new points in all triangles which do not fulfill a certain smoothness criterion (**Mesh Refinement**),
- (3) implementation of Delaunay's retriangulation for the purpose of eliminating all nodes surrounded by more than six triangles, as well as to avoid extreme angles (**Remeshing**),
- (4) smoothing of the mesh by solving a set of coupled elliptic equations in a recursive manner (**Smoothing**), and
- (5) correction of possible errors which may appear during smoothing of the finite element mesh (**Convexity Check**).

Operations 2 through 5 are repeated until a prescribed smoothness of the mesh has been achieved.

An unstructured triangular mesh for a given boundary nodal distribution can be generated in two different ways: a step-by-step approach (Calculation->Advanced FE-Mesh Generation->Fundamental Triangulation and subsequent commands, or by clicking on the Fundamental Triangulation command of the FE-Mesh Advanced part of the FE-Mesh version of the Tool Sidebar), or by using automatic mesh generation (Calculation->Generate FE-Mesh or the Generate FE-Mesh command on the Edit FE-Mesh part of the FE-Mesh version of the Tool Sidebar). The step-by-step approach should be used only for special cases, and then only by experienced users. Automatic generation (recommended) is a much faster and easier approach. The mesh generation parameters must be specified before the mesh generation process is started. By modifying the mesh generation parameters, users can influence the smoothness of the mesh (Smoothing Factor, Fig. 61), its anisotropy (Figs. 60 and 65), computational time, and the possible display of intermediate results, among other features. The most important mesh generation parameter is the "smoothing factor", which can significantly affect the final number of elements. The smoothing factor is defined as the ratio of the minimum and maximum dimensions of a triangle. When a very smooth finite element mesh is required, the smoothing factor should be decreased to about 1.1; when a coarser mesh is possible, the smoothing factor can be increased.

The code saves mesh data, by default, in a binary format (the file MESHTRIA.000). However, users have the option to also save mesh data into a file (MESHTRIA.TXT) in ASCII format (the Program Option dialog window, Fig. 92), and then use possibly the data later for other calculations.

When users do not have authorization to use the MeshGen2D module, they can employ the internal mesh generator for relatively simple rectangular or hexahedral transport domains.

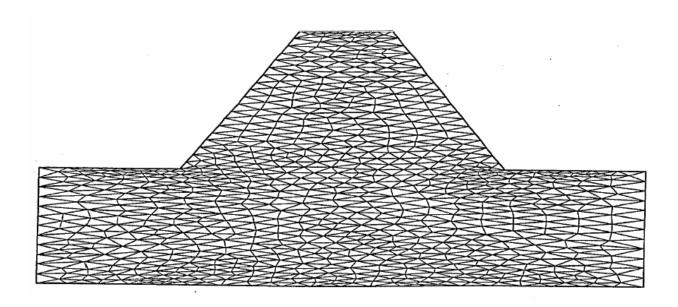


Fig. 65. Example of mesh stretching using a stretching factor of 3 in the *y*-direction.

5.6. Finite Element Mesh Statistics

	FE-Mesh Inforn
Number of Program has created a default set of FE-Mesh sections. You can create your own sections to simplify graphical input of data. Close 2D-Elements: 200 3D-Elements: 12000	Nodes: 1D-Elements: 2D-Elements:

Figure 66. The FE-Mesh Information dialog window for a two-dimensional problem (top) and a three-dimensional problem (bottom).

Figure 66 shows dialog windows that provide information about the finite element mesh for twoand three-dimensional applications. For two-dimensional grids the window shows the number of finite element *Nodes*, the number of boundary *ID-Elements* (boundary edges between boundary nodes), and the number of *2D-Elements* (triangles). For three-dimensional grids the window shows again the number of finite element *Nodes* (in the entire 3D domain), the number of boundary *ID-Elements* (boundary edges between boundary nodes on the bottom plane, i.e., the 2D base surface of the transport domain), the number of *2D-Elements* (the number of triangles on the bottom plane of the domain), and the number of *3D-Elements* (tetrahedrals) in the entire transport domain.

5.7. Finite Element Mesh Sections

FE-Mesh Sections are parts of the FE-Mesh used to specify input variables and to display results of calculations. By default, two-dimensional problems have only one section consisting of the entire transport domain. For three-dimensional problems one section by default is formed by the *Whole FE-Mesh* (Section D000 in Fig. 67), whereas each horizontal (vertical for some applications) layer forms one additional section (Sections D001 through D021 – *Horizontal* in Fig. 67), while the last section is made up by the vertical surface (Section D022 *Vertical* Fig. 67). For example, the bottom section can be displayed when the bottom boundary conditions are specified, while the top section can be displayed when the surface boundary conditions are provided. One can similarly display results at different depths using different horizontal sections.

Additional sections can be created using commands from the **FE-Mesh Sections** part of the **FE-Mesh** version of the **Edit Bar**. One can display any existing section (or set of sections) and modify them using the *Cut with Rectangle* command, and then create a new section using the *New Section from View* command. This new section will then appear in the list of sections in the **Section** Tab of the **Navigator Bar** and can be recalled at any time. Existing sections can be manipulated (*Display*, *Hide*, *Select*, *Unselect*, *Rename*, *Delete*, *Move Up*, and *Move Down*) using the *Edit Section* command from the **Edit Bar**, or using *Edit->Sections->Edit Sections*.

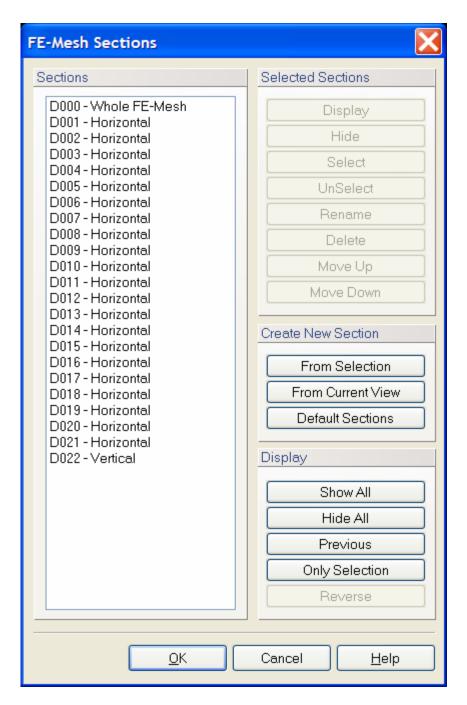


Figure 67. The FE-Mesh Sections dialog window.

6. Domain Properties, Initial and Boundary Conditions

Initial and boundary conditions for both water flow and solute (heat) transport, and the spatial distribution of other parameters characterizing the flow domain (e.g., the spatial distribution of soil materials, hydraulic scaling factors, root-water uptake parameters, and possible hydraulic anisotropy) and/or observation nodes are specified in a graphical environment with the help of a mouse. The program automatically controls the logical correspondence between the water flow and solute transport boundary conditions.

6.1. Default Domain Properties

For rectangular two-dimensional domains and for layered three-dimensional domains, immediately after the finite element mesh is generated, one can specify the initial **Default Domain Properties** in the dialog window shown in Figure 68. Values listed in this window are initially assigned to each horizontal layer of the transport domain, but can later be modified graphically. The following variables are involved:

Code h	Code of the boundary condition (0 for no flow, -1 for constant flux, +1 for constant head, -2 for unsaturated seepage face, +2 for saturated seepage face, -3 (-7, -8, -9) for variable flux, +3 (+7, +8, +9) for variable head, -4 for atmospheric, -5 for tile drain, -6 for free drainage) Initial value of the pressure head [L]. The initial pressure head changes linearly between the first and last layer if one clicks on the command at the bottom of the dialog (<i>Linear interpolation of the pressure heads between the first and last layer</i>).
Q	Recharge flux, $[L^2T^{-1}]$ and $[L^3T^{-1}]$ for 2D and 3D applications, respectively
Mater	Material number
Roots	Root distribution
Axz	Scaling factor for the pressure head
Bxz	Scaling factor for the hydraulic conductivity
Dxz	Scaling factor for the water content
Temp	Initial temperature [K]
Conc	Initial concentration (of the equilibrium phase) [ML ⁻³]
Sorb	Initial concentration of the nonequilibrium phase (kinetically sorbed [MM ⁻¹] or of the immobile region [ML ⁻³])

	Layer	z [cm]	Code	h	Q	Mater	Roots	Axz	Bxz	Dxz	Temp	Conc		ance
1	1	200.00	-1	-100	0	1	0	1	1	1	20	0		
2	2	196.00	0	-98	0	1	0	1	1	1	20	0		lelp
3	3	192.00	0	-96	0	1	0	1	1	1	20	0		
4	4	188.00	0	-94	0	1	0	1	1	1	20	0		
5	5	184.00	0	-92	0	1	0	1	1	1	20	0		
6	6	180.00	0	-90	0	1	0	1	1	1	20	0		
7	7	176.00	0	-88	0	1	0	1	1	1	20	0		
8	8	172.00	0	-86	0	1	0	1	1	1	20	0		
9	9	168.00	0	-84	0	1	0	1	1	1	20	0		
10	10	164.00	0	-82	0	1	0	1	1	1	20	0		
11	11	160.00	0	-80	0	1	0	1	1	1	20	0		
12	12	156.00	0	-78	0	1	0	1	1	1	20	0		
13	13	152.00	0	-76	0	1	0	1	1	1	20	0		
14	14	148.00	0	-74	0	1	0	1	1	1	20	0		
15	15	144.00	0	-72	0	1	0	1	1	1	20	0		
16	16	140.00	0	-70	0	1	0	1	1	1	20	0		
17	17	136.00	0	-68	0	1	0	1	1	1	20	0	v 🦓	

Figure 68. The Default Domain Properties dialog window.

6.2. Initial Conditions

After selecting nodes (graphically with the mouse) for which the initial condition is to be specified, and clicking on the command **Set Values** at the **Edit Bar** (on the right side of the view window), the **Water Flow Initial Condition** dialog window (Fig. 69) appears. Using this command one can specify the initial conditions for water flow by defining the initial spatial distribution of the pressure head or water content over the flow domain. The decision whether to use the pressure head or the water content initial distribution is made in the main module of the <u>Iteration Criteria</u> dialog window (Fig. 17). One can specify a) the same value to all selected nodes (*Same value for all nodes*), b) a distribution versus depth that is in equilibrium with the pressure head of the lowest point in the selected region (*Equilibrium from the lowest located nodal point*), and c) a *Linear distribution with depth*. When options a) or b) are selected, only one value of the pressure head needs to be specified. For option c) one needs to provide values of the pressure head (or water content) for the top and bottom of the selected domain.

Water Flow Initial Condition	X
Distribution • Same value for all nodes • Equilibrium from the lowest located nodal point • Linear distribution with depth • Slope in X - direction • Slope in Y - direction • C * C * C * C * C * C * C * C	Values in selected nodes Selected Nodes: 400 Minimum value: -100 Maximum value: -100
Pressure Head	Other Options
I op Water Content Value: 0.149 Bottom Water Content Value: -100	☐ Internal Pressure Head <u>S</u> ink/Source
	OK Cancel

Figure 69. The Water Flow Initial Condition dialog window.

To simplify definition of the initial condition for problems that involve slopes, an option is provided to have pressure heads decrease in the *x*- and *y*- (the latter only for three dimensional problems) directions (*Slope in X- direction* and *Slope in Y- direction*).

The right top part of the dialog window (*Values in selected nodes*) in Figure 69 provides information about the selected nodes, i.e., the number of selected nodes and the minimum and maximum values of the pressure head or water content.

If a certain node is selected that is not located on the boundary, this node can be declared an *Internal Pressure Head Sink/Source*. The pressure head at that node will then be kept constant during the simulation.

Similar, but simpler, dialog windows are used to specify initial values of the temperature and the liquid and adsorbed concentrations (e.g., **Temperature Distribution** dialog window, Fig. 70). The dialog window will then again provide information about the selected nodes (*Values in selected nodes*), i.e., the number of selected nodes and their minimum and maximum temperatures (concentrations). One can specify either constant value for all selected nodes, or have the values change linearly with depth. When the box *Use top value for the entire selected region* is checked, the value in the *Top* box is assigned to all selected nodes.

Temperature distribution							
Values in selected nodes							
Number of Selected Nodes:	222						
Minimum value:	20						
Maximum value:	20						
New values (linear/constant d Top: 20 Bottom: 20 Image: Section of the line line of the line of the line line of the line line of t							
OK Cancel							

Figure 70. The Temperature distribution dialog window.

The initial condition can be imported from the results of previous calculations using the Import command (*Edit->Initial Condition->Import*, or *Insert->Initial Condition->Import*). After clicking on any of these two commands, an **Open** dialog window appears with **Files of type** preselected for HYDRUS applications (i.e.,*.h3d). One then needs to browse for the HYDRUS project from which the initial condition is to be imported. After selecting a particular project, the **Import Initial Conditions** dialog window appears (Fig. 71). This window provides information from which project the initial conditions will be imported (*Import data from Hydrus project*) and offers quantities that can be imported as initial conditions (*Select quantities to import*). Users must then also decide in the *Select Time Layer* part of the dialog if values for *The Last (Final) Time Layer* or for any intermediate time layer (using *Time Layer No.:* from the lower list box) are to be imported.

Import Initial Conditions	X
Import data from Hydrus-3D project	
C:\USSL\HYDRUS3D\2D_Tests\Furrow.h3d	
Select quantities to import	
✓ Pressure Head	
✓ Temperature	
Concentration 1	
Concentration 2	
Concentration 3	
Select Time Layer	
◯ The Last (Final) Time Layer	
Time Layer No.: Time 24-100.00 days	
OK Cancel	

Figure 71. The Import Initial Condition dialog window.

6.3. Boundary Conditions

Specification of the boundary conditions is relatively straightforward. Users must first select from the **Navigator Bar** particular **Boundary Conditions** (i.e., water flow, solute transport, or heat transport) and then click on the **Edit Bar** on the particular boundary condition (e.g., constant head). They subsequently need to move the mouse to the selected position and click the left mouse button. Implementation of the boundary condition terminates with a repeated click of the left mouse button. The boundary nodes will acquire the same color as the corresponding type of the boundary condition. See the rules for specifying boundary conditions as described in Chapter 8 of the Technical Manual [*Simunek et al.* 2006].

6.4. Domain Properties

Other parameters characterizing the flow domain (initial condition, material distribution) are defined in a similar way. Users must first select that part of the transport domain to which he/she wants to assign a particular value of the selected variable. It is possible to select the entire transport domain, part of it, or only individual nodes or elements. A particular part of the transport domain can be selected as follows: first move the mouse to a selected position. The beginning and end of the selection operation is framed by clicking the left mouse button. The selected area is the rectangle defined by the two mouse positions when the left mouse button was clicked. When the selection is completed, users must click the **Set values** button and specify the value of a particular variable. The given value will then be assigned to the selected area. When material numbers are to be specified, users can do this directly by clicking on the color representing a particular material (at the **Edit Bar**). All variables are assigned to nodal points, except for those defining anisotropy angles, the first and second components of anisotropy, and subregion numbers, which are all assigned to elements.

Scaling Factors can be generated for two-dimensional applications using a random generator by clicking on the command *Edit->Domain Properties->Stochastic Distribution of S.F.* that calls the **Stochastic Distribution of Scaling Factors** dialog window (Fig. 72). Each scaling factor can be generated either independently of the other scaling factors, or by assuming Miller-Miller similitude. In that case the program generates hydraulic conductivity scaling factors and automatically calculates from their values the pressure head scaling factors.

Stochastic Distribution of Scaling Factors	
Stochastic Distribution of Scaling Factors ✓ Hydraulic Conductivity Scaling Factor ✓ Pressure Head Scaling Factor Water Content Scaling Factor	OK Cancel <u>H</u> elp
Other Options Image: Miller-Miller Similitude	Recalculate

Figure 72. The Stochastic Distribution of Scaling Factors dialog window.

Parameters for random generation of the scaling factors are specified in the **Stochastic Parameters** dialog window (Fig. 73). In this dialog users need to specify whether the scaling factors are normally or log-normally distributed using the check box *Log-Normal Distribution*), and provide values for the standard deviation of a particular scaling factor, and correlation lengths in the *x*- and *z*-directions (if the scaling factors are spatially correlated).

Stochastic Parameters			<
Hydraulic Conductivity Scaling	Factor	ОК	ו
Standard Dev. of log10(y)	0.25	Cancel	ĺ
<u>C</u> orrelation Length in x	0		
Correlation <u>L</u> ength in z	0		
✓ Log-Normal Distribution			
Pressure Head Scaling Factor			
Standard Dev. of log10(y)	0.25		
Correlation Length in \underline{x}	0		
Correlation Length in <u>z</u>	0		
Log-Normal Distribution			
Water Content Scaling Factor			
Standard Dev. of log10(y)	0.1		
Correlation Length in x	0		
Corr <u>e</u> lation Length in z	0		
✓ Log-Normal Distribution			

Figure 73. The Stochastic Parameters dialog window.

7. Graphical Output

Graphical output is divided into two main parts. In the first part, variables which change spatially throughout the transport domain are displayed by means of contour maps, isolines, or isobands (**Results – Graphical Display** on the **Data Tab** of the **Navigator Bar**, or *Options->Graph Type*). Additional information such as boundary fluxes and/or soil hydraulic properties are displayed using x-y graphs (**Results – Other Information** on the **Data Tab** of the **Navigator Bar**, or using the **Results Menu**).

7.1. *Results – Graphical Display*

Results of a simulation can be displayed by means of contour maps, isolines, isobands, color points, color edges, spectral maps, and/or velocity vectors (*Graph Type* at the **View Tab** of the **Navigator Bar** or *Options->Graph Type->Isolines*), and/or by animation using both contour and spectral maps. The number of colors in the color spectrum, as well as the numerical increment between isolines, can be selected using the **Edit Isoband Value and Color Spectra** dialog window (Fig. 75). Contour and spectral maps may be drawn for the pressure head, water content, temperature, solute concentration (in the equilibrium or nonequilibrium phase), and/or velocity. Animation of these four variables is also possible (*Flow Animation* on the *Results* version of the **Edit Bar**, or using *Results->Time Layer->Animation*). Graphs of all variables along the boundaries (*Boundary-Line Chart* on the *Results* version of the **Edit Bar**, or using *Results->Charts->Boundary Line*), as well as those along any selected cross-section (*Cross-Section Chart* on the *Results* version of the **Edit Bar** or *Results->Charts->Cross-Section*) can be readily obtained.

The entire finite element mesh, the boundary nodes, and the numbering of nodes, elements and/or edges, can be displayed also (using the **Display Options** dialog window (Fig 74), or *Options-*>*Display Options-*>*Edit*), together with isolines and spectral graphs. Users may zoom into a certain part of the transport domain, and can enlarge or reduce the transport domain, among other features.

Flow animation is an alternative to displaying results at one particular time. Distributions during flow animation are displayed continuously at consecutive times, thereby visualizing the flow and transport process. Note, however, that display times are defined by the print time intervals specified in the input data file. This means that the print times must be at constant intervals so that the time scale of the flow animation will not be distorted. In other words, undistorted flow animation requires that the print time intervals be constant. The speed of the flow animation depends on the hardware being used, i.e., the speed of the microprocessor and graphical card.

7.1.1. Display Options

The Display Options dialog window (Fig. 74) allows users to select

- a) how different objects from the Category list are to be displayed,
- b) what **colors** are to be used (colors can be redefined by clicking on the *Edit Color* command button),
- c) whether **lines** are displayed as solid, dotted, dashed or dash-dotted (*Line Type*), and what *Thickness* should be used, and
- d) the position of **numbers** for various types of *numberings*, fonts for the numbers, and whether or not numbers are *Transparent*.

Display Options	
Category	Parameters
Geometry FE-Mesh FE-Mesh Nodes FE-Mesh Nodes FE-Mesh Elements Surface Approx. Mesh Refinement at Points Refinement on Lines Refinement on Surfaces Points - Handles Observation Nodes Drains Flowing Particles Boundary Conditions Results Particle Trajectories Isolines Velocity Vectors Auxiliary Objects General Colors Formation Section Section	Line Type Chief Type Chief Solid Thickness: 1 Chief Solid Thickness: 1 Chief Solid Thickness: 1 Chief Solid Chief Solid Chief Solid Chief Solid Ch
	<u>D</u> K <u>C</u> ancel <u>H</u> elp

Figure 74. The Display Options dialog window.

7.1.2. Edit Isoband Value and Color Spectra

The **Edit Isoband Value and Color Spectra** dialog window (Fig. 75) (called by left-clicking the color scale display options of the **Results** version of the **Edit Bar**) allows users to define colors for display of isobands and color spectra, and values of particular isolines.

After double-clicking on the color panel, the **Color** dialog window (Fig. 76) appears, in which one can redefine colors to be used in displays. By default a **Standard Palette** is used. Palettes with newly defined colors can be saved under a new name and used for different purposes. The new palette can be saved locally and used only for a given application, or globally and used for all HYDRUS applications. Users hence can thus define different palettes for displaying water contents, pressure heads, concentrations, or temperatures.

Users can also define the **Isoline scales**. This can be done by simply changing numbers in the edit boxes next to the colors. If the numbers are not in an increasing or decreasing order, a warning will be issued. Newly created **Isoline scales** can be saved (again locally or globally) and used later. Users need to specify only the maximum and minimum values (the top and bottom edit boxes); after clicking the **Fill** command, the program will calculate and fill (complete) the intermediate numbers by interpolation.

Edit Isoband Value and Col	or Spectra	
68.593	Scales	
	Standard	Default
55.408		Empty
42.222		Eil
29.036		Fill Ma <u>x</u> /Min
15.850		Sa <u>v</u> e
2.665		Delete
-10.521		Delete
-23.707	Palettes	
-36.893	Standard	Default
-50.078		<u>S</u> ave
-63.264		Delete
76.450		
E-Format		
Double-click on the color panel to change colors.		
	OK	Cancel

Figure 75. The Edit Isoband Value and Color Spectra dialog window.

Minimum and maximum numbers of the scale are automatically adjusted to a particular problem and for a particular variable. By default, HYDRUS searches all output time levels of a particular project for the minimum and maximum values of a particular variable, and then leaves the scale invariant in time between these two values. The scale, however, can also be automatically adjusted for each time level by specifying the minimum and maximum values for a particular variable and a particular print time when the option *Min/Max glob. in time* from the **Color Scale View Options** of the **View Tab** of the **Navigator Bar** is deselected. Similarly, the scale can be automatically adjusted for a particular layer of the FE-mesh (a section) (the minimum and maximum values for a particular variable and a particular section) when the option *Min/Max glob. in space* from the **Color Scale View Options** of the **View Tab** of the **Navigator Bar** is unselected.

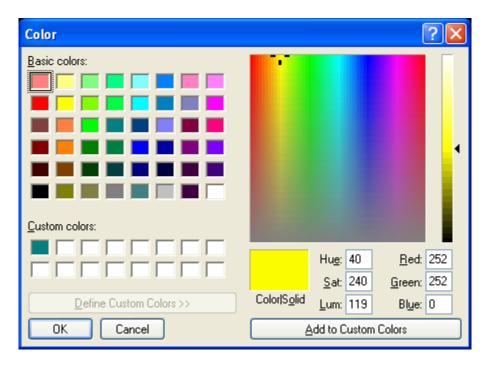


Figure 76. The Color dialog window.

7.2. Results – Other Information

Additional information, such as boundary fluxes and/or soil hydraulic properties can be displayed using x-y graphs (**Results – Other Information** on the **Data Tab** of the **Navigator Bar**, or **Results Menu** or **Results Menu**). Table 11 gives an overview of the different graph options that are possible. Additional text output is provided under the command *Mass Balance Information* on the **Data Tab** of the **Navigator Bar** (also at the **Results Menu**). This output gives the total amount of water, heat and solute inside each specified subregion, and the inflow/outflow rates to/from that subregion, together with the mean pressure head (*hMean*), mean temperature (*TMean*) and the mean concentration (*cMean*) over each subregion (see Table 11.6 of the Technical Manual). Absolute and relative errors in the water and solute mass balances are also printed to this file. Output related to the inverse problem is provided under the command *Inverse Solution Results* on the **Data Tab** of the **Navigator Bar**.

Command	Horizontal Axis	Vertical Axis
Observation Points	Time	Pressure Head Water Content Temperature Concentration $-x^+$ Sorbed Concentration $-x^+$
Pressure Heads	Time	Atmospheric Boundary Head Root Zone Head Variable Boundary Head 1 Constant Boundary Head Seepage Face Head Drainage Boundary Head Free and Deep Drainage Boundary Head Variable Boundary Head 2 Variable Boundary Head 3 Variable Boundary Head 4 All Boundaries
Water Boundary Fluxes	Time	Potential Atmospheric Flux Potential Root Water Uptake Rate Actual Atmospheric Flux Actual Root Water Uptake Rate Variable Boundary Flux 1 Constant Boundary Flux Seepage Face Flux Drainage Boundary Flux Free and Deep Drainage Boundary Flux Variable Boundary Flux 2 Variable Boundary Flux 3 Variable Boundary Flux 4 All Atmospheric Fluxes All non-Atmospheric Fluxes
Cumulative Water Boundary Fluxes	Time	Potential Atmospheric Flux

Table 11. Graph options in the HYDRUS interface.

		Potential Root Water Uptake Rate Actual Atmospheric Flux Actual Root Water Uptake Rate Variable Boundary Flux 1 Constant Boundary Flux Seepage Face Flux Drainage Boundary Flux Free and Deep Drainage Boundary Flux Variable Boundary Flux 2 Variable Boundary Flux 3 Variable Boundary Flux 4 All Boundaries Fluxes
Solute Fluxes ⁺	Time	Cumulative Zero-Order Reaction Cumulative First-Order Reaction Cumulative Root Solute Uptake Cumulative Non-Equil. Mass Transfer Cumulative Constant Boundary Solute Flux Cumulative Constant Boundary Solute Flux Cumulative Variable Boundary 1 Solute Flux Cumulative Variable Boundary 1 Solute Flux Cumulative Drain Boundary Solute Flux Cumulative Drain Boundary Solute Flux Cumulative Variable Boundary 2 Solute Flux Cumulative Variable Boundary 3 Solute Flux Cumulative Variable Boundary 4 Solute Flux Cumulative Variable Boundary 4 Solute Flux Cumulative Variable Boundary 4 Solute Flux Cumulative Variable Boundary 5 Solute Flux Cumulative Variable Boundary 4 Solute Flux Cumulative Variable Boundary 5 Solute Flux Constant Boundary Flux Seepage Face Flux Variable Boundary Flux 1 Actual Atmospheric Flux Drain Boundary Flux 2 Variable Boundary Flux 3 Variable Boundary Flux 3 Variable Boundary Flux 4 All Solute Cumulative Fluxes All Solute Fluxes
Soil Hydraulic Properties	Pressure Head Log Pressure Head Water Content	Water Content Soil Water Capacity Hydraulic Conductivity Log Hydraulic Conductivity Effective Water Content Pressure Head Log Pressure Head
Run-Time Information	Time Level Time	Time Step Number of Iterations Cumulative Number of Iterations Peclet Number Courant Number Number of Solute Iterations

⁺ This graph is given for each solute

7.2.1. Convert to ASCII

The output files H.OUT, TH.OUT, CONCX.OUT, SORBX.OUT, TEMP.OUT, and V.OUT provide binary output of specific variables. The user interface can convert these binary files into the ASCII files H.TXT, TH.TXT, CONCX.TXT, SORBX.TXT, TEMP.TXT, and V.TXT using the **Convert to ASCII** dialog window (Fig. 77) (**Results – Other Information** on the **Data Tab** of the **Navigator Bar**, or *Results->Convert Output to ASCI*).

Figure 77. The Convert to ASCII dialog window.

8. Graphical User Interface Components

8.1. View Window

8.1.1. Scene and Viewing Commands

We will use here the term 'Scene" for the content of the View window. Ffour types of commands are available to change the display of the scene in the View window.

a) Commands to define a required **Display of the Scene**.

Detailed information about particular commands is given in Section 8.4. In addition to those commands, it is always possible to adjust the **Display of the Scene** using the "mouse scroll wheel" as follows:

- Simultaneously holding the mouse scroll wheel and moving the mouse will move the **Scene** in the same direction as the mouse, i.e., to the left, right, up, or down.
- Simultaneously holding the **Ctrl** keyboard button and the mouse scroll wheel, while moving the mouse, rotates the **Scene** around the center of the displayed object (available only for three-dimensional objects).
- Simultaneously holding the **Shift** keyboard button and the mouse scroll wheel, while moving the mouse, leads to zooming in or out of the **Scene** from the center of the **View** window.
- Rotating the scroll wheel leads to zooming in or out of the **Object** from the point to which the mouse is directed.

b) Commands to define the **Content of the Scene**.

In every view one can independently specify what is to be displayed, e.g., a variable, the type of graph, or the numbering of objects. All possible options related to the **Content of the Scene** are located on the **Navigator Bar** of the **View Tab** (Section 8.2).

c) Displaying and/or hiding parts of complicated objects.

One often needs to display only some part of a complicated object while hiding the rest. For this purpose one can use commands related to **Sections** (i.e., parts of the computational domain or FE-Mesh). Detailed information is given in Chapter 8.1.8 on **Sections**.

d) Colors, fonts, and type of lines.

One can define colors, the style and thickness of lines, fonts for numbering, and other displaying options for almost all displayed/used objects. Separate default sets exist for the display for the screen and the printer. Users can create and save additional combinations of display options. Detailed information is provided in Chapter 7.1.1 on **Display Options**.

8.1.2. Grid and Work Plane

The Grid and Work Plane dialog window (Fig. 78) allows users to

- a) select a **Work Plane** (i.e., a plane in which users can specify various boundary objects, initial and boundary conditions, or other information),
- b) define the Origin of the coordinate system, and
- c) define the *Alignment Grid*. The **Grid** is defined by its *Origin*, the type (*Grid Type*) of coordinate system involved (either *Cartesian* or *Polar*), and the *Grid Spacing*. The **Grid** can also be rotated to facilitate work, for example when defining the domain for a hill slope problem.

Grid and Work Plane			×
Work Plane		Origin	
		Point No: 🛛 🗸 Pick New	
OYZ	≭ Y	X: 0.00 [cm]	
	∽ x	Y: 0.00 [cm]	
		Z: 0.00 [cm]	
Grid Options Grid Typ	e	Number of Grid Points	
☑ <u>S</u> nap ③ Car	tesian	(+) (-)	
✓ Show	ar	Direction 1: 30 30	
		Direction 2: 30 30	
↓ ²		📃 Dynamic update	
	* : : :	Grid Point Spacing	
	→ ₁ ・・	Distance b: 50.00 [cm]	
		Distance h: 50.00 [cm]	
- <u>+ b + b + b</u>	<u>+</u> : :	Rotation β: 0.0 🗢 [°]	
		<u>O</u> K Cancel <u>H</u> elp	

Figure 78. The Grid and Work Plane dialog window.

8.1.3. Stretching Factors

In many applications one direction of the transport domain dominates the other direction (or the other two directions). To facilitate work in the graphical environment, HYDRUS allows stretching of the domain in one (or two) direction(s) using **Stretching Factors**. This is done using the **View Stretching Factors** dialog window (Fig. 79) that is called with the command *View->View Stretching*.

View Stretching Factors	X
Stretching Factors In X-direction: 1 In Y-direction: 1 In Z-direction: 1	Apply Standard
<u>D</u> K Cancel	Help

Figure 79. The View Stretching Factors dialog window.

8.1.4. Rendering Model

Rendering serves to rapidly switching between displays of surfaces and solids. One can select the **Wire** and **Full Rendering** options. An advantage of **Wire Rendering** is mainly the speed of the display, while **Full Rendering** provides a more realistic display of three-dimensional objects.

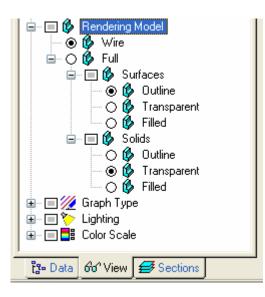


Figure 80. The Rendering part of the View Tab of the Navigator Bar.

8.1.5. Selection and Edit Commands

The **selection** of graphical objects is based on standards used in MS Office. An object is selected by clicking the left mouse button; a multiple selection is made by simultaneously holding the Shift button. A selection can be made using a rectangle (by clicking with the left mouse button outside of objects and holding the left mouse button while moving the mouse) or rhomboid (see Chapter 8.4. on **Toolbars** and **Tools**).

When the cursor (mouse) is moved above an object, information about that object appears on the status bar and the object is temporarily highlighted; this process is referred to as **pre-selection**. Apart from selecting objects graphically, they can also be selected using their **Indices** or by means of **Sections**.

Double-clicking on selected objects or simultaneous holding the Alt+Enter buttons recalls dialogs for editing properties of particular objects. Most dialogs support **multiple editing**, i.e., if edit boxes with different values remain empty, the original values will not change. This feature allows for example *Z*-coordinates of multiple selected points to be changed, while leaving the *X*-and *Y*-coordinates unchanged.

When different objects are selected simultaneously (e.g., points and curves), double clicking causes a dialog window to appear from which objects can be selected for editing.

8.1.6. Pop-up Menus

Context-sensitive menus with useful commands for a particular object can be called from the **View** window when clicking the right mouse button. While the commands are accessible also from the main menu, right-clicking the mouse is much faster. Menus for multiple selections that may contain different types of objects operate in the same way. When the right mouse button is clicked a default menu will appear when no object is close to the cursor.

When one clicks with the right mouse button on the view window, the pop-up menu of Figure 81 will appear. This menu will allow users to

- a) select different views (*View*), i.e., Isometric, in *X*-direction, in *Y*-direction, in *Z*-direction, Reverse *X*-direction, Reverse *Z*-direction, or a perspective view.
- b) select *Numbering* (turns on and off the display of numbering for objects selected under *Numbering Options* on the **Navigator Bar**).
- c) go quickly to various *Numbering Options* (this command will bring the **Navigator Bar** to the View Tab on Numbering).
- d) switch Full Rendering/Wire Rendering (see 8.1.4).
- e) start the Autorotate function that will rotate the transport domain in the View window
- f) call the Show Work Plane, i.e., to show the axis and the origin of the Work Plane
- g) call the **Set Grid and Work Plane** dialog window (Fig. 78) (*Set Grid and Work Plane*)
- h) select the *Coordinate System* (call the List of Available Coordinate Systems dialog window), and
- i) call the **Display Options** dialog window (Fig. 74)

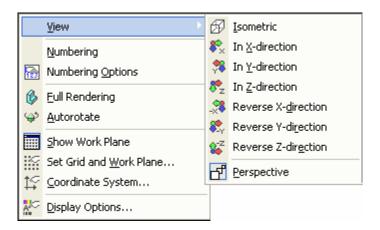


Figure 81. The Pop-up Menu from the View window.

8.1.7. Drag and Drop

By clicking and holding the left mouse button on selected objects in the **View** window, the **Drag and Drop** operation is started. This operation allows selected objects to be moved to a new location. Simultaneous holding the Ctrl keyboard button leads to the creation of a copy of the selected object. The copy can be moved into a different view, or in a different open project. The operation terminates by holding the Esc button or by clicking the right mouse button. **Drag and Drop** can be used for most geometric objects, but also forh auxiliary objects such as comments, labels, and bitmaps.

Holding the Shift button during the **Drag and Drop** operation leads to movement of selected objects in a direction perpendicular to the current **Working Plane** (available only for three-dimensional objects).

8.1.8. Sections

Sections serve do divide complex objects (models) into simpler parts. Only the simpler parts are then displayed in the **View** window while the remaining parts are hidden. Two types of sections exists: those for geometric objects and those for the FE-Mesh. New sections for both types can be created and named, a list of which is displayed on the **Section Tab** of the **Navigator Bar**. Clicking on the **Section** of the **Navigator Bar** causes the **Section** to be displayed in the **View** window. Multiple **Sections** can be displayed simultaneously by holding the "Shift" button during the selection. Undesired (to be displayed) parts can be cut off and hidden from the **View** window using the **Cut with Rectangle** command. This leads to a temporary section that is remembered by the program and renewed after the project is closed and reopened. New **sections** can be named and listed in the **Navigator Bar** by using commands to create new sections. The simplest command is the **New Section from View** command, which creates a newly named **section** from currently selected objects or the FE-Mesh. The **Display All** and **Display whole FE-mesh** commands causes the entire computational domain or FE-Mesh to be displayed.

8.2. Navigator Bars

The **Navigator Bar** (Fig. 82) is by default located on the right side of the HYDRUS main window. A user can, however, move the **Navigator bar** to other positions. The **Navigator Bar** has three Tabs:

- a) A **Data Tab** to allow quick access to all input and output data. Input data include *Domain Geometry, Flow Parameters, FE-Mesh, Domain Properties, Initial* and *Boundary Conditions,* and *Auxiliary Objects.* Output data include various *Results.* Data are organized in a tree-like structure. Figure 82 shows *Data* with expanded *Domain Properties* on the left and *Results* in the middle.
- b) A **View Tab** (on the right of Figure 82) to specify what and how information will be displayed in the *View window*, and
- c) A Sections Tab to show various Sections (not shown here and defined elsewhere).

View Options on the View Tab of the Navigator Bar at first mirror more or less the Project Data, i.e., View Options exists for Domain Geometry, FE-Mesh, Domain Properties, Initial and Boundary Conditions, and Results. Users can then select which objects (Domain Geometry objects, Domain Properties objects, FE-Mesh objects, such as nodes, edges, triangles, and tetrahedrals) are to be numbered (Numbering), display Auxiliary Objects, and initiate Rendering (Outline, transparent, filled). Users can also select the Graph Type (Isolines, Contours with or without Separation Lines, and Color Edges, Color Points, and Velocity Vectors) and Color Scale (either with or without Min/Max glob. in time or Min/Max glob. in space). Finally, Lighting can be turned on or off; the location of light sources can be shown (Show Light Sources), and the location of lights can be selected (Light Switches).

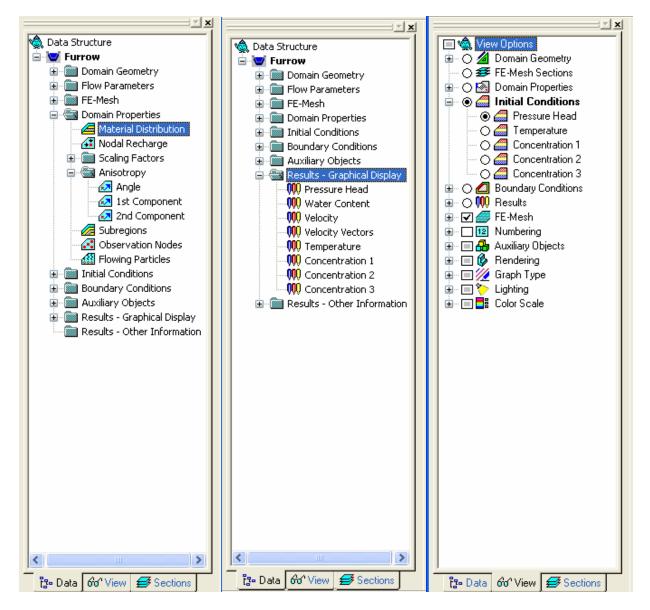


Figure 82. Selected Navigator Bars (Data Tabs on the left and in the middle, the View Tab on the right).

8.3. Edit Bars

The **Edit Bar** is by default located on the right side of the HYDRUS main window. A user can, however, move the **Edit Bar** to other positions. The **Edit Bar** is very dynamic since it changes depending upon the process being carried out. Figure 83 shows the **Edit Bars** for different processes, i.e., for the Material Distribution in the *Domain Properties*, the Water Flow *Boundary Conditions*, the Pressure Head *Initial Conditions*, and the Water Content *Results*.

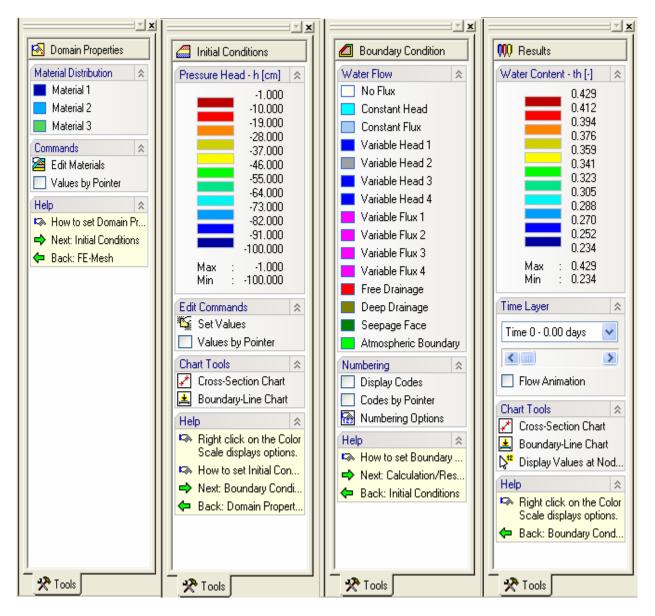


Figure 83. Selected Edit Bars (from left to right) for Material Distribution in Domain Properties, Water Flow Boundary Conditions, Pressure Head Initial Conditions, and Water Content Results.

As an example, the **Edit Bar** for **Domain Properties** and **Material Distribution** displays materials that can be assigned to selected nodes (in this case Materials 1, 2, and 3), the Command **Edit Materials** (which calls the **Water Flow Parameters** dialog window, Fig. 19), the command **Values by Pointer** (which displays the material number for a node closest to the cursor), and **Help**. The **Help** part of the **Edit Bar** usually contains help on a particular process (*How to ...*), and the direction of the data inputting process (next or backwards).

The Edit Bar for Boundary Conditions and Water Flow displays the various boundary conditions that can be specified along boundaries of the transport domain, as well the command **Display Codes** (which displays boundary codes for all boundary nodes in the View window), the command **Codes by Pointer** (which displays boundary codes only for the node closest to the cursor), **Numbering Options** (which changes the **Navigator Bar** to the **View** Tab and *Numbering* option), and **Help** (which is similar as discussed above).

The Edit Bar for Initial Conditions and Pressure Head - h displays a color spectrum that is used to draw the initial conditions, and lists the minimum and maximum values that are used in the entire domain. This Edit Bar also includes:

- a) Edit Commands: Set Values and Values by Pointer. When nodes for which the initial conditions are to be specified are already selected, then the Set Values command calls the Water Flow Initial Condition dialog window (Fig. 69). When no nodes are selected, then clicking on the Set Values command causes a square cursor to appear, which may be used to select particular nodes, after which the Water Flow Initial Condition dialog window appears. The command Values by Pointer again displays the initial pressure head of the node closest to the cursor.
- b) Two **Chart Tools** commands: The **Cross-Section Chart** and the **Boundary-Line Chart**. The **Cross-Section Chart** command allows users to display a particular variable between any two points of the transport domain. The **Boundary-Line Chart** command allows users to display a particular variable between any two points on the boundary of the transport domain, or along any line that is drawn along edges of finite elements within the transport domain. This line hence does not have to be straight, but can turn in any direction along finite element edges.
- c) The **Help** commands as before.

The **Edit Bar** for **Results** and **Water Content** displays, similarly as for the initial conditions, a spectrum that is used to draw results, and the minimum and maximum values for the entire domain. This bar further includes

- a) A **Time Layer** command to specify which time layers (corresponding to print times specified in the **Output Information** dialog window, Fig. 16) are to be displayed. Time layers can be chosen either from the list box, or from a scroll bar. It is also possible to perform animation of results by clicking on the **Flow Animation** check box.
- b) Two Chart Tools commands (Cross-Section Chart and Boundary-Line Chart), which have the same purpose as above for the initial condition. The last command (i.e., Display Values at Nodes) again causes the value of a particular variable (e.g., water content) of the node closest to the cursor do be displayed.

c) The **Help** command. One useful feature of the **Help** command here is the *Right click on the Color Scale displays options* (a right-click displays the **Edit Isoband Value and Color Spectra** dialog window, Fig. 75). Right-clicking results in the display of the popup menu (Fig. 84) that allows users to choose different display options, such as *Color Smoothing*, *Isolines*, and *Isobands*. These options are defined in more detail below.

Figure 84. The Color Scale Display Options menu.

Color Smoothing	Colors are by default constant between isolines, but change abruptly at the isoline. Colors change gradually when this option is checked.
Min/Max Global in Time	The minimum and maximum values for the color spectrum are selected based on minimum and maximum values of a certain variable during the entire simulation.
Min/Max Global in Space	The minimum and maximum values for the color spectrum are selected based on minimum and maximum values of a certain variable in the entire transport domain (even when only part of the domain is displayed, e.g., one horizontal layer).
Standard Scale	Users can select between a standard or user-defined scale.
Custom Scale	Users can select between a standard or user-defined scale.
Edit Scale and Colors	Calls the Edit Isoband Value and Color Spectra dialog window (Fig. 75).
Isolines	Displays a selected variable using isolines.
Color Contours	Displays a selected variable using isobands (color spectrum).
Color Points	Displays a selected variable using color points.
Color Edges	Displays a selected variable using color edges.
Velocity Vectors	Displays velocities using velocity vectors.

Figure 85 shows two more **Edit Bars**, i.e., those for *Domain Geometry* and *FE-Mesh*. The **Insert Object** of the **Domain Geometry Edit Bar** allows users to **Insert Objects** with which a transport domain is defined (i.e., points, lines, arcs, circles, splines, surfaces), as well as auxiliary objects such as dimensions and comments. The **Edit Objects** part allows objects to be edited using various actions, such as *Move*, *Copy*, *Rotate*, and *Mirror*. This **Edit Bar** also provides **Help** on how to *Edit Domain Geometry*, and to *Check Domain Definition*.

The **FE-Mesh Edit Bar** allows quick access to various commands needed for editing and generating the finite element mesh (**Edit FE-Mesh**), such as the *FE-Mesh Generator* (Fig. 56), *FE-Mesh Parameters* (Figs. 59 through 62), *Insert Mesh Refinement* (Fig. 63), *Delete All Refinements, Generate FE-Mesh, Delete FE-Mesh*, and *FE-Mesh Information* (Fig. 66). The **FE-Mesh Edit Bar** also allows users to generate the finite element mesh step by step (**FE-Mesh Advanced**), i.e., using individual steps such as *Fundamental Triangulation, Mesh Refinement, Delaunay Retriangulation, Convex Retriangulation*, and *Mesh Smoothing*. This **Edit Bar** additionally provides tools to work with **FE-Mesh Sections** and **Help**.

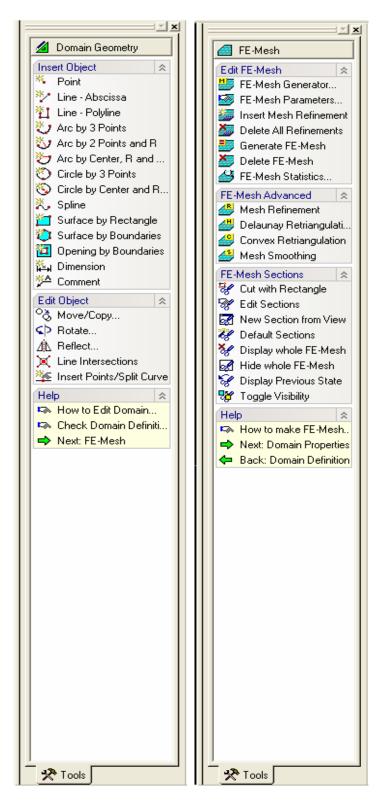


Figure 85. Selected Edit Bars (for Domain Geometry and FE-Mesh).

8.4. Toolbars

Users can use various **toolbars** that allow an easy access to the most frequently used commands. These commands are grouped into five toolbars that can be displayed using the command *View*->*Toolbars* (Fig. 86). Users can also create their own toolbars and customize them in various ways using the **Customize** dialog window (Fig. 87).

Toolbars	×
Toolbars:	
▼ Standard ▼ Tools ▼ View	<u>N</u> ew
I View I GUI I Time Layer	C <u>u</u> stomize
	<u>R</u> eset
Toolbar name:	<u>H</u> elp
Standard	
✓ Show Tooltips	Cool Look

Customize		X
Toolbars Commands Categories: File Edit View Insert Tools Window Calculation	Buttons * * * * * * * * * * * * * * * * * * *	
Select a category, the any toolbar Description	en click a button to see its description. Drag the button to OK Cancel Help	

Figure 87. The Customize Toolbars dialog window.

The default toolbars (i.e., **Standard Toolbar**, **Tools Toolbar**, **View Toolbar**, **GUI Toolbar**, and **Time Layer Toolbar**) are briefly summarized below (definitions in each case are from left to right).

a) Standard Toolbar:

New Project Open a Project	Creates a new project. Opens an existing project (represented by the <i>project name</i> .h3d file)
1 5	
Save Project	Saves the input data of the current project specified in the main program module if the data were either newly created or changed during an application run.
Project Data Manager	Calls the project manager to manage data of existing projects; helps to locate, open, copy, delete or rename the desired projects and their data (Figs. 2 and 3).
Print (Ctrl+P)	Prints the content of the View window.
Navigator Window	Displays or hides the Navigator Window.
Edit Bar	Displays or hides the Edit Bar.

b) Tools Toolbar:

🗠 🗠 🖉 🐨 🎆 📲 🗐 🖊 🏘 🧔

Undo	Reverses the last edit actions.
Redo	Repeats the last edit actions.
Select by Rhomboid	Selects objects using rhomboid.
Grid and Work Plane Setting	s Calls the Grid and Work Plane dialog window (Fig 78).
Show Grid	Shows a Work Plane (axis and origin of the grid) in the View
	window.
Set Grid Origin	Redefines the origin of the grid.
Snap to Grid	Mouse moves in steps given by the grid.
Set XY-Work Plane	Sets Work Plane to the XY plane.
Set YZ-Work Plane	Sets Work Plane to the YZ plane.
Set XZ-Work Plane	Sets Work Plane to the XZ plane.

c) View Toolbar:

🗑 🗑 🕄 🔍 🔍 🕼 📽 🤻 🗗 🗗 🕀 🔍 🖉 目

Rotate ViewAllows objects in the View windows to be rotated using the mouse
while holding the left mouse button.Scroll ViewAllows moving (scrolling) of objects in the View window using
the mouse while holding the left mouse button.

Zoom View Allows zooming of objects in the View window using the mouse while holding the left mouse button.

Similar functions can be achieved by pressing various buttons on the keyboard. **Rotating** is achieved by holding simultaneously the **Ctrl** button on the keyboard and the left mouse button. **Scrolling** occurs by holding simultaneously the **Shift** button on the keyboard and the left mouse button. And finally, **zooming** is achieved by holding simultaneously the **Alt** button on the keyboard and the left mouse button.

Zoom by Rectangle	Zooms in on a certain part of the View window using a rectangle.					
View All	Shows the default view of the View window.					
Previous view	Shows the previous view of a certain part of the View window.					
In Reverse Z-direction	Sets the view of the transport domain in the reverse Z-direction.					
View Commands	Shows a pop-up menu with the following commands:					
	Isometric					
	In X-direction					
	In Y-direction					
	In Z-direction					
	In Reverse X-direction					
	In Reverse Y-direction					
	In Reverse Z-direction					
	Perspective					
	Default View					
Isometric View	Specifies the isometric view.					
Perspective View	Specifies the perspective view.					
View Stretching Factors	Calls the View Stretching Factors dialog window (Fig 79).					
Rendering Commands	Displays a menu with three commands on how to display the					
-	transport domain (see 8.1.4):					
Full Model	Displays the transport domain as a full object.					
Transparent Model	Displays the transport domain as a transparent object.					
Wire Model	Displays the transport domain as a wired object.					
Sections Commands	Displays a menu with nine commands for editing sections:					
Cut with Rectangle						
Cut with Indexes						
Create New Section	i from Selection					
Create New Section	a from Current View					
Display All						
Display Previous						
Display only Select	ion					
Display Reverse						
Edit Section						
Graph Type Commands	Displays a menu with five commands.					
Isolines	Displays the spatial distribution of a certain variable by means of isolines.					
Color Contours	Displays the spatial distribution of a certain variable by means of color contours.					

Color Points	Displays the spatial distribution of a certain variable by means of color points.				
Color Edges	Displays the spatial distribution of a certain variable by means of color edges.				
Velocity Vectors	Displays Darcy velocity vectors.				
Color Scale Options	Displays menu with seven commands:				
Color Smoothing					
Surface Lighting					
Min/Max Values Glo	bal in Time				
Min/Max Values Glo	bal in Space				
Standard Scale					
Custom Scale					
Edit Scale and Color	S				

d) GUI Toolbar:

View/Edit Domain Geometry	Sets the View window to View/Edit Domain Geometry mode.
View/Edit FE-Mesh	Sets the View window to View/Edit FE-Mesh mode.
View/Edit Domain Properties	Sets the View window to View/Edit Domain Properties mode, to edit materials.
View/Edit Initial Conditions	Sets the View window to View/Edit Initial Conditions mode, to edit pressure head initial conditions.
View/Edit Boundary Conditions	Sets the View window to View/Edit Boundary Conditions mode, to edit water flow boundary conditions.
Execute Calculation	Executes a HYDRUS version 3.0 FORTRAN application.
View Results	Sets the View window to View Results mode, to view the pressure head distribution.

e) Time Layer Toolbar:

Time 1 - 0.20 days 🛛 🖌 🖌 🖌 💌

List box of Time LayersDisplays a list box with Time Layers for which results are
available.First Time LayerDisplays the first time layer.Previous Time LayerDisplays the previous time layer.Next Time LayerDisplays the next time layer.Last Time LayerDisplays the last time layer.Flow AnimationDisplays time layers of a particular variable consecutively and
continuously.

8.5. HYDRUS Menus

The main window of HYDRUS contains a menu that has ten submenus, i.e., File, Edit, View (Fig. 88), Insert, Calculations, Results (Fig. 89), Tools, Options, Windows, and Help (Fig. 90). Table 12 lists the main groups, the main menu items, as well as the main submenu and subsubmenu commands. Table 13 then provides brief descriptions of all menu commands.

	File	Edit	View	Insert	Calculation	Re	Edi	t View	Insert	Calculation	Resu	Viev	v Insert	Calculation	Results	Tools	Ор
-	Ľ	<u>N</u> ew					<u>E</u>	<u>U</u> ndo		Ctrl	+ Z		<u>G</u> eometry				
	P	<u>O</u> pen						<u>R</u> edo		Ctrl +	⊦ A		<u>F</u> E Mesh				
		<u>C</u> lose					P2	<u>C</u> opy		Ctr	l+C		<u>D</u> omain Pr	roperties			
1	H	<u>S</u> ave					ß	<u>P</u> aste		Ctr	l+V		Initial Cor				
	ŀ	Save <u>A</u>	s					Select			•			Conditions			
	Ø	Save A					15	Propertie	es	Alt+Er	nter	00 0	<u>R</u> esults				
		Save S	pecial)		Fin <u>d</u>				H.	<u>N</u> avigator				
		<u>I</u> mport	and Ex	port)	\times	Delete			Del	-	<u>E</u> dit bar				
	8	<u>P</u> rint			Ctrl+	·P		Delete A				~	<u>S</u> tatus ba	r			
		Print Pr	e <u>v</u> iew					Domain	Geometr	v	•	*	<u>T</u> oolbars.				
		Print to	the Cli	p <u>b</u> oard	Ctrl+	C				, ort Parameter	s +	*		oolbars			
		P <u>r</u> int O	ptions					FE-Mesh	-		•	×	⊆ustomize	e toolbars			
		Printer	Set <u>u</u> p	•				Domain	Propertie	es	•	$\overline{\mathbf{z}}$	St <u>a</u> ndard	View			
ł		Project	<u>I</u> nform	nation				Initial co	ndition		•	Q	Zoom by F	Rectangle			
		Project	<u>M</u> anag	jer				Boundar	y Condit	ions	•	\otimes	⊻iew All				
		1 C:\U	SSL\\	3D_Test	s\Test2.H3D			Sections			•	Q	Previous V				
		<u>2</u> C:\U	5SL\\	Furrow.H	H3D			Cross-Se	ections		+	<u>8</u>		/iew (Scroll, Z	loom , Rot	ate)	
		<u>3</u> C:\U	SSL\\	3D_Test	s\Dike.H3D			<u>A</u> uxiliary	Objects		•	÷	View <u>S</u> tre	-			
		4 C:\U	5SL\\	Dike_1.⊦	H3D		T					ď					
		<u>5</u> C:\U	SSL\\	3D_Test	s\Test8.H3D							*	Auto-Rota				
					s\Test6.H3D								<u>V</u> iew in Di	rection			•
					(\001.H3D								List Boxes	for Inverse	Data		
		8 C:\U	SSL\\	ANNEMIE	EK\000.H3D												
	_	E <u>x</u> it			Ctrl+F	4											

Figure 88. The HYDRUS Menus I (File, Edit, and View).

Inse	ert Calculation Results	r Calo	ulation	Results	Tools	Options	D	Res	sults	Tools	Options	Window
	Domain Geometry	1	FE-Mes	h <u>P</u> aramet	ers				Displa	ay Quan	itity	•
	FE-Mesh <u>R</u> efinement	₩	<u>G</u> enera	te FE-Mes	h				Boun	dary Inf	formation	•
	Domain Properties	Š	<u>D</u> elete	FE-Mesh								
	Initial condition	₩	FE-Mes	h <u>S</u> tatistic	s						Points	
	Boundary Conditions	-25	FE-Mes	h Subtrac	tion					·	: Propertie ormation .	
	Cross-Sections		<u>A</u> dvano	ed FE-Me	sh Gene	ration	۲				ormauon . Informati	
	Mesh Line	65	Run HY				-					
	Auxliary Objects	P 1	Zanni	DRODIN			_				put to ASC ion Result	
									Inver	se solut	ION RESUL	5
									Time	Layer		•
									Chart	S		•
									Flowir	ng Parti	cles	•

Figure 89. The HYDRUS Menus II (Insert, Calculations, and Results).

Tools Options \	Window He	r Optior	ns Developers	Window	Wine	dow Help	
Ehow Grid		E	endering Mode	•	۲.	New <u>W</u> indow	
📋 Snap to Grid		G	araph Type			Arrange <u>S</u> ymbols	5
🐼 Grid and Work	Plane		isplay Options	•	80	Main and Second	dary
Define Work Pla	ane 🕨 🕨	Dig P	Program Options	.		Tile <u>H</u> orizontally	
☆ <u>C</u> oordinate Sys	tem					Tile <u>V</u> ertically	
Color <u>S</u> cale	+				٩.	<u>C</u> ascade	
<mark>∿a</mark> <u>T</u> ranslate					鸖	Close Al <u>l</u>	
Parate					~	<u>1</u> 0001*, Domair	Properties, Material Distribution
<u>⊿∖</u> ⊾ <u>M</u> irror					_		
💢 Intersect Lines			Help				-
Split Lines	•		<u>Contents</u>				
Insert <u>P</u> oints or	n Line 🔹 🕨		Hydrus-3D I	License a	nd A	ctivation	
🔊 Check Geometr	у		<u>About Hydro</u>	us-3D			
			System Info	rmation			

Figure 90. The HYDRUS Menus III (Tools, Options, Windows, and Help).

Gr	oup	Menu	Submenu	Sub-Submenu
A	File	New Open Close		
		Save Save As Save All Save Special	Do not Overwrite TMP files Save to Catalog	3
		Import and Export	Import Hydrus-2D Project Import Input Data from *.IN Export Data for Hydrus Sol	
		Print Print Preview Print to the Clipboard Print Options Print Setup		
		Project Information Project Manager		
		Recent Files		
		Exit		
B	Edit	Undo Redo		
		Copy Paste		
		Select Properties Find	Select by Rhomboid	
		Delete Delete All		
		Domain Geometry	Geometry Information Geometry Definition Points Lines Surfaces Openings Thickness Vectors Solids	
		Flow Parameters	Main Processes Inverse Solution Time Information Output Information Water Flow Parameters	Iteration Criteria Hydraulic Properties Model Soil Hydraulic Parameters

Table 12. HYDRUS menu commands.

		Solute Transport Parameters	Anisotropy Tensors General Information Solute Transport Parameters Solute Reaction Parameters Temperature Dependence
		Heat Transport Parameters Root Water Uptake	Root Water Uptake Models Pressure Head Reduction Osmotic Head Reduction
		Variable Boundary Condition Data for Inverse Solution	
FE-Mesh	1	FE-Mesh Generator FE-Mesh Parameters Generate FE-Mesh Delete FE-Mesh FE-Mesh Statistics Advanced FE Mash Generatio	n Fundamental Triangulation
		Advanced FE-Mesh Generatio	Mesh Refinement Homogeneous Triangulation Check of Convexity Mesh Smoothing
Domain	Properties	Material Distribution	inesh shiotuning
		Root Distribution	
		Nodal Recharge Scaling Factor	Hydraulic Conductivity
			Pressure Head
			Water Content
		Local Anisotropy	Angle First Component
			First Component Second Component
		Subregions	Second Component
		Observation Nodes	Edit
			Delete Clear All
		Drains	Edit
			Delete
			Clear All
		Flowing Particles	Edit Delete
			Clear All
		Stochastic Distribution of S.F. Subregions = Material Distribu Nonequilibrium Conc. = a * E Parameters for Root Distribution Default Domain Parameters	quil. Conc.
Initial Co	onditions	Pressure Head/Water Content	
		Concentration Nonequilibrium Concentration Temperature Import	L
Boundar	y Conditions	Water Flow Solute Transport Heat Transport	
Sections		Edit Sections	

	New Section from Selection
	New Section from View
	Display All
	Display Previous
	Display only Selection
	Display Reverse
	New Section by Rectangle
	New Section by Indexes
Cross-Sections	Edit
	Delete Selected
	Delete All
Auxiliary Objects	Dimensions

Comments

Delete Selected Delete All Edit Delete Selected Delete All

		Textures		
C	View	Geometry FE Mesh Domain Properties Initial Conditions Boundary Conditions Results		
		Navigator Edit Bar Tabs in View Status Bar		
		Toolbars Arrange Toolbars Customize Toolbars		
		Standard View Zoom by Rectangle View All Previous View Dynamic View (Scroll, Zoom, Ro View Stretching Perspective Auto-Rotate	otate)	
		View in Direction	Isometric In X-direction In Y-direction In Z-direction Reverse X-direction Reverse Y-direction Reverse Z-direction	
		List Boxes for Inverse Data		
D	Insert	Domain Geometry	Points	Graphically Dialog Read from File
			Lines	Line Polyline

	Surfaces	Arc Circle Spline Graphically Graphically - Rectangle
	Openings	Dialog Graphically Dialog
	Thicknesses	Graphically Dialog
	Solids	Graphically Graphically - Brick Dialog
FE-Mesh Refinement	Graphically Dialog	U
Domain Properties	Material Distribution Root Distribution Nodal Recharge Scaling Factor	Hydraulic Conductivity Pressure Head Water Content
	Local Anisotropy	Angle First Component Second Component Index
	Subregions Observation Nodes Drains	
Initial Conditions	Flowing Particles Pressure Head/Water Content Concentration Nonequilibrium Concentration Temperature	
Boundary Conditions	Import Water Flow	No Flux Constant Head Constant Flux Seepage Face Variable Head 1-4 Variable Flux 1-4 Free Drainage Deep Drainage Atmospheric Boundary
	Solute Transport	First-Type Third-Type Volatile Type
	Heat Transport	First-Type Third-Type
Cross-Sections	Graphically Dialog	
Mesh Line	Graphically Dialog	
Auxiliary Objects	Dimension Comment Texture	

Ε	Calculation	FE-Mesh Parameters Generate FE-Mesh Delete FE-Mesh FE-Mesh Statistics FE-Mesh Subtraction Advance FE-Mesh Generation Run HYDRUS	
F	Results	Display Quantity	Pressure Heads Water Content Concentration Nonequilibrium Concentration Temperature Velocity
		Boundary Information	Pressure Heads Boundary Fluxes Cumulative Fluxes Solute Fluxes
		Observation Points Soil Hydraulic Properties Run Time Information Mass Balance Information Convert Output to ASCII Inverse Solution Results	
		Time Layer	First Last Previous Next
		Charts	Animation Cross-Section Boundary Line Mesh Line
		Flowing Particles	Draw Particles Positions Draw Particles Trajectories
G	Tools	Show Grid Snap to Grid Grid and Work Plane Define Work Plane	Set Origin Define XY Define YZ Define XZ
		Coordinate System Color Scale	Standard Custom Color Smoothing Edit Color Scale
		Move/Copy Rotate Mirror Intersect Lines	
		Split Lines	Graphically n Pints Distance
		Insert Points on Line	Graphically n Pints

			Distance
		Check Geometry	
Н	Options	Rendering Mode	Full Model Transparent Model Wire Model
		Graph Type	Izolines Color Contours Color Points Color Edges
		Display Options	Velocity Vectors Edit Default Read Save As
		Program Options	
Ι	Windows	New Window Arrange Symbols Main and Secondary Tile Horizontally Tile Vertically Cascade Close All	
J	Help	Contents Hydrus License and Activation About Hydrus System Information	

Group	Command	Brief description of the command
A	File	
	New	Creates a new project after user provides required information (name and description) in the New Project dialog window (Fig. 4). Project will be located in the current Workspace.
	Open	Opens an existing project (represented by the <i>project_name</i> .h3d file) using the Open dialog window, which a user uses to browse for the HYDRUS project.
	Close	Closes an open project.
	Save	Saves the input data of an actual project specified in the main program module if the data were either newly created or changed during an application run.
	Save As	Saves data of a particular project under a new project name using Save As dialog window.
	Save All	Saves data of all projects.
	Save Special	
	Do not Overwrite TMP files Save to Catalog	Saves the project without overwriting temporary files. Saves the project to catalog from which projects can be used in other applications.
	Import and Export	
	Import Hydrus-2D Project Import Input Data from *.IN Files	Imports Hydrus-2D projects from Version 2.0. Import input data from *.in files that may have been modified manually outside of the HYDRUS GUI.
	Export Data for Hydrus Solver	Export data for the HYDRUS solver into the working directory from which the computational module reads inputs and into which it writes outputs.
	Print	Prints the content of the View window.
	Print Preview	Previews the content of the View window before printing.
	Print to the Clipboard	Copies the content of the View window to the clipboard for
	Print Options	subsequent pasting into other software packages. Select various print options, such as print quality, text size, frame, and text content (Fig. 94).
	Print Setup	Selects a printer and printer connection.
	Project Information	Displays information about the current project (in the General Data dialog window (Fig. 4)).
	Project Manager	Calls the Project Manager (Figs. 2 and 3) to manage data of existing projects; helps to locate, open, copy, delete or rename the desired projects and their data.
	Recent Files	Displays recently opened projects.
	Exit	Closes open projects and leaves the program. This command informs users before exiting the application whether or not the input data of open projects were changed during the application run. If changes did occur, users are given an option to save data before exiting the application.

Table 13. Brief description of HYDRUS menu commands.

B Edit

Undo Redo	Reverses the last edit action. Repeats the last edit action.
Copy Paste	Copies a selected object. Pastes a selected object.
Select by Rhomboid Properties Find	Selects objects by means of a rhomboid. Displays properties of a selected object. Finds an object.
Delete Delete All	Deletes a selected object. Deletes all objects.
Domain Geometry	
Geometry Information	Specifies whether the flow and transport problem occurs in a two- or three-dimensional transport domain, and whether the domain is simple or complex using the Geometry Information dialog window (Fig. 6).
Geometry Definition	Specifies parameters (dimensions and slopes) for simple rectangular or hexahedral transport domains using the Rectangular (Fig. 10) or Hexahedral Domain Definition (Fig. 11) dialog windows.
Points	Edits selected points.
Line	Edits selected lines using the Edit Curve dialog window (Fig. 35).
Surfaces	Edits selected surfaces.
Openings	Edits selected openings.
Thickness Vectors Solids	Edits selected thickness vectors. Edits solids.
Flow Parameters	
Main Processes	Selects the processes to be simulated, i.e., water flow, multiple solute transport, heat transport, and/or root water uptake (the Main Processes dialog window (Fig. 12)).
Inverse Solution	Selects type of weighting of measured data, and whether soil hydraulic parameters, solute transport parameters, and/or heat transport parameters, are to be fitted (the Inverse Solution dialog window (Fig. 13)).
Time Information	Selects time units, and gives the time discretization information (the Time Information dialog window (Fig. 15)).
Output Information	Specifies print options (The Output Information dialog window (Fig. 16)).
Water Flow Parameters	
Iteration Criteria	Specifies iteration criteria for the solution precision and parameters for the time step control (The Iteration Criteria dialog window (Fig. 17)).
Hydraulic Properties Model	Selects the type of model used for the soil hydraulic properties, and decides whether hysteresis is to be considered (the Soil Hydraulic Model dialog window (Fig. 18)).
Soil Hydraulic Parameters	Specifies parameters in the soil hydraulic model (the Water Flow Parameters dialog window (Fig. 19)).
Anisotropy Tensors	Defines anisotropy tensors for three-dimensional applications (the Tensors of Anisotropy dialog window (Fig. 21)).
Solute Transport Parameters	
General Information	Selects the time and spatial weighting schemes for numerical solution of the solute transport equation; specifies the number of solutes to be considered (the Solute Transport dialog window (Fig. 22)).

Solute Transport Parameters	Specifies solute transport parameters (the Solute Transport Parameters dialog window (Fig. 23)).
Solute Reaction Parameters	Specifies solute reaction parameters (the Solute Reaction Parameters dialog window (Fig. 24)).
Temperature Dependence	Specifies parameters defining the temperature dependence of reaction and transport parameters (the Temperature Dependent Solute Transport and Reaction Parameters dialog window shown in Figure 25).
Heat Transport Parameters	Specifies heat transport parameters (the Heat Transport dialog window; Fig. 26).
Root Water Uptake Root Water Uptake Models	Selects the root water uptake stress response models for both salinity and water stress (the Root Water Uptake Model dialog window, Fig. 27).
Pressure Head Reduction	Specifies parameters in the root water uptake water stress response model (the Root Water Uptake Parameters dialog window; Fig. 28).
Osmotic Head Reduction	Specifies parameters in the root water uptake salinity stress response model (the Root Water Uptake Parameters dialog window; Fig. 29).
Variable Boundary Condition	Specifies time-dependent boundary conditions for all transport processes (the Time Variable Boundary Conditions dialog window; Fig. 31).
Data for Inverse Solution	Specifies data for the inverse solution, their type, location and associated weight (the Data for Inverse Solution dialog window; Fig. 14).
FE-Mesh	
FE-Mesh Generator	Selects the structured or unstructured finite element mesh generator (the Finite Element Mesh Generator dialog window; Fig. 56).
FE-Mesh Parameters	Specifies either parameters of the Unstructured Finite Element Mesh Generator (the FE-Mesh Parameters dialog window; Figs. 59 through 62) or parameters of the structured mesh (the Rectangular Domain Discretization dialog window (Fig. 57) or the Hexahedral Domain Discretization dialog window (Fig. 58)).
Generate FE-Mesh	Generates unstructured finite element mesh.
Delete FE-Mesh	Deletes unstructured finite element mesh.
FE-Mesh Statistics	Provides information about finite element mesh (the FE-Mesh Information dialog window (Fig. 66).
Advanced FE-Mesh Generation	
Fundamental Triangulation	Performs triangulation of boundary nodes based on the Delaunay criterion.
Mesh Refinement	Inserts a new point in the center of all triangles that do not fulfill the smoothness criterion.
Retriangulation	Retriangulates mesh according to Delaunay criterion.
Check of Convexity	Corrects possible errors which may appear during smoothing and retriangulating.
Mesh Smoothing	Smoothes the mesh by solving a set of coupled elliptic equations using a recursive algorithm.
Domain Properties	
Material Distribution	Specifies the spatial distribution of soil materials.
Root Distribution	Specifies the spatial distribution of root water uptake.
Nodal Recharge	Specifies the spatial distribution of nodal recharge.

Scaling Factor	
Hydraulic Conductivity	Specifies the spatial distribution of hydraulic conductivity scaling factors.
Pressure Head Water Content	Specifies the spatial distribution of pressure head scaling factors. Specifies the spatial distribution of water content scaling factors.
Local Anisotropy	
Angle	Specifies the spatial distribution of the angle of local anisotropy.
First Component	Specifies the spatial distribution of the first component of local anisotropy.
Second Component	Specifies the spatial distribution of the second component of local anisotropy.
Index	Specifies the spatial distribution of the index that represents the local anisotropy tensor.
Subregions	Specifies the spatial distribution of subregions for the mass balance calculations.
Observation Nodes	
Edit	Specifies observation nodes for output of the pressure head, water
Delete	content, temperature, and concentration at each time step. Deletes selected observation nodes.
Clear All	Deletes all observation nodes.
Drains Edit	Specifies nodal points representing tile drains.
Delete	Deletes selected tile drains.
Clear All	Deletes all tile drains.
Flowing Particles	
Edit	Specifies nodal points representing flowing particles.
Delete	Deletes selected flowing particles.
Clear All	Deletes all flowing particles.
Stochastic Distribution of S.F.	Generates a stochastic distribution of scaling factors.
Subregions = Material Distribution	Makes the subregions for mass balance calculations similar to those for the soil materials.
Nonequilibrium Conc. = a * Equil. Con	c. Specifies that nonequilibrium concentrations (i.e., kinetically sorbed
i energanieriani eener a Equin een	concentrations or concentrations in the immobile water) are a multiple of the liquid phase concentrations.
Parameters for Root Distribution	Specifies parameters for the spatial distribution of root water uptake.
Default Domain Parameters	Specifies default domain properties that are constant for the same depths (the Default Domain Properties dialog window; Fig. 68).
Initial Conditions	
Pressure Head/Water Content	Specifies the initial condition for water flow.
Concentration	Specifies the initial condition for solute transport (equilibrium concentrations).
Nonequilibrium Concentration	Specifies the initial condition for solute transport (nonequilibrium concentrations).
Temperature	Specifies the initial condition for heat transport.
Import	Imports the initial condition from previous simulations for water flow, and solute and heat transport.
Boundary Conditions	
Water Flow	Specifies boundary conditions for water flow.
Solute Transport	Specifies boundary conditions for solute transport.
Heat Transport	Specifies boundary conditions for heat transport.
Sections	

Edit Sections

New Section from Selection New Section from View Display All Display Previous Display only Selection Display Reverse

Cut with &Rectangle

Cut with &Indexes

Cross-Sections

Edit Delete Selected Delete All

Auxiliary Objects

Dimensions Delete Selected Delete All

Comments

Edit Delete Selected Delete All

C View

Geometry FE Mesh Domain Properties

Initial Conditions

Boundary Conditions

Results

Navigator Edit Bar Tabs in View Status Bar

Toolbars

Arrange Toolbars Customize Toolbars

Standard View

Zoom by Rectangle

Calls the FE-Mesh Section dialog (Fig. 67). HYDRUS recognizes two different definitions of Sections – one for geometrical objects and one for the FE-mesh. A different dialog appears when called from the "Domain Geometry" part of the program. In all other cases, the FE-mesh Section dialog appears. Creates a new section from currently selected objects/FE-Mesh Creates a new section from currently displayed objects/FE-Mesh Displays all objects or entire FE-Mesh Displays a previously displayed view (sections) Displays only currently selected objects/FE-Mesh Hides currently displayed objects/FE-Mesh and displays currently hidden objects/FE-Mesh Displays objects/FE-Mesh Displays objects/FE-mesh nodes within a certain rectangle or rhomboid and hides all the others Displays objects with given indexes and hides all the others

Edits a cross-section Deletes selected cross-sections Deletes all cross-sections

Deletes selected dimensions Deletes all dimensions

Edits a comment Deletes selected comments Deletes all comments

Sets the View window to View/Edit Domain Geometry mode. Sets the View window to View/Edit FE-Mesh mode. Sets the View window to View/Edit Domain Properties mode, to edit materials. Sets the View window to View/Edit Initial Conditions mode, to edit pressure head initial conditions. Sets the View window to View/Edit Boundary Conditions mode, to edit water flow boundary conditions. Sets the View window to View Results mode, to view pressure head distribution. Displays or hides the Navigator window. Displays or hides the Edit Bar. Displays or hides Tabs in the View window. Displays or hides the Status Bar. Selects which toolbars are to be displayed (the Toolbars dialog window, Fig. 86). Arranges toolbars. Customizes toolbars (the Customize Toolbars dialog window, Fig. Fig. 87). Sets a default viewing direction (in 3D) and performs the "View

All" command

Zooms in on a certain part of the View window using a rectangle.

View All	Changes a scroll position and a zoom factor so that all currently displayed objects are visible in the View Window. This command does not change the viewing direction.
Previous View	Shows the previous view on a certain part of the View window.
Dynamic View (Scroll, Zoom, Rotate)	Sets the View windows so that dynamic actions can be carried out
	with a cursor. Moving the cursor while holding the left mouse
	button allows the object to be displayed in a different part of the
	View window. Pressing the Shift button on the keyboard allow
	zooming actions around the cursor.
View Stretching	Calls the View Stretching Factors dialog window (Fig. 79) and
C	adjust stretching factors.
Perspective	Sets perspective view.
Auto-Rotate	Starts Autorotate function that will rotate the transport domain in
	the View window.
View in Direction	
Isometric	Sets isometric view.
In X-direction	Sets the view of the transport domain in the X-direction.
In Y-direction	Sets the view of the transport domain in the <i>Y</i> -direction.
In Z-direction	Sets the view of the transport domain in the <i>Z</i> -direction.
Reverse X-direction	Sets the view of the transport domain in the z-direction. Sets the view of the transport domain in the reverse X-direction.
Reverse Y-direction	Sets the view of the transport domain in the reverse X-direction.
Reverse Z-direction	Sets the view of the transport domain in the reverse 7-direction.
	1
List Boxes for Inverse Data	Shows text information in the inverse data list (the Data for Inverse
	Solution dialog window; Fig. 14).
Insert	
Domain Geometry Points	
Graphically	Inserts single points graphically.
Dialog	Inserts single points numerically (the Edit Point dialog window
	without the FE-Mesh tab; Fig. 34).
Read From File	Reads single point coordinates from a file.
Lines	
Line	Inserts a line either graphically or numerically (the Edit Curve
	dialog window without the FE-Mesh tab; Fig. 35).
Polyline	Inserts a polyline either graphically or numerically (the Edit Curve
5	dialog window without the FE-Mesh tab; Fig. 35).
Arc	Inserts an arc either graphically or numerically.
Circle	Inserts a circle either graphically or numerically.
Spline	Inserts a spline either graphically or numerically (the Edit Curve
-	dialog window without the FE-Mesh tab; Fig. 35).
Surfaces	Inserts a surface either graphically or numerically.
Openings	Inserts an opening either graphically or numerically.
Thicknesses	Inserts thicknesses either graphically or numerically.
Solids	Inserts solids either graphically or numerically.
FE-Mesh Refinement	Increte many FF much as Comment and Light (the FF Mark
Graphically	Inserts new FE-mesh refinement graphically (the FE-Mesh
Dialog	refinement dialog window; Fig. 63).
Dialog	Defines new FE-mesh refinement graphically (the FE-Mesh refinement dialog window; Fig. 63).
	remement dialog window, rig. 03).
Domain Properties	
Material Distribution	Specifies the spatial distribution of soil materials.

D

Root Distribution Nodal Recharge	Specifies the spatial distribution of root water uptake. Specifies the spatial distribution of nodal recharge.		
Scaling Factor			
Hydraulic Conductivity	Specifies the spatial distribution of the hydraulic conductivity scaling factors.		
Pressure Head Water Content	Specifies the spatial distribution of the pressure head scaling factors. Specifies the spatial distribution of the water content scaling factors.		
Local Anisotropy			
Angle	Specifies the spatial distribution of the angle of local anisotropy (for two-dimensional applications).		
First Component	Specifies the spatial distribution of the first component of local anisotropy (for two-dimensional applications).		
Second Component	Specifies the spatial distribution of the second component of local anisotropy (for two-dimensional applications).		
Index	Specifies the spatial distribution of anisotropy tensors (for three- dimensional applications).		
Subregions	Specifies the spatial distribution of subregions for mass balance calculations.		
Observation Nodes	Specifies observation nodes for output of the pressure head, water content, temperature, and concentration at each time step.		
Drains Flowing Particles	Specifies nodal points representing tile drains. Specifies nodal points representing flowing particles.		
Initial Conditions			
Pressure Head/Water Content	Specifies the initial condition for water flow.		
Concentration	Specifies the initial condition for solute transport.		
Nonequilibrium Concentration	Specifies the initial condition for nonequilibrium solute transport.		
Temperature	Specifies the initial condition for heat transport.		
Import	Imports initial conditions for water flow, solute transport, and/or heat transport.		
Boundary Conditions Water Flow			
No Flux	Specifies a no-flux boundary condition along a selected part of the boundary.		
Constant Head	Specifies a constant pressure head boundary condition along a selected part of the boundary.		
Constant Flux	Specifies a constant flux boundary condition along a selected part of the boundary.		
Seepage Face	Specifies a seepage face boundary condition along a selected part of the boundary.		
Variable Head 1-4	Specifies a variable pressure head boundary condition along a selected part of the boundary.		
Variable Flux 1-4	Specifies a variable flux boundary condition along a selected part of the boundary.		
Free Drainage	Specifies a free drainage boundary condition along a selected part of the boundary.		
Deep Drainage	Specifies a deep drainage boundary condition along a selected part of the boundary.		
Atmospheric Boundary	Specifies an atmospheric boundary condition along a selected part of the boundary.		
Solute Transport			
First-Type	Specifies a first-type boundary condition for solute transport along a selected part of the boundary.		

Third-Type

Volatile Type

Heat Transport First-Type

Third-Type

Cross-Sections Graphically

Dialog

Mesh Line

Graphically Dialog

Auxiliary Objects

Dimension Comment Texture

E Calculation

FE-Mesh Parameters

Generate FE-Mesh Delete FE-Mesh FE-Mesh Statistics

Advanced FE-Mesh Generation Fundamental Triangulation

Mesh Refinement

Retriangulation Check of Convexity

Mesh Smoothing

Run HYDRUS

F Results

Display Quantity

Pressure Head Water Content Velocity Concentration Nonequilibrium Concentration

Temperature

Boundary Information

Specifies a third-type boundary condition for solute transport along a selected part of the boundary. Specifies a volatile-type boundary condition for solute transport along a selected part of the boundary.

Specifies a first-type boundary condition for heat transport along a selected part of the boundary.

Specifies a third-type boundary condition for heat transport along a selected part of the boundary.

Inserts a cross-section graphically. Inserts a cross-section using the dialog window.

Inserts a mesh line graphically. Inserts a mesh line using the dialog window.

Inserts auxiliary object (dimensions). Inserts auxiliary object (dimensions). Inserts auxiliary object (texture).

Specifies either parameters of the Unstructured Finite Element Mesh Generator (the **FE-Mesh Parameters** dialog window; Figs. 59 through 62) or parameters of the structured mesh (the **Rectangular Domain Discretization** dialog window (Fig. 57) or the **Hexahedral Domain Discretization** dialog window (Fig. 58)). Generates the unstructured finite element mesh.

Deletes the unstructured finite element mesh.

Provides information about the finite element mesh (the **FE-Mesh Information** dialog window (Fig. 66).

Performs triangulation of boundary nodes based on the Delaunay criterion.

Inserts a new point in the center of all triangles that do not fulfill the smoothness criterion.

Retriangulates mesh according to Delaunay criterion.

Corrects possible errors which may appear during smoothing and retriangulating.

Smoothes the mesh by solving a set of coupled elliptic equations using a recursive algorithm.

Executes a HYDRUS version 3.0 FORTRAN application.

Displays results in terms of pressure heads.			
Displays results in terms of water contents.			
Displays results in terms of velocities.			
Displays results in terms of concentrations			
Displays results in terms of nonequilibrium concentrations			
(kinetically sorbed or in the immobile water)			
Displays results in terms of temperatures			

Pressure Heads

Boundary Fluxes

Cumulative Fluxes

Solute Fluxes

Observation Points

Soil Hydraulic Properties Run Time Information

Mass Balance Information Convert Output to ASCII Inverse Solution Results

Time Layer

First Last Previous Next Animation

Charts

Cross-Section

Boundary Line

Mesh Line

Flowing Particles

Draw Particles Positions Draw Particles Trajectories

G Tools

Show Grid Snap to Grid

Grid and Work Plane

Define Work Plane

Set Origin Define XY Define YZ Define XZ

Coordinate System

Color Scale

Standard Custom Color Smoothing Edit Color Scale Graphical presentation of pressure heads at different boundaries and in the root zone.

Graphical presentation of potential and actual boundary water fluxes at different boundaries.

Graphical presentation of potential and actual cumulative boundary water fluxes.

Graphical presentation of actual and cumulative boundary solute fluxes.

Graphical presentation of changes in water content, pressure head, temperature, and/or solute and sorbed concentration at specified observation nodes.

Graphical presentation of the soil hydraulic properties.

Graphical presentation of information about the number of iterations, time step, and Peclet and Courant numbers.

Displays mass balance information and mean profile properties. Convert binary input and output files into ASCII files.

Displays information about the inverse solution.

Displays a particular variable at the first time layer. Displays a particular variable at the last time layer. Displays a particular variable at the previous time layer. Displays a particular variable at the next time layer. Displays time layers of a particular variable consecutively and continuously.

Displays values of a particular variable along an arbitrary cross-section.

Displays values of a particular variable along a certain part of a boundary.

Displays values of a particular variable along a selected mesh line.

Draws positions of flowing particles. Draws trajectories of flowing particles.

Shows or hides the grid. Specifies whether or not the mouse should move in steps defined by the grid. Calls the **Grid and Work Plane** dialog window (Fig 78).

Redefines origin of the grid. Sets Work Plane to the XY plane. Sets Work Plane to the YZ plane. Sets Work Plane to the XZ plane.

Selects coordinate system

Selects a standard color scale for the display of a particular variable. Selects a custom color scale for the display of a particular variable. Changes color from abrupt to gradual at isolines. Calls the **Edit Isoband Value and Color Spectra** dialog window (Fig 75).

Move/Copy Rotate Mirror Intersect Lines Split Lines Insert Points on Line	Moves or copies a selected object. Rotates a selected object. Mirrors a selected object Finds the intercept of two lines and insert an interception point on the lines. Splits lines. Inserts points on a line.
Check Geometry	Checks geometry for consistency.
Options	
Rendering Mode Full Model Transparent Model Wire Model	Displays the transport domain as a full object. Displays the transport domain as a transparent object. Displays the transport domain as a wired object.
Graph Type	
Isolines	Displays the spatial distribution of a particular variable by means of
Color Contours	isolines. Displays the spatial distribution of a particular variable by means of isobands.
Color Points	Displays the spatial distribution of a particular variable by means of
Color Edges	color points. Displays the spatial distribution of a particular variable by means of color edges.
Velocity Vectors	Displays Darcy velocity vectors.
Display Options Edit	Edits display options in the Display Options dialog window (Fig 74).
Default Read Save As	Sets display options to their default values. Reads display options from a file. Saves display options to a file.
Program Options	Displays program options information (the Program Options dialog window has two tabs, one related to Graphics (Fig. 91) and one to Program itself (Fig. 92)).
Windows	
New Window Arrange Symbols	Open a new View window. Arranges minimized windows as icons at the bottom of the View window.
Main and Secondary Tile Horizontally Tile Vertically Cascade	Displays open View windows as main and secondary windows. Tiles open View windows horizontally. Tiles open View windows vertically. Cascades open View windows.
Close All	Closes all open View windows.
Help Contents Hydrus License and Activation	Displays help information. Displays the Hydrus license and activation information (the HYDRUS License and Activation dialog window; Fig. 93).
About Hydrus System Information	Displays the version and authors of the HYDRUS application. Displays system information.

H

I

J

9. Miscellaneous Information

9.1. Program Options

The **Program Options** dialog window has two tabs, one related to **Graphics** (Fig. 91) and one to **Program Directories** (Fig. 92).

On the left side of the **Graphics** Tab (*OpenGL*) one can turn on or off the *OpenGL Hardware Acceleration* (OpenGL is a library of functions developed by Silicon Graphics Inc. for handling graphical objects), and select the speed for *OpenGL optimization*.

On the right side of the Graphics Tab (Options) one can select

- a) Simplified display in Move modus
- b) whether or not an object is selected when the cursor hovers above it (*Pre-selection (Mark object while hovering above it with cursor)*), and
- c) whether or not values and properties are displayed numerically when the cursor is close to a selected object (*Display values/properties at pre-selected objects*),
- d) a different background (Gradient Background),

Program options	X
Graphics Program	
OpenGL	Options
OpenGL Hardware ODn Acceleration O Off	Simplified display in Move modus (Move, Zoom, Rotate)
Note: Changes to the settings become active only after the programme has been ended and restarted!	The simplified display will be activated on less than : 5 refreshments per second
OpenGL Optimization	Pre-selection (Mark object while hovering above it with cursor)
à	Display values/properties at pre-selected objects
Stable Max. Speed Otimization is to be set to 'Stable' should there be graphic problems.	Gradient Background
	Default
	OK Cancel Help

Figure 91. The Program Options dialog window (the Graphics Tab).

On the left side of the **Program Directories** Tab (Options) one can

- a) select a time interval for *Auto-save*
- b) specify Memory size for the Undo buffer, and
- c) specify the *Maximum number of FE-Mesh*.

On the right side of the **Program Directories** Tab (Options) one can

- a) specify whether or not the program *Reloads last opened projects at startup*
- b) select whether the FE-Mesh is to be saved in text format (*Save FE-Mesh in text format*)
- c) select whether or not Domain Properties are to be saved in text format (*Save Domain Properties in text format*), and
- d) specify whether the results are to be kept in an external directory (*By default keep results in external directory*).

One can also specify in this dialog window the *Working directory for temporary files* and the *Configuration file for display options*.

rogram options	
Graphics Program Directories	
Options	
Auto-save input data to a temporary file every [min]	Reload last opened projects at startup
(Enter 0 if you dont want to run auto-save)	Save FE-Mesh in text format (for calculation)
Memory size for the Undo-buffer : 512 🗘 [kB]	Save Domain Properties in text format (for calculation)
Recommended max. number of finite elements : 500000	By default keep results in external directory (for new projects)
Directories	
Working directory for temporary files:	
C:\ussl\Hydrus3D	Browse
Configuration file for display options:	
C:\ussl\Hydrus3D\H3DGDI.cfg	Browse
	OK Cancel Help

Figure 92. The Program Options dialog window (the Program Directories Tab).

9.2. HYDRUS License and Activation

The HYDRUS software package is activated using the **HYDRUS License and Activation** dialog window (Fig. 93) that is called using the command *Help->Hydrus License and Activation*.

Hydrus-3D License and Activation			
Product Specification	Contact Information		
Name: Hydrus 3D Options 2D-Domains Rectangular General	IGWMC Golden, Colorado 80401-1887, USA Tel: (303) 273-3103 Fax: (303) 384-2037 E-mail: igwmc@mines.edu Copy		
 3D-Domains Hexahedral General - Layered Network Network License 	License Request Information Program version: 3.01 Product to Activate: Hydrus 3D Network License: No Request Code 1: 247150779 Request Code 2: 2742420 Copy		
Activation Codes Key 1: Key 2:	Activate Now How to Activate?		
	Close Help		

Figure 93. The HYDRUS License and Activation dialog window.

9.3. Print Options Dialog Window

The **Print Options** dialog window contains three tabs (Fig. 94). In the **General Tab** a user selects whether the content of the View window (*Picture*) is to be printed with or without a **Legend**, **Page Orientation** (Portrait or Landscape), and **Page Margins**. In the **Picture Tab**, users further select **Print Quality**, whether the **Frame** is to be printed in black or color (**Colors and Frame**), and **Text Size**. Finally, in the **Legend Tab**, users select what texts (**Legend Rows**) are to be printed, with what **Font**, and how far from the picture. Users can use a predefined text or can write their own.

Print Options	Print Options
General Picture Legend	General Picture Legend
Print Page Orientation ♥ Picture ● Portrait ○ Color Scale ● Landscape ♥ Legend Page Margins Left 20.00 \$ [mm] Top: 20.00 \$ [mm] Right 20.00 \$ [mm] Bottom: 20.00 \$ [mm]	Print Quality Colors and Frame Imax: 5000 x 5000 pixels Lines and Text Black Imax: 5000 x 5000 pixels All Colored Imax: 5000 x 5000 pixels Imax: 5000 x 5000 pixels Imax: 5000 x 5000 pixels Imax: 5000 x 5000 pixels Imax: 5000 x 5000 x 5000 pixels Imax: 5000 x 5000 pixels Imax: 5000 x 5000 x 5000 pixels Imax: 5000 x 5000 pixels Imax: 5000 x 5000 x 5000 pixels Imax: 5000 x 5000 pixels Imax: 5000 x 5000 x 5000 pixels Imax: 5000 x 5000 pixels Imax: 5000 x 5000 x 5000 x 5000 pixels Imax: 5000 x 5000 pixels Imax: 5000 x 5000
OK Cancel Help	Factor: 1.00 Factor: 1.00 Default OK Cancel Help

Print Options			
General Picture Legend			
Legend Rows			
Row Text		Content	
Project 000		Project Info.	
2 FE-Mesh	2 🕑 FE-Mesh		*
3		User Defined	~
4		User Defined	~
Text Size	Offset		
Height: 4.00 🗘 [mm]	dx:	0.00 🗘 [mm]
	dy:	3.00 🗘 [mm]
	Fon	t Defau	ult
ОК	Car	ncel He	elp

Figure 94. The General, Picture, and Legend tabs of the Print Options dialog window.

9.4. Coordinate systems

The **Coordinate System** to be used for the transport domain definition can be selected from the **List of Available Coordinate Systems** dialog window (Fig. 95, top) called by the *Tools-Coordinate System* command. **Cartesian**, **Cylindrical**, and **Spherical** systems are available. The **Cartesian** coordinate system is selected by default. A **New Coordinate System** can be defined using the dialog window of the same name (Fig. 95, bottom).

List of avail	able Coordinate Systems	X
Existing Coord Name Default	inate Systems Description Image: Contract of the system	CS Type Cartesian X-Cylindric Y-Cylindric Z-Cylindric Spherical Polar
	<u>O</u> K Cance	New System Remove

New Coordinate System				
Name	Description			
Definition of the Coordinate System				
	× [cm]	Y [cm]	Z [cm]	
CS- <u>O</u> rigin:	0.00	0.00	0.00 Pick	
Point on + <u>X</u> -Axis:	0.00	0.00	0.00 Pick	
Point in +X <u>Z</u> -Plane:	0.00	0.00	0.00 Pick	
Pick All <u>3</u> Points				
<u>Q</u> K Cancel <u>H</u> elp				

Figure 95. The Coordinate Systems dialog windows.

9.5. DOS Window During Calculations

During the calculations different type of information can be written to the screen. The following information may be written to the screen depending upon the problem:

Time	Time
T-Level	Time level
ItW	Number of iterations to solve the water flow problem at a certain time
	step
ItC	Number of iterations to solve the solute transport problem at a certain time step
ItCum	Cumulative number of iterations
CumAtmBC	Cumulative flux across the atmospheric boundary
CumConst	Cumulative flux across the boundary having a constant flux or pressure head
CumDrain	Cumulative flux across the boundary having a time-variable flux or pressure head
CumRootUp	Cumulative actual root water uptake
CumCh0	Cumulative zero-order production in domain (solute transport)
CumCh1	Cumulative first-order degradation in domain (solute transport)
CumChS	Cumulative solute flux across the boundary having a time-variable flux
	or pressure head
hAtm	The average pressure head at the atmospheric boundary
hConst	The average pressure head at the boundary having a constant flux or pressure head
hDrain	The average pressure head at the boundary having a time-variable flux
hRoot	or pressure head The average pressure head in the root zone
hSeep	The average pressure head at the boundary with the seepage face
vConstBC	Flux across the boundary having a constant flux or pressure head
vSeep	Flux across the boundary having a seepage face
, seep	i iux ueross me obundury nuving a seepage iace

References

- Brooks, R. H., and A. T. Corey, Properties of porous media affecting fluid flow. *J. Irrig. Drainage Div.*, ASCE Proc. 72(IR2), 61-88, 1966.
- Carsel, R.F., and Parrish, R. S., Developing joint probability distributions of soil water retention characteristics, *Water Resour. Res*, 24, 755-769, 1988.
- Chung S.-O., and R. Horton, Soil heat and water flow with a partial surface mulch, *Water Resour*. *Res.*, 23(12), 2175-2186, 1987.
- Durner, W., Hydraulic conductivity estimation for soils with heterogeneous pore structure, *Water Resour. Res.*, 32(9), 211-223, 1994.
- Feddes, R. A., P. J. Kowalik, and H. Zaradny, Simulation of Field Water Use and Crop Yield, John Wiley & Sons, New York, NY, 1978.
- Hopmans, J. W., J. Šimůnek, N. Romano, and W. Durner, Inverse Modeling of Transient Water Flow, In: *Methods of Soil Analysis, Part 1, Physical Methods,* Chapter 3.6.2, Eds. J. H. Dane and G. C. Topp, Third edition, SSSA, Madison, WI, 963-1008, 2002.
- Kool, J. B., and J. C. Parker, Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties. *Water Resour. Res.*, 23(1), 105-114, 1987.
- Kosugi K., Lognormal distribution model for unsaturated soil hydraulic properties, *Water Resour*. *Res.*, *32*(9), 2697-2703, 1996.
- Langergraber, G. and J. Šimůnek, Modeling variably-saturated water flow and multi-component reactive transport in constructed wetlands, *Vadose Zone Journal*, *4*, 924-938, 2005.
- Lenhard, R. J., J. C. Parker, and J. J. Kaluarachchi, Comparing simulated and experimental hysteretic two-phase transient fluid flow phenomena, *Water Resour. Res.*, 27(8), 2113-2124, 1991.
- Lenhard, R. J., and J. C. Parker, Modeling multiphase fluid hysteresis and comparing results to laboratory investigations, In M. Th. van Genuchten, F. J. Leij, and L. J. Lund (eds.), Proc. Intl. Workshop on *Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils*, University of California, Riverside, CA, pp. 233-248, 1992.
- Maas, E. V., Crop salt tolerance. In K. K. Tanji (ed.), "Agricultural Salinity Assessment and Management", ASCE Manuals and Reports on Engineering practice, No. 71, NY, 1990.
- Millington, R. J., and J. M. Quirk, Permeability of porous solids, *Trans. Faraday Soc.*, 57, 1200-1207, 1961.

- Perrochet, P., and D. Berod, Stability of the standard Crank-Nicolson-Galerkin scheme applied to the diffusion-convection equation: some new insights, *Water Resour. Res., 29*(9), 3291-3297, 1993.
- Schaap, M. G., Leij, F. J., and van Genuchten, M. Th., Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions, J. of Hydrol., 251, 163-176, 2001.
- Scott, P. S., G. J. Farquhar, and N. Kouwen, Hysteresis effects on net infiltration, Advances in Infiltration, *Publ. 11-83*, pp.163-170, Am. Soc. Agri. Eng., St. Joseph, MI, 1983.
- Šimůnek, J., and J. W. Hopmans, Parameter Optimization and Nonlinear Fitting, In: *Methods of Soil Analysis, Part 1, Physical Methods,* Chapter 1.7, Eds. J. H. Dane and G. C. Topp, Third edition, SSSA, Madison, WI, 139-157, 2002.
- Šimůnek, J., D. Jacques, J. W. Hopmans, M. Inoue, M. Flury, and M. Th. van Genuchten, Solute Transport During Variably-Saturated Flow - Inverse Methods, In: *Methods of Soil Analysis, Part 1, Physical Methods,* Chapter 6.6, Eds. J. H. Dane and G. C. Topp, Third edition, SSSA, Madison, WI, 1435-1449, 2002.
- Šimůnek, J., M. Th. van Genuchten, and M. Šejna, The HYDRUS Software Package for Simulating Two- and Three Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Version 1.0, Technical Manual, PC Progress, Prague, Czech Republic, 2006.
- Stumm, W., and J. J. Morgan, Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters, John Wiley & Sons, New York, NY, 1981.
- Taylor, S. A. and G. M. Ashcroft, *Physical Edaphology*. Freeman and Co., San Francisco, California, p. 434-435, 1972.
- van Genuchten, M. Th., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, *Soil Sci. Soc. Am. J.*, 44, 892-898, 1980.
- van Genuchten, M. Th., Convective-dispersive transport of solutes involved in sequential first-order decay reactions, *Computers & Geosci.*, 11(2), 129-147, 1985.
- Vrugt, J. A., J. W. Hopmans, and J. Šimůnek, Calibration of a two-dimensional root water uptake model, *Soil Sci. Soc. Am. J.*, 65(4), 1027-1037, 2001.
- Vrugt, J.A., M. T. van Wijk, J. W. Hopmans, and J. Šimůnek, One-, two-, and three-dimensional root water uptake functions for transient modeling, *Water Resour. Res.*, 37(10), 2457-2470, 2002.
- Vogel, T., and M. Císlerová, On the reliability of unsaturated hydraulic conductivity calculated from the moisture retention curve, *Transport in Porous Media*, *3*, 1-15, 1988.

- Wesseling, J. G., J. A. Elbers, P. Kabat, and B. J. van den Broek, SWATRE: instructions for input, Internal Note, Winand Staring Centre, Wageningen, the Netherlands, 1991.
- Yeh, G. T., and V. S. Tripathi, HYDROGEOCHEM: A coupled model of HYDROlogic transport and GEOCHEMical equilibria in reactive multicomponent systems, *Environs Sci. Div., Publ. No.* 3170., Oak Ridge National Lab., Oak Ridge, TN, 1990.