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INTRODUCTION 

 
 
From lay to consumption, eggs are stored in various environments with different ambient 
temperatures. Growth kinetics of Salmonella depend on temperature; thus, to model the growth 
of Salmonella within eggs it is necessary to know the temperature of the eggs at all times. 
Consequently, models that can predict the temperatures of the eggs as a function of the ambient 
temperature are needed. This annex presents models that are used for determining the 
temperature of the eggs that cool down after lay and processing (i.e., washing, candling, grading, 
and packaging). The primary parameter that determines the changes of temperatures is the 
exponential cooling rate, k. 

Exponential cooling rates of shell eggs are influenced by a number of factors, including air 
movement, ambient temperature, palleting methods, and packaging materials.1 The information 
used to estimate exponential cooling rates was obtained from studies by Bell and Curley,2 
Anderson et al.,3 Czarick and Savage,1 Stadelman and Rhorer,4 and Keener et al.5 Exponential 
cooling rates were derived from each of these studies using the internal temperatures of eggs that 
were located in the center of packages (i.e., cases or pallets)a and assuming a constant ambient 
temperature. (Data were not available to provide estimates of the differences in internal 
temperatures of eggs throughout a pallet.) Because cooling is slowest at the center of the 
package, the derived temperature profiles would considerably overestimate the temperatures of 
many eggs not located in this area. The “worst case” would be inappropriate to use for describing 
temperature profiles for these eggs. Consequently, an adjustment is made to the derived 
temperature curves that accounts for the location of eggs in the packaging material.  

ANALYSIS 

For modeling temperature change over time, it was assumed, for the most part, that there is a log-
linear relationship between temperature and time, which is described by a single parameter k, the 
exponential cooling rate. Specifically, it was assumed that, as a function of time, t, the 
temperature, T(t) in °C of an egg at the center of the container could be described by 

 ln[u(T(t)] = -kt (D1) 

and  

 
( )( ( )) −

=
−

a
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T t Tu T t
T T

 (D2) 

 

                                                 
aDescription of egg case and pallet:  The size of an egg case is 2 ft long x 1 ft wide x 14 in high. A pallet of eggs 
consists of 30 egg cases (2 x 3 cases per level and 5 levels). The rough outside dimensions are 3 ft wide x 4 ft long x 
6 ft high, including the pallet. Cases are stacked centered on the pallet and then wrapped together with plastic wrap 
to keep them from shifting during transport.3 
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where µ(T(t)) is the proportional change in temperature relative to initial temperature, Ti, of the 
egg, and the ambient temperature, Ta, of the surrounding environment (cooler). 

With some exceptions, which are described below, values of k were estimated from data 
provided in the above-mentioned studies assuming Equation D1. Exceptional cases were 
identified because, when the data were plotted, the temperature profile did not follow what 
would be expected based on Equation D1. By examining the graphs of 13 cooling experiments 
from the above-mentioned studies, three patterns of temperature profile curves were noted. These 
are summarized below (the experiment number refers to that given in Table D1). Also, see 
figures D1-D8. 
 

1. The temperature was observed to decline immediately, and this decline was adequately 
described by Equation D1 (experiments 2, 3, 5, 6, 7, 8, 9, 10, and 12-trial 1). 

 
2. An increase in temperature was observed before temperature decline began. This can 

occur for eggs that have just been washed and candled, because when these eggs are 
packed, the packaging initially acts as insulation, thereby preventing decrease of egg 
temperatures, particularly for eggs in the center of the packaging material. To 
accommodate this, the following equation was used: 

 ln [u(T(t)] = -kt – c(e-bt-1) (D3) 

 where k is the asymptotic exponential cooling rate, and b and c are parameters to be 
estimated. This equation, for appropriate values of b and c, captures the increase in 
temperature prior to the decline (experiment 1, 4, 11, 12-trial 2, and 13). 

 
3. The result from experiment 1 in Table D1 represents a unique situation. Temperature 

decline was slow, and the observed temperature profile did not display the expected 
asymptotic behavior implied by Equation D1 but rather appeared linear with time. 
However, a linear relationship is unrealistic because, besides not conforming to theory, 
the projected temperatures for sufficiently large times would provide estimates of egg 
temperature that fall below the ambient temperature of the cooler, which is not possible. 
In these situations, it was not possible to derive unique solutions using Equation D3. 

 
4. Rather, for experiment 1, the best-fit estimates of k and c were obtained by fixing the 

value of b to 0.1, which approximates the estimates obtained from experiments 4 and 13.  
 
TABLE D1 THE ESTIMATED COOLING RATES OF EGGS WITH VARIOUS PACKING METHODS. FOR ANY 
DATA USED IN THE PREVIOUS RISK ASSESSMENT ON SE,6 REFERENCE TO THAT ASSESSMENT IS 
NOTED IN PARENTHESES. 

Experiment 
Number 

 
Packing Method 

Exponential Cooling Rate,  
k (min–max) 

 
Note 

 
 
 

1 

 
Pallet of cardboard (in-line)a 
(Figure 4) *(SERA: Pallet, 
cardboard and fiber flats, In-
line) 

k = 0.00943 
b = 0.100 
c = 0.00946 
n = 1 
(SERA: 0.0075) 

 
 
 
Equation D3 
b was fixed as 0.1 

 Pallet of cardboard cases 
(Figure 13)b 

Exponential: 
k = 0.0075  
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2 

(SERA: Pallet, cardboard 
boxes) 

n = 1 
(SERA: 0.008) 

 
Equation D1 

 
 

3 

Individual case/basket 
temperature (Figure15)b 
(SERA: Pallet, cardboard and 
fiber flats, Styrofoam) 

 
k = 0.0131  
n = 1 
(SERA: 0.013) 

 
Equation D1 
Ta = 7.22°C, Ti = 
34.72°C 

 
 
 

4 

Pallet of cardboard (off-line)a 
(Constant ambient temperature) 
(Figure 6) 
(SERA: Pallet, cardboard, off-
line) 

k = 0.00626 
b = 0.103 
c = 0.279 
n = 1 
(SERA: 0.035) 

Equation D3 
Ta = 9.44°C, Ti = 
24.44°C (Tmax = 
26.39°C) 

 
 

5 

Pallet of plastic basket cases  
(Figure 14)b (location 3) 
(SERA: Single cardboard 
cases) 

 
k = 0.0524 
n = 1 
(SERA: 0.052) 

Equation D1 
Ta = 7.22°C 
Ti = 28.61°C 

 
 
 

6 

Plastic and fiber filler flats, fiber 
case, closed 
Formed and folded cartons, 
fiber case, closed (curve D)c 

(SERA: Flats, closed ) 

 
 
k = 0.0628 
n = 1 
(SERA: 0.07) 

 
 
 
 
Equation D1 

 
 
 
 
 
 

7 

Formed and folded cartons, 
open stack 
Formed and folded cartons, 
wood case 
Plastic and fiber filler flats, 
wood case 
Plastic and fiber filler flats, fiber 
case, open (curve Cc) 
(SERA: flats, folded shut) 

 
 
 
 
 
k (range) = 0.08-0.1297 
k (geometric mean) = 0.100
n = 3 
(SERA:0.08-0.14) 

 
 
 
 
 
 
 
 
Equation D1 

 
 
 

8 

 
 
Plastic and fiber filler flats, open 
stack (curve B)c 
(SERA: Open stack) 

k = 0.19-0.39 
k (geometric mean ) = 
0.275 
n = 3 
(SERA:0.2-0.4) 

 
 
 
 
Equation D1 

 
 
 
 
 
 
 

9 

 
 
(1)  Filler flatsd 

(2) Fiberboard case (30-dozen) 
Foam cartons (closed top)  
(3) Fiberboard case (30-dozen) 

Foam cartons (slotted top) 
(SERA: Fiber case, foam 
cartons with and without slots, 
moving air) 

 
 
 
 
(1) k = 0.240  
(2) k = 0.216 
(3) k = 0.231 
k (geometric mean) = 0.228 
n = 1 
(SERA: 0.24) 

Equation D1 
This study concluded 
that the packaging 
material has no 
significant influence 
on cooling rate. 
The three k values 
are close enough to 
be considered as 
single data. 

 
 
 

10 

Fiber filler flats or fiber cases 
with forced air cooling through 
opening in cases (curve 
A)c(SERA: Open stack, forced 
air) 

 
k = 0.39-0.97  
k (geometric mean) = 0.615
n = 3 
(SERA:0.4-1.0) 

 
 
 
 
Equation D1 

 
 

11 

 
 
Pallet of cardboard cases (flats) 
(Figure 16)b

k = 0.0472 
b = 6.218 
c = 0.283 
n = 1 

Equation D3: 
Ta = 7.22°C  
Ti = 25°C  
(Tmax = 30°C) 
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12 

 
 
 
 
 
Pallet, cardboard cases 
(Traditional cooling)e

k1 = 0.0160  
k2 = 0.0270 
b = 4.078 
c = 0.229 
k (geometric mean) = 
0.0215 
n = 2 

 
 
 
 
Trial 1: Equation 
D1(k1) 
Trial 2: Equation D3 
(k2) 

 
 

13 

 
Pallet, cardboard (off-line)a  
(Figure D1) (Fluctuated ambient 
temperature) 

k = 0.0064 
b = 0.116 
c = 0.360 
n = 1 

Equation D3 
Ta = 10 °C 
Ti = 26.67°C 
(Tmax = 30.00°C) 

aAnderson et al.3 
bCzarick and Savage.1 
cBell and Curley.2 
dStadelman and Rhorer.4 
eKeener et al.5 
 

Exp. #1 -  Pallet of cardboard cases
(Anderson et al., 1992)
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FIGURE D1 OBSERVED AND PREDICTED TEMPERATURES 
VERSUS TIME FOR AVAILABLE EXPERIMENTAL DATA: 
PALLET OF CARDBOARD CASES—EXPERIMENT #1.3 
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Exp. #2 - Pallet of cardboard cases
(Czarick and Savage, 1992) 
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FIGURE D2 OBSERVED AND PREDICTED TEMPERATURES 
VERSUS TIME FOR AVAILABLE EXPERIMENTAL DATA: 
PALLET OF CARDBOARD CASES—EXPERIMENT #2.1 

Exp. #3 - Individual case/basket
(Czarick and Savage, 1992)
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FIGURE D3 OBSERVED AND PREDICTED TEMPERATURES 
VERSUS TIME FOR AVAILABLE EXPERIMENTAL DATA: 
INDIVIDUAL CASE/BASKET—EXPERIMENT #3.1 
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Exp. #4 - Pallet, cardboard-off-line
(Anderson et al., 1992)
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FIGURE D4 OBSERVED AND PREDICTED TEMPERATURES 
VERSUS TIME FOR AVAILABLE EXPERIMENTAL DATA: 
PALLET, CARDBOARD OFF-LINE—EXPERIMENT #4.3 

Exp. #5 - Pallet of Plastic baskets
(Czarick and Savage, 1992)
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FIGURE D5 OBSERVED AND PREDICTED TEMPERATURES 
VERSUS TIME FOR AVAILABLE EXPERIMENTAL DATA: 
PALLET OF PLASTIC BASKETS—EXPERIMENT #5.1 
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Exp. #9 - Filler Flats
(Stadelman and Rhorer, 1987)
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FIGURE D6 OBSERVED AND PREDICTED TEMPERATURES 
VERSUS TIME FOR AVAILABLE EXPERIMENTAL DATA: FILLER 
FLATS—EXPERIMENT #9.4 

Exp. #11 - Pallet of cardboard cases-flats
(Czarick and Savage, 1992)
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FIGURE D7 OBSERVED AND PREDICTED TEMPERATURES 
VERSUS TIME FOR AVAILABLE EXPERIMENTAL DATA: 
PALLET OF CARDBOARD CASES—FLAT—EXPERIMENT 
#11.1 
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Exp. #12 - Pallet of cardboard 
(Keener et al., 2001)

5

10

15

20

25

30

35

0 10 20 30 40 5

Time (hour)

Te
m

pe
ra

tu
re

 (C
)

0

Equation 3

 
FIGURE D8 OBSERVED AND PREDICTED TEMPERATURES 
VERSUS TIME FOR AVAILABLE EXPERIMENTAL DATA: 
PALLET OF CARDBOARD—EXPERIMENT #12.5 

Exp. #13 - Pallet of cardboard 
(fluctuated ambient  temperature)

(Anderson et al., 1992)
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FIGURE D9 OBSERVED AND PREDICTED TEMPERATURES 
VERSUS TIME FOR AVAILABLE EXPERIMENTAL DATA: PALLET 
OF CARDBOARD—EXPERIMENT #13.3 

 

THE DISTRIBUTION USED FOR MODELING EXPONENTIAL COOLING RATES 

Most of the experiments consisted of a single trial; however, four experiments (experiments 7, 8, 
10, and 12) included more than one trial or replicate. A fifth experiment (experiment 9) consisted 
of a comparison of three types of packaging material. Thus, initially, these three results were 
considered results from three replicates. In was assumed that, for similar conditions (i.e., the 
same packaging material), the variable k is random with a distribution F. Given the dearth of 
information, this assumption seems reasonable because there are many (random) factors that 
could influence values of k. Such factors are associated with the features of the eggs and of the 
packaging materials that were not explicitly accounted for in these experiments. More data in 
controlled experiments are needed to validate this assumption or to identify factors that influence 
values of k.  
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Individual estimated values of k were not given in studies that report results of experiments 
with more than two replicates; rather the maximum and minimum values were reported. In 
addition, the number of replicates was small, usually two or three. Thus, it is not possible to 
estimate F without some simplifying assumptions. Consequently, to estimate the values of the 
parameters that characterize the distribution of F, an underlying normal distribution was 
assumed. An analysis of the data indicated that the coefficient variances (CV) of the estimated k 
values (Table D2) were not correlated with the estimated mean values of k. This property, and 
the fact that k takes only positive values, suggests that the distribution of k can be assumed to be 
lognormal, or that the logarithm of k, ln(k), can be a normal distribution (μ, σ), where μ is the 
expected value and σ is the standard deviation of ln(k). Estimates of μ involve straightforward 
estimation procedures of a mean value, using the midrange when the maximum and minimum 
values were recorded. The remainder of this section describes the method used to estimate the 
variance (σ2).  

Because there are only small numbers of observations or replicates for each experiment (n = 
2 or 3), there may be a large amount of uncertainty associated with the estimates of the mean 
value of ln(k). Therefore, the variance estimates were pooled over results from five different 
experiments with more than one replicate to increase the degrees of freedom associated with the 
estimates. 

Three of these experiments (experiments 7, 8, and 10) are from Bell and Curley,2 who 
reported the results as ranges. From this study, the maximum and minimum ln(k) values were 
estimated using the reported maximum and minimum times for eggs to cool to given 
temperatures, assuming the log-linear relationship given in Equation D1.b It was stated that 
typically, three replicates were performed, but for some unspecified occasions, more were done. 
Consequently, it was assumed that the number of replicates in these experiments was equal to 3 
(a conservative assumption insofar as it entails the maximum amount of uncertainty that can be 
assigned given what only is known is that there were at least 3 replicates). The fourth experiment 
(exp. 12) had two replicates.5 The fifth experiment (exp. 9) involved three different packaging 
materials/methods for which the estimates of the exponential cooling rates were close, so that the 
study concluded “no significant differences due to packaging” were evident.4 Therefore, one 
might consider these three results as three realizations of independent replicate experiments. 
However, after examining the description of the experimental design, we realized the three 
results could not be justifiably considered as independent realizations. This was supported by a 
comparison of the variances derived from this experiment and the other four experiments. An F-
test was performed, comparing the variance obtained by pooling results, as described below, over 
the other four experiments along with the unbiased estimate of variance of the three results from 
the fifth experiment. The F-statistic was found to be statistically significant at the 0.02 
significance level. Consequently, we did not include this experiment when pooling the variances.  

                                                 
b Note: In one experiment the estimated k value was derived from graphical analysis. 
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TABLE D2 DATA AND CALCULATIONS USED TO DETERMINE EXPONENTIAL COOLING RATES, K, AND 
STANDARD DEVIATIONS FOR LN(K) 

 Data # 102 Data # 82 Data # 72 Data # 125 
n 3 3 3 2 
Min ln (k1) –0.944 –1.637 –2.553 –4.135 
Max ln (k2) –0.027 –0.944 –2.042 –3.611 
Mean (lnk) –0.486 –1.290 –2.298 –3.873 
κ 0.274 0.274 0.274 0.274 
range, R(k2 – k1) 0.916 0.693 0.511  
R2 0.840 0.480 0.261  
Variance (R2 X κ) 0.230 0.132 0.071 0.137 
Variance (total), v 0.143 0.143 0.143 0.143 
Standard deviation 0.379 0.379 0.379 0.379 
k (predicted) 0.615 0.275 0.100 0.021 

 
Pooled variances were calculated as follows: when n = 3, the estimates of the variances, v, 

were made by multiplying the square of the range (R) of ln(k) values by an appropriate value, κ, 
chosen such that the v would be an unbiased estimator of the variance, assuming an underlying 
normal distribution (v = κ R2). Through simulation it was determined that κ = 0.274. This value 
could also be approximated by noting that the distribution of (R/σ)1.96 is approximated by 1.725 
times a chi-square with 2.05 degrees of freedom.7 From this, it is approximated that the expected 
ratio of R2 and σ2 is about 0.276. This result, however, also shows that, in approximation, (v/σ2) 
can be considered distributed as a chi-square with two degrees of freedom. Consequently, the 
pooled estimate of variance (V) was determined by taking a weighted average of the v’s, where 
the weights are equal to the degrees of freedom, n – 1. The distribution of V was examined 
through simulations: equating the first two moments of the simulated results to those of a chi-
square distribution with υ degrees of freedom, it is derived that the distribution of V can be 
assumed proportional to a chi-square distribution with 6.9 degrees of freedom. The estimate V is 
0.143; thus, the estimate of the standard deviation, s, is 0.379. Further details of calculations are 
given in Table D2, which contains maximum and minimum of ln(k) values, the estimated 
variances for each of the four experiments, and the estimated mean of ln(k) and the anti-log of 
the estimated mean ln(k). Table D1 includes the estimated k values for all experiments, which 
represent the anti-log of the mean of ln(k).  

ASSUMPTIONS FOR MODELING THE EXPONENTIAL COOLING RATE 

It was assumed that the packaging materials correspond to one of the entries listed in Table D1. 
It was assumed that ln(k) is normal distributed with mean, μ, obtained from Table D1, which 
gives values of k, and standard deviation, σ, equal to 0.379. The uncertainties of these values are 
realized by generating values, m and s, respectively, for the mean and standard deviation. Based 
on the above analysis, generated values are determined as follows. 
 

1. A standard deviation, s, is generated assuming that σ2/s′2 is distributed as a chi-square 
with 6.9 degrees of freedom. 
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2. A mean value of the ln(k), m, is generated by considering the statistic τ = n0.5(μ – m)/σ. 
When μ is estimated by an average, then τ was assumed distributed as a t-distribution 
with 6.9 degrees of freedom. When μ is estimated by a midrange, then, based on a 
simulation (of 1,000,000) and fitting the first two moments of τ2, it was assumed that τ is 
proportional to a t-distribution with proportionality constant, c = 1.044 and degrees of 
freedom, v = 7.4. The percentiles of τ2 from the simulation agreed closely with those from 
the derived distribution: the observed 99th percentile was 12.83, the theoretical one was 
12.86; for the 75th percentile, the observed was 1.701, and the theoretical one was 1.697. 

 
3. For the cases where Equation D3 would apply (Table D1), it was assumed that b is 

constant, and that c varies directly proportional to k. 
 
To determine temperatures for eggs that are not near the center of the pallet, box, or carton, a 
simplified approach is used. The basic heat transfer equation for conduction is  
 

 2

2 )),(()),((
x

xtTu
t

xtTu
∂

∂
=

∂
∂ α  (D4) 

with boundary conditions  
 

 =)),0(( xTu 1, ,0)),(( =cxtTu  0)0),((
=

∂
∂

x
tTu  (D5) 

where xc is some fixed distance to the boundary from the center (x = 0) of the object being 
cooled.8 The above set of conditions imply that the initial temperature of the body is uniform, the 
ambient temperature is constant at all times and is the same as the temperature at the surface, and 
that cooling at the center of the pack occurs symmetrically, that is, the temperature is always 
greatest at the center of the pack. These assumptions probably do not hold precisely; however, 
they serve as convenient assumptions. The solutions for various shaped geometric bodies have 
been developed and are given by Zwietering and Hasting.8 For a given geometric shape, for a 
sufficiently large time, the equation 
 

 
2/( ( ), ) cg t x

cu T t x he α−=  (D6) 

 
describes the temperature change in the center, where h and g are known constants. Comparing 
Equation D6 to Equation D1, for large t, α can be approximated as kxc

2 / g, which suggests that 
for a distance x from the boundary, u(T(t), x) be approximated in a simple and rough fashion as 
 
 

 
2

( ( ), ) ( ( ), ) exp( ( 1))⎛ ⎞= − ⎜ ⎟
⎝ ⎠

c
c

xu T t x u T t x kt
x

−  (D7) 
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For packaging materials for which the cooling curves (for the egg at the center of the 
packaging material) were observed to be log-linear in temperature and time, Equation D7 
simplifies to 
 
 

 2( ( ), ) ( ( ) )= − cx
xu T t x exp k  (D8) 

 
The distance x cannot equal 0 insofar as the eggs are placed within boxes or cartons some 

distance from the boundary. For example, when x is half the distance between the edge of the 
boundary and the center, then the coefficient of kt in Equation D7 is –3, and if u(T(t), xc) = exp(–
kt), then u(T(t), x) = exp(–4kt); in effect, the exponential cooling rate increases by a factor of 4; if 
x is one-third the distance, then k in effect increases by a factor of 9. 

The inputs needed to use Equation D7 or D8 are the type of packaging material, the location 
of the egg relative to the boundary and center of the packaging material, the ambient 
temperature, and the temperature of the egg when the ambient temperature changes. The 
temperature of the egg at lay was assumed approximately 41°C, which is the body temperature of 
the hen. 
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